WorldWideScience

Sample records for polar northern hemisphere

  1. Polar vortex evolution during Northern Hemispheric winter 2004/05

    Directory of Open Access Journals (Sweden)

    T. Chshyolkova

    2007-06-01

    Full Text Available As a part of the project "Atmospheric Wave Influences upon the Winter Polar Vortices (0–100 km" of the CAWSES program, data from meteor and Medium Frequency radars at 12 locations and MetO (UK Meteorological Office global assimilated fields have been analyzed for the first campaign during the Northern Hemispheric winter of 2004/05. The stratospheric state has been described using the conventional zonal mean parameters as well as Q-diagnostic, which allows consideration of the longitudinal variability. The stratosphere was cold during winter of 2004/05, and the polar vortex was relatively strong during most of the winter with relatively weak disturbances occurring at the end of December and the end of January. For this winter the strongest deformation with the splitting of the polar vortex in the lower stratosphere was observed at the end of February. Here the results show strong latitudinal and longitudinal differences that are evident in the stratospheric and mesospheric data sets at different stations. Eastward winds are weaker and oscillations with planetary wave periods have smaller amplitudes at more poleward stations. Accordingly, the occurrence, time and magnitude of the observed reversal of the zonal mesospheric winds associated with stratospheric disturbances depend on the local stratospheric conditions. In general, compared to previous years, the winter of 2004/05 could be characterized by weak planetary wave activity at stratospheric and mesospheric heights.

  2. Experimental Urban Heat Island Research of Four Biggest Polar Cities in Northern Hemisphere

    Science.gov (United States)

    Konstantinov, Pavel; Baklanov, Alexander; Varentsov, Mikhail; Kukanova, Evgenia; Repina, Irina; Shuvalov, Sergey; Samsonov, Timofey

    2014-05-01

    Urban Heat Island (UHI) effect is well-known in modern climatology due to its influence on different economic features and urban air quality (Oke, 1987). Also UHI characteristics differs in different climate zones, for example in summer in Mediterranean and subtropical monsoon climate types it leads to growing energy consumption due to AC systems using (Ohashi et al, 2007). But there is only a few papers about UHI (Magee et al, 1999) in high latitudes, for the cities over the Polar Circle and especially about behavior of the heat islands during the polar night, while anthropogenic heat is the main source of thermal energy. The main goal of this study is to mitigate this lack of information about climatology of UHI formation in big cities (with population exceeding 50 000) of Arctic zone. In this paper, we consider the results of experimental research of the UHI of 4 biggest Arctic Cities (Murmansk, Norilsk, Apatity and Vorkuta), which were obtained during the expedition of Russian Geographic Society in 2013-2014. During the project we used a different measurements techniques: 1. Installation of two automatic weather stations (AWS) in rural zone and city center 2. Installation of small temperature sensors (iButton) network in the city and suburbs 3. Regular car-based temperature sounding of the city with AWS. 4. Using MTP-5 microwave temperature profiler. This investigations allowed to collect unique data about UHI in high latitudes. Analysis of the collected data showed the existence of UHI with the difference between city center and surrounding landscape up to few degrees Celcius. UHI characteristics in view of synoptic conditions was analyzed for several typical situations, for some cities (Norilsk) the negative correlation of the UHI power with air temperature was determined. The reported study was supported by RGS (Russian Geographical Society ), research project No.27/2013-NZ References: 1. Magee N., Curtis J., Wendler G., The Urban Heat Island Effect at

  3. Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres: the importance of nitric oxide

    Science.gov (United States)

    Kirkwood, S.; Belova, E.; Dalin, P.; Mihalikova, M.; Mikhaylova, D.; Murtagh, D.; Nilsson, H.; Satheesan, K.; Urban, J.; Wolf, I.

    2013-02-01

    The relationship between polar mesosphere summer echoes (PMSE) and geomagnetic disturbances (represented by magnetic K indices) is examined. Calibrated PMSE reflectivities for the period May 2006-February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68° N, geomagnetic latitude 65°) and at two different sites in Queen Maud Land, Antarctica (73°/72° S, geomagnetic latitudes 62°/63°). In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH) there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours) at almost all local times. At the NH (auroral zone) site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral) sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic particle

  4. Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres: the importance of nitric oxide

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2013-02-01

    Full Text Available The relationship between polar mesosphere summer echoes (PMSE and geomagnetic disturbances (represented by magnetic K indices is examined. Calibrated PMSE reflectivities for the period May 2006–February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68° N, geomagnetic latitude 65° and at two different sites in Queen Maud Land, Antarctica (73°/72° S, geomagnetic latitudes 62°/63°. In both the Northern Hemisphere (NH and the Southern Hemisphere (SH there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours at almost all local times. At the NH (auroral zone site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic

  5. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  6. Increasing Northern Hemisphere water deficit

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2015-01-01

    A monthly water-balance model is used with CRUTS3.1 gridded monthly precipitation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.

  7. Paleoceanography. Antarctic role in Northern Hemisphere glaciation.

    Science.gov (United States)

    Woodard, Stella C; Rosenthal, Yair; Miller, Kenneth G; Wright, James D; Chiu, Beverly K; Lawrence, Kira T

    2014-11-14

    Earth's climate underwent a major transition from the warmth of the late Pliocene, when global surface temperatures were ~2° to 3°C higher than today, to extensive Northern Hemisphere glaciation (NHG) ~2.73 million years ago (Ma). We show that North Pacific deep waters were substantially colder (4°C) and probably fresher than the North Atlantic Deep Water before the intensification of NHG. At ~2.73 Ma, the Atlantic-Pacific temperature gradient was reduced to <1°C, suggesting the initiation of stronger heat transfer from the North Atlantic to the deep Pacific. We posit that increased glaciation of Antarctica, deduced from the 21 ± 10-meter sea-level fall from 3.15 to 2.75 Ma, and the development of a strong polar halocline fundamentally altered deep ocean circulation, which enhanced interhemispheric heat and salt transport, thereby contributing to NHG. Copyright © 2014, American Association for the Advancement of Science.

  8. Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003

    Directory of Open Access Journals (Sweden)

    R. Spang

    2005-01-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC

  9. Forest carbon sinks in the northern hemisphere

    NARCIS (Netherlands)

    Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S.R.; Nabuurs, G.J.; Nilsson, S.; Shvidenko, A.Z.

    2002-01-01

    There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measuretment-based constraints on the magnitude

  10. Recent climate changes in the northern hemisphere

    International Nuclear Information System (INIS)

    Trenberth, K.E.

    1990-01-01

    The consistency of analyzed changes in surface wind stress, sea level pressures and surface temperatures between 1980-86 and previous periods indicates the reality of statistically significant and substantial climate changes in the Northern Hemisphere, especially over the North Pacific, on decadal time scales. Cooling in North Pacific sea surface temperatures and warming along the west coast of North America and Alaska are ascribed mainly to the changes in thermal advection associated with a deeper and more extensive Aleutian Low

  11. Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter

    Science.gov (United States)

    Alfred, J.; Fromm, M.; Bevilacqua, R.; Nedoluha, G.; Strawa, A.; Poole, L.; Wickert, J.

    2007-05-01

    The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument from 15 January until 4 February, and from then only sparingly in three periods in mid- and late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the nitric acid-trihydrate saturation point (using a nitric acid profile prior to denitrification) was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400-475 K and 475-550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March.

  12. Polar mesosphere summer echoes (PMSE) a southern hemisphere perspective

    Science.gov (United States)

    Morris, R. J.; Murphy, D. J.; Klekociuk, A. R.; Holdsworth, D. A.

