WorldWideScience

Sample records for polar orbiting environmental

  1. NOAA Polar-orbiting Operational Environmental Satellites (POES) Radiometer Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar-orbiting Operational Environmental Satellite (POES) series offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day...

  2. National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture

    Science.gov (United States)

    Hinnant, F.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  3. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  4. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  5. Environmental Satellites. Polar-orbiting Satellite Acquisition Faces Delays; Decisions Needed on Whether and How to Ensure Climate Data Continuity

    National Research Council Canada - National Science Library

    2008-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) is a triagency acquisition managed by the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA...

  6. Environmental Satellites: Polar-orbiting Satellite Acquisition Faces Delays; Decisions Needed on Whether and How to Ensure Climate Data Continuity

    National Research Council Canada - National Science Library

    2008-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) is a triagency acquisition managed by the Department of Commerce s National Oceanic and Atmospheric Administration (NOAA...

  7. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  8. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Abu-samha, M.; Madsen, L. B.

    2011-01-01

    We solve the three-dimensional time-dependent Schroedinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration.

  9. Orbit Correction for the Newly Developed Polarization-Switching Undulator

    Science.gov (United States)

    Obina, Takashi; Honda, Tohru; Shioya, Tatsuro; Kobayashi, Yukinori; Tsuchiya, Kimichika; Yamamoto, Shigeru

    2007-01-01

    A new scheme of undulator magnet arrangements has been proposed and developed as a polarization-switching radiation source, and its test-stand was installed in the 2.5-GeV Photon Factory storage ring (PF ring) in order to investigate the effects on the beam orbit. The closed orbit distortion (COD) over 200 μm was produced in a vertical direction when we switched the polarization of the radiation from the test-stand. In a horizontal direction, the COD was less than 50μm. The results agreed well with the predictions from the magnetic-field measurement on the bench. In order to suppress the CODs and realize a stable operation of the ring with the polarization-switching, we developed an orbit correction system which consists of an encoder to detect motion of magnets, a pair of beam position monitors (BPMs), signal processing parts, and a pair of steering magnets. We succeeded in suppressing the CODs to the level below 3μm using the system even when we switch the polarization at a maximum frequency of 0.8 Hz.

  10. Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material.

    Science.gov (United States)

    Goel, Vinod; Lam, Elaine; Smith, Kathleen W; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2017-05-01

    While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Circular-Polarization-Selective Transmission Induced by Spin-Orbit Coupling in a Helical Tape Waveguide

    Science.gov (United States)

    Liu, Yahong; Guo, Qinghua; Liu, Hongchao; Liu, Congcong; Song, Kun; Yang, Biao; Hou, Quanwen; Zhao, Xiaopeng; Zhang, Shuang; Navarro-Cía, Miguel

    2018-05-01

    Spin-orbit coupling of light, describing the interaction between the polarization (spin) and spatial degrees of freedom (orbit) of light, plays an important role in subwavelength scale systems and leads to many interesting phenomena, such as the spin Hall effect of light. Here, based on the spin-orbit coupling, we design and fabricate a helical tape waveguide (HTW), which can realize a circular-polarization-selective process. When the incident circularly polarized wave is of the same handedness as the helix of the HTW, a nearly complete transmission is observed; in contrast, a counterrotating circular polarization of incident wave results in a much lower transmission or is even totally blocked by the HTW. Indeed, both simulations and experiments reveal that the blocked component of power leaks through the helical aperture of the HTW and forms a conical beam analogous to helical Cherenkov radiation due to the conversion from the spin angular momentum to the orbital angular momentum. Our HTW structure demonstrates its potential as a polarization selector in a broadband frequency range.

  12. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  13. Ionic Potential and Band Narrowing as a Source of Orbital Polarization in Nickelate/Insulator Superlattices

    Science.gov (United States)

    Georgescu, Alexandru B.; Disa, Ankit S.; Kumah, Divine P.; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    Nickelate interfaces display complex, interacting electronic properties such as thickness dependent metal-insulator transitions. One large body of effort involving nickelates has aimed to split the energies of the Ni 3d orbitals (orbital polarization) to make the resulting band structure resemble that of cuprate superconductors. The most commonly studied interfacial system involves superlattices of alternating nickelate and insulating perovksite-structure layers; the resulting orbital polarization at the nickelate-insulator interface is understood as being due to confinement or structural symmetry breaking. By using first principles theory on the NdNiO3/NdAlO3 superlattice, we show that another important source of orbital polarization stems from electrostatic effects: the more ionic nature of the cations in the insulator (when compared to the nickelate) can shift the relative orbital energies of the Ni. We use density functional theory (DFT) and add electronic correlations via slave-bosons to describe the effect of correlation-induced band narrowing on the orbital polarization. Work supported by NSF Grant MRSEC DMR-1119826.

  14. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...

  15. Environmental studies using earth orbital photography

    Energy Technology Data Exchange (ETDEWEB)

    Wobber, F J

    1969-01-01

    Orbital remote sensing, and particularly orbital photography, can provide immediately useful data for scientists familiar with applying aerial photographic techniques to environmental problems. Despite the expansion of analytical techniques in the earth sciences, the environmental data base has remained relatively static compared with increased information needs because of the difficulty of effective worldwide surveys and the high cost of timely data collection. Color, color infrared and black and white space photographs obtained incident to the Gemini and Apollo programs provide unique synoptic tools for analyzing modern environments and processes, and data that cannot be duplicated by aerial photographic mosaics. Principal advantages of orbital surveys include repetitious worldwide coverage promising environmental synthesis within the full spectrum of seasonal contrasts, and synoptic observations on a scale generally impossible from aircraft. The general categories of environmental data that can be extracted from orbital photography are summarized. 26 references, 37 figures, 3 tables.

  16. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  17. Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    Science.gov (United States)

    Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James

    2012-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.

  18. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  19. Electrical polarization and orbital magnetization: the modern theories

    International Nuclear Information System (INIS)

    Resta, Raffaele

    2010-01-01

    Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M-phenomenologically known as bulk properties-apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out

  20. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  1. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard

    2010-01-01

    -based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...... (SIWSI) is evaluated against in situ measured canopy water content indicators at a semi-arid grassland savanna site in Senegal 2008. Daily SIWSI from both MODIS and SEVIRI data show an overall inverse relation to Normalized Difference Vegetation Index (NDVI) throughout the growing season. SIWSI...... for SWIR-based canopy water status and stress monitoring in a semi-arid environment....

  2. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  3. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  4. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  5. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  6. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  7. NPOESS Preparatory Project (NPP) Environmental Products

    Science.gov (United States)

    Grant, K. D.; Smith, D. C.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both POES and the Defense Meteorological Satellite Program (DMSP) replacement, known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The Joint Polar Satellite System satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for the Joint Polar Satellite System is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS). Both are developed by Raytheon Intelligence and Information Systems (IIS). The Interface Data Processing Segment will process Joint Polar Satellite System and Defense Weather Satellite System satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to the National Oceanic and Atmospheric Administration and Department of Defense processing centers operated by the United States government. The Interface Data Processing Segment will process Environmental Data Records beginning with the NPOESS Preparatory Project (NPP) and continue through the lifetime of the Joint Polar Satellite System and Defense Weather Satellite System programs. Under the National Polar-orbiting Operational Environmental

  8. Modification of the method of polarized orbitals for electron--alkali-metal scattering: Application to e-Li

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Temkin, A.; Silver, A.; Sullivan, E.C.

    1978-01-01

    The method of polarized orbitals is modified to treat low-energy scattering of electrons from highly polarizable systems, specifically alkali-metal atoms. The modification is carried out in the particular context of the e-Li system, but the procedure is general; it consists of modifying the polarized orbital, so that when used in the otherwise orthodox form of the method, it gives (i) the correct electron affinity of the negative ion (in this case Li - ), (ii) the proper (i.e., Levinson-Swan) number of nodes of the associated zero-energy scattering orbital, and (iii) the correct polarizability. A procedure is devised whereby the scattering length can be calculated from the (known) electron affinity without solving the bound-state equation. Using this procedure we adduce a 1 S scattering length of 8.69a 0 . (The 3 S scattering length is -9.22a 0 .) The above modifications can also be carried out in the (lesser) exchange adiabatic approximation. However, they lead to qualitatively incorrect 3 S phase shifts. The modified polarized-orbital phase shifts are qualitatively similar to close-coupling and elaborate variational calculations. Quantitative differences from the latter calculations, however, remain; they are manifested most noticeably in the very-low-energy total and differential spin-flip cross sections

  9. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  10. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  11. The Norwegian Radiation Protection Authority's Environmental Unit - 10 years in the Polar Environmental Centre, Tromsoe

    International Nuclear Information System (INIS)

    2009-01-01

    The Norwegian Radiation Protection Authority (NRPA) established an Environmental Unit at the Polar Environmental Centre in Tromsoe in the summer of 1999. The aim of establishing the unit in Tromsoe was to further the monitoring programmes of the NRPA in the Arctic and to the promote collaboration within the Polar Environmental Centre. Over the last 10 years, the NRPA's Environmental Unit has undertaken a range of research and monitoring activities in close cooperation with other institutes in the Polar Environmental Centre that have helped to further understand the current radiological status of the Norwegian Arctic. (Author)

  12. Polarized atomic orbitals for linear scaling methods

    Science.gov (United States)

    Berghold, Gerd; Parrinello, Michele; Hutter, Jürg

    2002-02-01

    We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.

  13. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  14. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    Science.gov (United States)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  15. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  16. The Suomi National Polar-Orbiting Partnership (SNPP): Continuing NASA Research and Applications

    Science.gov (United States)

    Butler, James; Gleason, James; Jedlovec, Gary; Coronado, Patrick

    2015-01-01

    The Suomi National Polar-orbiting Partnership (SNPP) satellite was successfully launched into a polar orbit on October 28, 2011 carrying 5 remote sensing instruments designed to provide data to improve weather forecasts and to increase understanding of long-term climate change. SNPP provides operational continuity of satellite-based observations for NOAA's Polar-orbiting Operational Environmental Satellites (POES) and continues the long-term record of climate quality observations established by NASA's Earth Observing System (EOS) satellites. In the 2003 to 2011 pre-launch timeframe, NASA's SNPP Science Team assessed the adequacy of the operational Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) from the SNPP instruments for use in NASA Earth Science research, examined the operational algorithms used to produce those data records, and proposed a path forward for the production of climate quality products from SNPP. In order to perform these tasks, a distributed data system, the NASA Science Data Segment (SDS), ingested RDRs, SDRs, and EDRs from the NOAA Archive and Distribution and Interface Data Processing Segments, ADS and IDPS, respectively. The SDS also obtained operational algorithms for evaluation purposes from the NOAA Government Resource for Algorithm Verification, Independent Testing and Evaluation (GRAVITE). Within the NASA SDS, five Product Evaluation and Test Elements (PEATEs) received, ingested, and stored data and performed NASA's data processing, evaluation, and analysis activities. The distributed nature of this data distribution system was established by physically housing each PEATE within one of five Climate Analysis Research Systems (CARS) located at either at a NASA or a university institution. The CARS were organized around 5 key EDRs directly in support of the following NASA Earth Science focus areas: atmospheric sounding, ocean, land, ozone, and atmospheric composition products. The PEATES provided

  17. Advancing Environmental Prediction Capabilities for the Polar Regions and Beyond during The Year of Polar Prediction

    Science.gov (United States)

    Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas

    2017-04-01

    Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.

  18. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M * = 0.98 M ☉ ). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕ , based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars

  19. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  20. Magnetic-field fluctuations from 0 to 26 Hz observed from a polar-orbiting satellite

    International Nuclear Information System (INIS)

    Erlandson, R.E.; Zanetti, L.J.; Potemra, T.A.

    1989-01-01

    The polar orbit of the Viking satellite provides a unique opportunity to obtain observations of magnetic fluctuations at mid-altitudes on the dayside of the magnetosphere and in the polar-cusp region. One type of magnetic-field fluctuation, observed in the dayside magnetosphere, was Pc 1 waves. Pc 1 waves are in the electromagnetic ion-cyclotron mode and are generated by anisotropies in energetic ion distributions. The waves are thought to be generated near the equator and to propagate large distances along magnetic-field lines. Most observations of Pc 1 waves have been obtained near the equator using geosynchronous satellites and on the surface of the earth. The Viking observations provide an opportunity to observe Pc 1 waves at mid-latitudes above the ionosphere and to determine the spectral structure and polarization of the waves. ULF/ELF broadband noise represents a second type of magnetic fluctuation acquired by Viking. This type of magnetic fluctuation was observed at high latitudes near the polar cusp and may be useful in the identification of polar-cusp boundaries. Thirdly, electromagnetic ion-cyclotron waves have also been observed in the polar-cusp region. These waves occur only during an unusually high level of magnetic activity and appear to be generated locally

  1. Ejectile polarization and nuclear orbitals

    International Nuclear Information System (INIS)

    Ohnishi, A.; Maruyama, T.; Horiuchi, H.

    1992-01-01

    Ejectile polarization phenomena are studied by the use of 'Quantum Molecular Dynamics plus external mean field' model. It is shown that the far-side contribution increases as the incident energy increases or the target charge decreases. The incident energy and the target dependence of ejectile polarization data is reproduced qualitatively. The near- and far-side contributions themselves are calculated to be almost monotone functions of ejectile momentum as is predicted in a simple projectile fragmentation scheme without the assumption that the linear and angular momentum transfers are negligible, and their statistical average results in various shapes in ejectile polarization

  2. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    Science.gov (United States)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  3. Energy spectrum, the spin polarization, and the optical selection rules of the Kronig-Penney superlattice model with spin-orbit coupling

    Science.gov (United States)

    Li, Rui

    2018-02-01

    The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.

  4. Perfect tuning of spin-polarization in a ring-shaped multiple-quantum-dot nanostructure in the presence of Rashba spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, L., E-mail: Leslami@iust.ac.ir; Chaghari, Z.; Faizabadi, E.

    2013-09-02

    Spin-dependent electronic transport through an open multiple-quantum-dot ring threaded by a magnetic flux is theoretically investigated by using the single particle Green's function method. By introducing local Rashba spin–orbit interaction on an individual quantum dot and local magnetic moments on two of other quantum dots, we calculate the spin-polarization in the output lead. We find the spin-polarization can be tuned by manipulating magnetic moments, adjusting magnetic flux and setting the Rashba spin–orbit strength. It is also shown the system can operate as an efficient spin-inverter when the structure is adjusted properly. The analysis can be utilized in designing optimized nanodevices.

  5. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly...... to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning.......8-0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electro-jet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring...

  6. The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars

    International Nuclear Information System (INIS)

    Brown, Adrian J.; Michaels, Timothy I.; Byrne, Shane; Sun, Wenbo; Titus, Timothy N.; Colaprete, Anthony; Wolff, Michael J.; Videen, Gorden; Grund, Christian J.

    2015-01-01

    We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, potentially revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars. Such an instrument will address the following three major science themes, which we address in this paper: Science Theme 1. Surface. This would include global, night and day mapping of H 2 O and CO 2 surface ice properties. Science Theme 2. Ice Clouds. This would including unambiguous discrimination and seasonal mapping of CO 2 and H 2 O ice clouds. Science Theme 3. Dust Aerosols. This theme would include multiwavelength polarization measurements to infer dust grain shapes and size distributions. - Highlights: • We present the scientific rationale for a multi-wavelength, polarization sensitive lidar to be placed in orbit around Mars. • Scientific questions focus on the Martian climate and modern-day interactions between surface, ice clouds and dust aerosols. • What we would learn about volatile transport and deposition has implications for past, present and future life on Mars

  7. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites

    Science.gov (United States)

    Stroppa, Alessandro; di Sante, Domenico; Barone, Paolo; Bokdam, Menno; Kresse, Georg; Franchini, Cesare; Whangbo, Myung-Hwan; Picozzi, Silvia

    2014-12-01

    Ferroelectricity is a potentially crucial issue in halide perovskites, breakthrough materials in photovoltaic research. Using density functional theory simulations and symmetry analysis, we show that the lead-free perovskite iodide (FA)SnI3, containing the planar formamidinium cation FA, (NH2CHNH2)+, is ferroelectric. In fact, the perpendicular arrangement of FA planes, leading to a ‘weak’ polarization, is energetically more stable than parallel arrangements of FA planes, being either antiferroelectric or ‘strong’ ferroelectric. Moreover, we show that the ‘weak’ and ‘strong’ ferroelectric states with the polar axis along different crystallographic directions are energetically competing. Therefore, at least at low temperatures, an electric field could stabilize different states with the polarization rotated by π/4, resulting in a highly tunable ferroelectricity appealing for multistate logic. Intriguingly, the relatively strong spin-orbit coupling in noncentrosymmetric (FA)SnI3 gives rise to a co-existence of Rashba and Dresselhaus effects and to a spin texture that can be induced, tuned and switched by an electric field controlling the ferroelectric state.

  8. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  9. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  10. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  11. POLARIZED BEAMS: 2 - Partial Siberian Snake rescues polarized protons at Brookhaven

    International Nuclear Information System (INIS)

    Huang, Haixin

    1994-01-01

    To boost the level of beam polarization (spin orientation), a partial 'Siberian Snake' was recently used to overcome imperfection depolarizing resonances in the Brookhaven Alternating Gradient Synchrotron (AGS). This 9-degree spin rotator recently permitted acceleration with no noticeable polarization loss. The intrinsic AGS depolarizing resonances (which degrade the polarization content) had been eliminated by betatron tune jumps, but the imperfection resonances were compensated by means of harmonic orbit corrections. However, at high energies these orbit corrections are difficult and tedious and a Siberian Snake became an attractive alternative

  12. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  13. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    Science.gov (United States)

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  14. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  15. Spatiotemporal polarization gradients in phase-bearing light

    International Nuclear Information System (INIS)

    Lembessis, V. E.; Babiker, M.

    2010-01-01

    It is shown how the interference of two circularly polarized laser beams endowed with orbital angular momentum can give rise to spatial and temporal polarization gradients, displaying axial as well as angular symmetry properties. Illustrations are given with reference to circularly polarized Laguerre-Gaussian beams as typical light beams carrying orbital angular momentum.

  16. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  17. Environmental impact on the polar regions

    International Nuclear Information System (INIS)

    Jaffe, D.A.; Leighton, E.; Tumeo, M.A.

    1994-01-01

    The remote and frigid polar regions are no longer isolated from the activities, pollutants, and controversies that bedevil their more temperate neighbors, say three researchers at the University of Alaska in Fairbanks. For example, Daniel A. Jaffe, Elizabeth Leighton, and Mark A. Tumeo point to traces of DDT, PCBs, and heavy metals that routinely turn up in arctic marine mammals and to the ozone hole over the Antarctic. While similar in environmental makeup, the arctic and Antarctic are poles apart in their political structure and, thus, in their environmental exposure, the researchers note. The Antarctic is managed under a long-standing international treaty, while the arctic is sovereign territory to eight separate nations. The international treaty sets aside the Antarctic for peaceful scientific research within strict environmental boundaries. It bans both military activity and minerals extraction-the two activities that have caused the most damage in the arctic. The main threats to Antarctica's environment come from the intrusion of major scientific research operations and the growing tourism industry. On the other hand, the arctic suffered from the massive Cold War military buildup by both the United States and the former Soviet Union. The environmental residue from that buildup is only now being revealed, the authors say. Major oil and gas drilling and coal and metal-ore mining also have taken a huge environmental toll, they add

  18. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  19. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  20. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  1. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    Science.gov (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  2. Tunable Polarity Carbon Fibers, a Holistic Approach to Environmental Protection.

    Science.gov (United States)

    García-Valverde, M Teresa; Ledesma-Escobar, Carlos A; Lucena, Rafael; Cárdenas, Soledad

    2018-04-27

    The pollution of environmental resources is an issue of social concern worldwide. Chemistry is essential for the design of decontamination strategies and analytical approaches to detect and monitor the contamination. Sorptive materials are usually required in both approaches and green synthesis should be used to minimize their own environmental impact. Carbon fibers (CFs) obtained by the pyrolysis of natural cellulose-rich materials fulfill these requirements. In this article, thirty CFs obtained under different conditions are chemically characterized and their sorption ability towards selected pollutants, covering a wide range of polarity, is evaluated. This study provides more profound knowledge related to the polarity of these materials, their interactions with chemical substances and allows the prediction of more appropriate materials (pyrolysis temperature and time) in order to remove the given pollutant. Furthermore, the use of CFs as sorptive materials for the extraction of contaminants from water samples to assist with their instrumental detection is outlined. In this sense, the use of CFs and gas chromatography with mass spectrometric detection allows the detection of selected pollutants in the low ng/mL range. Thus, this article provides an integrated approach to the potential of CFs for environmental protection.

  3. Tunable Polarity Carbon Fibers, a Holistic Approach to Environmental Protection

    Directory of Open Access Journals (Sweden)

    M. Teresa García-Valverde

    2018-04-01

    Full Text Available The pollution of environmental resources is an issue of social concern worldwide. Chemistry is essential for the design of decontamination strategies and analytical approaches to detect and monitor the contamination. Sorptive materials are usually required in both approaches and green synthesis should be used to minimize their own environmental impact. Carbon fibers (CFs obtained by the pyrolysis of natural cellulose-rich materials fulfill these requirements. In this article, thirty CFs obtained under different conditions are chemically characterized and their sorption ability towards selected pollutants, covering a wide range of polarity, is evaluated. This study provides more profound knowledge related to the polarity of these materials, their interactions with chemical substances and allows the prediction of more appropriate materials (pyrolysis temperature and time in order to remove the given pollutant. Furthermore, the use of CFs as sorptive materials for the extraction of contaminants from water samples to assist with their instrumental detection is outlined. In this sense, the use of CFs and gas chromatography with mass spectrometric detection allows the detection of selected pollutants in the low ng/mL range. Thus, this article provides an integrated approach to the potential of CFs for environmental protection.

  4. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    International Nuclear Information System (INIS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles. - Highlights: • States of polarization of vortex beams affect the optically induced orbital motion of particles. • The dependences of the force and orbital torque on the topological charge, the size and the absorptivity of particles were calculated. • Focused vortex beams with circular, radial or azimuthal polarizations induce a uniform orbital motion on particles. • Particles experience a non-uniform orbital motion in the focused linearly polarized vortex beam. • The circularly polarized vortex beam is a superior candidate for rotating particles.

  5. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  6. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)], E-mail: manuel.inarrea@unirioja.es

    2009-05-30

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  7. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    International Nuclear Information System (INIS)

    Inarrea, Manuel

    2009-01-01

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  8. Differential roles of polar orbital prefrontal cortex and parietal lobes in logical reasoning with neutral and negative emotional content.

    Science.gov (United States)

    Eimontaite, Iveta; Goel, Vinod; Raymont, Vanessa; Krueger, Frank; Schindler, Igor; Grafman, Jordan

    2018-05-14

    To answer the question of how brain pathology affects reasoning about negative emotional content, we administered a disjunctive logical reasoning task involving arguments with neutral content (e.g. Either there are tigers or women in NYC, but not both; There are no tigers in NYC; There are women in NYC) and emotionally laden content (e.g. Either there are pedophiles or politicians in Texas, but not both; There are politicians in Texas; There are no pedophiles in Texas) to 92 neurological patients with focal lesions to various parts of the brain. A Voxel Lesion Symptom Mapping (VLSM) analysis identified 16 patients, all with lesions to the orbital polar prefrontal cortex (BA 10 & 11), as being selectively impaired in the emotional reasoning condition. Another 17 patients, all with lesions to the parietal cortex, were identified as being impaired in the neutral content condition. The reasoning scores of these two patient groups, along with 23 matched normal controls, underwent additional analysis to explore the effect of belief bias. This analysis revealed that the differences identified above were largely driven by trials where there was an incongruency between the believability of the conclusion and the validity of the argument (i.e. valid argument /false conclusion or invalid argument /true conclusion). Patients with lesions to polar orbital prefrontal cortex underperformed in incongruent emotional content trials and over performed in incongruent neutral content trials (compared to both normal controls and patients with parietal lobe lesions). Patients with lesions to parietal lobes underperformed normal controls (at a trend level) in neutral trials where there was a congruency between the believability of the conclusion and the validity of the argument (i.e. valid argument/true conclusion or invalid argument/false conclusion). We conclude that lesions to the polar orbital prefrontal cortex (i) prevent these patients from enjoying any emotionally induced cognitive

  9. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  10. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  11. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  12. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  13. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    Energy Technology Data Exchange (ETDEWEB)

    Lille-Langøy, Roger, E-mail: Roger.lille-langoy@bio.uib.no [University of Bergen, Department of Biology, P.O. Box 7803, N-5020 Bergen (Norway); Goldstone, Jared V. [Woods Hole Oceanographic Institution, 266 Woods Hole Road, 02543-1050 Woods Hole, MA (United States); Rusten, Marte [University of Bergen, Department of Molecular Biology, P.O. Box 7803, N-5020 Bergen (Norway); Milnes, Matthew R. [Mars Hill University, 100 Athletic Street, Box 6671, Mars Hill, 28754 NC (United States); Male, Rune [University of Bergen, Department of Molecular Biology, P.O. Box 7803, N-5020 Bergen (Norway); Stegeman, John J. [Woods Hole Oceanographic Institution, 266 Woods Hole Road, 02543-1050 Woods Hole, MA (United States); Blumberg, Bruce [University of California, Irvine, 92697 CA (United States); Goksøyr, Anders [University of Bergen, Department of Biology, P.O. Box 7803, N-5020 Bergen (Norway)

    2015-04-01

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears.

  14. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    International Nuclear Information System (INIS)

    Lille-Langøy, Roger; Goldstone, Jared V.; Rusten, Marte; Milnes, Matthew R.; Male, Rune; Stegeman, John J.; Blumberg, Bruce; Goksøyr, Anders

    2015-01-01

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears

  15. Dimensional crossover of effective orbital dynamics in polar distorted He 3 -A : Transitions to antispacetime

    Science.gov (United States)

    Nissinen, J.; Volovik, G. E.

    2018-01-01

    Topologically protected superfluid phases of He 3 allow one to simulate many important aspects of relativistic quantum field theories and quantum gravity in condensed matter. Here we discuss a topological Lifshitz transition of the effective quantum vacuum in which the determinant of the tetrad field changes sign through a crossing to a vacuum state with a degenerate fermionic metric. Such a transition is realized in polar distorted superfluid He 3 -A in terms of the effective tetrad fields emerging in the vicinity of the superfluid gap nodes: the tetrads of the Weyl points in the chiral A-phase of He 3 and the degenerate tetrad in the vicinity of a Dirac nodal line in the polar phase of He 3 . The continuous phase transition from the A -phase to the polar phase, i.e., the transition from the Weyl nodes to the Dirac nodal line and back, allows one to follow the behavior of the fermionic and bosonic effective actions when the sign of the tetrad determinant changes, and the effective chiral spacetime transforms to antichiral "anti-spacetime." This condensed matter realization demonstrates that while the original fermionic action is analytic across the transition, the effective action for the orbital degrees of freedom (pseudo-EM) fields and gravity have nonanalytic behavior. In particular, the action for the pseudo-EM field in the vacuum with Weyl fermions (A-phase) contains the modulus of the tetrad determinant. In the vacuum with the degenerate metric (polar phase) the nodal line is effectively a family of 2 +1 d Dirac fermion patches, which leads to a non-analytic (B2-E2)3/4 QED action in the vicinity of the Dirac line.

  16. The Carter constant for inclined orbits about a massive Kerr black hole: I. Circular orbits

    Energy Technology Data Exchange (ETDEWEB)

    Komorowski, P G; Valluri, S R; Houde, M, E-mail: pkomorow@uwo.c, E-mail: valluri@uwo.c, E-mail: mhoude2@uwo.c [Department of Physics and Astronomy, University of Western Ontario, London, Ontario (Canada)

    2010-11-21

    In an extreme binary black hole system, an orbit will increase its angle of inclination ({iota}) as it evolves in Kerr spacetime. We focus our attention on the behaviour of the Carter constant (Q) for near-polar orbits, and develop an analysis that is independent of and complements radiation-reaction models. For a Schwarzschild black hole, the polar orbits represent the abutment between the prograde and retrograde orbits at which Q is at its maximum value for given values of the latus rectum ({tilde l}) and the eccentricity (e). The introduction of spin ({tilde S}={vert_bar}J{vert_bar}/M{sup 2}) to the massive black hole causes this boundary, or abutment, to be moved towards greater orbital inclination; thus, it no longer cleanly separates prograde and retrograde orbits. To characterize the abutment of a Kerr black hole (KBH), we first investigated the last stable orbit (LSO) of a test-particle about a KBH, and then extended this work to general orbits. To develop a better understanding of the evolution of Q we developed analytical formulae for Q in terms of {tilde l}, e and {tilde S} to describe elliptical orbits at the abutment, polar orbits and LSOs. By knowing the analytical form of {partial_derivative}Q/{partial_derivative}{tilde l} at the abutment, we were able to test a 2PN flux equation for Q. We also used these formulae to numerically calculate the {partial_derivative}{iota}/{partial_derivative}{tilde l} of hypothetical circular orbits that evolve along the abutment. From these values we have determined that {partial_derivative}{iota}/{partial_derivative}{tilde l} = -(122.7{tilde S} - 36{tilde S}{sup 3}){tilde l}{sup -11/2} - (63/2 {tilde S} + 35/4 {tilde S}{sup 3}){tilde l}{sup -9/2} - 15/2 {tilde S}{tilde l}{sup -7/2} - 9/2 {tilde S}{tilde l}{sup -5/2}. By taking the limit of this equation for {tilde l} {yields} {infinity}, and comparing it with the published result for the weak-field radiation reaction, we found the upper limit on

  17. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  18. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  19. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  20. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  1. Polarization effects in hadron fragmentation

    International Nuclear Information System (INIS)

    Lednicky, R.

    1984-01-01

    Hadron polarization (spin alignment) and polarization asymmetry are discussed in terms of the quark recombination model with the spin-orbit interaction taken into account. It is shown that predictions of this model are at least in qualitative agreement with experimental data. Various polarization mechanisms in terms of this model and the possibility of their checking are also discussed

  2. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  3. Investigating the auroral electrojets with low altitude polar orbiting satellites

    Directory of Open Access Journals (Sweden)

    T. Moretto

    2002-07-01

    Full Text Available Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.8–0.9 is observed between the amplitudes of the derived currents and the commonly used auroral electrojet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring. A specific advantage of the satellite observations over the ground-based magnetic measurements is their coverage of the Southern Hemisphere, as well as the Northern. We utilize this in an investigation of the ionospheric currents observed in both polar regions during a period of unusually steady interplanetary magnetic field with a large negative Y-component. A pronounced asymmetry is found between the currents in the two hemispheres, which indicates real inter-hemispheric differences beyond the mirror-asymmetry between hemispheres that earlier studies have revealed. The method is also applied to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning of the magnetosphere (history of the interplanetary magnetic field is seen to play an important role, and in the winther hemisphere, it seems to be harder to

  4. Satellite orbits in Levi-Civita space

    Science.gov (United States)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  5. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  6. Linear Magnetoelectric Effect by Orbital Magnetism

    NARCIS (Netherlands)

    Scaramucci, A.; Bousquet, E.; Fechner, M.; Mostovoy, M.; Spaldin, N. A.

    2012-01-01

    We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO4 as a model compound we show that spin-orbit coupling

  7. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    Science.gov (United States)

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  8. The status of polarization studies at HERA

    International Nuclear Information System (INIS)

    Boege, M.

    1993-01-01

    In August 1992 a vertical electron beam polarization of nearly 60% at 26.7 GeV (spin tune=60.5) was obtained at HERA. This was achieved by optimizing the energy and orbit tunes and by applying harmonic corrections to the closed orbit. The polarization level was reproducible from fill to fill and the calibration of the Compton polarimeter was confirmed by measuring the polarization build up curve. The polarization measurements were made with currents of one to two milliamps. Much higher currents are expected for the 1993 luminosity run (∼ 30 mA were obtained in May 1993). The high polarization level was reproduced at high current. Further polarization studies in parallel with e-p operation are planned. In 1993/94 a pair of spin rotators will be installed in the East straight section so that longitudinal polarization is available at the East interaction point. Simulations with the spin tracking program SITROS are in qualitative agreement with the measurements. Calculations with SITROS show that longitudinal polarizations of up to 50% could then still be achieved

  9. Globally Polarized Quark-gluon Plasma in Non-central A+ACollisions

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zuo-tang; Wang, Xin-Nian

    2004-10-01

    Produced partons have large local relative orbital angular momentum along the direction opposite to the reaction plane in the early stage of non-central heavy-ion collisions. Parton scattering is shown to polarize quarks along the same direction due to spin-orbital coupling.Such global quark polarization will lead to many observable consequences,such as left-right asymmetry of hadron spectra, global transverse polarization of thermal photons, dileptons and hadrons. Hadrons from the decay of polarized resonances will have azimuthal asymmetry similar to the elliptic flow. Global hyperon polarization is predicted with indifferent hadronization scenarios and can be easily tested.

  10. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  11. Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)

    2017-04-15

    By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.

  12. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  13. Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree-Fock exchange

    KAUST Repository

    Wang, Hao

    2014-07-01

    The metal-insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (α) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12.5%≤α≤20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that α=10% is the best possible choice for spin-polarized VO2 calculations. © 2014 Elsevier B.V. All rights reserved.

  14. Forecasting the relative influence of environmental and anthropogenic stressors on polar bears

    Science.gov (United States)

    Todd C. Atwood; Bruce G. Marcot; David C. Douglas; Steven C. Amstrup; Karyn D. Rode; George M. Durner; Jeffrey F. Bromaghin

    2016-01-01

    Effective conservation planning requires understanding and ranking threats to wildlife populations. We developed a Bayesian network model to evaluate the relative influence of environmental and anthropogenic stressors, and their mitigation, on the persistence of polar bears (Ursus maritimus). Overall sea ice conditions, affected by rising global...

  15. Quantifying the importance of orbital over spin correlations in delta-Pu within density-functional theory

    International Nuclear Information System (INIS)

    Soderlind, P

    2008-01-01

    The electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for (delta)-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero

  16. Cygnus X-1: Discovery of variable circular polarization

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Swedlund, J.B.; Stokes, R.A.

    1975-01-01

    HDE 226868, the optical counterpart of Cyg X-1, has been observed for circular polarization during 1974. Observations in five colors suggest that circular polarization results from an interstellar effect. Measurements of the blue polarization reveal circular polarization variations synchronous with the 5)./sub /6 orbital period. The circular polarization variation appears to be similar to the blue intensity variation

  17. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    DEFF Research Database (Denmark)

    Laundal, Karl M.; Finlay, Chris; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth’s magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely...... analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal...... and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth’s main field. We present global currents from both hemispheres during different sunlight conditions. The results...

  18. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  19. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  20. A Lookup-Table-Based Approach to Estimating Surface Solar Irradiance from Geostationary and Polar-Orbiting Satellite Data

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2018-03-01

    Full Text Available Incoming surface solar irradiance (SSI is essential for calculating Earth’s surface radiation budget and is a key parameter for terrestrial ecological modeling and climate change research. Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper presents a new scheme for estimating SSI from the visible and infrared channels of geostationary meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical parameters were retrieved from Geostationary Operational Environmental Satellite (GOES system images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara Discrete Ordinate Radiative Transfer (SBDART, to balance computational efficiency and accuracy. The atmospheric attenuation effects considered in our approach were water vapor absorption and aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements from seven stations in the SURFRAD (SURFace RADiation budget network. The results of the comparison for 2012 showed that the estimated SSI agreed with ground measurements with correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m2, −5.9 W/m2, and 14.9 W/m2 for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error (RMSE of instantaneous SSI was 80.0 W/m2 (16.8%, 127.6 W/m2 (55.1%, and 99.5 W/m2 (25.5% for clear-sky, cloudy-sky (overcast sky and partly cloudy sky, and all-sky (clear-sky and cloudy-sky conditions, respectively. A comparison with other state

  1. NPOESS Environmental Data Record (EDR) Production

    Science.gov (United States)

    Hughes, R.; Grant, K. D.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. Northrop Grumman Aerospace Systems Algorithms and Data Products (A&DP) organization is responsible for the algorithms that produce the EDRs, including their quality aspects. Together, IDPS and A&DP must support the calibration, validation, and data quality improvement initiatives of the NPOESS program to ensure the production of atmospheric and environmental products that meet strict requirements for accuracy and precision. In support of this activity, A&DP and IDPS continually updates the estimated performance of the NPOESS system with respect to both latency and data quality, using the latest operational implementation of the data processing software and information from instrument test activities. This presentation will illustrate and describe the processing chains that create the data products, as well as describe the

  2. Environmental Durability Issues for Solar Power Systems in Low Earth Orbit

    Science.gov (United States)

    Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.

    1994-01-01

    Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.

  3. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  4. Ellipsometry with randomly varying polarization states

    NARCIS (Netherlands)

    Liu, F.; Lee, C. J.; Chen, J. Q.; E. Louis,; van der Slot, P. J. M.; Boller, K. J.; F. Bijkerk,

    2012-01-01

    We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincar

  5. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently.

    Science.gov (United States)

    Lille-Langøy, Roger; Goldstone, Jared V; Rusten, Marte; Milnes, Matthew R; Male, Rune; Stegeman, John J; Blumberg, Bruce; Goksøyr, Anders

    2015-04-01

    Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. Copyright © 2015. Published by Elsevier Inc.

  6. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.

    Science.gov (United States)

    Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F

    2017-10-16

    The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

  7. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  8. Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit

    Science.gov (United States)

    Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang

    2017-08-01

    Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.

  9. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  10. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  11. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  12. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  13. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  14. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    that short term variations in anomalies from seasonally detrended time series of indices could carry information on vegetation stress was examined and confirmed. However, it was not found sufficiently robust on pixel level to be implemented for monitoring vegetation water stress on a per-pixel basis...... provide good sensitivity to canopy water content, which can make vegetation stress detection possible. Furthermore, the high frequency observations in the optical spectrum now available from geostationary instruments have the potential for detection of changes in vegetation related surface properties...... on short timescales, which are challenging from polar orbiting instruments. Geostationary NDVI and the NIR and SWIR based Shortwave Infrared Water Stress Index (SIWSI) indices are compared with extensive field data from the Dahra site, supplemented by data from the Agoufou and Demokeya sites. The indices...

  15. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  16. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  17. Mars orbiter redirected in bid to find Beagle

    CERN Multimedia

    2003-01-01

    "Mission controllers in Darmstadt, Germany, have successfully redirected Europe's Mars Express orbiter into a polar orbit, putting it on course for a last-ditch attempt to contact Beagle 2, the lander that has been missing since Christmas day when it should have touched down on the red planet" (1/2 page).

  18. Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin—orbit couplings

    International Nuclear Information System (INIS)

    Liu Song; Yan Yu-Zhen; Hu Liang-Bin

    2012-01-01

    The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin—orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin—orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin—orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Optimizing the degree of polarization in PETRA

    International Nuclear Information System (INIS)

    Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Mais, H.; Rossmanith, R.; Schmidt, R.; Barber, D.P.

    1982-05-01

    A method is described for compensating the depolarizing effects caused by vertical orbit distortions. The technique has been successfully applied during measurements of beam polarization at PETRA and reproducible polarizations of 70 to 80% have been obtained both in single beam and colliding beam operation. (orig.)

  20. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    Science.gov (United States)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm-2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  1. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  2. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    Science.gov (United States)

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  3. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    Science.gov (United States)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  4. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  5. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  6. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  7. Spin-polarized gapped Dirac spectrum of unsupported silicene

    Energy Technology Data Exchange (ETDEWEB)

    Podsiadły-Paszkowska, A., E-mail: agata.podsiadly@gmail.com; Krawiec, M., E-mail: mariusz.krawiec@umcs.pl

    2016-06-15

    Highlights: • Effects of spin–orbit interaction and atomic reconstruction of silicene on its electronic properties have been studied. • Spin-polarized gapped Dirac spectrum has been revealed. • Two different AFM phases have been obtained. - Abstract: We study effects of the spin–orbit interaction and the atomic reconstruction of silicene on its electronic spectrum. As an example we consider unsupported silicene pulled off from Pb(111) substrate. Using first principles density functional theory we show that the inversion symmetry broken arrangement of atoms and the spin–orbit interaction generate a spin-polarized electronic spectrum with an energy gap in the Dirac cone. These findings are particularly interesting in view of the quantum anomalous and quantum valley Hall effects and should be observable in weakly interacting silicene-substrate systems.

  8. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  9. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  10. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Science.gov (United States)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  11. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  12. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  13. Weights assessment for orbit-on-demand vehicles

    Science.gov (United States)

    Macconochie, I. O.; Martin, J. A.; Breiner, C. A.; Cerro, J. A.

    1985-01-01

    Future manned, reusable earth-to-orbit vehicles may be required to reach orbit within hours or even minutes of a mission decision. A study has been conducted to consider vehicles with such a capability. In the initial phase of the study, 11 vehicles were sized for deployment of 5000 lbs to a polar orbit. From this matrix, two of the most promising concepts were resized for a modified mission and payload. A key feature of the study was the use of consistent mass estimating techniques for a broad range of concepts, allowing direct comparisons of sizes and weights.

  14. Extreme Cost Growth: Themes from Six U.S. Air Force Major Defense Acquisition Programs

    Science.gov (United States)

    2015-01-01

    See for example Linda D. Koontz , Polar Orbiting Environmental Satellites: Status, Plans, and Future Data Management Challenges, testimony before the...University Press, 2015. Koontz , Linda D., Polar-Orbiting Environmental Satellites: Status, Plans, and Future Data Management Challenges, testimony

  15. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  16. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  17. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  18. Preliminary Assessment of Suomi-NPP VIIRS On-orbit Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; DeLuccia, Frank; McIntire, Jeff; Moyer, David; Chiang, Vincent; Xiong, Xiao-xiong; Butler, James

    2012-01-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of most of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370.and 740 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.412 11m and 12.01 11m, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (ON B). VIIRS observations are used to generate 22 environmental data products (EORs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SO) and solar diffuser stability monitor (SOSM), and emissive bands calibration based on the on-board blackbody calibration (OBC). A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS on-orbit early performance, and a plan for future cal/val activities and performance enhancements will be presented.

  19. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  20. Objectives of a prospective Ukrainian orbiter mission to the moon

    Science.gov (United States)

    Shkuratov, Yu. G.; Lytvynenko, L. M.; Shulga, V. M.; Yatskiv, Ya. S.; Vidmachenko, A. P.; Kislyulk, V. S.

    2003-06-01

    Ukraine has launch vehicles that are able to deliver about 300 kg to lunar orbit. A future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after the Clementine and Lunar Prospector missions and future missions like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical photopolarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface at a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are a synthetic aperture imaging radar, ground-penetrating radar, and imaging UV-spectropolarimeter. The main purpose of the synthetic aperture imaging radar experiment is to study with high-resolution (50 m) permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential for resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for long-term manned bases on the Moon. Radar and optical imaging and mapping of other interesting regions could be also planned. Multi-frequency, multi-polarization sounding of the lunar surface with ground-penetrating radar can provide data about internal structure of the lunar surface from meters to several hundred meters deep. The ground-penetrating radar can be used for measuring megaregolith properties, detection of cryptomaria, and studies of internal structure of the largest craters. Modest spatial resolution (50 m) of the imaging UV-spectropolarimeter should provide total coverage (or coverage of a large portion) of the lunar surface in oblique viewing at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional experiments could use the synthetic aperture

  1. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    Science.gov (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  2. Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Khayatzadeh Mahani, Mohammad Reza; Faizabadi, Edris

    2008-01-01

    The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance In x Ga (1-x) As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  4. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  5. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama Polarity Chrons

    Science.gov (United States)

    Champion, D.E.; Lanphere, M.A.; Kuntz, M.A.

    1988-01-01

    K-Ar ages and paleomagnetic data for basalt samples from a new core hole (site E) at the Idaho National Engineering Laboratory (INEL) indicate that the age of the reversed polarity event recorded in Snake River Plain lavas is older than 465 ?? 50 ka (1000 years before present) reported previously by Champion et al. (1981). A review of data documenting short reversal records from volcanic and sedimentary rocks shows that there is evidence for eight polarity subchrons in the Brunhes and two besides the Jaramillo in the late Matuyama. These 10 short subchrons begin to indicate the many short events that Cox (1968) hypothesized must exist if polarity interval lengths have a Poisson distribution. The mean sustained polarity interval length since late Matuyama Chron time is 90 000 years. The similarity of this number with the 105-year period of the Earth's orbital eccentricity suggests anew that linkage between geomagnetic, paleoclimatic, and possible underlying Earth orbital parameters should be evaluated. -from Authors

  6. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  7. Verification of possible asymmetry of polarization of thermal neutrons reflected by a mirror

    International Nuclear Information System (INIS)

    Okorokov, A.I.; Runov, V.V.; Gukasov, A.G.; Shchebetov, A.F.

    1976-01-01

    Experiments with a polarizing neutron guide do not confirm the neutron polarization asymmetry observed previously by Berndorfer for neutrons traversing a polarizing neutron guide. In connection with the spin-orbit effects a verification is carried out on single reflection of neutrons by magnetic or nonmagnetic mirrors. With an accuracy of 10 -4 -10 -3 no polarization asymmetry is observed

  8. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  9. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    Science.gov (United States)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  10. Lunar true polar wander inferred from polar hydrogen.

    Science.gov (United States)

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  11. Effects of finite coverage on global polarization observables in heavy ion collisions

    Science.gov (United States)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  12. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    Science.gov (United States)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  13. Isospin dependence of the spin-orbit splitting in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.

    2007-01-01

    The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru

  14. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  15. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  16. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  17. South Polar Polygons

    Science.gov (United States)

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  18. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-01

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure—a magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  19. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings.

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-11

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure-a magnetically confined GaAs/Al x Ga 1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  20. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  1. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  2. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  3. Strong electron correlation in photoionization of spin-orbit doublets

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Manson, S.T.; Msezane, A.M.; Radojevic, V.

    2002-01-01

    A new and explicitly many-body aspect of the 'leveraging' of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, it is demonstrated via a modified version of the spin-polarized random phase approximation with exchange, that a recently observed unexplained structure in the Xe 3d 5/2 photoionization cross section [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2000)] is entirely due to this effect. Similar features are predicted for Cs 3d 5/2 and Ba 3d 5/2

  4. The economic-geographical and environmental polarization as a factor of new functional relations between areas

    Directory of Open Access Journals (Sweden)

    Milinčić Miroljub A.

    2004-01-01

    Full Text Available Geographical clustering, in the way of economic-geographical polarization represents regular and positive process of development of human society. These processes are characterized by stressed intensity, together with relatively short time dimension at the territory of Serbia. Extreme recent ecological polarization is the main consequence of this type of recomposition of economic-geographical elements in the territory of Serbia. At the one hand, anthropogenic or socio-economic areas (locations, axis and crossroads of development are formed, together with the numerous ecological problems as developing barriers, while at the other hand are territories of economic-geographical stagnation also with satisfying quality of basic natural resources and environmental condition. These differences generates and permanently increases their spatial, resource and ecological interdependence.

  5. The nuclear spin-orbit coupling

    International Nuclear Information System (INIS)

    Bell, J.S.; Skyrme, T.H.R.