    The existence of Polar Mesosphere Summer Echoes PMSE in the Southern Hemisphere SH has recently been confirmed using HF radar Ogawa et al 2002 MST radar Morris et al 2004 and a Dynasonde Jarvis et al 2005 following earlier observations using MST radar Woodman et al 1999 These studies spanned the geographic latitudes 62 1 r S Machu Picchu 68 6 r S Davis 69 0 r S Syowa and 75 5 r S Halley Bay The emerging array of SH SuperDARN radars provide an opportunity to extend the spatial coverage of PMSE observations An understanding of the occurrence and intensity of PMSE against latitude in the SH is needed to facilitate a comparison with the better spatial coverage of Northern Hemisphere NH PMSE observations Such a comparison will contribute to the ongoing debate as to whether PMSE can provide a proxy for mesosphere temperature and thus shed light on the existence of any interhemispheric asymmetry or otherwise in the polar mesosphere regions The argument for different polar mesosphere environments spawned in part by the reported lack of SH PMSE observations Recent PMSE reflectivity and intensity results from Davis 68 6 r S and Andenes 69 0 r N are given The characteristics and morphology of PMSE events above these Antarctic stations are considered in the context of the thermal and dynamical state of the mesosphere as deduced from satellite i e SABER and AURA and radar i e MF and MST observations respectively A brief account of recent coincident PMSE MST radar and Polar Mesospheric Cloud PMC

  13. Stratospheric influence on Northern Hemisphere winter climate variability

    Science.gov (United States)

    Ouzeau, Gaelle; Douville, Herve; Saint Martin, David

    2010-05-01

    Despite significant improvements in observing and data assimilation systems, long-range dynamical forecasting remains a difficult challenge for the climate modelling community. The skill of operational seasonal forecasting systems is particularly poor in the northern extratropics where seas surface temperature (SST) has a weaker influence than in the Tropics. It is therefore relevant to look for additional potential sources of long-range climate predictability in the stratosphere using ensembles of global atmospheric simulations. Besides a control experiment where the ARPEGE-Climat model is only driven by SST, parallel simulations have been performed in which an additional control on climate variability has been accounted for through the nudging of the northern extratropical stratosphere towards the ERA40 reanalysis. Though idealized, this original experiment design allows us to compare the relative contribution of the lower and upper boundary forcings on the simulated tropospheric variability. Results show that the stratospheric nudging improves the climatology and interannual variability of the mid-latitude troposphere, especially in winter in the Northern Hemisphere. Major impacts are found in particular on the simulation of the Arctic and North Atlantic oscillations (AO and NAO). Case studies were carried out for the 1976-1977 and 1988-1989 winters, corresponding to extreme phases of the AO. Results confirm the robustness of the positive impact of the nudging, especially for winter 1976-1977 corresponding to relatively weak SST anomalies in the tropical Pacific. A sensitivity study to the model resolution shows that a well-resolved stratosphere is not necessary for the nudging to be efficient. Besides seasonal mean results, analysis of the day-to-day variability in winter allowed us to better understand the stratospheric polar vortex influence on the tropospheric circulation in the Northern Hemisphere mid-latitudes.

  14. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.

    Science.gov (United States)

    He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E

    2013-02-07

    According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2

  15. ISLSCP II Northern Hemisphere Monthly Snow Cover Extent

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This ISLSCP data set is derived from the National Snow and Ice Data Center (NSIDC) Northern Hemisphere EASE-Grid Weekly Snow Cover and Sea Ice Extent...

  16. Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multisensor Analyzed Sea Ice Extent Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the...

  17. Prediction Center (CPC) Tropical/ Northern Hemisphere Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Tropical/ Northern Hemisphere teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  18. ISLSCP II Northern Hemisphere Monthly Snow Cover Extent

    Data.gov (United States)

    National Aeronautics and Space Administration — This ISLSCP data set is derived from the National Snow and Ice Data Center (NSIDC) Northern Hemisphere EASE-Grid Weekly Snow Cover and Sea Ice Extent product which...

  19. Modelling the Main Ionospheric Trough Across the Northern Hemisphere

    National Research Council Canada - National Science Library

    Mitchell, Cathryn

    2004-01-01

    This report results from a contract tasking University of Bath as follows: The contractor will investigate disturbances in the Northern Hemisphere ionosphere using a Multi-instrument data analysis (MIDAS) imaging algorithm...

  20. The Hemispheric Asymmetry of Polar Faculae

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the north–south (N–S) asymmetry of the polar faculae at relatively low (RLLs), relatively high (RHLs) as well as total latitudes (TLs) respectively, are investigated. It is found that. the polar faculae behave in a different asymmetrical way at different latitudinal bands;; the asymmetry of solar activity ...

  1. Polar cap index as a proxy for hemispheric Joule heating

    DEFF Research Database (Denmark)

    Chun, F.K.; Knipp, D.J.; McHarg, M.G.

    1999-01-01

    input into the polar cap, we propose to use PC as a proxy for the hemispheric Joule heat production rate (JH). In this study, JH is estimated from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. We fit hourly PC values to hourly averages of JH. Using a data base approximately...... is as equally accurate. Thus the single station PC index appears to provide a quick estimate of, and is an appropriate proxy for, the hemispheric Joule heating rate....

  2. Atmospheric circulation in northern hemisphere and north atlantic oscillation

    Directory of Open Access Journals (Sweden)

    Александр Вадимович Холопцев

    2015-08-01

    Full Text Available Conditions under which statistical connections of interannual changes of repitition duration periods in Northern hemisphere of elementary circulation mechanisms associated to meridional northern and meridional southern groups with variations of North Atlantic oscillation are significant were revealed. It is shown, that the characteristics changes of these connections taking place in modern period can be caused by distribution changes of distribution of sea surface temperatures

  3. Are Greenhouse Gas Signals of Northern Hemisphere winter

    NARCIS (Netherlands)

    Ulbrich, U.; Leckebusch, G.C.; Grieger, J.; Kew, S.F.

    2013-01-01

    For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change

  4. Terrestrial ecological responses of climate change in the Northern hemisphere

    International Nuclear Information System (INIS)

    Forchhammer, M.C.

    2001-01-01

    Focusing on the single most important atmospheric phenomenon in the Northern hemisphere, the North Atlantic Oscillation (NAO), the author reviews the recent studies coupling the NAO with the ecology of a wide range of terrestrial organisms. In particular, the author focuses on low variations in the NAO affect phenotypic variation in life history Traits and, ultimately, dynamics of populations and of interacting species. (LN)

  5. Species boundaries in non-tropical Northern Hemisphere Owls

    NARCIS (Netherlands)

    Voous, K.H.

    1990-01-01

    A survey is presented of the status of species boundaries in nontropical Northern Hemisphere owls in order to investigate the reality of the biological and geographical species concept applied to these owls in current handbooks. At the same time the practicability of evolutionary systematics as

  6. Jupiter's Northern Hemisphere in Violet Light (Time Set 3)

    Science.gov (United States)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 410 nanometers is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This mosaic shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. Jupiter's Northern Hemisphere in Violet Light (Time Set 2)

    Science.gov (United States)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 410 nanometers is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This mosaic shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  8. Jupiter's Northern Hemisphere in Violet Light (Time Set 1)

    Science.gov (United States)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 410 nanometers is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This mosaic shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  9. Atlantic Multidecadal Oscillation and Northern Hemisphere's climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Marcia Glaze [University of Colorado-Boulder, Department of Geologic Sciences, CIRES, Benson Earth Sciences Building, Boulder, CO (United States); Kravtsov, Sergey; Tsonis, Anastasios A. [University of Wisconsin-Milwaukee, Department of Mathematical Sciences, Atmospheric Sciences Group, Milwaukee, WI (United States)

    2012-03-15

    Proxy and instrumental records reflect a quasi-cyclic 50-80-year climate signal across the Northern Hemisphere, with particular presence in the North Atlantic. Modeling studies rationalize this variability in terms of intrinsic dynamics of the Atlantic Meridional Overturning Circulation influencing distribution of sea-surface-temperature anomalies in the Atlantic Ocean; hence the name Atlantic Multidecadal Oscillation (AMO). By analyzing a lagged covariance structure of a network of climate indices, this study details the AMO-signal propagation throughout the Northern Hemisphere via a sequence of atmospheric and lagged oceanic teleconnections, which the authors term the ''stadium wave''. Initial changes in the North Atlantic temperature anomaly associated with AMO culminate in an oppositely signed hemispheric signal about 30 years later. Furthermore, shorter-term, interannual-to-interdecadal climate variability alters character according to polarity of the stadium-wave-induced prevailing hemispheric climate regime. Ongoing research suggests mutual interaction between shorter-term variability and the stadium wave, with indication of ensuing modifications of multidecadal variability within the Atlantic sector. Results presented here support the hypothesis that AMO plays a significant role in hemispheric and, by inference, global climate variability, with implications for climate-change attribution and prediction. (orig.)