    1994-01-01

    Analysis of the nucleon-nucleon scattering around 100 MeV has determined the spin-orbit coupling part of the two-body scattering matrix at that energy, and a reasonable extrapolation to lower energies is possible. This scattering amplitude has been used, in the spirit of Brueckner's nuclear model, to estimate the resultant single-body spin-orbit coupling for a single nucleon interacting with a large nucleus. This resultant potential has a radial dependence approximately proportional to r -1 d ρ /dr, and with a magnitude in good agreement with that required to explain the doublet splittings in nuclei and the polarization of nucleons scattered elastically off nuclei. (author). 14 refs, 2 figs

  6. Rashba and Dresselhaus spin-orbit coupling effects on tunnelling through two-dimensional magnetic quantum systems

    International Nuclear Information System (INIS)

    Xu Wen; Guo Yong

    2005-01-01

    We investigate the influence of the Rashba and Dresselhaus spin-orbit coupling interactions on tunnelling through two-dimensional magnetic quantum systems. It is showed that not only Rashba spin-orbit coupling but also Dresselhaus one can affect spin tunnelling properties greatly in such a quantum system. The transmission possibility, the spin polarization and the conductance are obviously oscillated with both coupling strengths. High spin polarization, conductance and magnetic conductance of the structure can be obtained by modulating either Rashba or Dresselhaus coupling strength

  7. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  8. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian; Mi, Wenbo; Wang, Xiaocha; Wang, Xuhui

    2015-01-01

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  9. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  10. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    Science.gov (United States)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  11. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    robotic and human surface bases. Sunlight is nearly ... orientation and precession of its spin axis rela- tive to its orbit ... atoms, most likely hydrogen, that many people immediately .... to find out the real meaning of the excess polar hydrogen.

  12. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  13. Sediment volume in the north polar sand seas of Mars

    International Nuclear Information System (INIS)

    Lancaster, N.; Greeley, R.

    1990-01-01

    Data from studies of the cross-sectional area of terrestrial transverse dunes have been combined with maps of dune morphometry derived from Viking orbiter images to generate new estimates of sediment thickness and dune sediment volume in the north polar sand seas of Mars. A relationship between dune spacing and equivalent sediment thickness (EST) was developed from field data on Namibian and North American dunes and was applied to data on dune spacing and dune cover measured on Viking orbiter images to generate maps of dune sediment thickness for Martian north polar sand seas. There are four major sand seas in the north polar region of Mars, covering an area of 6.8 x 10 5 km 2 . Equivalent sediment thickness ranges between 0.5 and 6.1 m with a mean of 1.8 m. The sand seas contain a total of 1158 km 3 of dune sediment, which may have been derived by erosion of polar layered deposits and concentrated in its present location by winds that change direction seasonally

  14. Enhanced optical spin current injection in the hexagonal lattice with intrinsic and Rashba spin–orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jianfei, E-mail: zoujianfei@hhu.edu.cn; Tang, Chunmei; Zhang, Aimei

    2017-04-04

    We study the photo-induced spin current injection in a hexagonal lattice with both intrinsic and Rashba spin–orbit interactions which is irradiated by a polarized light beam. It is found that the spin current injection rate could be enhanced as the graphene lattice is in the topological insulator state. Furthermore, the spin current injection rate could be remarkably modulated by the degree of polarization of light and its frequency. - Highlights: • The optical spin current could be enhanced by the intrinsic spin–orbit interaction. • The optical spin current could be modulated by the degree of polarization of light. • The maximum of the spin current injection rate is obtained.

  15. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2013-12-01

    Full Text Available In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR observations for the International Laser Ranging Service (ILRS associate analysis center (AAC. Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD and finding solutions of a terrestrial reference frame (TRF and Earth orientation parameters (EOPs. For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS 08 C04 results, shows that standard deviations of polar motion Xp and Yp are 0.754 milliarcseconds (mas and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  16. Light-induced spin polarizations in quantum rings

    NARCIS (Netherlands)

    Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W.

    2014-01-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the

  17. Comparative DMFT study of the eg-orbital Hubbard model in thin films

    Science.gov (United States)

    Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.

    2014-02-01

    Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.

  18. Four Years on Orbit at the Moon with LOLA

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Lemoine, F. G.

    2013-12-01

    After four years of near-continuous operation at the Moon, the Lunar Orbiter Laser Altimeter (LOLA) continues to collect altimetry, surface roughness, slope and normal reflectance data. Although the instrument is beginning to show the effects of tens of thousands of thermal cycles and the natural process of the aging of the laser transmitters, LOLA continues to acquire data on the sunlit portion of every orbit on all 5 laser beams when below 100-km altitude. LOLA has acquired over 6x10^9 altimeter measurements, all geodetically controlled to the center-of-mass of the Moon with a radial precision of around 10 cm and an accuracy of about 1 meter. The position of the measurements on the lunar surface is primarily limited by the knowledge of the position of the spacecraft in orbit; in the last year the LRO orbit accuracy has improved significantly as a result of the availability of an accurate gravity model of the Moon from the GRAIL Discovery mission. Our present estimate of positional accuracy is less than 10 m rms but is only achievable with a GRAIL gravity model to at least degree and order 600 because of the perturbing gravitational effect of the Moon's surface features. Significant improvements in the global shape and topography have assisted the Lunar Reconnaissance Orbiter Camera (LROC) stereo mapping program, and the identification of potential lunar landing sites for ESA and Russia, particularly in the high-latitude polar regions where 5- and 10-meter average horizontal resolution has been obtained. LOLA's detailed mapping of the polar regions has improved the delineation of permanently-shadowed areas and assisted in the understanding of the LEND neutron data and its relationship to surface slopes. Recently, a global, calibrated LOLA normal albedo dataset at 1064 nm has been developed and is being combined with analysis and modeling by the Diviner team for the identification of the coldest locations in the polar regions.

  19. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    Science.gov (United States)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  20. Tunnelling of orbital angular momentum in parallel optical waveguides

    International Nuclear Information System (INIS)

    Alexeyev, C N; Fadeyeva, T A; Yavorsky, M A; Boklag, N A

    2011-01-01

    We study the evolution of circularly polarized optical vortices (OVs) in the system of two coupled few-mode optical fibres. We demonstrate that upon propagation OVs tunnel into the adjacent fibre as a complex superposition of OVs that comprise also OVs of opposite polarization and topological charge. The initial OV may tunnel into the other fibre as the same vortex state of lesser energy. The evolution of the orbital angular momentum in coupled fibres is studied

  1. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    Science.gov (United States)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  2. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  3. Stir bar sorptive extraction and liquid chromatography-tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters.

    Science.gov (United States)

    Aparicio, Irene; Martín, Julia; Santos, Juan Luis; Malvar, José Luis; Alonso, Esteban

    2017-06-02

    An analytical method based on stir bar sorptive extraction (SBSE) was developed and validated for the determination of environmental concern pollutants in environmental waters by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Target compounds include six water and oil repellents (perfluorinated compounds), four preservatives (butylated hydroxytoluene and three parabens), two plasticizers (bisphenol A and di(2-ethylhexyl)phthalate), seven surfactants (four linear alkylbenzene sulfonates, nonylphenol and two nonylphenol ethoxylates), a flame retardant (hexabromocyclododecane), four hormones, fourteen pharmaceutical compounds, an UV-filter (2-ethylhexyl 4-methoxycinnamate) and nine pesticides. To achieve the simultaneous extraction of polar and non-polar pollutants two stir bar coatings were tested, the classic polydimethylsiloxane (PDMS) coating and the novel ethylene glycol modified silicone (EG-silicone). The best extraction recoveries were obtained using EG-silicone coating. The effects of sample pH, volume and ionic strength and extraction time on extraction recoveries were evaluated. The analytical method was validated for surface water and tap water samples. The method quantification limits ranged from 7.0ngL -1 to 177ngL -1 . The inter-day precision, expressed as relative standard deviation, was lower than 20%. Accuracy, expressed as relative recovery values, was in the range from 61 to 130%. The method was applied for the determination of the 48 target compounds in surface and tap water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Polar2Grid 2.0: Reprojecting Satellite Data Made Easy

    Science.gov (United States)

    Hoese, D.; Strabala, K.

    2015-12-01

    Polar-orbiting multi-band meteorological sensors such as those on the Suomi National Polar-orbiting Partnership (SNPP) satellite pose substantial challenges for taking imagery the last mile to forecast offices, scientific analysis environments, and the general public. To do this quickly and easily, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin has created an open-source, modular application system, Polar2Grid. This bundled solution automates tools for converting various satellite products like those from VIIRS and MODIS into a variety of output formats, including GeoTIFFs, AWIPS compatible NetCDF files, and NinJo forecasting workstation compatible TIFF images. In addition to traditional visible and infrared imagery, Polar2Grid includes three perceptual enhancements for the VIIRS Day-Night Band (DNB), as well as providing the capability to create sharpened true color, sharpened false color, and user-defined RGB images. Polar2Grid performs conversions and projections in seconds on large swaths of data. Polar2Grid is currently providing VIIRS imagery over the Continental United States, as well as Alaska and Hawaii, from various Direct-Broadcast antennas to operational forecasters at the NOAA National Weather Service (NWS) offices in their AWIPS terminals, within minutes of an overpass of the Suomi NPP satellite. Three years after Polar2Grid development started, the Polar2Grid team is now releasing version 2.0 of the software; supporting more sensors, generating more products, and providing all of its features in an easy to use command line interface.

  5. The orbital inclination of A0620 - 00 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The mass of the degenerate primary in A0620 - 00 is inferred from its spectroscopic mass function to be not less than 3.2 solar masses, making it an excellent candidate for a black hole. The exact value of the mass depends on the orbital inclination. The inclination of a binary system can be determined from the shape of its Stokes parameter light curves if the linear polarization of the system varies as a function of orbital phase. A0620 - 00 over one 8-hour binary period was observed with the 4.5-m equivalent MMT. Its polarization in the visible is variable with orbital phase. The standard theory of Brown et al. (1978) was used to derive an orbital inclination of i = 57 deg (+20 deg, -50 deg), where the error is the 90-percent confidence interval. An inclination of i = 57 deg corresponds to a mass of the compact primary of 6.6 solar masses, but the large uncertainty in the measured value of the inclination allows the derived mass of A0620 - 00 to be as low as 3.8 solar masses. If this is taken to be the maximum mass of any degenerate configuration consistent with general relativity except a black hole, then the mass of A0620 - 00 is still not well enough determined to conclude that it must be a black hole. 21 refs

  6. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui

    2013-02-21

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  7. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui; Xiao, Jiang; Manchon, Aurelien; Maekawa, Sadamichi

    2013-01-01

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  8. Reliable retrieval of atmospheric and aquatic parameters in coastal and inland environments from polar-orbiting and geostationary platforms: challenges and opportunities

    Science.gov (United States)

    Stamnes, Knut; Li, Wei; Lin, Zhenyi; Fan, Yongzhen; Chen, Nan; Gatebe, Charles; Ahn, Jae-Hyun; Kim, Wonkook; Stamnes, Jakob J.

    2017-04-01

    Simultaneous retrieval of aerosol and surface properties by means of inverse techniques based on a coupled atmosphere-surface radiative transfer model, neural networks, and optimal estimation can yield considerable improvements in retrieval accuracy in complex aquatic environments compared with traditional methods. Remote sensing of such environments represent specific challenges due (i) the complexity of the atmosphere and water inherent optical properties, (ii) unique bidirectional dependencies of the water-leaving radiance, and (iii) the desire to do retrievals for large solar zenith and viewing angles. We will discuss (a) how challenges related to atmospheric gaseous absorption, absorbing aerosols, and turbid waters can be addressed by using a coupled atmosphere-surface radiative transfer (forward) model in the retrieval process, (b) how the need to correct for bidirectional effects can be accommodated in a systematic and reliable manner, (c) how polarization information can be utilized, (d) how the curvature of the atmosphere can be taken into account, and (e) how neural networks and optimal estimation can be used to obtain fast yet accurate retrievals. Special emphasis will be placed on how information from existing and future sensors deployed on polar-orbiting and geostationary platforms can be obtained in a reliable and accurate manner. The need to provide uncertainty assessments and error budgets will also be discussed.

  9. Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

    KAUST Repository

    Tahir, M.

    2014-09-22

    We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.

  10. Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Schwingenschlö gl, Udo

    2014-01-01

    We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.

  11. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  12. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  13. Mineralogy and Iron Content of the Lunar Polar Regions Using the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Lemelin, M.; Lucey, P. G.; Trang, D.; Jha, K.

    2016-12-01

    The lunar polar regions are of high scientific interest, but the extreme lighting conditions have made quantitative analyses using reflectance spectra difficult; some regions are in permanent shadow, and flat surfaces are difficult to correct photometrically due to the extreme grazing incidence and low signal available. Thus, most mineral maps derived from visible and near infrared reflectance spectra have been constrained to within 50° in latitude. The mineralogy of the polar regions, or 44% of the lunar surface, is almost entirely unknown. A few studies have provided compositional analysis based on the spectral shape (where strong absorption bands were present) of lithologies dominated by one or two minerals. In this study, we take a novel approach and use strong signal and well-calibrated reflectance acquired by two different instruments, the Kaguya Spectra Profiler (SP) and the Lunar Orbiter Laser Altimeter (LOLA), in order to derive the first FeO and mineral maps of the polar regions at a spatial resolution of 1 km per pixel. We use reflectance ratios from SP and calibrated reflectance data from LOLA to derive the first polar maps of FeO, which are within 2 wt.% of the FeO measured by the Lunar Prospector Gamma-Ray spectrometer up to 85° in latitude. We then use the reflectance data from SP and Hapke radiative transfer model to compute the abundance of olivine, low-calcium pyroxene, high-calcium pyroxene and plagioclase, using FeO as a constraint. The radiative transfer model yields an error in mineral abundances of 9 wt.%. We use the mineral maps to study the composition of 27 central peaks and 5 basin rings in the polar regions, and relate their composition to their depth of origin in the lunar crust. We find that the central peaks and basin rings in Feldspathic Highlands Terrane are mostly anorthositic in composition, with modal plagioclase content ranging between 66 and 92 wt.%. The central peaks and basin rings in the South Pole-Aitken basin are noritic

  14. Forecasting the relative influence of environmental and anthropogenic stressors on polar bears

    Science.gov (United States)

    Atwood, Todd C.; Marcot, Bruce G.; Douglas, David C.; Amstrup, Steven C.; Rode, Karyn D.; Durner, George M.; Bromaghin, Jeffrey F.

    2016-01-01

    Effective conservation planning requires understanding and ranking threats to wildlife populations. We developed a Bayesian network model to evaluate the relative influence of environmental and anthropogenic stressors, and their mitigation, on the persistence of polar bears (Ursus maritimus). Overall sea ice conditions, affected by rising global temperatures, were the most influential determinant of population outcomes. Accordingly, unabated rise in atmospheric greenhouse gas (GHG) concentrations was the dominant influence leading to worsened population outcomes, with polar bears in three of four ecoregions reaching a dominant probability of decreased or greatly decreased by the latter part of this century. Stabilization of atmospheric GHG concentrations by mid-century delayed the greatly reduced state by ≈25 yr in two ecoregions. Prompt and aggressive mitigation of emissions reduced the probability of any regional population becoming greatly reduced by up to 25%. Marine prey availability, linked closely to sea ice trend, had slightly less influence on outcome state than sea ice availability itself. Reduced mortality from hunting and defense of life and property interactions resulted in modest declines in the probability of a decreased or greatly decreased population outcome. Minimizing other stressors such as trans-Arctic shipping, oil and gas exploration, and contaminants had a negligible effect on polar bear outcomes, although the model was not well-informed with respect to the potential influence of these stressors. Adverse consequences of loss of sea ice habitat became more pronounced as the summer ice-free period lengthened beyond four months, which could occur in most of the Arctic basin after mid-century if GHG emissions are not promptly reduced. Long-term conservation of polar bears would be best supported by holding global mean temperature to ≤ 2°C above preindustrial levels. Until further sea ice loss is stopped, management of other stressors may

  15. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    Science.gov (United States)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  16. Observations and analysis of oil spills using polarized imagery

    International Nuclear Information System (INIS)

    Israel, S.A.; Duncan, M.E.; Johnson, W.R.; Whitehead, V.S.

    1991-01-01

    On Saturday, July 28, 1990, a train of barges collided with the Greek tanker Shinoussa in Galveston Bay off Red Fish Island near Texas City, Texas. The first barge sank and the second began to leak while the third barge in the chain and the Shinoussa both escaped without damage. The NASA Flight Science Support Office sponsored a Graduate Student from SUNY - College of Environmental Science and Forestry and a student from Texas A ampersand M, Galveston, to survey the damage. The purpose of this paper is to correlate aircraft base data with orbital data obtained during the Space Shuttle Polarization Experiment and existing laboratory data to evaluate the potential for an application such as oil spill monitoring and mapping. NASA has no charter with the local response agencies to support oil spill monitoring and cleanup

  17. Polarization dependent effects in photo-fragmentation dynamics of free molecules

    International Nuclear Information System (INIS)

    Mocellin, A.; Marinho, R.R.T.; Coutinho, L.H.; Burmeister, F.; Wiesner, K.; Naves de Brito, A.

    2003-01-01

    We present multicoincidence spectra of nitrogen, formic acid and methyl methacrylate. We demonstrate how to probe the local symmetry of molecular orbitals from molecules core excited with linearly polarized synchrotron radiation. The intensity distribution of the photoelectron photo-ion photo-ion coincidence (PEPIPICO) spectrum reflects the selectivity and localization of core excitation by polarized light. By simulating the spectra the angular dependence of the fragmentation is determined

  18. Polarization dependent effects in photo-fragmentation dynamics of free molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mocellin, A.; Marinho, R.R.T.; Coutinho, L.H.; Burmeister, F.; Wiesner, K.; Naves de Brito, A

    2003-04-01

    We present multicoincidence spectra of nitrogen, formic acid and methyl methacrylate. We demonstrate how to probe the local symmetry of molecular orbitals from molecules core excited with linearly polarized synchrotron radiation. The intensity distribution of the photoelectron photo-ion photo-ion coincidence (PEPIPICO) spectrum reflects the selectivity and localization of core excitation by polarized light. By simulating the spectra the angular dependence of the fragmentation is determined.

  19. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  20. Classifying spaces of degenerating polarized Hodge structures

    CERN Document Server

    Kato, Kazuya

    2009-01-01

    In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem

  1. Interdisciplinary Graduate Training in Polar Environmental Change: Field-based learning in Greenland

    Science.gov (United States)

    Virginia, R. A.; Holm, K.; Whitecloud, S.; Levy, L.; Kelly, M. A.; Feng, X.; Grenoble, L.

    2009-12-01

    The objective of the NSF-funded Integrative Graduate Education Research Traineeship (IGERT) program at Dartmouth College is to develop a new cohort of environmental scientists and engineers with an interdisciplinary understanding of polar regions and their importance to global environmental change. The Dartmouth IGERT challenges Ph.D. students to consider the broader dimensions of their research and to collaborate with scientists from other disciplines, educators, and policy makers. IGERT students will focus on research questions that are relevant to the needs of local people experiencing climate change and on understanding the ethical responsibilities and benefits of conducting research in partnership with northern residents and institutions. Seven Ph.D. students from the departments of Earth Sciences, Engineering, and Ecology and Evolutionary Biology at Dartmouth College make up the first IGERT cohort for the five-year program. The Dartmouth IGERT curriculum will focus on three main components of polar systems responding to recent climate change: the cryosphere, terrestrial ecosystems, and biogeochemical cycles. The integrating experience of the core curriculum is the Greenland Field Seminar that will take place in Kangerlussuaq (terrestrial and aquatic systems), Summit Camp (snow and ice) and Nuuk, Greenland (human dimensions of change). In Nuuk, IGERT students will share their science and develop partnerships with students, educators, and policy makers at the University of Greenland, the Inuit Circumpolar Council (ICC), and other Greenlandic institutions. In summer 2009 the authors conducted preliminary fieldwork near Kangerlussuaq, Greenland to develop aspects of the science curriculum for the 2010 Greenland Field Seminar and to explore research topics for IGERT Fellows (Levy and Whitecloud). Examples of results presented here are designed to develop field-based learning activities. These include soil and vegetation relationships as a function of aspect

  2. The polarized electron beam at ELSA

    International Nuclear Information System (INIS)

    Hoffmann, M.; Drachenfels, W. von; Frommberger, F.; Gowin, M.; Hillert, W.; Husmann, D.; Keil, J.; Helbing, K.; Michel, T.; Naumann, J.; Speckner, T.; Zeitler, G.

    2001-01-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To provide a polarized beam with high polarization and sufficient intensity a dedicated source has been developed and set into operation. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. In order to minimize beam depolarization, both types of resonances and the correction techniques have been studied in detail. It turned out that the polarization in ELSA can be conserved up to 2.5 GeV and partially up to 3.2 GeV which is demonstrated by measurements using a Moeller polarimeter installed in the external GDH1-beamline

  3. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  4. Progress in measurement and understanding of beam polarization in electron positron storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Limberg, T.; Mais, H.; Ripken, G.; Rossmanith, R.; Schmidt, R.

    1983-07-01

    A report is presented on the status of attempts to obtain and measure spin polarization in electron-positron storage rings. Experimental results are presented and their relationship to predictions of calculations discussed. Examples of methods for decoupling orbital and spin motion and thus improving polarization are discussed. (orig.)

  5. A plasma solenoid driven by an Orbital Angular Momentum laser beam

    OpenAIRE

    Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.

    2018-01-01

    A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that par...

  6. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  7. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon orbiting a rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect to 1% with two counter-orbiting drag-free satellites in polar earth orbit. In addition to tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken near the poles. New geophysical information is inherent in the polar data

  8. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  9. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    Science.gov (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  10. The HERA polarimeter and the first observation of electron spin polarization at HERA

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Boege, M.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, H.; Klanner, R.; Lewin, H.C.; Meyners, N.; Vogel, W.; Brueckner, W.; Buescher, C.; Dueren, M.; Gaul, H.G.; Muecklich, A.; Neunreither, F.; Rith, K.; Scholz, C.; Steffens, E.; Veltri, M.; Wander, W.; Zapfe, K.; Zetsche, F.; Chapman, M.; Milner, R.; Coulter, K.; Delheij, P.P.J.; Haeusser, O.; Henderson, R.; Levy, P.; Vetterli, M.; Gressmann, H.; Janke, T.; Micheel, B.; Westphal, D.; Kaiser, R.; Losev, L.; Nowak, W.D.

    1992-10-01

    Electron spin polarizations of about 8% were observed at HERA in November 1991. In runs during 1992 utilizing special orbit corrections, polarization values close to 60% have been achieved. In this paper the polarimeter, the machine conditions, the data analysis, the first results and plans for future measurements are described. (orig.)

  11. QED effects on individual atomic orbital energies

    Science.gov (United States)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  12. Mesoscopic rings with spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)

    2010-09-15

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.

  13. DC slice ion imaging study of atomic orbital orientation and alignment in photodissociation

    Science.gov (United States)

    Lee, Suk Kyoung

    A complete study of atomic photofragment polarization has been achieved by using DC slice imaging, a recently developed approach directly providing the central slice of the full 3D product distribution without any mathematical transformation. In this dissertation, the quantum mechanical treatment adapted for the sliced images has been derived to extract the angular momentum polarization anisotropy parameters for any recoil speeds. The important photodissociation dynamics of small polyatomic molecules has been presented based on the thorough interpretation of the observed orientation and alignment. The first demonstration of DC slice imaging of orbital polarization was a study of the 193 nm photodissociation of ethylene sulfide, followed by detailed investigation in ozone and OCS. In ozone, the speed-dependent orientation was measured for O(1D2) atom produced from photodissociation in the 248--285 nm region. The results show negligible orbital orientation following dissociation by circularly polarized light but strong recoil speed-dependent orientation following photolysis by linearly polarized light at all wavelengths studied. The origin of this polarization is ascribed to nonadiabatic transitions at avoided crossings and at long range. The atomic orbital alignment and orientation, including the higher order moments (K = 3, 4), has been carried out for the photodissociation of OCS at 193 nm. The observed speed-dependent beta and polarization parameters of S(1D2) atom support the interpretation that there are two main dissociation processes: a simultaneous two-surface excitation and the initial single-surface excitation followed by the nonadiabatic crossing to the ground state. The angle- and speed-dependent density matrix can be constructed containing the higher order contributions for circularly-polarized dissociation light. It was shown in one case that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in

  14. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Toward a Unified View of the Moon's Polar Volatiles from the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Hayne, Paul

    2016-04-01

    Although the scientific basis for the possibility of water and other volatiles in the cold traps of the lunar polar regions was developed in the 1960's and '70's [1,2], only recently have the data become available to test the theories in detail. Furthermore, comparisons with other planetary bodies, particularly Mercury, have revealed surprising differences that may point to inconsistencies or holes in our understanding of the basic processes involving volatiles on airless bodies [3]. Addressing these gaps in understanding is critical to the future exploration of the Moon, for which water is an important scientific and engineering resource [4]. Launched in 2009, NASA's Lunar Reconnaissance Orbiter (LRO) has been acquiring data from lunar orbit for more than six years. All seven of the remote sensing instruments on the payload have now contributed significantly to advancing understanding of volatiles on the Moon. Here we present results from these investigations, and discuss attempts to synthesize the disparate information to create a self-consistent model for lunar volatiles. In addition to the LRO data, we must take into account results from earlier missions [5,6], ground-based telescopes [7], and sample analyses [8]. The results from these inter-comparisons show that water is likely available in useful quantities, but key additional measurements may be required to resolve remaining uncertainties. [1] Watson, K., Murray, B. C., & Brown, H. (1961), J. Geophys. Res., 66(9), 3033-3045. [2] Arnold, J. R. (1979), J. Geophys. Res. (1978-2012), 84(B10), 5659-5668. [3] Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., ... & Solomon, S. C. (2013), Science, 339(6117), 300-303. [4] Hayne, P. O., et al. (2014), Keck Inst. Space Studies Report. [5] Nozette, S., Lichtenberg, C. L., Spudis, P., Bonner, R., Ort, W., Malaret, E., ... & Shoemaker, E. M. (1996), Science, 274(5292), 1495-1498. [6] Pieters, C. M., Goswami, J. N., Clark, R. N

  16. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  17. Resonant x-ray scattering in manganites: study of the orbital degree of freedom

    International Nuclear Information System (INIS)

    Ishihara, Sumio; Maekawa, Sadamichi

    2002-01-01

    The orbital degree of freedom of electrons and its interplay with spin, charge and lattice degrees of freedom are some of the central issues in colossal magnetoresistive manganites. The orbital degree of freedom has until recently remained hidden, since it does not couple directly to most experimental probes. Development of synchrotron light sources has changed the situation; by the resonant x-ray scattering (RXS) technique the orbital ordering has successfully been observed. In this article, we review progress in the recent studies of RXS in manganites. We start with a detailed review of the RXS experiments applied to the orbital-ordered manganites and other correlated electron systems. We derive the scattering cross section of RXS, where the tensor character of the atomic scattering factor (ASF) with respect to the x-ray polarization is stressed. Microscopic mechanisms of the anisotropic tensor character of the ASF are introduced and numerical results of the ASF and the scattering intensity are presented. The azimuthal angle scan is a unique experimental method to identify RXS from the orbital degree of freedom. A theory of the azimuthal angle and polarization dependence of the RXS intensity is presented. The theoretical results show good agreement with the experiments in manganites. Apart from the microscopic description of the ASF, a theoretical framework of RXS to relate directly to the 3d orbital is presented. The scattering cross section is represented by the correlation function of the pseudo-spin operator for the orbital degree of freedom. A theory is extended to the resonant inelastic x-ray scattering and methods to observe excitations of the orbital degree of freedom are proposed. (author)

  18. Determination of the orientation of the white dwarf's magnetic axis from X-ray orbital light curves

    International Nuclear Information System (INIS)

    Andronov, I.L.

    1986-01-01

    The directional pattern of soft X-ray radiation produced in a ''polar cap'' on the white dwarf's surface is calculated taking into account the absorption in the axially symmetrical accretion column, homogeneous along its height. An algorithm for the determination of orientation of the magnetic axis of a compact star from orbital curves of soft X-ray flux, is suggested. The values of the orbital inclination i (51 deg <=i<64 deg) and the angle between the rotational and magnetic axes σ (30 deg <=σ<=34 deg) were calculated for the polar AM Herculis for different values of model parameters

  19. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  20. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  1. Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, S.

    2018-03-01

    Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.

  2. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  3. Improper ferroelectric polarization in a perovskite driven by intersite charge transfer and ordering

    Science.gov (United States)

    Chen, Wei-Tin; Wang, Chin-Wei; Wu, Hung-Cheng; Chou, Fang-Cheng; Yang, Hung-Duen; Simonov, Arkadiy; Senn, M. S.

    2018-04-01

    It is of great interest to design and make materials in which ferroelectric polarization is coupled to other order parameters such as lattice, magnetic, and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realized. Here we report detailed crystallographic studies of a perovskite HgAMn3A'Mn4BO12 that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A'- and B-sites, which are themselves driven by a highly unusual MnA '-MnB intersite charge transfer. The inherent coupling of polar, charge, orbital, and hence magnetic degrees of freedom make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.

  4. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often...... is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI...... affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher...

  5. Accelerating polarized beams in Tevatron

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-02-01

    In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab

  6. Spin motion at and near orbital resonance in storage rings with Siberian snakes I. At orbital resonance

    International Nuclear Information System (INIS)

    Barber, D.P.; Vogt, M.

    2006-12-01

    Here, and in a sequel, we invoke the invariant spin field to provide an in-depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarization at and near so-called snake resonances in proton storage rings. (orig.)

  7. Prospects for polarization at RHIC and SSC

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. We analyze the effects of snake resonances, snake imperfections overlapping resonances on the spin depolarization. We discuss also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators. We also examine various snake designs. A new generalized snake concept allows for two possible configurations. The compact configuration offers the advantages of shorter total snake length and smaller horizontal orbit displacement. The split snake configuration allows for dual functions of a snake and a 90 degree spin rotator at the mid-section of the snake, which provides helicity state collisions. The requirements for obtaining high luminosity polarized protons at high energy colliders, such as RHIC and SSC, are reviewed

  8. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  9. A model of quasi-free scattering with polarized protons

    International Nuclear Information System (INIS)

    Teodoro, M.R.

    1976-01-01

    A quantitative evaluation, based on a simple model for spin-free coplanar and asymmetric reaction in 16 O, for 215 MeV incoming polarized protons confirms the use of the strong effective polarization of the knocked-out proton by the spin-orbit coupling and of the strong dependence of free, medium energy, proton-proton cross section on the relative orientation of the proton spins. Effective polarizations, momentum distributions and correlation cross sections have been calculated for the 1p sub(1/2), 1 p sub(3/2) and 1s sub(1/2) states in 16 O, using protons totally polarized orthogonal to the scattering plane. Harmonic oscillator and square wells have been used to generate the bound state wave functions, whereas the optical potentials have been taken spin-independent and purely imaginary [pt

  10. Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin-orbit interaction

    Science.gov (United States)

    Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.

    2018-06-01

    Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.

  11. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  12. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    Science.gov (United States)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  13. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Jia-Ting, Ni; Bin, Chen; Xiao-Wan, Liang; Koga, T.

    2009-01-01

    We demonstrate the amplitude and spin polarization of AAS oscillation changing with Rashba spin-orbit interaction (SOI) and Dresselhaus SOI. The amplitude and spin polarization of AB oscillation changing with Rashba SOI and Dresselhaus SOI are demonstrated as well. The ideal quasi-one-dimensional square loop does not exist in reality, therefore to match the experiment better we should consider the shape of the rectangle loop in theory

  14. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites

    Directory of Open Access Journals (Sweden)

    K. Zakšek

    2013-03-01

    Full Text Available Volcanic ash cloud-top height (ACTH can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3–4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.

  15. The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirok, Kobra; Mohammadpour, Hakimeh

    2017-01-01

    At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.

  16. Design and construction of the POLAR detector

    Science.gov (United States)

    Produit, N.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvich, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; Kole, M.; Kong, M. N.; Kramert, R.; Li, L.; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rapin, D.; Rybka, D.; Rutczynska, A.; Shi, H. L.; Socha, P.; Sun, J. C.; Song, L. M.; Szabelski, J.; Traseira, I.; Xiao, H. L.; Wang, R. J.; Wen, X.; Wu, B. B.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, Y. J.; Zwolinska, A.

    2018-01-01

    The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.

  17. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  18. IPHAS J062746.41+014811.3: A DEEPLY ECLIPSING INTERMEDIATE POLAR

    International Nuclear Information System (INIS)

    Aungwerojwit, A.; Gänsicke, B. T.; Wheatley, P. J.; Pyrzas, S.; Staels, B.; Krajci, T.; Rodríguez-Gil, P.

    2012-01-01

    We present time-resolved photometry of a cataclysmic variable discovered in the Isaac Newton Telescope Photometric Hα Survey of the northern galactic plane, IPHAS J062746.41+014811.3, and classify the system as the fourth deeply eclipsing intermediate polar known with an orbital period of P orb = 8.16 hr and a spin period of P spin = 2210 s. The system shows mild variations of its brightness that appear to be accompanied by a change in the amplitude of the spin modulation at optical wavelengths and a change in the morphology of the eclipse profile. The inferred magnetic moment of the white dwarf is μ wd ∼ (6-7) × 10 33 G cm 3 , and in this case IPHAS J062746.41+014811.3 will evolve either into a short-period EX Hya-like intermediate polar with a large P spin /P orb ratio or, perhaps more likely, into a synchronized polar. Swift observations show that the system is an ultraviolet and X-ray source, with a hard X-ray spectrum that is consistent with those seen in other intermediate polars. The ultraviolet light curve shows orbital modulation and an eclipse, while the low signal-to-noise ratio X-ray light curve does not show a significant modulation on the spin period. The measured X-ray flux is about an order of magnitude lower than would be expected from scaling by the optical fluxes of well-known X-ray-selected intermediate polars.

  19. Martian North Polar Water-Ice Clouds During the Viking Era

    Science.gov (United States)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  20. Interfacial B-site atomic configuration in polar (111) and non-polar (001) SrIrO3/SrTiO3 heterostructures

    Science.gov (United States)

    Anderson, T. J.; Zhou, H.; Xie, L.; Podkaminer, J. P.; Patzner, J. J.; Ryu, S.; Pan, X. Q.; Eom, C. B.

    2017-09-01

    The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  1. Interfacial B-site atomic configuration in polar (111 and non-polar (001 SrIrO3/SrTiO3 heterostructures

    Directory of Open Access Journals (Sweden)

    T. J. Anderson

    2017-09-01

    Full Text Available The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111 and non-polar (001 SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111 interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001 interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111 perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  2. Implications of rapid environmental change for polar bear behavior and sociality

    Science.gov (United States)

    Atwood, Todd C.

    2017-01-01

    Historically, the Arctic sea ice has functioned as a structural barrier that has limited the nature and extent of interactions between humans and polar bears (Ursus maritimus). However, declining sea ice extent, brought about by global climate change, is increasing the potential for human-polar bear interactions. Loss of sea ice habitat is driving changes to both human and polar bear behavior—it is facilitating increases in human activities (e.g., offshore oil and gas exploration and extraction, trans-Arctic shipping, recreation), while also causing the displacement of bears from preferred foraging habitat (i.e., sea ice over biologically productive shallow) to land in some portions of their range. The end result of these changes is that polar bears are spending greater amounts of time in close proximity to people. Coexistence between humans and polar bears will require imposing mechanisms to manage further development, as well as mitigation strategies that reduce the burden to local communities.

  3. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  4. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    Science.gov (United States)

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.

  5. Measurement of product rotational alignment in associative-ionization collisions between polarized Na(3p) atoms

    International Nuclear Information System (INIS)

    Wang, M.; de Vries, M.S.; Weiner, J.

    1986-01-01

    We have studied the effect of reactant Na(3p) polarization on the rotational angular momentum alignment of product Na 2 + ions arising from associative-ionization (AI) collisions. Our results show that sensitivity of the AI rate constant to initial atomic polarization persists even when all hyperfine states are populated with broadband (3 cm -1 ) pulsed laser excitation of Na( 2 P/sub 3/2/) and that the spatial distribution of product rotational angular momentum vectors is anisotropic. We discuss a qualitative description of the collision process consistent with our measurements which indicates that sigma-orbital symmetry is preferred to π-orbital symmetry as the colliding partners approach

  6. Land, Cryosphere, and Nighttime Environmental Products from Suomi NPP VIIRS: Overview and Status

    Science.gov (United States)

    Roman, Miguel O.; Justice, Chris; Csiszar, Ivan

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-orbiting Partnership (S-NPP: http://npp.gsfc.nasa.gov/). VIIRS was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provide observation continuity with NASA's Earth Observing System's (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA and NOAA funded scientists have been working to evaluate the instrument performance and derived products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the former National Polar-orbiting Environmental Satellite System (NPOESS). The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs and providing MODIS data product continuity. This paper will present to-date findings of the NASA Science Team's evaluation of the VIIRS Land and Cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization (http://viirsland.gsfc.nasa.gov/index.html). The paper will also discuss new capabilities being developed at NASA's Land Product Evaluation and Test Element (http://landweb.nascom.nasa.gov/NPP_QA/); including downstream data and products derived from the VIIRS Day/Night Band (DNB).

  7. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    Science.gov (United States)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  8. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields

    Science.gov (United States)

    Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-05-01

    We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite

  9. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  10. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, James; Barker, Ed; Cowardin, Heather; Buckalew, Brent; Anz-Meado, Phillip; Lederer, Susan

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT's known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment. A simulated GEO debris population is created and sampled at various cadences and run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT's ability to determine accurately the orbits of debris at various sample rates. Additionally, estimates of the rate at which MCAT will be able produce a complete GEO survey are presented using collected weather data and the proposed observation data collection cadence. The specific methods and results are presented here.

  11. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  12. Real-Time and Post-Processed Orbit Determination and Positioning

    Science.gov (United States)

    Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor); Dorsey, Angela R. (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Kevin J. (Inventor); Miller, Mark A. (Inventor); Romans, Larry J. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); hide

    2016-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  13. Radiation environment measurements and single event upset observations in sun-synchronous orbit

    International Nuclear Information System (INIS)

    Dyer, C.S.; Sims, A.J.; Farren, J.; Stephen, J.; Underwood, C.

    1991-01-01

    This paper reports on analysis of data from the Cosmic Radiation Environment and Dosimetry experiment (CREDO) carried in sun-synchronous polar orbit on UoSat-3 which shows the influence of cosmic rays, trapped protons and solar particles and allows comparison with device behavior

  14. The tempo-spatially modulated polarization atmosphere Michelson interferometer.

    Science.gov (United States)

    Zhang, ChunMin; Zhu, HuaChun; Zhao, Baochang

    2011-05-09

    A space-based tempo-spatially modulated polarization atmosphere Michelson interferometer (TSMPAMI) is described. It uses the relative movement between the TSMPAMI and the measured target to change optical path difference. The acquisition method of interferogram is presented. The atmospheric temperatures and horizontal winds can be derived from the optical observations. The measurement errors of the winds and temperatures are discussed through simulations. In the presence of small-scale structures of the atmospheric fields, the errors are found to be significantly influenced by the mismatch of the scenes observed by the adjacent CCD sub-areas aligned along the orbiter's track during successive measurements due to the orbital velocity and the exposure time. For most realistic conditions of the orbit and atmosphere, however, the instrument is proven suitable for measuring the atmospheric parameters. © 2011 Optical Society of America

  15. Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - a way to spintronics?

    International Nuclear Information System (INIS)

    Birkholz, Jens Eiko

    2008-01-01

    We study the influence of the spin-orbit interaction on the electronic transport through quantum dots and quantum wires of correlated electrons. Starting with a one-dimensional infinite continuum model without Coulomb interaction, we analyze the interplay of the spin-orbit interaction, an external magnetic field, and an external potential leading to currents with significant spin-polarization in appropriate parameter regimes. Since lattice models are known to often be superior to continuum models in describing the experimental situation of low-dimensional mesoscopic systems, we construct a lattice model which exhibits the same low-energy physics in terms of energy dispersion and spin expectation values. Confining the lattice to finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads, we calculate the zero temperature linear conductance using the Landauer-Bttiker formalism and show that spin-polarization effects also evolve for the lattice model by adding an adequate potential structure and can be controlled by tuning the overall chemical potential of the system (quantum wire and leads). Next, we allow for a finite Coulomb interaction and use the functional renormalization group (fRG) method to capture correlation effects induced by the Coulomb interaction. The interacting system is thereby transformed into a noninteracting system with renormalized system parameters. For short wires (∝100 lattice sites), we show that the energy regime in which spin polarization is found is strongly affected by the Coulomb interaction. For long wires (>1000 lattice sites), we find the power-law suppression of the total linear conductance on low energy scales typical for inhomogeneous Luttinger liquids while the degree of spin polarization stays constant. Considering quantum dots which consist of two lattice sites, we observe the well-known Kondo effect and analyze, how the Kondo temperature is affected by the spin-orbit interaction. Moreover, we show

  16. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    Science.gov (United States)

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  17. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    Science.gov (United States)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  18. Microbiological and ecological responses to global environmental changes in polar regions (MERGE): An IPY core coordinating project

    Science.gov (United States)

    Naganuma, Takeshi; Wilmotte, Annick

    2009-11-01

    An integrated program, “Microbiological and ecological responses to global environmental changes in polar regions” (MERGE), was proposed in the International Polar Year (IPY) 2007-2008 and endorsed by the IPY committee as a coordinating proposal. MERGE hosts original proposals to the IPY and facilitates their funding. MERGE selected three key questions to produce scientific achievements. Prokaryotic and eukaryotic organisms in terrestrial, lacustrine, and supraglacial habitats were targeted according to diversity and biogeography; food webs and ecosystem evolution; and linkages between biological, chemical, and physical processes in the supraglacial biome. MERGE hosted 13 original and seven additional proposals, with two full proposals. It respected the priorities and achievements of the individual proposals and aimed to unify their significant results. Ideas and projects followed a bottom-up rather than a top-down approach. We intend to inform the MERGE community of the initial results and encourage ongoing collaboration. Scientists from non-polar regions have also participated and are encouraged to remain involved in MERGE. MERGE is formed by scientists from Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Egypt, Finland, France, Germany, Italy, Japan, Korea, Malaysia, New Zealand, Philippines, Poland, Russia, Spain, UK, Uruguay, USA, and Vietnam, and associates from Chile, Denmark, Netherlands, and Norway.

  19. Cassini ISS Observation of Saturn from Grand Finale Orbits

    Science.gov (United States)

    Blalock, J. J.; Sayanagi, K. M.; Ingersoll, A. P.; Dyudina, U.; Ewald, S. P.; McCabe, R. M.; Garland, J.; Gunnarson, J.; Gallego, A.

    2017-12-01

    We present images captured during Cassini's Grand Finale orbits, and their preliminary analyses. During the final 22 orbits of the mission, the spacecraft is in orbits that have 6.5 day period at an inclination of 62 degrees, apoapsis altitude of about 1,272,000 km, and periapsis altitudes of about 2,500 km. Images captured during periapsis passes show Saturn's atmosphere at unprecedented spatial resolution. We present preliminary analyses of these images, including the final images captured before the end of the mission when the spacecraft enters Saturn's atmosphere on September 15th, 2017. Prominent features captured during the final orbits include the north polar vortex and other vortices as well as very detailed views of the "popcorn clouds" that reside between the Hexagon and the north pole. In the cloud field between zonal jets, clouds either resemble linear streaks suggestive of cirrus-like clouds or round shapes suggestive of vortices or cumulus anvil. The presence of linear streaks that follow lines of constant latitudes suggests that meridional mixing is inhibited at those latitudes. The size of vortices may reflect latitudinal variation in the atmospheric deformation radius. We also compare the new images to those captured earlier in the Cassini mission to characterize the temporal evolution such as changes in the zonal jet speeds, and prevalence and colors of vortices. A particular focus of our interest is the long-term change in the color of the hexagon, the evolution of the wind speeds in the jetstream that blows eastward at the boundary of the hexagon, and the morphology of the north polar vortex. Our work has been supported by NASA PATM NNX14AK07G, NSF AAG 1212216, and NASA NESSF NNX15AQ70H.

  20. The Effect of Electrical Polarization on Electronic Structure in LSM Electrodes: An Operando XAS, RIXS and XES Study

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Carvalho, H.W.P.; Zielke, Philipp

    2017-01-01

    in the Mn K edge energy towards lower energies. The shift is assigned to a decrease in the average Mn oxidation state, which based on Kβ XES changes from 3.4 at open circuit voltage to 3.2 at −800 mV applied potential. Furthermore, RIXS rendered pronounced changes in the population of the Mn 3d orbitals...... (RIXS) at the Mn K-edge. The study of polarization induced changes in the electronic properties and structure has been carried out at 500°C in 10–20% O2 with electrical polarization applied in the range from −850 mV to 800 mV. Cathodic polarizations in the range −600 mV to −850 mV induced a shift......, due to filling of the Mn d-orbitals during the cathodic polarization. Overall, the study experimentally links the electrical polarization of LSM electrodes to the structural and electronic properties of Mn - these properties are expected to be of major importance for the electrocatalytic performance...

  1. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    Science.gov (United States)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  2. Remote Monitoring of the Polarized Target's Control for E1039

    Science.gov (United States)

    Fox, David; SeaQuest Collaboration

    2017-09-01

    The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  3. Verifying black hole orbits with gravitational spectroscopy

    International Nuclear Information System (INIS)

    Drasco, Steve

    2009-01-01

    Gravitational waves from test masses bound to geodesic orbits of rotating black holes are simulated, using Teukolsky's black hole perturbation formalism, for about ten thousand generic orbital configurations. Each binary radiates power exclusively in modes with frequencies that are integer-linear combinations of the orbit's three fundamental frequencies. General spectral properties are found with a survey of orbits about a black hole taken to be rotating at 80% of the maximal spin. The orbital eccentricity is varied from 0.1 to 0.9. Inclination ranges from 20 deg. to 160 deg. and comes to within 20 deg. of polar. Semilatus rectum is varied from 1.2 to 3 times the value at the innermost stable circular orbits. The following general spectral properties are found: (i) 99% of the radiated power is typically carried by a few hundred modes, and at most by about a thousand modes, (ii) the dominant frequencies can be grouped into a small number of families defined by fixing two of the three integer frequency multipliers, and (iii) the specifics of these trends can be qualitatively inferred from the geometry of the orbit under consideration. Detections using triperiodic analytic templates modeled on these general properties would constitute a verification of radiation from an adiabatic sequence of black hole orbits and would recover the evolution of the fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this would compare to observing the Bohr model's atomic hydrogen spectrum without being able to rule out alternative atomic theories or nuclei. The suitability of such a detection technique is demonstrated using snapshots computed at 12-hour intervals throughout the last three years before merger of a kludged inspiral. The system chosen is typical of those thought to occur in galactic nuclei and to be observable with space-based gravitational wave detectors like LISA. Because of circularization, the number of excited modes decreases as the binary

  4. The low earth orbit radiation environment and its evolution from measurements using the CREAM and CREDO experiments

    International Nuclear Information System (INIS)

    Dyer, C.S.; Sims, A.J.; Truscott, P.R.; Farren, J.; Underwood, C.

    1993-01-01

    Data obtained from Cosmic Radiation Environment Monitors carried on Shuttle missions during 1991/92, as well as on the polar orbiting microsatellite UOSAT-3 since April 1990, show the long term trends in the cosmic-ray and trapped proton environments responsible for single event phenomena. Cosmic-ray fluxes have increased by a factor of two since June 1991, while the solar flare event of Much 1991 created an additional region of trapped radiation which intersects high inclination Shuttle and polar orbits and, although decaying, was still present in December 1992. Deployment at a variety of shielding depths on Shuttle enables the influence of shielding to be explored and shows the influence of secondaries

  5. Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu, Jun; Li, Bao-An

    2013-01-01

    Incorporating for the first time both the spin and isospin degrees of freedom explicitly in transport model simulations of intermediate-energy heavy-ion collisions, we observe that a local spin polarization appears during collision process. Most interestingly, it is found that the nucleon spin up–down differential transverse flow is a sensitive probe of the spin–orbit interaction, providing a novel approach to probe both the density and isospin dependence of the in-medium spin–orbit coupling that is important for understanding the structure of rare isotopes and synthesis of superheavy elements

  6. A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.

    2018-01-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter...... currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model (“Juno Reference Model through Perijove 9”) of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed...