  10. The Southern Oscillation and northern hemisphere temperature variability

    International Nuclear Information System (INIS)

    Ropelewski, C.F.; Halpert, M.S.

    1990-01-01

    The Southern Oscillation (SO) is the best defined and understood mode of interannual climate variability. The extreme phases of the SO have been identified with global-scale variations in the atmosphere/ocean circulation system and with the modulation of monsoon precipitation on the global scale. While SO-related precipitation has been the subject of several studies, the magnitude of the SO-related temperature variability on the global scale has not been well documented. In this paper the authors provide an estimate of the SO-related temperature variability in the context of monitoring global warming related to the increase in greenhouse gases. This analysis suggested that traditional time series of hemispheric and global temperature anomalies for the calendar year may confuse interannual temperature variability associated with the SO and perceived climate trend. Analyses based on calendar-year data are likely to split the effects of the SO-related temperature variability over two years. The Northern Hemisphere cold season (october through March) time series may be more appropriate to separate the SO-related effects on the hemispheric temperature from other modes of variability. mean interannual temperature anomaly differences associated with the extremes of the So are estimated to be 0.2 C for the October-to-March season in the Northern Hemisphere. In areas directly linked to the SO, the mean interannual differences amount to over 0.5 C. The So cannot account for all the variability in the hemispheric times series of surface temperature estimates, but the SO signal must be properly accounted for if these time series are to be understood

  11. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?

    Science.gov (United States)

    Shaw, A Jonathan; Devos, Nicolas; Cox, Cymon J; Boles, Sandra B; Shaw, Blanka; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney

    2010-06-01

    Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death. 2010 Elsevier Inc. All rights reserved.

  12. Tracing Fukushima Radionuclides in the Northern Hemisphere -An Overview

    Science.gov (United States)

    Thakur, Punam; Ballard, Sally; Nelson, Roger

    2013-04-01

    A massive 9.0 earthquake and ensuing tsunami struck the northern coast of the Honshu-island, Japan on March 11, 2011 and severely damaged the electric system of the Fukushima- Daiichi Nuclear Power Plant (NPP). The structural damage to the plant disabled the reactor's cooling systems. Subsequent fires, a hydrogen explosion and possible partial core meltdowns released radioactive fission products into the atmosphere. The atmospheric release from the crippled Fukushima NPP started on March 12, 2011 with a maximum release phase from March 14 to 17. The radioactivity released was dominated by volatile fission products including isotopes of the noble gases xenon (Xe-133) and krypton (Kr-85); iodine (I-131,I-132); cesium (Cs-134,Cs-136,Cs-137); and tellurium (Te-132). The non-volatile radionuclides such as isotopes of strontium and plutonium are believed to have remained largely inside the reactor, although there is evidence of plutonium release into the environment. Global air monitoring across the northern hemisphere was increased following the first reports of atmospheric releases. According to the source term, declared by the Nuclear and Industrial Safety Agency (NISA) of Japan), approximately 160 PBq (1 PBq (Peta Becquerel = 10^15 Bq)) of I-131 and 15 PBq of Cs-137 (or 770 PBq "iodine-131 equivalent"), were released into the atmosphere. The 770 PBq figure is about 15% of the Chernobyl release of 5200 PBq of "iodine-131 equivalent". For the assessment of contamination after the accident and to track the transport time of the contaminated air mass released from the Fukushima NPP across the globe, several model calculations were performed by various research groups. All model calculations suggested long-range transport of radionuclides from the damaged Fukushima NPP towards the North American Continent to Europe and to Central Asia. As a result, an elevated level of Fukushima radionuclides were detected in air, rain, milk, and vegetation samples across the northern

  13. Empirically derived climate predictability over the extratropical northern hemisphere

    Directory of Open Access Journals (Sweden)

    J. B. Elsner

    1994-01-01

    Full Text Available A novel application of a technique developed from chaos theory is used in describing seasonal to interannual climate predictability over the Northern Hemisphere (NH. The technique is based on an empirical forecast scheme - local approximation in a reconstructed phase space - for time-series data. Data are monthly 500 hPa heights on a latitude-longitude grid covering the NH from 20° N to the equator. Predictability is estimated based on the linear correlation between actual and predicted heights averaged over a forecast range of one- to twelve.month lead. The method is capable of extracting the major climate signals on this time scale including ENSO and the North Atlantic Oscillation.

  14. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures

    Science.gov (United States)

    Steinman, Byron A.; Mann, Michael E.; Miller, Sonya K.

    2015-02-01

    The recent slowdown in global warming has brought into question the reliability of climate model projections of future temperature change and has led to a vigorous debate over whether this slowdown is the result of naturally occurring, internal variability or forcing external to Earth’s climate system. To address these issues, we applied a semi-empirical approach that combines climate observations and model simulations to estimate Atlantic- and Pacific-based internal multidecadal variability (termed “AMO” and “PMO,” respectively). Using this method, the AMO and PMO are found to explain a large proportion of internal variability in Northern Hemisphere mean temperatures. Competition between a modest positive peak in the AMO and a substantially negative-trending PMO are seen to produce a slowdown or “false pause” in warming of the past decade.

  15. Multigene Phylogeography of Bactrocera caudata (Insecta: Tephritidae): Distinct Genetic Lineages in Northern and Southern Hemispheres.

    Science.gov (United States)

    Yong, Hoi-Sen; Lim, Phaik-Eem; Tan, Ji; Song, Sze-Looi; Suana, I Wayan; Eamsobhana, Praphathip

    2015-01-01

    Bactrocera caudata is a pest of pumpkin flower. Specimens of B. caudata from the northern hemisphere (mainland Asia) and southern hemisphere (Indonesia) were analysed using the partial DNA sequences of the nuclear 28S rRNA and internal transcribed spacer region 2 (ITS-2) genes, and the mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and 16S rRNA genes. The COI, COII, 16S rDNA and concatenated COI+COII+16S and COI+COII+16S+28S+ITS-2 nucleotide sequences revealed that B. caudata from the northern hemisphere (Peninsular Malaysia, East Malaysia, Thailand) was distinctly different from the southern hemisphere (Indonesia: Java, Bali and Lombok), without common haplotype between them. Phylogenetic analysis revealed two distinct clades (northern and southern hemispheres), indicating distinct genetic lineage. The uncorrected 'p' distance for the concatenated COI+COII+16S nucleotide sequences between the taxa from the northern and southern hemispheres ('p' = 4.46-4.94%) was several folds higher than the 'p' distance for the taxa in the northern hemisphere ('p' = 0.00-0.77%) and the southern hemisphere ('p' = 0.00%). This distinct difference was also reflected by concatenated COI+COII+16S+28S+ITS-2 nucleotide sequences with an uncorrected 'p' distance of 2.34-2.69% between the taxa of northern and southern hemispheres. In accordance with the type locality the Indonesian taxa belong to the nominal species. Thus the taxa from the northern hemisphere, if they were to constitute a cryptic species of the B. caudata species complex based on molecular data, need to be formally described as a new species. The Thailand and Malaysian B. caudata populations in the northern hemisphere showed distinct genetic structure and phylogeographic pattern.

  16. Precipitation phase partitioning variability across the Northern Hemisphere

    Science.gov (United States)

    Jennings, K. S.; Winchell, T. S.; Livneh, B.; Molotch, N. P.

    2017-12-01

    Precipitation phase drives myriad hydrologic, climatic, and biogeochemical processes. Despite its importance, many of the land surface models used to simulate such processes and their sensitivity to climate warming rely on simple, spatially uniform air temperature thresholds to partition rainfall and snowfall. Our analysis of a 29-year dataset with 18.7 million observations of precipitation phase from 12,143 stations across the Northern Hemisphere land surface showed marked spatial variability in the near-surface air temperature at which precipitation is equally likely to fall as rain and snow, the 50% rain-snow threshold. This value averaged 1.0°C and ranged from -0.4°C to 2.4°C for 95% of the stations analyzed. High-elevation continental areas such as the Rocky Mountains of the western U.S. and the Tibetan Plateau of central Asia generally exhibited the warmest thresholds, in some cases exceeding 3.0°C. Conversely, the coldest thresholds were observed on the Pacific Coast of North America, the southeast U.S., and parts of Eurasia, with values dropping below -0.5°C. Analysis of the meteorological conditions during storm events showed relative humidity exerted the strongest control on phase partitioning, with surface pressure playing a secondary role. Lower relative humidity and surface pressure were both associated with warmer 50% rain-snow thresholds. Additionally, we trained a binary logistic regression model on the observations to classify rain and snow events and found including relative humidity as a predictor variable significantly increased model performance between 0.6°C and 3.8°C when phase partitioning is most uncertain. We then used the optimized model and a spatially continuous reanalysis product to map the 50% rain-snow threshold across the Northern Hemisphere. The map reproduced patterns in the observed thresholds with a mean bias of 0.5°C relative to the station data. The above results suggest land surface models could be improved by

  17. Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography

    Science.gov (United States)

    Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.