  7. Orbital angular momentum of a high-order Bessel light beam

    International Nuclear Information System (INIS)

    Volke-Sepulveda, K; Garces-Chavez, V; Chavez-Cerda, S; Arlt, J; Dholakia, K

    2002-01-01

    The orbital angular momentum density of Bessel beams is calculated explicitly within a rigorous vectorial treatment. This allows us to investigate some aspects that have not been analysed previously, such as the angular momentum content of azimuthally and radially polarized beams. Furthermore, we demonstrate experimentally the mechanical transfer of orbital angular momentum to trapped particles in optical tweezers using a high-order Bessel beam. We set transparent particles of known dimensions into rotation, where the sense of rotation can be reversed by changing the sign of the singularity. Quantitative results are obtained for rotation rates. This paper's animations are available from the Multimedia Enhancements page

  8. The Cost of Jointness: Insights from Environmental Monitoring Systems in Low-Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Morgan Maeve [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This report summarizes the results of doctoral research that explored the cost impact of acquiring complex government systems jointly. The report begins by reviewing recent evidence that suggests that joint programs experience greater cost growth than non-joint programs. It continues by proposing an alternative approach for studying cost growth on government acquisition programs and demonstrates the utility of this approach by applying it to study the cost of jointness on three past programs that developed environmental monitoring systems for low-Earth orbit. Ultimately, the report concludes that joint programs' costs grow when the collaborating government agencies take action to retain or regain their autonomy. The report provides detailed qualitative and quantitative data in support of this conclusion and generalizes its findings to other joint programs that were not explicitly studied here. Finally, it concludes by presenting a quantitative model that assesses the cost impacts of jointness and by demonstrating how government agencies can more effectively architect joint programs in the future.

  9. Illumination Conditions of the Lunar Polar Regions Using LOLA Topography

    Science.gov (United States)

    Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Torrence, M. H.

    2011-01-01

    We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to 75 latitude. The illumination of both polar regions extending to 80 can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains ( 10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as

  10. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  11. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    Science.gov (United States)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of

  12. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address

  13. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  14. Orbital momentum distribution and binding energies for the complete valence shell of molecular bromine

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; Weigold, E.

    1987-08-01

    The binding energy spectrum of Br 2 has been recorded in both the outer and inner valence regions using electron momentum spectroscopy. The measurements are compared with the results of several Green's function calculations using different approximations and based on both polarized and unpolarized wave functions. The inner valence region, observed for the first time, is found to exhibit complex structure that is shown to be due to many-body effects, thus indicating a breakdown of the simple MO picture for ionization in this region. Momentum distributions for the three outer valence orbitals are also measured and compared with spherically averaged calculations using the target Hartree-Fock and plane wave impulse approximations. The effect of polarization functions in the basis set is investigated. Orbital density maps in both momentum and position space have been calculated and compared with the experimental measurements

  15. Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Yu.

    2006-01-01

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed

  16. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Yu

    2006-07-28

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.

  17. Effective stability around the Cassini state in the spin-orbit problem

    Science.gov (United States)

    Sansottera, Marco; Lhotka, Christoph; Lemaître, Anne

    2014-05-01

    We investigate the long-time stability in the neighborhood of the Cassini state in the conservative spin-orbit problem. Starting with an expansion of the Hamiltonian in the canonical Andoyer-Delaunay variables, we construct a high-order Birkhoff normal form and give an estimate of the effective stability time in the Nekhoroshev sense. By extensively using algebraic manipulations on a computer, we explicitly apply our method to the rotation of Titan. We obtain physical bounds of Titan's latitudinal and longitudinal librations, finding a stability time greatly exceeding the estimated age of the Universe. In addition, we study the dependence of the effective stability time on three relevant physical parameters: the orbital inclination, , the mean precession of the ascending node of Titan orbit, , and the polar moment of inertia,.

  18. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  19. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  20. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  1. Bringing Society to a Changing Polar Ocean: Polar Interdisciplinary Coordinated Education (ICE)

    Science.gov (United States)

    Schofield, O.

    2015-12-01

    Environmental changes in the Arctic and Antarctic appear to be accelerating and scientists are trying to understand both the patterns and the impacts of change. These changes will have profound impact on humanity and create a need for public education about these critical habitats. We have focused on a two-pronged strategy to increase public awareness as well as enable educators to discuss comfortably the implications of climate change. Our first focus is on entraining public support through the development of science documentaries about the science and people who conduct it. Antarctic Edge is a feature length award-winning documentary about climate change that has been released in May 2015 and has garnered interest in movie theatres and on social media stores (NetFlix, ITunes). This broad outreach is coupled with our group's interest assisting educators formally. The majority of current polar education is focused on direct educator engagement through personal research experiences that have impact on the participating educators' classrooms. Polar Interdisciplinary Coordinated Education (ICE) proposes to improve educator and student engagement in polar sciences through exposure to scientists and polar data. Through professional development and the creation of data tools, Polar ICE will reduce the logistical costs of bringing polar science to students in grades 6-16. We will provide opportunities to: 1) build capacity of polar scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with polar scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia; and 3) evaluate the outcomes of Polar ICE and contribute to our understanding of science education practices. We will use a blended learning approach to promote partnerships and cross-disciplinary sharing. This combined multi-pronged approach

  2. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  3. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    International Nuclear Information System (INIS)

    Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes

  5. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  6. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    DEFF Research Database (Denmark)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils

    2015-01-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field...... modelling. To improve the data, we use aniterative approach consisting of two main parts: one is a main field modelling process to obtain the radial fieldgradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculatenew physical orbits. We report....... With this approach, weeliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved forgeomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found....

  7. Tunneling conductance of a two-dimensional electron gas with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Srisongmuang, B.; Ka-oey, A.

    2012-01-01

    We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band. - Highlights: → DSOC energy can be directly measured from tunneling conductance spectrum. → Spin polarization of conductance in the propagation direction can be obtained by injecting from DSOC system. → Both types of scattering can increase spin polarization.

  8. Latitudinal variation of the polar cusp during a geomagnetic storm

    International Nuclear Information System (INIS)

    Meng, C.

    1982-01-01

    Large amplitude latitudinal variation of the polar cusp position was observed during the intense geomagnetic storm of 15--16 February 1980. The observation of the polar cusp, identified as the region of intense but extremely soft electron precipitation, was made by two nearly noon-midnight orbit DMSP satellites over both northern and southern hemispheres. The latitudinal shift of the polar cusp is observed to be related to the intensity variation of the ring current indicated by the hourly Dst values. The polar cusp region moved from its normal location at approx.76 0 gm lat down to approx.62 0 gm lat at the peak of this storm. This movement took about 5 hours and was detected over both hemispheres. A drastic variation in the width of the cusp region was also observed; it is very narrow (approx.1 0 ) during the equatorial shift and expands to > or approx. =5 0 during the poleward recovery. Variation of the polar cusp latitude with that of the Dst index was also seen during the period before the intense storm

  9. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    International Nuclear Information System (INIS)

    Eslami, Leila; Esmaeilzadeh, Mahdi

    2014-01-01

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted

  10. Plasma balance equations based on orbit theory

    International Nuclear Information System (INIS)

    Lehnert, B.

    1982-01-01

    A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)

  11. A technician works on the Mars Climate Orbiter in SAEF-2

    Science.gov (United States)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  12. CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei; Hu, Yongyun [Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871 China (China); Tian, Feng, E-mail: yyhu@pku.edu.cn [Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084 (China)

    2014-08-10

    Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed by future exoplanet detection missions.

  13. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  14. First-Principles Study of the Polar TiC/Ti Interface

    Institute of Scientific and Technical Information of China (English)

    Limin LIU; Shaoqing WANG; Hengqiang YE

    2003-01-01

    The interface structure, work of adhesion, and bonding character of the polar TiC/Ti interface have been examined by the first-principles density functional plane-wave pseudopotential calculations. Both Ti- and C-terminated interfaces including six different interface structures were calculated, which present quite different features. For the Ti-terminated interface, the interfacial Ti-Ti bond has a strong metallic and weak covalent character; while for the C-terminated interface, the interfacial bond is a strong polar covalent interaction between the Ti-3d and C-2p orbital.The work of adhesion of C-terminated interface is nearly 9 J/m2 stronger than that of the Ti-terminated. It is found that each termination has relatively large work of adhesion, which is consistent with other polar interfaces.

  15. Monochromatic Measurements of the JPSS-1 VIIRS Polarization Sensitivity

    Science.gov (United States)

    McIntire, Jeff; Moyer, David; Brown, Steven W.; Lykke, Keith R.; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2016-01-01

    Polarization sensitivity is a critical property that must be characterized for spaceborne remote sensing instruments designed to measure reflected solar radiation. Broadband testing of the first Joint Polar-orbiting Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) showed unexpectedly large polarization sensitivities for the bluest bands on VIIRS (centered between 400 and 600 nm). Subsequent ray trace modeling indicated that large diattenuation on the edges of the bandpass for these spectral bands was the driver behind these large sensitivities. Additional testing using the National Institute of Standards and Technologies Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources was added to the test program to verify and enhance the model. The testing was limited in scope to two spectral bands at two scan angles; nonetheless, this additional testing provided valuable insight into the polarization sensitivity. Analysis has shown that the derived diattenuation agreed with the broadband measurements to within an absolute difference of about0.4 and that the ray trace model reproduced the general features of the measured data. Additionally, by deriving the spectral responsivity, the linear diattenuation is shown to be explicitly dependent on the changes in bandwidth with polarization state.

  16. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    Science.gov (United States)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present

  17. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  18. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  19. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-01-25

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  20. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  1. The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter

    Science.gov (United States)

    Glassmeier, K.-H.; Auster, H.-U.; Heyner, D.; Okrafka, K.; Carr, C.; Berghofer, G.; Anderson, B. J.; Balogh, A.; Baumjohann, W.; Cargill, P.; Christensen, U.; Delva, M.; Dougherty, M.; Fornaçon, K.-H.; Horbury, T. S.; Lucek, E. A.; Magnes, W.; Mandea, M.; Matsuoka, A.; Matsushima, M.; Motschmann, U.; Nakamura, R.; Narita, Y.; O'Brien, H.; Richter, I.; Schwingenschuh, K.; Shibuya, H.; Slavin, J. A.; Sotin, C.; Stoll, B.; Tsunakawa, H.; Vennerstrom, S.; Vogt, J.; Zhang, T.

    2010-01-01

    The magnetometer (MAG) on the Mercury Planetary Orbiter (MPO) of the joint European-Japanese BepiColombo mission to planet Mercury is a low-noise, tri-axial, dual-sensor, digital fluxgate instrument with its sensors mounted on a 2.8-m-long boom. The primary MPO/MAG science objectives are to determine the spatial and temporal structure of the magnetic field in the Hermean system, in particular the structure and origin of the intrinsic magnetic field of Mercury. MPO/MAG has a dynamic measurement range of ±2000nT with a resolution of 2 pT during operation along the near-polar orbit of the MPO spacecraft around Mercury. MPO/MAG is designed to provide measurements with rates between 0.5 and 128 vectors/s. In cooperation with its sister magnetometer instrument, MMO/MGF on board the BepiColombo Mercury Magnetospheric Orbiter (MMO), MPO/MAG will be able to distinguish between temporal and spatial magnetic field variations in the magnetically closely coupled Hermean system.

  2. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanay; Sen, A. K. [Department of Physics Assam University, Silchar-788011, Assam (India)

    2016-12-10

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannot be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.

  3. Analysis of the Effect of UTI-UTC to High Precision Orbit

    Science.gov (United States)

    Shin, Dongseok; Kwak, Sunghee; Kim, Tag-Gon

    1999-12-01

    As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  4. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  5. Accelerated simulation of near-Earth-orbit polymer degradation

    Science.gov (United States)

    Laue, Eric

    1992-01-01

    There is a need to simulate the near-Earth-orbit environmental conditions, and it is useful to be able to monitor the changes in physical properties of spacecraft materials. Two different methods for simulating the vacuum-ultraviolet (VUV) and soft X-ray near-Earth-orbit flux are presented. Also, methods for monitoring the changes in optical ultraviolet transmission and mass loss are presented. The results of exposures to VUV photons and charged particles on these materials are discussed.

  6. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    Science.gov (United States)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  7. Topological induced valley polarization in bilayer graphene/Boron Nitride

    Science.gov (United States)

    Basile, Leonardo; Idrobo, Juan C.

    2015-03-01

    Novel electronic devices relay in our ability to control internal quantum degrees of freedom of the electron e.g., its spin. The valley number degree of freedom is a pseudospin that labels degenerate eigenstates at local maximum/minimum on the valence/conduction band. Valley polarization, that is, selective electronic localization in a momentum valley and its manipulation can be achieved by means of circular polarized light (CPL) in a system with strong spin-orbit coupling (SOC). In this talk, we will show theoretically that despite the fact that neither graphene or BN have a strong SOC, a bilayer of graphene on BN oriented at a twist angle has different absorption for right- and left- CPL. This induced polarization occurs due to band folding of the electronic bands, i.e., it has a topological origin. This research was supported EPN multidisciplinary grant and by DOE SUFD MSED.

  8. Mitigating the Effect of an Orbit Kink on Vertical Emittance and Polarization

    CERN Document Server

    Koop, I

    2015-01-01

    Orbit kinks in FCC tunnel are under discussions for they can help to reduce the depth of few shafts [1]. Still two unwanted effects could make their use completely forbidden. The vertical emittance growth due to vertical bending and vertical dispersion is one of these concerns [2]. Another concern is the need to somehow compensate strong distortions of spin motion [3]. Here I present an idea of how we can simultaneously solve both these problems.

  9. Lateral spin-orbit coupling and the Kondo effect in quantum dots

    Science.gov (United States)

    Vernek, Edson; Ngo, Anh; Ulloa, Sergio

    2010-03-01

    We present studies of the Coulomb blockade and Kondo regimes of transport of a quantum dot connected to current leads through spin-polarizing quantum point contacts (QPCs) [1]. This configuration, arising from the effect of lateral spin-orbit fields, results in spin-polarized currents even in the absence of external magnetic fields and greatly affects the correlations in the dot. Using an equation-of-motion technique and numerical renormalization group calculations we obtain the conductance and spin polarization for this system under different parameter regimes. Our results show that both the Coulomb blockade and Kondo regimes exhibit non-zero spin-polarized conductance. We analyze the role that the spin-dependent tunneling amplitudes of the QPC play in determining the charge and net magnetic moment in the dot. We find that the Kondo regime exhibits a strongly dependent Kondo temperature on the QPC polarizability. These effects, controllable by lateral gate voltages, may provide a new approach for exploring Kondo correlations, as well as possible spin devices. Supported by NSF DMR-MWN and PIRE. [1] P. Debray et al., Nature Nanotech. 4, 759 (2009).

  10. Vorticity and particle polarization in heavy ion collisions (experimental perspective

    Directory of Open Access Journals (Sweden)

    Voloshin Sergei A.

    2018-01-01

    Full Text Available The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.

  11. Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI

    KAUST Repository

    Zhu, Zhiyong

    2013-02-06

    By all-electron ab initio calculations, the layered polar semiconductor BiTeCl is shown to host giant bulk Rashba spin splitting, similar to the recently reported compound BiTeI. In both materials, the standard Rashba–Bychkov model is no longer applicable, because of huge band extrema shifts even in the absence of spin–orbit coupling and a strong momentum dependence of the Rashba coupling constant (αR). By assuming αR to be orbital dependent, a phenomenological extension of the Rashba–Bychkov model is proposed which explains the splitting behavior of states with small in-plane momentum.

  12. Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    By all-electron ab initio calculations, the layered polar semiconductor BiTeCl is shown to host giant bulk Rashba spin splitting, similar to the recently reported compound BiTeI. In both materials, the standard Rashba–Bychkov model is no longer applicable, because of huge band extrema shifts even in the absence of spin–orbit coupling and a strong momentum dependence of the Rashba coupling constant (αR). By assuming αR to be orbital dependent, a phenomenological extension of the Rashba–Bychkov model is proposed which explains the splitting behavior of states with small in-plane momentum.

  13. Exploring Science Through Polar Exploration

    Science.gov (United States)

    Pfirman, S. L.; Bell, R. E.; Zadoff, L.; Kelsey, R.

    2003-12-01

    Exploring the Poles is a First Year Seminar course taught at Barnard College, Columbia University. First Year Seminars are required of incoming students and are designed to encourage critical analysis in a small class setting with focused discussion. The class links historical polar exploration with current research in order to: introduce non-scientists to the value of environmental science through polar literature; discuss issues related to venturing into the unknown that are of relevance to any discipline: self-reliance, leadership, preparation, decisions under uncertainty; show students the human face of science; change attitudes about science and scientists; use data to engage students in exploring/understanding the environment and help them learn to draw conclusions from data; integrate research and education. These goals are met by bringing analysis of early exploration efforts together with a modern understanding of the polar environment. To date to class has followed the efforts of Nansen in the Fram, Scott and Amundsen in their race to the pole, and Shackleton's Endurance. As students read turn-of-the-century expedition journals, expedition progress is progressively revealed on an interactive map showing the environmental context. To bring the exploration process to life, students are assigned to expedition teams for specific years and the fates of the student "expeditions" are based on their own decisions. For example, in the Arctic, they navigate coastal sea ice and become frozen into the ice north of Siberia, re-creating Nansen's polar drift. Fates of the teams varied tremendously: some safely emerged at Fram Strait in 4 years, while others nearly became hopelessly lost in the Beaufort Gyre. Students thus learn about variability in the current polar environment through first hand experience, enabling them to appreciate the experiences, decisions, and, in some cases, the luck, of polar explorers. Evaluation by the Columbia Center for New Media, Teaching

  14. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  15. A novel orbiter mission concept for venus with the EnVision proposal

    Science.gov (United States)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  16. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  17. Polar oceans in a changing climate.

    Science.gov (United States)

    Barnes, David K A; Tarling, Geraint A

    2017-06-05

    Most of Earth's surface is blue or white, but how much of each would depend on the time of observation. Our planet has been through phases of snowball (all frozen), greenhouse (all liquid seas) and icehouse (frozen and liquid). Even during current icehouse conditions, the extent of ice versus water has changed considerably between ice ages and interglacial periods. Water has been vital for life on Earth and has driven and been influenced by transitions between greenhouse and icehouse. However, neither the possession of water nor having liquid and frozen seas are unique to Earth (Figure 1). Frozen water oceans on the moons Enceladus and Europa (and possibly others) and the liquid and frozen hydrocarbon oceans on Titan probably represent the most likely areas to find extraterrestrial life. We know very little about life in Earth's polar oceans, yet they are the engine of the thermohaline 'conveyor-belt', driving global circulation of heat, oxygen, carbon and nutrients as well as setting sea level through change in ice-mass balance. In regions of polar seas, where surface water is particularly cold and dense, it sinks to generate a tropic-ward flow on the ocean floor of the Pacific, Atlantic and Indian Oceans. Cold water holds more gas, so this sinking water exports O 2 and nutrients, thereby supporting life in the deep sea, as well as soaking up CO 2 from the atmosphere. Water from mid-depths at lower latitudes flows in to replace the sinking polar surface water. This brings heat. The poles are cold because they receive the least energy from the sun, and this extreme light climate varies on many different time scales. To us, the current warm, interglacial conditions seem normal, yet such phases have represented only ∼10% of Homo sapiens' existence. Variations in Earth's orbit (so called 'Milankovitch cycles') have driven cyclical alternation of glaciations (ice ages) and warmer interglacials. Despite this, Earth's polar regions have been our planet's most

  18. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  19. Acceleration of polarized electrons in the Bonn electron-accelerator facility ELSA

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2001-12-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. Both types of resonances and the correction techniques have been studied in detail. The imperfection resonances were used to calibrate the energy of the stretcher ring with high accuracy. A new technique to extract the beam with horizontal oriented polarization was successfully installed. For all energies a polarized electron beam with more than 50% polarization can now be supplied to the experiments at ELSA, which is demonstrated by measurements using a Moeller polarimeter installed in the external beamline. (orig.)

  20. Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires

    Science.gov (United States)

    Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.

    2018-05-01

    Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.

  1. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations

    Science.gov (United States)

    Ni, Binbin; Shprits, Yuri; Nagai, Tsugunobu; Thorne, Richard; Chen, Yue; Kondrashov, Dmitri; Kim, Hee-jeong

    2009-05-01

    Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern (1996) magnetic field model is described in detail.

  2. A possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    Science.gov (United States)

    Van Patten, R. A.; Everitt, C. W. F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2-1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.

  3. Quantum information with even and odd states of orbital angular momentum of light

    Energy Technology Data Exchange (ETDEWEB)

    Perumangatt, Chithrabhanu, E-mail: chithrabhanu@prl.res.in [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); Lal, Nijil [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); IIT Gandhinagar, Palaj, Ahmedabad, 382355 (India); Anwar, Ali [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); Gangi Reddy, Salla [University of Electro-communications, Chofu, Tokyo, 1828585 (Japan); Singh, R.P. [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India)

    2017-06-15

    We address the possibility of using even/odd states of orbital angular momentum (OAM) of photons for the quantum information tasks. Single photon qubit states and two photon entangled states in even/odd basis of OAM are considered. We present a method for the tomography and general projective measurement in even/odd basis. With the general projective measurement, we show the Bell violation and quantum cryptography with Bell's inequality. We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization, which can be applied in the implementation of quantum protocols like super dense coding. - Highlights: • We propose to use even and odd states of orbital angular momentum (OAM) of light for quantum information tasks. • We describe the OAM qubits and entangled states in even/odd basis and the corresponding projective operators. • We present a method for the tomography and the Bell's inequality violation for photons entangled in even/odd OAM states. • We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization and their applications.

  4. Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Jensen, Jan; Fedorov, Dmitri

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of ...

  5. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction

    Science.gov (United States)

    Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou

    2018-05-01

    In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.

  6. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  7. Orbital character of O-2p unoccupied states near the Fermi level in CrO2

    International Nuclear Information System (INIS)

    Stagarescu, C. B.; Su, X.; Eastman, D. E.; Altmann, K. N.; Himpsel, F. J.; Gupta, A.

    2000-01-01

    The orbital character, orientation, and magnetic polarization of the O-2p unoccupied states near the Fermi level (E F ) in CrO 2 was determined using polarization-dependent x-ray absorption spectroscopy and x-ray magnetic circular dichroism from high-quality, single-crystal films. A sharp peak observed just above E F is excited only by the electric-field vector (E) normal to the tetragonal c axis, characteristic of a narrow band (≅0.7 eV bandwidth) constituted from O-2p orbitals perpendicular to c (O-2p y ) hybridized with Cr 3d xz-yz t 2g states. By comparison with band-structure and configuration-interaction cluster calculations our results support a model of CrO 2 as a half-metallic ferromagnet with large exchange-splitting energy (Δ exch-split ≅3.0 eV) and substantial correlation effects. (c) 2000 The American Physical Society

  8. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  9. Polarity Checks in Sectors 23 & 78

    CERN Document Server

    Calaga, R; Lamont, M; Ponce, L; Sun, Y; Tomás, R; Venturini-Delsolaro, W; Zimmermann, F

    2009-01-01

    During the first three LHC synchronization tests on August 10, August 24, and September 7, 2008, linear and higher-order polarity checks were performed with beam 1 in Sector 23 and beam 2 in Sector 78. The main principle of these checks was to launch free betatron oscillations and use the difference trajectory measurements with respect to inverted polarities of circuits under investigation. In the case of zero nominal strength for a circuit, a finite value was introduced. The magnet circuits subjected to these tests were the QT and QTL trim quadrupoles, the MQS skew quadrupoles, the SF and SD arc sextupole circuits, the MCS b3 spool pieces, the OD and OF Landau octupoles, and the MSS skew sextupoles. For some of these circuits sensitivity was enhanced by introducing large momentum offsets. To detect and remove improve spurious contributions from initially off-center orbits, four sets of trajectories were recorded, namely with and without oscillation, and with two magnet strength settings, respectively. We rep...

  10. Analysis of the Effect of UTI-UTC to High Precision Orbit Propagation

    Directory of Open Access Journals (Sweden)

    Dongseok Shin

    1999-12-01

    Full Text Available As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  11. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Adriani, Alberto; Allegrini, F.

    2017-01-01

    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context...

  12. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    Science.gov (United States)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  13. Sensitivity of the Eocene climate to CO2 and orbital variability

    Science.gov (United States)

    Keery, John S.; Holden, Philip B.; Edwards, Neil R.