    2018-02-01

    The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.

  18. Stationary planetary wave propagation in Northern Hemisphere winter – climatological analysis of the refractive index

    Directory of Open Access Journals (Sweden)

    Q. Li

    2007-01-01

    Full Text Available The probability density on a height-meridional plane of negative refractive index squared f(nk2<0 is introduced as a new analysis tool to investigate the climatology of the propagation conditions of stationary planetary waves based on NCEP/NCAR reanalysis data for 44 Northern Hemisphere boreal winters (1958–2002. This analysis addresses the control of the atmospheric state on planetary wave propagation. It is found that not only the variability of atmospheric stability with altitudes, but also the variability with latitudes has significant influence on planetary wave propagation. Eliassen-Palm flux and divergence are also analyzed to investigate the eddy activities and forcing on zonal mean flow. Only the ultra-long planetary waves with zonal wave number 1, 2 and 3 are investigated. In Northern Hemisphere winter the atmosphere shows a large possibility for stationary planetary waves to propagate from the troposphere to the stratosphere. On the other hand, waves induce eddy momentum flux in the subtropical troposphere and eddy heat flux in the subpolar stratosphere. Waves also exert eddy momentum forcing on the mean flow in the troposphere and stratosphere at middle and high latitudes. A similar analysis is also performed for stratospheric strong and weak polar vortex regimes, respectively. Anomalies of stratospheric circulation affect planetary wave propagation and waves also play an important role in constructing and maintaining of interannual variations of stratospheric circulation.

  19. Seasonal forecasts of northern hemisphere winter 2009/10

    International Nuclear Information System (INIS)

    Fereday, D R; Maidens, A; Arribas, A; Scaife, A A; Knight, J R

    2012-01-01

    Northern hemisphere winter 2009/10 was exceptional for atmospheric circulation: the North Atlantic Oscillation (NAO) index was the lowest on record for over a century. This contributed to cold conditions over large areas of Eurasia and North America. Here we use two versions of the Met Office GloSea4 seasonal forecast system to investigate the predictability of this exceptional winter. The first is the then operational version of GloSea4, which uses a low top model and successfully predicted a negative NAO in forecasts produced in September, October and November 2009. The second uses a new high top model, which better simulates sudden stratospheric warmings (SSWs). This is particularly relevant for 2009/10 due to its unusual combination of a strong El Niño and an easterly quasi-biennial oscillation (QBO) phase, favouring SSW development. SSWs are shown to play an influential role in surface conditions, producing a stronger sea level pressure signal and improving predictions of the 2009/10 winter. (letter)

  20. Evaluating decadal predictions of northern hemispheric cyclone frequencies

    Directory of Open Access Journals (Sweden)

    Tim Kruschke

    2014-04-01

    Full Text Available Mid-latitudinal cyclones are a key factor for understanding regional anomalies in primary meteorological parameters such as temperature or precipitation. Extreme cyclones can produce notable impacts on human society and economy, for example, by causing enormous economic losses through wind damage. Based on 41 annually initialised (1961–2001 hindcast ensembles, this study evaluates the ability of a single-model decadal forecast system (MPI-ESM-LR to provide skilful probabilistic three-category forecasts (enhanced, normal or decreased of winter (ONDJFM extra-tropical cyclone frequency over the Northern Hemisphere with lead times from 1 yr up to a decade. It is shown that these predictions exhibit some significant skill, mainly for lead times of 2–5 yr, especially over the North Atlantic and Pacific. Skill for intense cyclones is generally higher than for all detected systems. A comparison of decadal hindcasts from two different initialisation techniques indicates that initialising from reanalysis fields yields slightly better results for the first forecast winter (month 10–15, while initialisation based on an assimilation experiment provides better skill for lead times between 2 and 5 yr. The reasons and mechanisms behind this predictive skill are subject to future work. Preliminary analyses suggest a strong relationship of the model's skill over the North Atlantic with the ability to predict upper ocean temperatures modulating lower troposphere baroclinicity for the respective area and time scales.

  1. Predicting weather regime transitions in Northern Hemisphere datasets

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, D. [University of California, Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States); Shen, J. [UCLA, Department of Statistics, Los Angeles, CA (United States); Berk, R. [UCLA, Department of Statistics, Los Angeles, CA (United States); University of Pennsylvania, Department of Criminology, Philadelphia, PA (United States); D' Andrea, F.; Ghil, M. [Ecole Normale Superieure, Departement Terre-Atmosphere-Ocean and Laboratoire de Meteorologie Dynamique (CNRS and IPSL), Paris Cedex 05 (France)

    2007-10-15

    A statistical learning method called random forests is applied to the prediction of transitions between weather regimes of wintertime Northern Hemisphere (NH) atmospheric low-frequency variability. A dataset composed of 55 winters of NH 700-mb geopotential height anomalies is used in the present study. A mixture model finds that the three Gaussian components that were statistically significant in earlier work are robust; they are the Pacific-North American (PNA) regime, its approximate reverse (the reverse PNA, or RNA), and the blocked phase of the North Atlantic Oscillation (BNAO). The most significant and robust transitions in the Markov chain generated by these regimes are PNA {yields} BNAO, PNA {yields} RNA and BNAO {yields} PNA. The break of a regime and subsequent onset of another one is forecast for these three transitions. Taking the relative costs of false positives and false negatives into account, the random-forests method shows useful forecasting skill. The calculations are carried out in the phase space spanned by a few leading empirical orthogonal functions of dataset variability. Plots of estimated response functions to a given predictor confirm the crucial influence of the exit angle on a preferred transition path. This result points to the dynamic origin of the transitions. (orig.)

  2. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent

    Science.gov (United States)

    Francis, Jennifer A.; Chan, Weihan; Leathers, Daniel J.; Miller, James R.; Veron, Dana E.

    2009-04-01

    The dramatic decline in Arctic summer sea-ice cover is a compelling indicator of change in the global climate system and has been attributed to a combination of natural and anthropogenic effects. Through its role in regulating the exchange of energy between the ocean and atmosphere, ice loss is anticipated to influence atmospheric circulation and weather patterns. By combining satellite measurements of sea-ice extent and conventional atmospheric observations, we find that varying summer ice conditions are associated with large-scale atmospheric features during the following autumn and winter well beyond the Arctic's boundary. Mechanisms by which the atmosphere “remembers” a reduction in summer ice cover include warming and destabilization of the lower troposphere, increased cloudiness, and slackening of the poleward thickness gradient that weakens the polar jet stream. This ice-atmosphere relationship suggests a potential long-range outlook for weather patterns in the northern hemisphere.

  3. Was the extreme Northern Hemisphere greening in 2015 predictable?

    Science.gov (United States)

    Bastos, Ana; Ciais, Philippe; Park, Taejin; Zscheischler, Jakob; Yue, Chao; Barichivich, Jonathan; Myneni, Ranga B.; Peng, Shushi; Piao, Shilong; Zhu, Zaichun

    2017-04-01

    The year 2015 was, at the time, the warmest since 1880, and many regions in the Northern Hemisphere (NH) registered record breaking annual temperatures. Simultaneously, a remarkable and widespread growing season greening was observed over most of the NH in the record from the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI). While the response of vegetation to climate change (i.e. the long term trend) is assumed to be predictable, it is still unclear whether it is also possible to predict the interannual variability in vegetation activity. Here, we evaluate whether the unprecedented magnitude and extent of the greening observed in 2015 corresponds to an expected response to the 2015 climate anomaly, or to a change in the sensitivity of NH vegetation to climate. We decompose NDVI into the long-term and interannual variability components, and find that the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) explain about half of NDVI interannual variability. This response is in addition to the long-term temperature and human-induced greening trend. We use a simple statistical approach to predict the NDVI anomaly in 2015, using the PDO and AMO states as predictors for interannual variability, and temperature and precipitation trends for the long-term component. We show that the 2015 anomaly can be predicted as an expected vegetation response to temperature and water-availability associated with the very strong state of the PDO in 2015. The link found between climate variability patterns and vegetation activity should contribute to increase the predictability of carbon-cycle processes at interannual time-scales, which may be relevant, for instance, for optimizing land-management strategies.

  4. Pre-LGM Northern Hemisphere ice sheet topography

    Directory of Open Access Journals (Sweden)

    J. Kleman

    2013-10-01

    Full Text Available We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS 5b (86.2 kyr model age and 4 (64 kyr model age. From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland, by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  5. Northern Hemisphere Cyclone Locations and Characteristics from NCEP/NCAR Reanalysis Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set comprises a 50-year record of daily extratropical cyclone statistics computed for the Northern Hemisphere. Cyclone locations and characteristics were...

  6. Reconstructed North American, Eurasian, and Northern Hemisphere Snow Cover Extent, 1915-1997

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series of monthly snow cover extent (SCE) for North America, Eurasia, and the Northern Hemisphere from 1915 to 1997, based on snow cover...

  7. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) is a record for the Northern Hemisphere (NH) Snow Cover Extent (SCE) spanning from October 4, 1966 to present, updated monthly...

  8. Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent

    Data.gov (United States)

    National Aeronautics and Space Administration — The Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent Version 4 product combine snow cover and sea ice extent at weekly intervals from 23...

  9. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-01-01

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably ∼15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between ∼36°S-60°S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  10. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  11. The star book stargazing throughout the seasons in the Northern hemisphere

    CERN Document Server

    Grego, Peter

    2012-01-01

    Stargazing Throughout the Seasons in the Northern Hemisphere is an excerpt from The Star Book that guides you through the night skies in the Northern Hemisphere, through wide-angle star charts. Looking at the main constellations, stars and celestial showpieces of the northern celestial sphere, beginning with constellations around the north pole and then taking a season by season view. Most northern constellations are as familiar to today's stargazers as they were to the ancient Greeks. Everyone is interested in the stars and on a clear night astonished by them. Stargazing Throughout the Seasons in the Northern Hemisphere will answer any questions you may have when you look up into the night sky.

  12. Trend and Self Organizing Map Analysis of Snow Data of Northern Hemisphere for 1979-2014

    Science.gov (United States)

    Gan, T. Y. Y.; Scheepers, H.

    2016-12-01

    The 1979-2014, 25km-resolution snow water equivalent (SWE) monthly dataset of the Globsnow project of the European Space Agency prepared from combining Nimbus-7 SMMR, DMSP SSM/I-SSMIS SWE data with observations of ground-based synoptic weather stations was analyzed. The dataset covers the terrestrial non-mountainous regions of Northern Hemisphere except the Greenland. The monthly SWE dataset of October-May was analyzed for monotonic trends using the non-parametric Mann-Kendall test at 0.05 significant levels. Based on the total number of snow covered pixels analyzed, up to 15.5% (7.7%) of the pixels show statistically significant decreasing (increasing) trends. December has the largest snow cover extent and the greatest percentage of statistically significant decreasing trends, of which the majority are located north of 55° latitude which may reflect the effect of polar warming. April exhibits the greatest percentage of statistically significant positive trends and most of these are located in Asia. The mean trend magnitudes detected for October-May range from 0.18 to 1.42 mm/yr. Principle component analyses was performed on the SWE dataset and the leading components were correlated with temperature, precipitation, and climate indices such as El Niño Southern Oscillation (ENSO), Pacific Decadal (PDO), North Atlantic Oscillation (NAO), and others. The methods of self-organizing map and k-means clustering were also applied to delineate 20 regions in the Northern Hemisphere that exhibit similar SWE patterns.

  13. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years.

    Science.gov (United States)

    Kawamura, Kenji; Parrenin, Frédéric; Lisiecki, Lorraine; Uemura, Ryu; Vimeux, Françoise; Severinghaus, Jeffrey P; Hutterli, Manuel A; Nakazawa, Takakiyo; Aoki, Shuji; Jouzel, Jean; Raymo, Maureen E; Matsumoto, Koji; Nakata, Hisakazu; Motoyama, Hideaki; Fujita, Shuji; Goto-Azuma, Kumiko; Fujii, Yoshiyuki; Watanabe, Okitsugu

    2007-08-23

    The Milankovitch theory of climate change proposes that glacial-interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination, because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations.

  14. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J. [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States); Pogorelov, N. V. [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  15. Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum.

    Science.gov (United States)

    Yamaguchi, Yasuhiko T; Yokoyama, Yusuke; Miyahara, Hiroko; Sho, Kenjiro; Nakatsuka, Takeshi

    2010-11-30

    The Maunder Minimum (A.D. 1645-1715) is a useful period to investigate possible sun-climate linkages as sunspots became exceedingly rare and the characteristics of solar cycles were different from those of today. Here, we report annual variations in the oxygen isotopic composition (δ(18)O) of tree-ring cellulose in central Japan during the Maunder Minimum. We were able to explore possible sun-climate connections through high-temporal resolution solar activity (radiocarbon contents; Δ(14)C) and climate (δ(18)O) isotope records derived from annual tree rings. The tree-ring δ(18)O record in Japan shows distinct negative δ(18)O spikes (wetter rainy seasons) coinciding with rapid cooling in Greenland and with decreases in Northern Hemisphere mean temperature at around minima of decadal solar cycles. We have determined that the climate signals in all three records strongly correlate with changes in the polarity of solar dipole magnetic field, suggesting a causal link to galactic cosmic rays (GCRs). These findings are further supported by a comparison between the interannual patterns of tree-ring δ(18)O record and the GCR flux reconstructed by an ice-core (10)Be record. Therefore, the variation of GCR flux associated with the multidecadal cycles of solar magnetic field seem to be causally related to the significant and widespread climate changes at least during the Maunder Minimum.

  16. Experimental and theoretical investigation of stratospheric ozone depletion in the northern hemisphere caused by heterogeneous chemistry

    Science.gov (United States)

    Storvold, Rune

    University of Oslo SCTM-1 model. They were selected because the SLIMCAT is designed for process studies and comparison with measured data while the SCTM-1 is designed for prognostic and sensitivity studies aimed at predicting future development of the stratospheric ozone layer. We have used the models to study the sensitivity of the heterogeneous chemistry to stratospheric meteorological conditions and the effect of sulfuric acid aerosols and polar stratospheric clouds on the stratospheric ozone abundance and ozone chemistry at high- and mid-latitudes in the Northern Hemisphere.

  17. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2011-07-01

    ppbv during the SPE period due to the small loss rates during winter. Computed NOx increases, which were statistically significant at the 95 % level, lasted about a month past the SPEs. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer NOx measurements and MIPAS NO2 measurements for the polar Northern Hemisphere are in reasonable agreement with these predictions. An extremely large ground level enhancement (GLE occurred during the SPE period on 20 January 2005. We find that protons of energies 300 to 20 000 MeV, associated with this GLE, led to very small enhanced lower stratospheric odd nitrogen concentrations of less than 0.1 % and ozone decreases of less than 0.01 %.

  18. Northern Hemisphere Atmospheric Influence of the Solar Proton Events and Ground Level Enhancement in January 2005

    Science.gov (United States)

    Jackman, C. H.; Marsh, D. R.; Vitt, F. M.; Roble, R. G.; Randall, C. E.; Bernath, P. F.; Funke, B.; Lopez-Puertas, M.; Versick, S.; Stiller, G. P.; hide

    2011-01-01

    (x)increases, which were statistically significant at the 95% level, lasted about a month past the SPEs. The SCISAT-I Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) NO(x) measurements and MIPAS NO, measurements for the polar Northern Hemisphere are in reasonable agreement with these predictions. An extremely large ground level enhancement (GLE) occurred during the SPE period on January 20, 2005. We find that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced lower stratospheric odd nitrogen concentrations of less than 0.1% as a result of this GLE.

  19. The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

    Science.gov (United States)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen

    2015-01-01

    The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.