    2018-02-01

    The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth's climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth's orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280-3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean-land temperature contrast in high northern latitudes and northern summer tropical-polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 °C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback. Our method gives a quantitative ranking of the influence of each of the

  14. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  15. The Submillimeter Polarization of Sgr A*

    Science.gov (United States)

    Marrone, Daniel P.; Moran, James M.; Zhao, Jun-Hui; Rao, Ramprasad

    2006-12-01

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300 400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized "blob" orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 ± 0.7) × 105 rad m2, with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167°±7° and we detect variations of 31+18-9 degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 × 10-7 Mdot o yr-1 to 2 × 10-9 Mdot o yr-1, if the magnetic ffeld is near equipartition and ordered.

  16. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling

    Science.gov (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-04-01

    We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.

  17. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  18. Two-Color VR CCD Photometry of the Intermediate Polar 1RXS J062518.2+733433

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    2005-09-01

    Full Text Available Results of 7 nights of CCD VR photometry of the intermediate polar 1RXS J062518.2 +733433 obtained at the Korean 1.8m telescope are reported. The corrected ephemeris for the orbital minimum is BJD (Orb.min = 2453023.6159 (42+0.1966431 (33 (E- 1735. The corrected ephemeris for the spin maximum is BJD (spin max = 2452893 .78477 (10+0.01374116815 (17 (E-15382 (cycle numbering corresponds to that of Staude et al.~2003. The variations of the shape of the individual spin variations are highly correlated in V and R. The phase of the spin maximum is found to be dependent on the orbital phase. The corresponding semi-amplitude of sinusoidal variations of phase is 0.11±0.03. This new phenomenon is explained by the changing viewing conditions of the accreting magnetic white dwarf, and should be checked in further observations this star and for other intermediate polars. To avoid influence of this effect on the analysis of the long-term spin period variations, the runs of at least one orbital period are recommended. Results of time series analysis are presented in tables.

  19. Measuring environmental stress in East Greenland polar bears, 1892-1927 and 1988-2009: what does hair cortisol tell us?

    Science.gov (United States)

    Bechshøft, T Ø; Rigét, F F; Sonne, C; Letcher, R J; Muir, D C G; Novak, M A; Henchey, E; Meyer, J S; Eulaers, I; Jaspers, V L B; Eens, M; Covaci, A; Dietz, R

    2012-09-15

    Hair sampled from 96 East Greenland polar bears (Ursus maritimus) over the periods 1892-1927 and 1988-2009 was analyzed for cortisol as a proxy to investigate temporal patterns of environmental stress. Cortisol concentration was independent of sex and age, and was found at significantly higher (ppolar bear hair appears to be a relatively poor indicator of the animal's general POP load in adipose tissue. However, further investigations are warranted to explore the reasons for the temporal decrease found in the bears' hair cortisol levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Organic molecules in the polar ice: from chemical analysis to environmental proxies

    Science.gov (United States)

    Barbante, Carlo; Zennaro, Piero; Giorio, Chiara; Kehrwald, Natalie; Benton, Alisa K.; Wolff, Eric W.; Kalberer, Markus; Kirchgeorg, Torben; Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea

    2015-04-01

    The molecular and isotopic compositions of organic matter buried in ice contains information that helps reconstruct past environmental conditions, evaluate histories of climate change, and assess impacts of humans on ecosystems. In recent years novel analytical techniques were developed to quantify molecular compounds in ice cores. As an example, biomass burning markers, including monosaccharide anhydrides, lightweight carboxylic acids, lignin and resin pyrolysis products, black carbon, and charcoal records help in reconstructing past fire activity across seasonal to millennial time scales. Terrestrial biomarkers, such as plant waxes (e.g. long-chain n-alkanes) are also a promising paleo vegetation proxy in ice core studies. Polycyclic aromatic hydrocarbons are ubiquitous pollutants recently detected in ice cores. These hydrocarbons primarily originate from incomplete combustion of organic matter and fossil fuels (e.g. diesel engines, domestic heating, industrial combustion) and therefore can be tracers of past combustion activities. In order to be suitable for paloeclimate purposes, organic molecular markers detected in ice cores should include the following important features. Markers have to be stable under oxidizing atmospheric conditions, and ideally should not react with hydroxyl radicals, during their transport to polar regions. Organic markers must be released in large amounts in order to be detected at remote distances from the sources. Proxies must be specific, in order to differentiate them from other markers with multiple sources. The extraction of glaciochemical information from ice cores is challenging due to the low concentrations of some impurities, thereby demanding rigorous control of external contamination sources and sensitive analytical techniques. Here, we review the analysis and use of organic molecules in ice as proxies of important environmental and climatic processes.

  1. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  2. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  3. Mimicking Faraday rotation to sort the orbital angular momentum of light.

    Science.gov (United States)

    Zhang, Wuhong; Qi, Qianqian; Zhou, Jie; Chen, Lixiang

    2014-04-18

    The efficient separation of the orbital angular momentum (OAM) is essential to both the classical and quantum applications with twisted photons. Here we devise and demonstrate experimentally an efficient method of mimicking the Faraday rotation to sort the OAM based on the OAM-to-polarization coupling effect induced by a modified Mach-Zehnder interferometer. Our device is capable of sorting the OAM of positive and negative numbers, as well as their mixtures. Furthermore, we report the first experimental demonstration to sort optical vortices of noninteger charges. The possibility of working at the photon-count level is also shown using an electron-multiplying CCD camera. Our scheme holds promise for quantum information applications with single-photon entanglement and for high-capacity communication systems with polarization and OAM multiplexing.

  4. Videographic Education: Owning the Polar Crisis

    Science.gov (United States)

    Vachon, R. W.; Buhr, S. M.

    2007-12-01

    Television and internet-served video is an increasingly important media tool for reaching into society. This talk will present clips from a film designed to educate the public about warming in the polar regions, the socioeconomic and environmental implications of this warming; and the actions we can take to slow down human contributions to climate change. This talk will present a short film Owning the Polar Crisis, which is drawn from footage for Polar Visions, a four segment film available for educational audiences and the public.. The films are unique in that they draw from the perspectives of well-known climate scientists, citizens from all over the planet and natives of the Arctic. The compelling images were taken from numerous locations around the Arctic, including Alaska and Greenland. Owning the Polar Crisis was filmed, directed and produced by Dr. Ryan Vachon, a climate scientist and videographer with an intimate knowledge of the subject matter.

  5. Dual descriptors within the framework of spin-polarized density functional theory.

    Science.gov (United States)

    Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P

    2008-08-14

    Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.

  6. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    Science.gov (United States)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  7. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit

    Science.gov (United States)

    Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven

    2006-01-01

    the ISS flight trajectory including variations in altitude due to decay of the vehicle orbit and periodic reboosts to higher altitudes. In addition, an estimate of the AE-8 model to predict low Earth orbit electron flux (because the radiation dose for thin materials is dominated by the electron component of the radiation environment) is presented based on comparisons of the AE-8 model to measurements of electron integral flux at approximately 850 km from the Medium Energy Proton and Electron Detector on board the NOAA Polar Operational Environmental Satellite.

  8. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  9. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  10. Estimation and Validation of Land Surface Temperatures from Chinese Second-Generation Polar-Orbit FY-3A VIRR Data

    Directory of Open Access Journals (Sweden)

    Bo-Hui Tang

    2015-03-01

    Full Text Available This work estimated and validated the land surface temperature (LST from thermal-infrared Channels 4 (10.8 µm and 5 (12.0 µm of the Visible and Infrared Radiometer (VIRR onboard the second-generation Chinese polar-orbiting FengYun-3A (FY-3A meteorological satellite. The LST, mean emissivity and atmospheric water vapor content (WVC were divided into several tractable sub-ranges with little overlap to improve the fitting accuracy. The experimental results showed that the root mean square errors (RMSEs were proportional to the viewing zenith angles (VZAs and WVC. The RMSEs were below 1.0 K for VZA sub-ranges less than 30° or for VZA sub-ranges less than 60° and WVC less than 3.5 g/cm2, provided that the land surface emissivities were known. A preliminary validation using independently simulated data showed that the estimated LSTs were quite consistent with the actual inputs, with a maximum RMSE below 1 K for all VZAs. An inter-comparison using the Moderate Resolution Imaging Spectroradiometer (MODIS-derived LST product MOD11_L2 showed that the minimum RMSE was 1.68 K for grass, and the maximum RMSE was 3.59 K for barren or sparsely vegetated surfaces. In situ measurements at the Hailar field site in northeastern China from October, 2013, to September, 2014, were used to validate the proposed method. The result showed that the RMSE between the LSTs calculated from the ground measurements and derived from the VIRR data was 1.82 K.

  11. Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions

    International Nuclear Information System (INIS)

    Niţa, Marian; Ostahie, Bogdan; Marinescu, D C; Manolescu, Andrei; Gudmundsson, Vidar

    2012-01-01

    When subjected to a linearly polarized terahertz pulse, a mesoscopic ring endowed with spin-orbit interaction (SOI) of the Rashba-Dresselhaus type exhibits non-uniform azimuthal charge and spin distributions. Both types of SOI couplings are considered linear in the electron momentum. Our results are obtained within a formalism based on the equation of motion satisfied by the density operator which is solved numerically for different values of the angle φ, the angle determining the polarization direction of the laser pulse. Solutions thus obtained are later employed in determining the time-dependent charge and spin currents, whose values are calculated in the stationary limit. Both these currents exhibit an oscillatory behavior complicated in the case of the spin current by a beating pattern. We explain this occurrence on account of the two spin-orbit interactions which force the electron spin to oscillate between the two spin quantization axes corresponding to Rashba and Dresselhaus interactions. The oscillation frequencies are explained using the single particle spectrum.

  12. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  13. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  14. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  15. Calculated Performance Of The Variable-Polarization Undulator Upgrade To The Daresbury SRS Soft X-Ray Undulator Beamline

    International Nuclear Information System (INIS)

    Roper, Mark D.; Bird, Daniel T.

    2004-01-01

    The soft x-ray beamline 5U1 on the Daresbury Laboratory SRS currently uses a planar undulator, producing linearly polarized radiation in the range 100 to 1000 eV. The undulator is soon to be replaced by a variable-polarization device of the Apple II design. The aim is to produce circularly polarized light in the energy range 265 to 1000 eV, covering the K-edges of C, N and O, and the first row transition element L-edges. This will greatly enhance the provision of circularly polarized soft-x-rays on the SRS and open up new opportunities for experimenters. The device will also produce linear polarization with a selectable angle of polarization with respect to the orbit plane, which is currently unavailable on the SRS. In order to provide the coverage over this energy range, we are exploiting the relatively large emittance of the SRS to allow us to use the second and third harmonics even in circular polarization mode. This paper presents the expected beamline output in various polarization modes and the predicted degree of polarization

  16. Mars north polar deposits: stratigraphy, age, and geodynamical response.

    Science.gov (United States)

    Phillips, Roger J; Zuber, Maria T; Smrekar, Suzanne E; Mellon, Michael T; Head, James W; Tanaka, Kenneth L; Putzig, Nathaniel E; Milkovich, Sarah M; Campbell, Bruce A; Plaut, Jeffrey J; Safaeinili, Ali; Seu, Roberto; Biccari, Daniela; Carter, Lynn M; Picardi, Giovanni; Orosei, Roberto; Mohit, P Surdas; Heggy, Essam; Zurek, Richard W; Egan, Anthony F; Giacomoni, Emanuele; Russo, Federica; Cutigni, Marco; Pettinelli, Elena; Holt, John W; Leuschen, Carl J; Marinangeli, Lucia

    2008-05-30

    The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed approximately 100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

  17. Photoionization cross-section for atomic orbitals with random and fixed spatial orientation

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Fadley, C.S.; Kono, S.

    1981-01-01

    Atomic photoionization subshell cross-sections and asymmetry parameters necessary for determining the differential cross-sections of randomly-oriented atoms have been calculated within the one-electron, central-potential model and the dipole approximation for all subshells of C, O, Al, Si, S, Ni, Cu, Ga, Ge, As, Se, In, Sb, Cs, Ba, Ce, Ta, W, Pt, Au, and Pb for a photon energy range from 20 to 1500 eV, and the relevant Cooper minima located to within 10 eV. These values are tabulated for general use, together with the associated radial matrix elements and phase shifts. Differential photoionization cross-sections for fixed-orientation s-, p- and d-orbitals have also been derived within the same model for a completely general experimental geometry, and closed-form expressions depending on radial matrix elements and phase shifts are given. For the special geometry of a polarized excitation source with polarization parallel to the electron emission direction, it is further shown that such oriented-atom cross-sections are exactly proportional to the probability distribution of the initial orbital, a result equivalent to that derived by using a plane-wave final-state approximation. However, detailed numerical calculations of cross-sections for oriented Cu 3d and O 2p orbitals in various general geometries and at various energies exhibit significant differences in comparison to plane-wave cross-sections. By contrast, certain prior angular-resolved X-ray photoemission studies of single-crystal valence bands are found to have been carried out in an experimental geometry that fortuitously gave cross-sections close to the plane-wave predictions. (orig.)

  18. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    Science.gov (United States)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  19. The Submillimeter Polarization of Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Daniel P [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Moran, James M [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Rao, Ramprasad [Inst. of Ast. and Astrophys., Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan (China)

    2006-12-15

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300-400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized 'blob' orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 {+-} 0.7) x 10{sup 5} rad m{sup 2}, with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167{sup 0}{+-}7{sup 0} and we detect variations of 31{sup +18}{sub -9} degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 x 10{sup -7} M o-dot yr{sup -1} to 2 x 10{sup -9} M o-dot yr{sup -1}, if the magnetic field is near equipartition and ordered.

  20. The Submillimeter Polarization of Sgr A*

    International Nuclear Information System (INIS)

    Marrone, Daniel P; Moran, James M; Zhao, Jun-Hui; Rao, Ramprasad

    2006-01-01

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300-400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized 'blob' orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 ± 0.7) x 10 5 rad m 2 , with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167 0 ±7 0 and we detect variations of 31 +18 -9 degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 x 10 -7 M o-dot yr -1 to 2 x 10 -9 M o-dot yr -1 , if the magnetic field is near equipartition and ordered

  1. On the observability of the quark orbital angular momentum distribution

    Energy Technology Data Exchange (ETDEWEB)

    Courtoy, Aurore, E-mail: aurore.courtoy@ulg.be [IFPA, AGO Department, Université de Liège, Bât. B5, Sart Tilman, B-4000 Liège (Belgium); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Goldstein, Gary R., E-mail: gary.goldstein@tufts.edu [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Osvaldo Gonzalez Hernandez, J., E-mail: jog4m@virginia.edu [Istituto Nazionale di Fisica Nucleare (INFN) – Sezione di Torino, via P. Giuria, 1, 10125 Torino (Italy); Liuti, Simonetta, E-mail: sl4y@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Rajan, Abha, E-mail: ar5xc@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States)

    2014-04-04

    We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions – the generalized transverse momentum distributions – that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light-cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that the twist three contributions associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual Compton scattering, already measured at HERMES.

  2. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar

  3. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  4. Proximity-induced spin-valley polarization in silicene or germanene on F-doped WS2

    KAUST Repository

    Sattar, Shahid

    2016-11-11

    Silicene and germanene are key materials for the field of valleytronics. However, interaction with the substrate, which is necessary to support the electronically active medium, becomes a major obstacle. In the present work, we propose a substrate (F-doped WS2) that avoids detrimental effects and at the same time induces the required valley polarization, so that no further steps are needed for this purpose. The behavior is explained by proximity effects on silicene or germanene, as demonstrated by first-principles calculations. Broken inversion symmetry due to the presence of WS2 opens a substantial band gap in silicene or germanene. F doping of WS2 results in spin polarization, which, in conjunction with proximity-enhanced spin-orbit coupling, creates sizable spin-valley polarization.

  5. Jpss System Architecture Npp to the Future

    Science.gov (United States)

    Furgerson, J.; Trumbower, G.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). The National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA in the 1330 local time of ascending node (LTAN) orbit. The Suomi National Polar-orbiting Partnership (NPP) was launched into the 1330 LTAN orbit on October 28, 2011, and carries advanced sensors which will be featured on JPSS. It serves as a bridge mission and provides continuity for the NASA Earth Observation System and the POES. JPSS-1 is scheduled to launch in 2017. The Defense Meteorological Satellite Program (DMSP) managed by the DoD is operating in the 1730 LTAN orbit. The DoD is developing the Defense Weather Satellite Follow-on (WSF) system which will continue in the 1730 orbit. NASA is developing the Common Ground System (CGS) with the capability to process data from both the JPSS and WSF constellations. The CGS will be operated by NOAA. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPP/JPSS satellite data to provide environmental data products to NOAA and DoD processing centers as well as remote terminal users.

  6. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences.

    Science.gov (United States)

    Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard

    2012-06-01

    A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management

  7. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions

    Science.gov (United States)

    Weeden, B.

    Sun-synchronous orbit (SSO) satellites serve many important functions, primarily in the areas of Earth reconnaissance and weather. The orbital parameters of altitude, inclination and right ascension which allow for the unique utility of Sun-sync orbit limit these satellites to a very specific region of space. The popularity of these satellite missions combined with the use of similar engineering solutions has resulted in the majority of current Sun-sync satellites within this region having very similar inclinations and altitudes while also spaced around the Equator in right ascension, creating the opportunity for conjunctions at the polar crossing points and a serious safety issue that could endanger long-term sustainability of SSO. This paper outlines the development of a new architecture of SSO zoning to create specific slots separating SSO satellites in altitude, right ascension and time at all orbital intersections while minimizing the limitations on utility. A methodical approach for the development of the system is presented along with the work-to-date and a software tool for calculating repeating ground track orbits. The slot system is intended to allow for continued utility of and safe operation within SSO while greatly decreasing the chance of collisions at orbital intersections. This architecture is put forward as one possible element of a new Space Traffic Management (STM) system with the overall goal of maintaining the safe and continued used of space by all actors.

  8. Electronic state of PuCoGa5 and NpCoGa5 as probed by polarized neutrons.

    Science.gov (United States)

    Hiess, A; Stunault, A; Colineau, E; Rebizant, J; Wastin, F; Caciuffo, R; Lander, G H

    2008-02-22

    By using single crystals and polarized neutrons, we have measured the orbital and spin components of the microscopic magnetization in the paramagnetic state of NpCoGa(5) and PuCoGa(5). The microscopic magnetization of NpCoGa(5) agrees with that observed in bulk susceptibility measurements and the magnetic moment has spin and orbital contributions as expected for intermediate coupling. In contrast, for PuCoGa(5), which is a superconductor with a high transition temperature, the microscopic magnetization in the paramagnetic state is small, temperature-independent, and significantly below the value found with bulk techniques at low temperatures. The orbital moment dominates the magnetization.

  9. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  10. Project Freebird: An orbital transfer vehicle

    Science.gov (United States)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  11. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  12. Review of a relativity and geodesy mission with counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.

    1977-01-01

    A new test of general relativity, capable of measuring the Lense-Thirring precession on a satellite orbit was proposed in 1974. We have recently realized that the remarkable geophysical output of this experiment can be enriched by allowing the point of encounter between the two satellites to progress from the poles to the equator during the course of the mission. There is reason to believe that by performing the experiment in this mode, all tesseral harmonics up to about 60th order could be separated and determined to accuracies up to three orders of magnitude better than current knowledge, and still obtain a 1% Lense-Thirring measurement. (orig.) [de

  13. Mean Orbital Elements for Geosynchronous Orbit - II - Orbital inclination, longitude of ascending node, mean longitude

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1990-06-01

    Full Text Available The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of Wc, Ws, and L are obtained.

  14. Topography and stratigraphy of Martian polar layered deposits

    Science.gov (United States)

    Blasius, K. R.; Cutts, J. A.; Howard, A. D.

    1982-01-01

    The first samples of high resolution Viking Orbiter topographic and stratigraphic data for the layered polar deposits of Mars are presented, showing that these deposits are with respect to both slopes and angular relief similar to those in the south. It is also demonstrated that, in conjunction with stereophotogrammetry, photoclinometry holds promise as a tool for detailed layered deposit studies. The spring season photography, which lends itself to photoclinometric analysis, covers the entire area of the north polar deposits. Detailed tests of layered terrain evolution hypotheses will be made, upon refinement of the data by comparison with stereo data. A more promising refining technique will make use of averaging perpendicular to selected sections to enhance SNR. Local reliefs of 200-800 m, and slopes of 1-8 deg, lead to initial calculations of average layer thickness which yields results of 14-46 m, linearly correlated with slope.

  15. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    Science.gov (United States)

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  16. Analysis of the influence of orbital disturbances applied to an artificial lunar satellite

    International Nuclear Information System (INIS)

    Gonçalves, L D; Rocco, E M; De Moraes, R V

    2015-01-01

    This paper analyzes the influence of the orbital disturbance forces in the trajectory of lunar satellites. The following gravitational and non-gravitational orbital disturbances are considered: the non-homogeneity of the lunar gravitational field; the gravitational attraction due to the third body, considering the Earth and the Sun; the lunar albedo; the solar radiation pressure. Numerical models were developed and implemented in an orbital trajectory simulator aiming to understand the dynamics of the orbital motion of an artificial satellite in lunar orbit when considering the simultaneous effect of all disturbances. Different orbits were simulated in order to characterize the major and the minor influence of each disturbing force as function of the inclination and the right ascension of the ascending node. This study can be very useful in the space mission analysis and in the selection of orbits less affected by environmental disturbances. (paper)

  17. Spin-Orbital Excitations in Ca2RuO4 Revealed by Resonant Inelastic X-Ray Scattering

    DEFF Research Database (Denmark)

    Das, L.; Forte, F.; Fittipaldi, R.

    2018-01-01

    The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scatt......-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2RuO4.......The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x......-ray scattering study of the antiferromagnetic Mott insulating state of Ca2RuO4. A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band...

  18. Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit

    Science.gov (United States)

    Kearsley, A.; Graham, G.

    Much of our knowledge concerning the sub-millimetre orbital debris population that poses a threat to orbiting satellites has been gleaned from examination of surfaces retrieved and subsequently analysed as part of post-flight investigations. The preservation of the hypervelocity impact-derived remnants located on these surfaces is very variable, whether of space debris or micrometeoroid origin. Whilst glass and metallic materials show highly visible impact craters when examined using optical and electron microscopes, complex mixing between the target material and the impacting particle may make unambiguous interpretation of the impactor origin difficult or impossible. Our recent detailed examination of selected multi-layered insulation (MLI) foils from the ISAS Space Flyer Unit (SFU), and our preliminary study of NASA's Trek blanket, exposed on the Mir station, show that these constructions have the potential to preserve abundant residue material of a quality sufficient for detailed analysis. Although there are still limitations on the recognition of certain sources of orbital debris, the foils complement the metal and glass substrates. We suggest that a purpose-built multi-layered foil structure may prove to be extremely effective for rapid collection and unambiguous analysis of impact- derived residues. Such a collector could be used an environmental monitor for ISS, as it would have low mass, high durability, easy deployment, recovery and storage, making it an economically viable and attractive option.

  19. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    Science.gov (United States)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  20. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. PyORBIT: A Python Shell For ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  2. PyORBIT: A Python Shell For ORBIT

    International Nuclear Information System (INIS)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-01-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability

  3. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  4. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields.

    Science.gov (United States)

    Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R

    2017-06-30

    Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

  5. The possibility to determine a constant of spin-orbit interaction by scanning tunneling microscopy method

    International Nuclear Information System (INIS)

    Khotkevich, N.V.; Kolesnichenko, Yu.A.; Vovk, N.P.

    2016-01-01

    The electron tunneling from the quasi-two-dimensional (surface) states with the spin-orbit interaction into bulk-mode states is studied in the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier. The influence of the scattering of quasi-two-dimensional electrons by a single magnetic defect on the tunnel current is analyzed. Analytic formulas for the conductance of a tunnel point-contact as a function of its distance from the defect are obtained. It is shown that the analysis of the local magnetization density around the defect by means of spin-polarized scanning tunneling microscopy allows finding the constant of spin orbit interaction.