  20. Evidence from U-Th dating against Northern Hemisphere forcing of the penultimate deglaciation

    Science.gov (United States)

    Henderson; Slowey

    2000-03-02

    Milankovitch proposed that summer insolation at mid-latitudes in the Northern Hemisphere directly causes the ice-age climate cycles. This would imply that times of ice-sheet collapse should correspond to peaks in Northern Hemisphere June insolation. But the penultimate deglaciation has proved controversial because June insolation peaks 127 kyr ago whereas several records of past climate suggest that change may have occurred up to 15 kyr earlier. There is a clear signature of the penultimate deglaciation in marine oxygen-isotope records. But dating this event, which is significantly before the 14C age range, has not been possible. Here we date the penultimate deglaciation in a record from the Bahamas using a new U-Th isochron technique. After the necessary corrections for alpha-recoil mobility of 234U and 230Th and a small age correction for sediment mixing, the midpoint age for the penultimate deglaciation is determined to be 135 +/- 2.5 kyr ago. This age is consistent with some coral-based sea-level estimates, but it is difficult to reconcile with June Northern Hemisphere insolation as the trigger for the ice-age cycles. Potential alternative driving mechanisms for the ice-age cycles that are consistent with such an early date for the penultimate deglaciation are either the variability of the tropical ocean-atmosphere system or changes in atmospheric CO2 concentration controlled by a process in the Southern Hemisphere.

  1. Northern hemisphere glaciation during the globally warm early Late Pliocene.

    Directory of Open Access Journals (Sweden)

    Stijn De Schepper

    Full Text Available The early Late Pliocene (3.6 to ∼3.0 million years ago is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream-North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century.

  2. Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015

    Directory of Open Access Journals (Sweden)

    Yunlong Wang

    2018-01-01

    Full Text Available Multi-source remote sensing data were used to generate 500-m resolution cloud-free daily snow cover images for the Northern Hemisphere. Simultaneously, the spatial and temporal dynamic variations of snow in the Northern Hemisphere were evaluated from 2000 to 2015. The results indicated that (1 the maximum, minimum, and annual average snow-covered area (SCA in the Northern Hemisphere exhibited a fluctuating downward trend; the variation of snow cover in the Northern Hemisphere had well-defined inter-annual and regional differences; (2 the average SCA in the Northern Hemisphere was the largest in January and the smallest in August; the SCA exhibited a downward trend for the monthly variations from February to April; and the seasonal variation in the SCA exhibited a downward trend in the spring, summer, and fall in the Northern Hemisphere (no pronounced variation trend in the winter was observed during the 2000–2015 period; (3 the spatial distribution of the annual average snow-covered day (SCD was related to the latitudinal zonality, and the areas exhibiting an upward trend were mainly at the mid to low latitudes with unstable SCA variations; and (4 the snow reduction was significant in the perennial SCA in the Northern Hemisphere, including high-latitude and high-elevation mountainous regions (between 35° and 50°N, such as the Tibetan Plateau, the Tianshan Mountains, the Pamir Plateau in Asia, the Alps in Europe, the Caucasus Mountains, and the Cordillera Mountains in North America.

  3. The role of sub-milankovitch climatic forcing in the initiation of the northern hemisphere glaciation

    Science.gov (United States)

    Willis; Kleczkowski; Briggs; Gilligan

    1999-07-23

    Mechanisms responsible for the initiation of major glaciation in the Northern Hemisphere at about 2.75 million years ago are poorly understood. A laminated terrestrial sequence from Pula maar, Hungary, containing about 320,000 years in annual layers between 3.05 and 2. 60 million years ago, provides a detailed record of rates of climatic change across this dramatic transition. An analysis of the record implies that climatic variations at sub-Milankovitch frequencies (less than or equal to 15,000 years) were an important driving force during this transitional interval and that, as the threshold was approached, these increased in frequency and amplitude, possibly providing the final trigger for the amplification of Northern Hemisphere ice sheets.

  4. Radiological consequences in New Zealand of a northern-hemisphere dominated nuclear war

    International Nuclear Information System (INIS)

    Lassey, K.R.

    1987-01-01

    The doses delivered to the New Zealand population as a result of a postulated nuclear war are estimated. The postulated war is dominated by northern hemisphere exchanges with some detonations also over Australia; New Zealand is spared direct attack. The doses are estimated conservatively using models from the literature and are of similar order (a few mSv) from both the northern hemisphere conflict and Australian attacks. The impact of the latter supposes a near worst-case prevailing meteorology. The typical somatic effects of such doses are a few hundred cancer inductions protracted over half a century, and perhaps a significant incidence of thyroid disorders if no countermeasures prevent the production and consumption of contaminated milk

  5. A global audit of the status and trends of Arctic and Northern Hemisphere goose populations

    Science.gov (United States)

    Schmutz, Joel A.; Fox, Anthony D.; Leafloor, James O.

    2018-01-01

    This report attempts to review the abundance, status and distribution of natural wild goose populations in the northern hemisphere. The report comprises three parts that 1) summarise key findings from the study and the methodology and analysis applied; 2) contain the individual accounts for each of the 68 populations included in this report; and 3) provide the datasets compiled for this study which will be made accessible on the Arctic Biodiversity Data Service.

  6. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context

    Czech Academy of Sciences Publication Activity Database

    Wilson, R.; Anchukaitis, K.; Briffa, K. R.; Büntgen, Ulf; Cook, E.; D'Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B.; Hegerl, G.; Helama, S.; Klesse, S.; Krusic, P. J.; Linderholm, H. W.; Myglan, V. S.; Osborn, T. J.; Rydval, M.; Schneider, L.; Schurer, A.; Wiles, G.; Zhang, P.; Zorita, E.

    2016-01-01

    Roč. 134, FEB (2016), s. 1-18 ISSN 0277-3791 Institutional support: RVO:67179843 Keywords : high-resolution paleoclimatology * stable carbon isotopes * medieval warm period * past 600 years * blue intensity * volcanic-eruptions * density data * ice-age * dendroclimatic reconstruction * cambium phenology * Tree-rings * Northern hemisphere * Last millennium * Summer temperatures * Reconstruction * CMIP5 models Subject RIV: EH - Ecology, Behaviour Impact factor: 4.797, year: 2016

  7. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle

    Directory of Open Access Journals (Sweden)

    S. Bonelli

    2009-07-01

    Full Text Available A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets.
    A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.

  8. MEaSUREs Northern Hemisphere State of Cryosphere Daily 25km EASE-Grid 2.0 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the location of Northern Hemisphere snow cover and sea ice extent, the status of melt onset across Greenland and Arctic sea ice, and the level...

  9. Timing and Statistics of Autumn and Spring Annual Snow Cover for the Northern Hemisphere, 1972 to 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Snow and Ice Data Center hosts a time-series data set comprising annual snow cover data for the Northern Hemisphere (covering land primarily over 45...

  10. MEaSUREs Northern Hemisphere Terrestrial Snow Cover Extent Daily 25km EASE-Grid 2.0 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set offers users 25 km Northern Hemisphere snow cover extent represented by four different variables. Three of the snow cover variables are derived from...

  11. MEaSUREs Northern Hemisphere State of Cryosphere Daily 25km EASE-Grid 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the location of Northern Hemisphere snow cover and sea ice extent, the status of melt onset across Greenland and Artic sea ice, and the level...

  12. Timing and Statistics of Autumn and Spring Annual Snow Cover for the Northern Hemisphere, 1972 to 2000, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set comprises a time series of annual snow cover data for the Northern Hemisphere (covering land primarily above 45 degrees North) from 1972 to 2000. Data...

  13. Attribution of spring snow water equivalent (SWE) changes over the northern hemisphere to anthropogenic effects

    Science.gov (United States)

    Jeong, Dae Il; Sushama, Laxmi; Naveed Khaliq, M.

    2017-06-01

    Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February-April spring period using the GlobSnow observation dataset for the 1980-2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection-attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.

  14. Natural contributions to particulate matter and ozone concentrations in the Northern Hemisphere

    Science.gov (United States)

    Zare, A.; Christensen, J. H.; Gross, A.; Irannejad, P.; Glasius, M.; Brandt, J.