  6. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  7. Planetary period oscillations in Saturn's magnetosphere: New results from the F-ring and proximal orbits

    Science.gov (United States)

    Provan, G.; Cowley, S. W. H.; Bunce, E. J.; Hunt, G. J.; Dougherty, M. K.

    2017-12-01

    We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field data during the high cadence ( 7 days) F-ring and proximal orbits. Previous results have shown that there are two PPO systems, one in each hemisphere. Both PPO periods show seasonal dependence, and since mid-2014 the Northern PPO period has been 10.8 h and the Southern PPO period 10.7 h. The beat period of the two oscillations is 45 days. Previous results demonstrated that in the Northern (Southern) polar region only pure Northern (Southern) oscillations can be observed, whilst in the equatorial region both oscillations are present and constructively and destructively interfere over the beat-cycle of the two oscillations. The PPOs are believed to be driven by twin-cell convection patterns in the polar ionosphere/thermosphere regions, with two systems of field-aligned currents transmitting the PPO flows to the magnetospheric plasma.The F-ring and proximal orbits uniquely observe the PPOs over 6 orbits during each PPO beat cycle. This high-cadence data demonstrates that over a beat cycle both the periods and amplitudes of the PPO observed within the each polar region are modulated by the PPO system from the opposite hemisphere. When the two oscillations are in phase (anti-phase) the `drag' of one system on the other acts to decrease (increase) the amplitude of the oscillations and the two PPO periods diverge (converge). We present a theoretical model showing that this coupling is due to the PPO flows from one hemisphere not just being communicated to the magnetosphere as previously assumed, but also to the opposite hemisphere. The result is inter-hemispheric coupling of the PPO flow systems within the ionosphere/thermosphere system, so that the northern PPO system drives a northern twin-cell convection pattern in the southern hemisphere, and vice versa, thus leading to the observed polar modulations of the PPOs.We will also present PPO phase models determined

  8. Prominent Role of Spin-Orbit Coupling in FeSe Revealed by Inelastic Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Mingwei Ma

    2017-05-01

    Full Text Available In most existing theories for iron-based superconductors, spin-orbit coupling (SOC has been assumed to be insignificant. Here, we use spin-polarized inelastic neutron scattering to show that collective low-energy spin excitations in the orthorhombic (or “nematic” phase of FeSe possess nearly no in-plane component. Such spin-space anisotropy is present over an energy range greater than the superconducting gap 2Δ_{sc} and gets fully inherited in the superconducting state, resulting in a c-axis polarized “spin resonance” without any noticeable isotropic spectral-weight rearrangement related to the superconductivity, which is distinct from observations in the superconducting iron pnictides. The contrast between the strong suppression of long-range magnetic order in FeSe and the persisting large spin-space anisotropy, which cannot be explained microscopically by introducing single-ion anisotropy into local-moment spin models, demonstrates the importance of SOC in an itinerant-electron description of the low-energy spin excitations. Our result helps to elucidate the nearby magnetic instabilities and the debated interplay between spin and orbital degrees of freedom in FeSe. The prominent role of SOC also implies a possible unusual nature of the superconducting state.

  9. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  10. Azimuthal asymmetries in semi-inclusive deep-inelastic hadron muoproduction on longitudinally polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Sirtl, Stefan

    2016-06-27

    In recent years, measuring azimuthal asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) off polarized targets emerged as a powerful tool to investigate the nucleon spin structure, one of the main objectives of the COMPASS physics program. The two-stage COMPASS spectrometer at the CERN SPS is characterized by a large acceptance and a broad kinematic coverage. It makes use of a tertiary longitudinally polarized high-energetic μ{sup +} beam, impinging on a transversely or longitudinally polarized ammonia target. This thesis is dedicated to the analysis of both leading and subleading longitudinal target spin dependent asymmetries arising in the SIDIS cross section of one hadron and hadron pair production. The results provide new insights to the longitudinal spin structure of the nucleon, addressing the role of spin-orbit couplings and quark-gluon correlations in the framework of collinear or transverse momentum dependent factorization.

  11. Software package for modeling spin-orbit motion in storage rings

    Science.gov (United States)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  12. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale

    Science.gov (United States)

    Hilgen, F. J.

    1991-06-01

    The astronomically calibrated age of the Olduvai Subchron is established by correlating the cyclic sapropel patterns in the Vrica section and in the sections of Semaforo (Italy), Singa (Italy), Punta Piccola (Sicily), and Francocastello (Crete) to the new astronomical solutions for the precession of the equinox and eccentricity of the earth's orbit, using inferred phase relationships between the sapropel cycles and orbital cycles. The resultant ages for the Olduvai and for older boundaries are then compared with conventional, as well as other orbitally tuned ages, for these polarity transitions. It is shown that this astronomically calibrated time scale can be extended back to the Miocene/Pliocene boundary.

  13. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  14. Local time asymmetry of Pc 4--5 pulsations and associated particle modulations at synchronous orbit

    International Nuclear Information System (INIS)

    Kokubun, S.; Erickson, K.N.; Fritz, T.A.; McPherron, R.L.

    1989-01-01

    Magnetic field and particle flux observations on board ATS 6 at synchronous altitude are used to examine the dawn-dusk asymmetry of characteristics of Pc 4--5 waves and associated particle flux modulation. Most waves at synchronous orbit having ground correlations are polarized in the azimuthal direction (A class) and are usually detected in the dawn sector. Waves with a radially oriented polarization ellipse (R-class) are almost never observed near the subsatellite point on the ground, except for the regular pulsations known as giant pulsation Pg, observed in the early morning. R class Pc 4 waves occur at all local times and have an occurrence peak in the afternoon

  15. Polarimetry, photometry and spectroscopy of the intermediate polar V1223 Sgr

    Energy Technology Data Exchange (ETDEWEB)

    Watts, D J; Giles, A B; Greenhill, J G; Hill, K [Tasmania Univ., Sandy Bay (Australia). Dept. of Physics; Bailey, J [Anglo-Australian Observatory, Epping (Australia)

    1985-07-01

    Optical and IR polarization studies of the intermediate polar V1223 Sgr are reported. The optical and IR light curves have assisted in the determination of the photometric period of 0.14 day. The IR flux of the 794-s pulsations is consistent with X-ray heating of a cool atmosphere. The white-dwarf spin period of 746s was not detected. The IR data are consistent with the published fit of a steady state optically thick disc model to the optical and UV continua. No IR excess from the secondary is apparent. High-dispersion spectroscopic observations over half the orbital period show a small radial velocity change accompanied by complex line profile changes. The low mass function implies a low inclination for a main-sequence companion.

  16. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  17. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  18. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis

    Directory of Open Access Journals (Sweden)

    Sumeet Jain

    2016-01-01

    Full Text Available Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  19. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region

    Science.gov (United States)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals

  20. Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale

    Science.gov (United States)

    Vázquez-Lozano, J. Enrique; Martínez, Alejandro

    2018-03-01

    Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.

  1. ORBITAL INJURIES

    Directory of Open Access Journals (Sweden)

    Andrej Kansky

    2002-12-01

    Full Text Available Background. Orbit is involved in 40% of all facial fractures. There is considerable variety in severity, ranging from simple nondisplaced to complex comminuted fractures. Complex comminuted fractures (up to 20% are responsible for the majority of complications and unfavorable results. Orbital fractures are classified as internal orbital fractures, zygomatico-orbital fractures, naso-orbito-ethmoidal fractures and combined fractures. The ophtalmic sequelae of midfacial fractures are usually edema and ecchymosis of the soft tissues, subconjuctival hemorrhage, diplopia, iritis, retinal edema, ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Within the wide range of orbital fractures small group of complex fractures causes most of the sequelae. Therefore identification of severe injuries and adequate treatment is of major importance. The introduction of craniofacial techniques made possible a wide exposure even of large orbital wall defects and their reconstruction by bone grafts. In spite of significant progress, repair of complex orbital wall defects remains a problem even for the experienced surgeons.Results. In 1999 121 facial injuries were treated at our department (Clinical Centre Ljubljana Dept. Of Maxillofacial and Oral Surgery. Orbit was involved in 65% of cases. Isolated inner orbital fractures presented 4% of all fractures. 17 (14% complex cases were treated, 5 of them being NOE, 5 orbital (frame and inner walls, 3 zygomatico-orbital, 2 FNO and 2 maxillo-orbital fractures.Conclusions. Final result of the surgical treatment depends on severity of maxillofacial trauma. Complex comminuted fractures are responsable for most of the unfavorable results and ocular function is often permanently damaged (up to 75% in these fractures.

  2. Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].

  3. CAMEX-3 NAST-I RADIANCE PRODUCTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Atmospheric Sounding Testbed (NAST) is a suite of airborne infrared and microwave...

  4. Polarization phenomena on coherent particle backscattering by random media

    International Nuclear Information System (INIS)

    Gorodnichev, E.E.; Dudarev, S.L.; Rogozkin, D.B.

    1990-01-01

    An exact solution is found for the problem of coherent enhanced backscattering of spin 1/2 particles by random media with small-radius scatterers. The polarization features in the angular spectrum are analyzed for particles reflected by three- and two-dimensional disordered systems and by medium with Anderson disorder (periodic system of random scatterers). The analysis is carried out in the case of magnetic and spin-orbit interaction with the scattering centers. The effects predicted have not any analogues on coherent backscattering of light and scalar waves

  5. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  6. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.

    2017-01-01

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  7. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný, J.

    2017-01-10

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  8. Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2006-01-01

    Full Text Available In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space E_n are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space E_n. Orbit functions are solutions of the corresponding Laplace equation in E_n, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  9. Probing deformed orbitals with vector A( vector e, e' N)B reactions

    International Nuclear Information System (INIS)

    Garrido, E.; Caballero, J.A.; Moya de Guerra, E.; Sarriguren, P.; Udias, J.M.

    1995-01-01

    We present results for response functions and asymmetries in the nuclear reactions 37 vector Ar( vector e, e' n) 36 Ar and 37 vector K( vector e,e' p) 36 Ar at quasifree kinematics. We compare PWIA results obtained using deformed HF wave functions with PWIA and DWIA results obtained assuming a spherical mean field. We show that the complex structure of the deformed orbitals can be probed by coincidence measurements with polarized beam and targets. ((orig.))

  10. Performance study of the gamma-ray bursts polarimeter POLAR

    Science.gov (United States)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  11. Recent experience in accelerating polarized beam at the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1988-01-01

    The most recent operation of the AGS for polarized protons occurred in December, 1987 and January, 1988. The primary purpose during this period was to tune up the accelerator as soon as possible and to provide a usable polarized beam for high energy physics. We succeeded in providing 1--2 /times/ 10 10 polarized protons per pulse at 18.5 GeV/c with an average polarization of 43 +- 3% and a peak of 52%. The conditions for this run differed in some respects from the previous run done in 1986. Due to problems with the main ring power supply, we were forced to use a back-up MG set which was only capable of 60% of the normal field rate of rise. This, of course enhanced the effect of the depolarizing resonances. A second difference was the fact that a complete horizontal and vertical realignment of the ring magnets was done during the 1987 summer shutdown. In addition, the fast pulsed quadrupole positions were readjusted with respect to the equilibrium orbit. It had been suspected that misalignment of these quads was responsible for large transverse emittance growth in both planes. We will look at the effects of these differences, but the bottom line is that the ''standard correction techniques'' worked as expected. 2 refs., 6 figs

  12. Trapped Proton Environment in Medium-Earth Orbit (2000-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Friedel, Reinhard Hans [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kippen, Richard Marc [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    This report describes the method used to derive fluxes of the trapped proton belt along the GPS orbit (i.e., a Medium-Earth Orbit) during 2000 – 2010, a period almost covering a solar cycle. This method utilizes a newly developed empirical proton radiation-belt model, with the model output scaled by GPS in-situ measurements, to generate proton fluxes that cover a wide range of energies (50keV- 6MeV) and keep temporal features as well. The new proton radiation-belt model is developed based upon CEPPAD proton measurements from the Polar mission (1996 – 2007). Comparing to the de-facto standard empirical model of AP8, this model is not only based upon a new data set representative of the proton belt during the same period covered by GPS, but can also provide statistical information of flux values such as worst cases and occurrence percentiles instead of solely the mean values. The comparison shows quite different results from the two models and suggests that the commonly accepted error factor of 2 on the AP8 flux output over-simplifies and thus underestimates variations of the proton belt. Output fluxes from this new model along the GPS orbit are further scaled by the ns41 in-situ data so as to reflect the dynamic nature of protons in the outer radiation belt at geomagnetically active times. Derived daily proton fluxes along the GPS ns41 orbit, whose data files are delivered along with this report, are depicted to illustrate the trapped proton environment in the Medium-Earth Orbit. Uncertainties on those daily proton fluxes from two sources are evaluated: One is from the new proton-belt model that has error factors < ~3; the other is from the in-situ measurements and the error factors could be ~ 5.

  13. Spin-orbit maps and electron spin dynamics for the luminosity upgrade project at HERA

    International Nuclear Information System (INIS)

    Berglund, G.Z.M.

    2001-09-01

    HERA is the high energy electron(positron)-proton collider at deutsches elektronen-synchrotron (DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudinally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been modified to increase the luminosity by a factor of about five and spin rotators have been installed for the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping magnetic fields and other aspects which have profound implications for the polarization. This thesis addresses the problem of calculating the polarization in the upgraded machine and the measures needed to maintain the polarization. A central topic is the construction of realistic spin-orbit transport maps for the regions of overlapping fields and their implementation in existing software. This is the first time that calculations with such fields have been possible. Using the upgraded software, calculations are presented for the polarization that can be expected in the upgraded machine and an analysis is made of the contributions to depolarization from the various parts of the machine. It is concluded that about 50% polarization should be possible. The key issues for tuning the machine are discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model of spin motion to describe electron depolarization and thereby expose a misconception appearing in the literature. (orig.)

  14. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    Enceladus is a small icy satellite of Saturn which has been observed by the Cassini orbiter to eject plumes mainly consisting of water vapor from the "tiger stripes" located near its South pole. While tidal heating has been ruled out as an inadequate energy source to drive these eruptions, tidally induced shear stress both along and across the stripes appears to be sufficiently powerful. The internal constitution of Enceladus that fits this model is likely to entail a thin crust and a subcrustal water layer above an undifferentiated interior. Apart from the lack of a core/mantle boundary, the situation is similar to the current hypothetical models of Europa's interior. The determination of the existence of a subsurface fluid layer can therefore be pursued with similar methods, including the study of the gravitational perturbations of tidal origin on an Enceladus orbiter, and the use of altimeter measurements to the tidally deformed surface. The dynamical environment of an Enceladus orbiter is made very unstable by the overwhelming presence of nearby Saturn. The Enceladus sphere of influence is roughly twice its radius. This makes it considerably more difficult to orbit than Europa, whose sphere of influence is ~six times its radius. While low-altitude, near-polar Enceladus orbits suffer extreme instability, recent works have extended the inclination envelope for long-term stable orbits at Enceladus. Several independent methods suggest that ~65 degrees inclination is the maximum attainable for stable, perturbed Keplerian motion. These orbits are non-circular and exist with altitude variations from ~200 to ~300 km. We propose a nominal reference orbit that enjoys long term stability and is favorable for long-term mapping and other scientific experiments. A brief excursion to a lower altitude, slightly higher inclined, yet highly unstable orbit is proposed to improve gravity signatures and enable high resolution, nadir-pointing experiments on the geysers emanating

  15. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  16. Spin-Orbital Excitations in Ca_{2}RuO_{4} Revealed by Resonant Inelastic X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    L. Das

    2018-03-01

    Full Text Available The strongly correlated insulator Ca_{2}RuO_{4} is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca_{2}RuO_{4}. A set of low-energy (about 80 and 400 meV and high-energy (about 1.3 and 2.2 eV excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund’s coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca_{2}RuO_{4}.

  17. Quantitative investigation of linear arbitrary polarization in an APPLE-II undulator.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Maccherozzi, Francesco; Apollonio, Marco; Zhu, Jingtao; Dhesi, Sarnjeet S; Sawhney, Kawal

    2018-03-01

    Insertion devices are utilized at synchrotron radiation facilities around the world for their capability to provide a high-brilliance X-ray beam. APPLE-II type undulators are especially important for their capacity to switch between a variety of photon beam polarization states. A high-precision soft X-ray polarimeter has been used to investigate the polarization calibration of an APPLE-II undulator (period length λ u = 64 mm) installed on beamline I06 at Diamond Light Source. Systematic measurement of the beam polarization state at a range of linear arbitrary angles has been compared with the expected result for a given set of undulator gap and row phase parameters calculated from theory. Determination of the corresponding Stokes-Poincaré parameters from the measured data reveals a discrepancy between the two. The limited number of energy/polarization combinations included in the undulator calibration tables necessitates the use of interpolated values for the missing points which is expected to contribute to the discrepancy. However, by modifying the orbit of the electron beam through the undulator by at least 160 µm it has been found that for certain linear polarizations the discrepancies can be corrected. Overall, it is suggested that complete correction of the Stokes-Poincaré parameters for all linear angles would require alteration of both these aspects.

  18. Plasmon-induced carrier polarization in semiconductor nanocrystals

    Science.gov (United States)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  19. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Science.gov (United States)

    2010-09-28

    ...., Washington, DC 20230 (or via the Internet at [email protected] ). FOR FURTHER INFORMATION CONTACT: Requests for... Environmental Satellite (GOES) DCS and the Polar-Orbiting Operational Environmental Satellite (POES) DCS, also... Collection Submittal include Internet, facsimile transmission and postal mailing of paper forms. III. Data...

  20. Software package for modeling spin–orbit motion in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de [St. Petersburg State University (Russian Federation)

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{sup 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.

  1. Competing effects in the magnetic polarization of non-magnetic atoms

    International Nuclear Information System (INIS)

    Boada, R; Piquer, C; Chaboy, J; Laguna-Marco, M A

    2013-01-01

    The magnetic polarization of the Lu 5d states through the Ho 1-x Lu x (Fe 1-y Al y ) 2 series has been studied by means of x-ray magnetic circular dichroism. A combined study of the dichroic signals performed at the Fe K-, Ho L 2 - and Lu L 2,3 -edges gives a complete picture of the polarization scheme at the conduction band. The results show that in the presence of competing localized magnetic moments, μ Fe (3d) and μ Ho (4f), the dichroic signal at the Lu site is mainly due to the Fe atoms, the effect of the magnetic rare-earth being negligible. Estimation of the spin and orbital components of the Lu(5d) induced magnetic moment have been obtained by applying the magneto-optical sum rules derived for x-ray magnetic circular dichroism.

  2. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  3. Optical characterization and polarization calibration for rigid endoscopes

    Science.gov (United States)

    Garcia, Missael; Gruev, Viktor

    2017-02-01

    Polarization measurements give orthogonal information to spectral images making them a great tool in the characterization of environmental parameters in nature. Thus, polarization imagery has proven to be remarkably useful in a vast range of biomedical applications. One such application is the early diagnosis of flat cancerous lesions in murine colorectal tumor models, where polarization data complements NIR fluorescence analysis. Advances in nanotechnology have led to compact and precise bio-inspired imaging sensors capable of accurately co-registering multidimensional spectral and polarization information. As more applications emerge for these imagers, the optics used in these instruments get very complex and can potentially compromise the original polarization state of the incident light. Here we present a complete optical and polarization characterization of three rigid endoscopes of size 1.9mm x 10cm (Karl Storz, Germany), 5mm x 30cm, and 10mm x 33cm (Olympus, Germany), used in colonoscopy for the prevention of colitis-associated cancer. Characterization results show that the telescope optics act as retarders and effectively depolarize the linear component. These incorrect readings can cause false-positives or false-negatives leading to an improper diagnosis. In this paper, we offer a polarization calibration scheme for these endoscopes based on Mueller calculus. By modeling the optical properties from training data as real-valued Mueller matrices, we are able to successfully reconstruct the initial polarization state acquired by the imaging system.

  4. A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.

    2018-01-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter......'s magnetic field with a coarse longitudinal separation of ~45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary (“internal”) field, combined with a simple model of the magnetodisc for the field (“external”) due to distributed magnetospheric...... currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model (“Juno Reference Model through Perijove 9”) of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed...

  5. A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits

    Science.gov (United States)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.

    2018-03-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.

  6. Half-metal phases in a quantum wire with modulated spin-orbit interaction

    Science.gov (United States)

    Cabra, D. C.; Rossini, G. L.; Ferraz, A.; Japaridze, G. I.; Johannesson, H.

    2017-11-01

    We propose a spin filter device based on the interplay of a modulated spin-orbit interaction and a uniform external magnetic field acting on a quantum wire. Half-metal phases, where electrons with only a selected spin polarization exhibit ballistic conductance, can be tuned by varying the magnetic field. These half-metal phases are proven to be robust against electron-electron repulsive interactions. Our results arise from a combination of explicit band diagonalization, bosonization techniques, and extensive density matrix renormalization group computations.

  7. Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets

    Science.gov (United States)

    Poirier, John; Mathews, Grant

    2015-04-01

    It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.

  8. SPIN–ORBIT ALIGNMENT FOR THREE TRANSITING HOT JUPITERS: WASP-103b, WASP-87b, and WASP-66b

    Energy Technology Data Exchange (ETDEWEB)

    Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Bayliss, D., E-mail: baddison2005@gmail.com [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-05-20

    We have measured the sky-projected spin–orbit alignments for three transiting hot Jupiters, WASP-103b, WASP-87b, and WASP-66b, using spectroscopic measurements of the Rossiter–McLaughlin effect, with the CYCLOPS2 optical fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The resulting sky-projected spin–orbit angles of λ = 3° ± 33°, λ = −8° ± 11°, and λ = −4° ± 22° for WASP-103b, WASP-87b, and WASP-66b, respectively, suggest that these three planets are likely on nearly aligned orbits with respect to their host star’s spin axis. WASP-103 is a particularly interesting system as its orbital distance is only 20% larger than its host star’s Roche radius and the planet likely experiences strong tidal effects. WASP-87 and WASP-66 are hot ( T {sub eff} = 6450 ± 120 K and T {sub eff} = 6600 ± 150 K, respectively) mid-F stars, making them similar to the majority of stars hosting planets on high-obliquity orbits. Moderate spin–orbit misalignments for WASP-103b and WASP-66b are consistent with our data, but polar and retrograde orbits are not favored for these systems.

  9. SPIN–ORBIT ALIGNMENT FOR THREE TRANSITING HOT JUPITERS: WASP-103b, WASP-87b, and WASP-66b

    International Nuclear Information System (INIS)

    Addison, B. C.; Tinney, C. G.; Wright, D. J.; Bayliss, D.

    2016-01-01

    We have measured the sky-projected spin–orbit alignments for three transiting hot Jupiters, WASP-103b, WASP-87b, and WASP-66b, using spectroscopic measurements of the Rossiter–McLaughlin effect, with the CYCLOPS2 optical fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The resulting sky-projected spin–orbit angles of λ = 3° ± 33°, λ = −8° ± 11°, and λ = −4° ± 22° for WASP-103b, WASP-87b, and WASP-66b, respectively, suggest that these three planets are likely on nearly aligned orbits with respect to their host star’s spin axis. WASP-103 is a particularly interesting system as its orbital distance is only 20% larger than its host star’s Roche radius and the planet likely experiences strong tidal effects. WASP-87 and WASP-66 are hot ( T eff = 6450 ± 120 K and T eff = 6600 ± 150 K, respectively) mid-F stars, making them similar to the majority of stars hosting planets on high-obliquity orbits. Moderate spin–orbit misalignments for WASP-103b and WASP-66b are consistent with our data, but polar and retrograde orbits are not favored for these systems.