    2013-12-01

    Natural emissions play an important role in determining ambient levels of harmful atmospheric pollutants, especially tropospheric ozone and particulate matter (PM). Natural sources have also become more important with the ongoing reductions of anthropogenic emissions and will be even more significant in the future in connection with planning of abatement strategies. Although efforts have been carried out to investigate and quantify natural emissions, the uncertainties and gaps with regard to these emissions are still quite large. Therefore, improvement of our understanding of natural emissions and quantifying their contribution to present and future air pollution levels have been defined as an important field of research in air pollution modeling. In this study, the large-scale atmospheric chemistry transport model, DEHM (the Danish Eulerian Hemispheric Model) is further developed, evaluated and applied to study and quantify the contributions of natural emissions of VOCs, NOx, NH3, SO2, CH4, PM, CO and sea salt to the concentration of ozone and formation of PM for the year 2006. Natural source categories adopted in the recent model are vegetation, lightning, soils, wild animals and oceans. The relative contributions are calculated for the domain covering more than the Northern Hemisphere (the DEHM mother domain) as well as for the six continental regions: North America, Northern part of South America, Asia, Europe, Middle East and northern and central part of Africa. Our simulations indicate that at the Northern Hemisphere the contribution from natural emissions to the average annual ozone concentrations over land is between 4-30 ppbV. Among the natural emissions, biogenic VOCs are found to be the most significant contributors to ozone formation. Our results show that biogenic VOCs enhance the average ozone concentration with around 11% over land areas of the Northern Hemisphere. The relative contribution of all the natural emissions to ozone is found to be highest

  15. Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

    Science.gov (United States)

    Zuber,Maria T.; Smith, David E.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Hauck, Steven A., Jr.; Peale, Stanton J.; Barnouin, Oliver S.; Head, James W.; Johnson, Catherine L.; hide

    2012-01-01

    Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury s topography occurred after the earliest phases of the planet s geological history.

  16. Fluorescence polarization study of lipids and membranes prepared from brain hemispheres of a hibernating mammal.

    Science.gov (United States)

    Montaudon, D; Robert, J; Canguilhem, B

    1984-02-29

    The physical behavior of total lipids, microsomes and microsomal lipids prepared from brain hemispheres of European Hamsters (Cricetus cricetus) was approached by the measure of the fluorescence polarization of the probe 1,6-diphenyl 1,3,5-hexatriene. We compare in this study the results obtained for two critical periods for a hibernator: winter (torpid state) and summer (active state). An increase in fluidity was noticed in the winter lipid and membrane preparations. The difference was however of very low magnitude, suggesting that only the microenvironment of some proteins was involved, rather than the bulk membrane fluidity.

  17. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change

    Science.gov (United States)

    Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin

    2017-04-01

    Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.

  18. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone.

    Science.gov (United States)

    Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S

    2012-05-16

    Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.

  19. Metal homeostasis in the foliose lichen Peltigera aphthosa from the northern hemisphere

    Science.gov (United States)

    Darnajoux, Romain; Miadlikowska, Jolanta; Lutzoni, Francois; Bellenger, Jean-Philippe

    2014-05-01

    Lichens are critical contributors to the biogeochemical cycling of carbon (C) and nitrogen (N) in high latitude ecosystems (boreal and polar). While, lichens have been intensively used as biomonitors for metal depositions, metal acquisition and homeostasis in lichens remains mostly uncharacterized. Lichens are symbioses between two to three different organisms each of them with specific and distinct requirements with regards to metals. For instance the trimembered lichen Peltigera aphthosa, an ubiquitous cyanolichen in boreal ecosystems, is constituted of organisms from three different kingdoms of life (a fungus, an algae and a cyanobacterium) with distinct metabolisms; the fungal part is heterotroph to C and N while the alga undergoes photosynthesis and the cyanobacterium is able to fix atmospheric dinitrogen. Moreover, each organism might achieve different tolerances to specific metals, leading to different sensibilities within the symbiosis to metal contaminations. How and to what extend lichens control the acquisition and allocation of metals to the different symbionts in order to optimise symbiosis function remains mostly unknown. Here, we present the result of an extensive study on the characterization of metal homeostasis in P. aphthosa. We collected specimens over 5 area of the northern hemisphere characterized by different metal expositions (Alaska, Alberta, Quebec, Sweden, and Russia). Using separation techniques and mass spectrometry (ICP-MS) we determined metal contents in the whole thallus and in each symbiont. We analyzed a wide array of metals including essential (Fe, Mg, Mn, Ni, Cu, Mo, P, Co, Zn), neutral (Al, Ti) and toxic metals (Cd, Pb, V). Data were then processed using multivariate statistical analysis. Our results show that the allocation and concentration of most metals in the different symbionts is tightly regulated and is consistent with the biological requirement or toxicity of the metals to each partner. This is particularly true for

  20. Cassini limb images of hazes in Saturn’s northern hemisphere

    Science.gov (United States)

    Sanchez-Lavega, Agustin M.; Garcia, Daniel; del Rio-Gaztelurrutia, Teresa; Garcia-Muñoz, Antonio; Perez-Hoyos, Santiago; Hueso, Ricardo

    2017-10-01

    We have used high resolution Cassini ISS images of the limb of Saturn to study the vertical distribution, altitude location, thickness and optical properties of the haze layers in the northern hemisphere (1°S to 82°N) in 2013 and 2015. The images cover an ample spectral range from the ultraviolet (UV1 filter, 264 nm) to the near infrared (CB3 filter, 938 nm) including methane absorption bands at 619 nm, 724 nm and 890 nm. Spatial resolution ranges from 1.6 to 13 km/pixel depending on wavelength and latitude. Three latitude bands were selected for the analysis according to the background zonal wind profile measured at cloud level and known dynamical activity: (a) North Polar Region encompassing the Hexagon latitude (74°N) (b) Mid-latitudes (45°N-52°N), and (3) Equator (1°N-3°S). The best defined haze structures and most extended haze layers were found at the latitude of the Hexagon. Up to 6-8 haze layers extending up to 400 km in altitude above clouds (in the pressure range from about 0.7 bar to 0.1 mbar) were detected. The vertical thickness of the layers is in the range 3-15 km compared to the scale height which is about 40 km. The spectral reflectivity is relatively uniform between the layers in the blue and red continuum wavelengths coming from the backward light scattering from the haze particles, while the brightness in the methane bands (relative to red continuum) and in the ultraviolet shows the effects of methane absorption and Rayleigh scattering by the gas, respectively. At mid-latitudes 3-4 haze layers are found spanning up to altitudes 200 km above the clouds. At the Equator 5-6 layers are found extending up to altitudes 250 km above the clouds (up to 2 mbar in pressure level) in a region of great dynamical interest because of the particular structure of the zonal winds and their known oscillations. We comment on the possible nature of the haze layers on the basis of condensing species and photochemistry.

  1. Season of birth and morningness: comparison between the northern and southern hemispheres.

    Science.gov (United States)

    Natale, Vincenzo; Di Milia, Lee

    2011-10-01

    The present study explored the possible role of the photoperiod at birth on morningness by collecting data in the northern (Italy) and southern (Australia) hemispheres. To assess circadian typology, the Composite Scale of Morningness (CS) was administered to a sample of 1734 university students (977 Italian and 757 Australian; 1099 females and 635 males; age 24.79 ± 7.45 yrs [mean ± SD]). Consistent with the literature, females reported higher CS scores (morningness) than males, and Australian participants reported higher CS scores than Italian participants. Allowing for the fact the seasons are reversed between the hemispheres, the results are in line with previous studies. The authors found more evening types were born during the seasons associated with longer photoperiod (spring and summer), and more morning types were born during the seasons associated with shorter photoperiod (autumn and winter), indirectly supporting an imprinting-like phenomenon played by the photoperiod at birth.