  10. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  11. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    Science.gov (United States)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50

  12. A polarization system for persistent chemical detection

    Science.gov (United States)

    Craven-Jones, Julia; Appelhans, Leah; Couphos, Eric; Embree, Todd; Finnegan, Patrick; Goldstein, Dennis; Karelitz, David; LaCasse, Charles; Luk, Ting S.; Mahamat, Adoum; Massey, Lee; Tanbakuchi, Anthony; Washburn, Cody; Vigil, Steven

    2015-09-01

    We report on the development of a prototype polarization tag based system for detecting chemical vapors. The system primarily consists of two components, a chemically sensitive tag that experiences a change in its optical polarization properties when exposed to a specific chemical of interest, and an optical imaging polarimeter that is used to measure the polarization properties of the tags. Although the system concept could be extended to other chemicals, for the initial system prototype presented here the tags were developed to be sensitive to hydrogen fluoride (HF) vapors. HF is used in many industrial processes but is highly toxic and thus monitoring for its presence and concentration is often of interest for personnel and environmental safety. The tags are periodic multilayer structures that are produced using standard photolithographic processes. The polarimetric imager has been designed to measure the degree of linear polarization reflected from the tags in the short wave infrared. By monitoring the change in the reflected polarization signature from the tags, the polarimeter can be used to determine if the tag was exposed to HF gas. In this paper, a review of the system development effort and preliminary test results are presented and discussed, as well as our plan for future work.

  13. Orbital single particle tracking on a commercial confocal microscope using piezoelectric stage feedback

    International Nuclear Information System (INIS)

    Lanzanò, L; Gratton, E

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. (paper)

  14. From the Orbital Implementation of the Kinetic Theory to the Polarization Propagator Method in the Study of Energy Deposition Problems

    Science.gov (United States)

    Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.

    The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.

  15. Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    International Nuclear Information System (INIS)

    Sartori, G; Valente, G

    2003-01-01

    Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space R n , can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown

  16. Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, G; Valente, G [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy)

    2003-02-21

    Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space R{sup n}, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.

  17. A Typical Presentation of Orbital Pseudotumor Mimicking Orbital Cellulitis

    Directory of Open Access Journals (Sweden)

    J. Ayatollahi

    2013-10-01

    Full Text Available Introduction: Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome (IOIS, is a benign, non- infective inflammatory condition of the orbit without identifiable local or systemic causes. The disease may mimics a variety of pathologic conditions. We pre-sent a case of pseudotumor observed in a patient admitted under the name of orbital celluli-ties. Case Report: A 26-year-old woman reffered to our hospital with the history of left ocular pain and headache 2 days before her visit.. Ophthalmological examination of the patient was normal except for the redness and lid edema, mild chemosis and conjunctival injection. Gen-eral assessment was normal but a low grade fever was observed. She was hospitalized as an orbital cellulitis patient. She was treated with intravenous antibiotics. On the third day , sud-denly diplopia, proptosis in her left eye and ocular pain in her right side appeared. MRI re-vealed bilateral enlargement of extraocular muscles. Diagnosis of orbital pseudotumor was made and the patient was treated with oral steroid.She responded promptly to the treatment. Antibiotics were discontinued and steroid was tapered in one month period under close fol-low up. Conclusion: The clinical features of orbital pseudotumor vary widely . Orbital pseudotumor and orbital cellulitis can occasionally demonstrate overlapping features.. Despite complete physical examination and appropriate imaging, sometimes correct diagnosis of the disease would be difficult (Sci J Hamadan Univ Med Sci 2013; 20 (3:256-259

  18. Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem

    Directory of Open Access Journals (Sweden)

    Kevin M. Geyer

    2017-07-01

    Full Text Available Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability and geochemical severity (e.g., pH, electrical conductivity. In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 μmol O2/m2/s in the most arid soils to an average of 6.97 μmol O2/m2/s in the most productive soils, the latter equivalent to 217 g C/m2/y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems.

  19. Orbital alignment effects in near-resonant Rydberg atoms-rare gas collisions

    International Nuclear Information System (INIS)

    Isaacs, W.A.; Morrison, M.A.

    1993-01-01

    Recent experimental and theoretical studies of near-resonant energy transfer collisions involving rare-gas atoms and alkali or alkaline earth atoms which have been initially excited to an aligned state via one or more linearly polarized rasters have yielded a wealth of insight into orbital alignment and related effects. We have extended this inquiry to initially aligned Rydberg states, examining state-to-state and alignment-selected cross sections using quantum collision theory augmented by approximations appropriate to the special characteristics of the Rydberg state (e.g., the quasi-free-electron model and the impulse approximation)

  20. From Science Reserves to Sustainable Multiple Uses beyond Earth orbit: Evaluating Issues on the Path towards Balanced Environmental Management on Planetary Bodies

    Science.gov (United States)

    Race, Margaret

    Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular

  1. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  2. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; BAI, M.

    2004-01-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction

  3. Validation of the Suomi NPP VIIRS Ice Surface Temperature Environmental Data Record

    Directory of Open Access Journals (Sweden)

    Yinghui Liu

    2015-12-01

    Full Text Available Continuous monitoring of the surface temperature is critical to understanding and forecasting Arctic climate change; as surface temperature integrates changes in the surface energy budget. The sea-ice surface temperature (IST has been measured with optical and thermal infrared sensors for many years. With the IST Environmental Data Record (EDR available from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-orbiting Partnership (NPP and future Joint Polar Satellite System (JPSS satellites; we can continue to monitor and investigate Arctic climate change. This work examines the quality of the VIIRS IST EDR. Validation is performed through comparisons with multiple datasets; including NASA IceBridge measurements; air temperature from Arctic drifting ice buoys; Moderate Resolution Imaging Spectroradiometer (MODIS IST; MODIS IST simultaneous nadir overpass (SNO; and surface air temperature from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis. Results show biases of −0.34; −0.12; 0.16; −3.20; and −3.41 K compared to an aircraft-mounted downward-looking pyrometer; MODIS; MODIS SNO; drifting buoy; and NCEP/NCAR reanalysis; respectively; root-mean-square errors of 0.98; 1.02; 0.95; 4.89; and 6.94 K; and root-mean-square errors with the bias removed of 0.92; 1.01; 0.94; 3.70; and 6.04 K. Based on the IceBridge and MODIS results; the VIIRS IST uncertainty (RMSE meets or exceeds the JPSS system requirement of 1.0 K. The product can therefore be considered useful for meteorological and climatological applications.

  4. Mapping enzymatic catalysis using the effective fragment molecular orbital method

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Fedorov, Dmitri G.; Jensen, Jan Halborg

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path...... of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We...

  5. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    Science.gov (United States)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  6. The Polar Rock Repository: Rescuing Polar Collections for New Research

    Science.gov (United States)

    Grunow, A.

    2016-12-01

    Geological field expeditions in polar regions are logistically difficult, financially expensive and can have a significant environmental impact on pristine regions. The scarcity of outcrop in Antarctica (98% ice-covered) makes previously collected rock samples very valuable to the science community. NSF recognized the need for preserving rock, dredge, and terrestrial core samples from polar areas and created the Polar Rock Repository (PRR). The PRR collection allows for full and open access to both samples and metadata via the PRR website. In addition to the physical samples and their basic metadata, the PRR archives supporting materials from the collector, field notebooks, images of the samples, field maps, air photos, thin sections and any associated bibliography/DOI's. Many of these supporting materials are unique. More than 40,000 samples are available from the PRR for scientific analysis to researchers around the globe. Most of the samples cataloged at the PRR were collected more than 30 years ago, some more than 100 years ago. The rock samples and metadata are made available online through an advanced search engine for the PRR website. This allows scientists to "drill down" into search results using categories and look-up object fields similar to websites like Amazon. Results can be viewed in a table, downloaded as a spreadsheet, or plotted on an interactive map that supports display of satellite imagery and bathymetry layers. Samples can be requested by placing them in the `shopping cart'. These old sample collections have been repeatedly used by scientists from around the world. One data request involved locating coal deposits in Antarctica for a global compilation and another for looking at the redox state of batholithic rocks from the Antarctic Peninsula using magnetic susceptibilities of PRR rocks. Sample usage has also included non-traditional geologic studies, such as a search for monopoles in Cenozoic volcanic samples, and remote sensing

  7. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  8. AVHRR CoastWatch Hawaii Regional Node Data, October 1990-March 2004 (NODC Accession 0121319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The sea surface temperature (SST) products were derived from NOAA's Polar-orbiting Operational Environmental Satellites (POES) for the coastal United States and...

  9. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  10. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  11. Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline

    Science.gov (United States)

    Edwards, Ceiridwen J.; Suchard, Marc A.; Lemey, Philippe; Welch, John J.; Barnes, Ian; Fulton, Tara L.; Barnett, Ross; O’Connell, Tamsin C.; Coxon, Peter; Monaghan, Nigel; Valdiosera, Cristina E.; Lorenzen, Eline D.; Willerslev, Eske; Baryshnikov, Gennady F.; Rambaut, Andrew; Thomas, Mark G.; Bradley, Daniel G.; Shapiro, Beth

    2015-01-01

    Summary Background Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. Results We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. Conclusions The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration. PMID:21737280

  12. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra

    2015-01-01

    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  13. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  14. Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.

    Science.gov (United States)

    Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo

    2015-07-01

    We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.

  15. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  16. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  17. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  18. Dark Material at the Surface of Polar Crater Deposits on Mercury

    Science.gov (United States)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface ( 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  19. Simulated Aging of Spacecraft External Materials on Orbit

    Science.gov (United States)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  20. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper

    2011-01-01

    's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual...

  1. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  2. Suomi-NPP VIIRS Day-Night Band On-Orbit Calibration and Performance

    Science.gov (United States)

    Chen, Hongda; Xiong, Xiaoxiong; Sun, Chengbo; Chen, Xuexia; Chiang, Kwofu

    2017-01-01

    The Suomi national polar-orbiting partnership Visible Infrared Imaging Radiometer Suite (VIIRS) instrument has successfully operated since its launch in October 2011. The VIIRS day-night band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 microns that is capable of observing Earth scenes during both daytime and nighttime at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low-, middle-, and high-gain stages, and it uses an on-board solar diffuser (SD) for its low-gain stage calibration. The SD observations also provide a means to compute the gain ratios of low-to-middle and middle-to-high gain stages. This paper describes the DNB on-orbit calibration methodology used by the VIIRS characterization support team in supporting the NASA Earth science community with consistent VIIRS sensor data records made available by the land science investigator-led processing systems. It provides an assessment and update of the DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, and stray-light contamination and its correction. Also presented in this paper are performance validations based on Earth scenes and lunar observations, and comparisons to the calibration methodology used by the operational interface data processing segment.

  3. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  4. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  5. The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.

    2017-04-01

    The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.

  6. Measurement of the circular polarization of gamma radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1981-01-01

    For the nuclear reactions 16 O + 27 Al, 16 O + 58 Ni, 16 O + 62 Ni, 40 Ar + sup(nat)Ag, 86 Kr + sup(nat)Ag, and 86 Kr + 197 Au at incident energies of about 7 MeV/nucleon the circular polarization of the #betta# radiation emitted by the reaction products was measured. The projectile - like reaction products were detected by a δE-E telescope at a fixed angle of 35 0 relative to the beam axis. It is shown that the sign of the scattering angle for the classical orbit of the reaction partners can be determined by the experimental detection of circularly polarized #betta#-radiation from the decay of the highly excited reaction products. In the performed experiments for the first time extensive polarization phenomena in deep inelastic reactions were observed. The dominance of negative scattering angles was verified for a large range of light and medium-heavy systems. The results are compared with the predictions of theoretical models in which statistical or quantum mechanical fluctuations of the dynamical quantities are regarded. (orig./HSI) [de

  7. Measurement, correction, and analysis of the equilibrium orbit in the electron stretcher facility ELSA

    International Nuclear Information System (INIS)

    Keil, J.

    2000-07-01

    The electron stretcher accelerator ELSA provides an electron beam in the energy range between 0.5 and 3.5 GeV with a high duty factor for medium energy physics experiments. The acceleration of polarized electrons and demands by synchrotron radiation users for a high beam quality require a good correction of the closed orbit. For its measurement a precise beam position monitor (BPM) system based on narrow band RF-receivers with a resolution of some micrometers was developed and installed. 28 stations are connected by a fieldbus with a VME multiprocessor system, which is used for control of the BPM stations and for data acquisition. BPM offsets relative to the quadrupole centers were determined with an accuracy better than 100 μm using the method of beam-based alignment. Based on these measurements the closed orbit distortions were reduced from approx. 3 mm to 140 μm (rms) in both planes. Furthermore elements with dipole field errors were located by means of the uncorrected orbit. Orbit response matrices were analyzed to determine errors of quadrupole magnets and calibration factors of BPMs and corrector magnets. Predicted optics functions and tunes based on the improved optics model are in good agreement with the measurements. (orig.)

  8. Tuning spin-polarized transport in organic semiconductors

    Science.gov (United States)

    Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.

  9. Diffraction model analysis of vector polarized 6Li elastic scattering on 12C, 16O, 28Si, and 58Ni nuclei

    International Nuclear Information System (INIS)

    Rabie, A.; El-Gazzar, M.A.; Abul-Magd, A.Y.

    1980-11-01

    Using an assumption concerning the spin-orbit potential, it was possible to reduce the five amplitudes of scattering of spin-1 projectiles to two amplitudes. The summations over the partial waves were evaluated by the Regge pole technique. The resulting simple expressions were used to analyze the data of the Heidelberg group for polarized 6 Li ions scattered on 12 C, 16 O, 28 Si and 58 Ni to give a reasonable fitting both for the differential cross-section and vector polarization. (author)

  10. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  11. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  12. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  13. IR SPECTRAL MAPPING OF THE MARTIAN SOUTH POLAR RESIDUAL CAP USING CRISM

    Directory of Open Access Journals (Sweden)

    J. Campbell

    2016-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are considered to be important in theories of abiogenesis (Allamandola, 2011 . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS on the Cassini spacecraft (Cruikshank et al., 2007. The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012. This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC structural evolution (Thomas et al., 2009 that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called “Swiss Cheese Terrain”, a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009. We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, on board NASA’s Mars Reconnaissance Orbiter (MRO. CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  14. Ancient hybridization and an Irish origin for the modern polar bear matriline.

    Science.gov (United States)

    Edwards, Ceiridwen J; Suchard, Marc A; Lemey, Philippe; Welch, John J; Barnes, Ian; Fulton, Tara L; Barnett, Ross; O'Connell, Tamsin C; Coxon, Peter; Monaghan, Nigel; Valdiosera, Cristina E; Lorenzen, Eline D; Willerslev, Eske; Baryshnikov, Gennady F; Rambaut, Andrew; Thomas, Mark G; Bradley, Daniel G; Shapiro, Beth

    2011-08-09

    Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Evolution of the JPSS Ground Project Calibration and Validation System

    Science.gov (United States)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  16. Collisional redistribution of circularly polarized light in barium perturbed by argon

    International Nuclear Information System (INIS)

    Alford, W.J.; Andersen, N.; Belsley, M.; Cooper, J.; Warrington, D.M.; Burnett, K.

    1984-01-01

    We have measured the orientation of the Ba 6p 1 P level produced by collision-induced excitation from the ground state by circularly polarized light. The detuning dependence of the far-wing excited state orientation can be interpreted in terms of reorientation of molecular orbitals which occur during the collision. Effects due to rotational coupling are seen to occure at large blue wing detunings. We have also determined the collisional rate for destruction of orientation by measuring the pressure dependence of the excited state orientation. (orig.)

  17. CONGENITAL ORBITAL TERATOMA

    African Journals Online (AJOL)

    was done without contrast and 3mm/5mm/10mm slices were obtained to cover the orbit, skull base and brain. The findings included a soft tissue mass arising from the orbit. The left eye ball was extra orbital. There was no defect .... love's Short Practice of Surgery. 7 Edition,. Levis London, 1997; 45-64. 2. Orbital tumor Part 1, ...

  18. Linear and nonlinear waves with orbital angular momentum in magnetized plasma

    Science.gov (United States)

    Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.

    2009-11-01

    Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.

  19. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  20. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  1. Measurement of the Induced Proton Polarization Pn in the 12C(e, e', p) reaction

    International Nuclear Information System (INIS)

    Woo, R.J.; Barkhuff, David; Bertozzi, William; Jian-ping Chen; Dan Dale; G. Dodson; K.A. Dow; Marty Epstein; Manouchehr Farkhondeh; Mike Finn; Shalev Gilad; Mark K. Jones; Kyungseon Joo; James Kelly; Stanley Kowalski; Bob Lourie; Richard Madey; Dimitri Margaziotis; Pete Markowitz; Justin McIntyre; Christoph Mertz; Brian Milbrath; Joseph Mitchell; Charles F. Perdrisat; Vina Punjabi; Paul Rutt; Adam Sarty; D. Tieger; C. Tschalaer; William Turchinetz; Paul E. Ulmer; S.P. Van Verst; C. Vellidis; Glen Warren; Lawrence Weinstein

    1998-01-01

    The first measurements of the induced proton polarization Pn for the 12C(e,e',p) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (w,q) = (294 MeV, 765 MeV/c) and sampled a missing momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1 p3/2 shell. The data for the continuum suggest that both the 1s1/2 shell and underlying l > 1 configurations contribute

  2. Ancient hybridization and an Irish origin for the modern polar bear matriline

    DEFF Research Database (Denmark)

    Edwards, Ceiridwen J.; Suchard, Marc A.; Lemey, Philippe

    2011-01-01

    Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding...... of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change....

  3. Radiovolumetry of the orbit

    International Nuclear Information System (INIS)

    Abujamra, S.

    1983-01-01

    The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 30 0 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P [pt

  4. Fostering science communication and outreach through video production in Dartmouth's IGERT Polar Environmental Change graduate program

    Science.gov (United States)

    Hammond Wagner, C. R.; McDavid, L. A.; Virginia, R. A.

    2013-12-01

    Dartmouth's NSF-supported IGERT Polar Environmental Change graduate program has focused on using video media to foster interdisciplinary thinking and to improve student skills in science communication and public outreach. Researchers, educators, and funding organizations alike recognize the value of video media for making research results more accessible and relevant to diverse audiences and across cultures. We present an affordable equipment set and the basic video training needed as well as available Dartmouth institutional support systems for students to produce outreach videos on climate change and its associated impacts on people. We highlight and discuss the successes and challenges of producing three types of video products created by graduate and undergraduate students affiliated with the Dartmouth IGERT. The video projects created include 1) graduate student profile videos, 2) a series of short student-created educational videos for Greenlandic high school students, and 3) an outreach video about women in science based on the experiences of women students conducting research during the IGERT field seminar at Summit Station and Kangerlussuaq, Greenland. The 'Science in Greenland--It's a Girl Thing' video was featured on The New York Times Dot Earth blog and the Huffington Post Green blog among others and received international recognition. While producing these videos, students 1) identified an audience and created story lines, 2) worked in front of and behind the camera, 3) utilized low-cost digital editing applications, and 4) shared the videos on multiple platforms from social media to live presentations. The three video projects were designed to reach different audiences, and presented unique challenges for content presentation and dissemination. Based on student and faculty assessment, we conclude that the video projects improved student science communication skills and increased public knowledge of polar science and the effects of climate change.

  5. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    Science.gov (United States)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  6. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  7. Accelerating polarized beams at the AGS

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the presence of numerous depolarizing resonances. During acceleration, a depolarizing resonance is crossed whenever the spin precession frequency equals the frequency with which spin-perturbing magnetic fields are encountered. There are two main types of depolarizing resonances corresponding to the possible sources of such fields: imperfection resonances, which are driven by magnet errors and misalignments, and intrinsic resonances, driven by the focusing fields. The resonance conditions are usually expressed in terms of the spin tune ν s , which is defined as the number of spin precessions per revolution. For an ideal planar accelerator, where orbiting particles experience only the vertical guide field, the spin tune is equal to Gγ, where G = 1.7928 is the anomalous magnetic moment of the proton and γ is the relativistic Lorentz factor. The resonance condition for imperfection depolarizing resonances arise when ν s = Gγ = n, where n is an integer. Imperfection resonances are therefore separated by only 523 MeV energy steps. The condition for intrinsic resonances is ν s = Gγ = kP ± ν y , where k is an integer, ν y is the vertical betatron tune and P is the superperiodicity. For the AGS, P = 12 and ν y ∼ 8.8. For most of the time during the acceleration cycle, the precession direction, or stable spin direction, coincides with the main vertical magnetic field. Close to a resonance, the stable spin direction is perturbed away from the vertical direction by the resonance driving fields. When a polarized beam is accelerated through an isolated resonance, the final polarization can be calculated analytically

  8. Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal

    Energy Technology Data Exchange (ETDEWEB)

    Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it [Dipartimento di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato di Mortara 17, I-44121 Ferrara (Italy)

    2016-03-14

    The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shell systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.

  9. Can hydroreservoirs in tropical moist forest be made environmentally acceptable?

    International Nuclear Information System (INIS)

    Goodland, R.; Juras, A.; Pachauri, R.; International Power Engineering Society)

    1992-01-01

    Today's polarization of society for and against big hydroprojects relates to environmental costs, particularly borne by vulnerable ethnic minorities and the poor; such costs include species extinctions and tropical deforestation. This counterproductive polarization can be reconciled by transparency of planning, pluralism involving the society and especially all affected people, and by engendering national consensus on the best project. Detailed criteria for consensus are discussed. These include promotion of energy efficiency and convservation, ranking of alternatives to the next hydroproject, and environmental ranking of potential sites. Environmentally well designed hydro can be preferable to alternatives (coal, nuclear), and most environmental costs can be prevented, thus making hydro renewable and sustainable. (author)

  10. All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Kohda, M. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Department of Materials Science, Tohoku University, 980-8579 Sendai (Japan); Altmann, P.; Salis, G. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Schuh, D.; Ganichev, S. D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland)

    2015-10-26

    A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

  11. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A numerical model of the electrodynamics of plasma within the contaminant gas cloud of the space shuttle orbiter at low Earth orbit

    International Nuclear Information System (INIS)

    Eccles, J.V.; Raitt, W.J.; Banks, P.M.

    1989-01-01

    This paper presents results from a two-dimensional, finite-difference model used to solve for the time evolution of low beta plasma within the neutral contaminant cloud in the vicinity of space platforms in low earth orbit. The model of the ambient and contaminant plasma dynamics takes into account the effects of the geomagnetic field, electric fields, background ionosphere, ion-neutral collisions, chemistry, and both Pederson and Hall currents. Net ionization and charge exchange source terms are included in the fluid equations to study electrodynamic effects of chemistry within a moving neutral cloud in the low earth orbit ionosphere. The model is then used with complete water cloud chemistry to simulate the known outgassing situation of the space shuttle Orbiter. A comparison is made of the model results with plasma observations made during daytime on OSS-1/STS-3 mission. The reported density enhancements of the OSS-1 mission are unattainable with normal photoionization and charge exchange rates of simple water cloud chemistry used in the two-dimensional model. The enhanced densities are only attained by a generic chemistry model if a net ionization rate 1,000 times higher than the photoionization rate of water is used. It is also shown that significant plasma buildup at the front of the contaminant neutral cloud can occur due to momentum transfer from the neutral outgas cloud to the plasma through elastic collisions and charge exchange. The currents caused by elastic and reactive collisions result in the generation of a small polarization electric field within the outgas cloud

  13. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  14. In-orbit verification of MHS spectral channels co-registration using the moon

    Science.gov (United States)

    Bonsignori, Roberto

    2017-09-01

    In-orbit verification of the co-registration of channels in a scanning microwave or infrared radiometer can in principle be done during normal in-orbit operation, by using the regular events of lunar intrusion in the instrument cold space calibration view. A technique of data analysis based on best fit of data across lunar intrusions has been used to check the mutual alignment of the spectral channels of the MHS instrument. MHS (Microwave Humidity Sounder) is a cross-track scanning radiometer in the millimetre-wave range flying on EUMETSAT and NOAA polar satellites, used operationally for the retrieval of atmospheric parameters in numerical weather prediction and nowcasting. This technique does not require any special operation or manoeuvre and only relies on analysis of data from the nominal scanning operation. The co-alignment of sounding channels and window channels can be evaluated by this technique, which would not be possible by using earth landmarks, due to the absorption effect of the atmosphere. The analysis reported in this paper shows an achievable accuracy below 0.5 mrad against a beam width at 3dB and spatial sampling interval of about 20 mrad. In-orbit results for the MHS instrument on Metop-B are also compared with the pre-launch instrument characterisation, showing a good correlation.

  15. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Science.gov (United States)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  16. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    Science.gov (United States)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  17. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  18. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  19. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  20. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.