  2. Assessment of Northern Hemisphere Snow Water Equivalent Datasets in ESA SnowPEx project

    Science.gov (United States)

    Luojus, Kari; Pulliainen, Jouni; Cohen, Juval; Ikonen, Jaakko; Derksen, Chris; Mudryk, Lawrence; Nagler, Thomas; Bojkov, Bojan

    2016-04-01

    Reliable information on snow cover across the Northern Hemisphere and Arctic and sub-Arctic regions is needed for climate monitoring, for understanding the Arctic climate system, and for the evaluation of the role of snow cover and its feedback in climate models. In addition to being of significant interest for climatological investigations, reliable information on snow cover is of high value for the purpose of hydrological forecasting and numerical weather prediction. Terrestrial snow covers up to 50 million km² of the Northern Hemisphere in winter and is characterized by high spatial and temporal variability. Therefore satellite observations provide the best means for timely and complete observations of the global snow cover. There are a number of independent SWE products available that describe the snow conditions on multi-decadal and global scales. Some products are derived using satellite-based information while others rely on meteorological observations and modelling. What is common to practically all the existing hemispheric SWE products, is that their retrieval performance on hemispherical and multi-decadal scales are not accurately known. The purpose of the ESA funded SnowPEx project is to obtain a quantitative understanding of the uncertainty in satellite- as well as model-based SWE products through an internationally coordinated and consistent evaluation exercise. The currently available Northern Hemisphere wide satellite-based SWE datasets which were assessed include 1) the GlobSnow SWE, 2) the NASA Standard SWE, 3) NASA prototype and 4) NSIDC-SSM/I SWE products. The model-based datasets include: 5) the Global Land Data Assimilation System Version 2 (GLDAS-2) product 6) the European Centre for Medium-Range Forecasts Interim Land Reanalysis (ERA-I-Land) which uses a simple snow scheme 7) the Modern Era Retrospective Analysis for Research and Applications (MERRA) which uses an intermediate complexity snow scheme; and 8) SWE from the Crocus snow scheme, a

  3. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    Science.gov (United States)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the

  4. Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere

    Science.gov (United States)

    Groisman, Pavel YA.; Karl, Thomas R.; Knight, Richard W.; Stenchikov, Georgiy L.

    1994-01-01

    Contemporary large-scale changes in satellite-derived snow cover were examined over the Northern Hemisphere extratropical land (NEL) areas. These areas encompass 55% of the land in the Northern Hemisphere. Snow cover (S) transient regions, the 'centers of action' relative to interannual variations of snow cover, were identified for the years 1972-1992. During these years a global retreat in snow cover extent (SE) occurred in the second half of the hydrologic year (April-September). Mean annual SE has decreased by 10% (2.3 x 10(exp 6) sq km). Negative trends account for one-third to one-half of the interannual continental variance of SE. The historical influence of S on the planetary albedo and outgoing longwave radiation (OLR) is investigated. The mean annual response of the S feedback on the radiative balance (RB) is negative and suggests a largescale heat redistribution. During autumn and early winter (up to January), however, the feedback of S on the planetary RB may be positive. Only by February does the cooling effect of S (due to albedo increase) dominate the planetary warming due to reduced OLR over the S. Despite a wintertime maximum in SE, the feedback in spring has the greatest magnitude. The global retreat of spring SE should lead to a positive feedback on temperature. Based on observed records of S, changes in RB are calculated that parallel an observed increase of spring temperature during the past 20 years. The results provide a partial explanation of the significant increase in spring surface air temperature observed over the land areas of the Northern Hemisphere during the past century. The mean SE in years with an El Nino and La Nina were also evaluated. El Nino events are generally accompanied by increased SE over the NEL during the first half of the hydrological year. In the second half of the hydrologic year (spring and summer), the El Nino events are accompanied by a global retreat of SE.

  5. Extent and Nature of the Penetration Electric Field in the Northern Hemisphere During the 2013 St. Patrick's Day Storm

    Science.gov (United States)

    Hairston, M. R.; Coley, W. R.; Kunduri, B.; Ruohoniemi, J. M.; Maruyama, N.

    2017-12-01

    During the 17 March 2013 St. Patrick's Day storm there were four operational DMSP spacecraft (F15 through F18) measuring the ionospheric plasma flows at 840 km. At this time these polar orbiting spacecraft were observing the ionosphere at eight different solar local times, approximately 3.5, 5.4, 5.8, 8.1, 15.5, 17.4, 17.8, and 20.1 hours. Based on the observed zonal flows from each of these local time legs during the period of February through April 2013 we have developed quiet time models of the zonal flows between 10º and 75º geographic latitude. By comparing the observed zonal flows during the storm period with these quiet time models we use the excess difference in the flow to determine the latitudinal extent of the electric penetration field in the northern hemisphere over the course of the storm. By examining the history of the penetration field at different local times we will show the asymmetry in the extent of the field. Additionally, the northern SuperDARN radars observed two SAPS events during this period: one between 5:00 and 10:00 UT on the day prior to the storm and the second between 6:05 and 7:40 UT on the storm day. We will contrast the observed SuperDARN flows during these SAPS events with the quiet time flow models derived from DMSP.

  6. Environmental and agricultural impacts of the Chernobyl NPP accident on the countries of the northern hemisphere

    International Nuclear Information System (INIS)

    Yang Xuexian

    1990-12-01

    The accident at the Chernobyl Nuclear Power Plant (NPP) on April 26, 1986 resulted in large quantities of radioactive materials being released into the atmosphere. The environmental contaminations and agricultural impacts of the accident on the countries of the northern hemisphere were reviewed. Radiological consequences of the accident were briefly assessed. The data were presented on the results of radioactivity monitoring for air, ground and water, average individual effective dose commitment for each county, and levels of contamination on plant cover, milk, meat in live animals, food, aquatic, and other agricultural products etc. The transfer coefficients of radionuclides in grass-(cow)-milk were listed. Finally, problems on radioecology were discussed

  7. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective.

    Science.gov (United States)

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-06-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.

  8. Electrodynamic coupling between ionospheric convection patterns in the northern and southern hemispheres

    Directory of Open Access Journals (Sweden)

    V. E. Zakharov

    Full Text Available A numerical model of the high-latitude ionospheric electric field is presented. To perform the calculations, a model of the field-aligned current source is proposed. The electric field patterns are calculated consistently both in the northern and southern hemispheres. Effects of season, universal time, solar and geomagnetic activity, the neutral atmosphere winds, and of the IMF sector structure are considered. In particular, dynamics of the parameters of convection cells are investigated that depend on the action of these factors. Comparison of the results with experimental data is carried out.

  9. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation?

    Science.gov (United States)

    Driscoll; Haug

    1998-10-16

    The cause of Northern Hemisphere glaciation about 3 million years ago remains uncertain. Closing the Panamanian Isthmus increased thermohaline circulation and enhanced moisture supply to high latitudes, but the accompanying heat would have inhibited ice growth. One possible solution is that enhanced moisture transported to Eurasia also enhanced freshwater delivery to the Arctic via Siberian rivers. Freshwater input to the Arctic would facilitate sea ice formation, increase the albedo, and isolate the high heat capacity of the ocean from the atmosphere. It would also act as a negative feedback on the efficiency of the "conveyor belt" heat pump.

  10. Potential Impact of South Asian Anthropogenic Aerosols on Northern Hemisphere Climate

    Science.gov (United States)

    Bollasina, M. A.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    South Asia has one of the world's highest aerosol loading due to the dramatic increase of anthropogenic emissions from the 1950s associated with rapid urbanization and population growth. The possible large-scale impact of the late 20th century increase of South Asian aerosol emissions on climate away from the source regions was studied by means of historical ensemble experiments with a state-of-the-art coupled climate model with fully interactive aerosols and a representation of both direct and indirect aerosol effects. The key characteristics of the northern hemisphere responses are examined separately for winter and summer, and show that regional aerosols induce significant planetary-scale teleconnection patterns. In both seasons, the large-scale aerosol imprint originates from substantial changes in the regional precipitation distribution. During the winter, in response to anomalous surface cooling in the northern Indian Ocean, aerosols cause a westward shift of convection over the eastern Indian Ocean and compensating subsidence to the west and over the Maritime continent. During the summer, aerosols are collocated with rainfall, and cause a widespread drying over South Asia mostly by indirect effects. In both cases, the impact of the regional diabatic heating anomaly propagates remotely by exciting a northern hemisphere wave-train which, enhanced by regional feedbacks, leads to remarkable changes in near-surface climate, including circulation and temperature, over Eurasia, the northern Pacific and North America. Depending on the region, the induced anomalies may have opposite signs between the two seasons, and may thus contribute to reinforcing or dampening those due greenhouse gases. These results underscore the potential influence of Asian aerosols on global climate, which is a compelling problem as regional aerosol loading will continue to be large in the coming decades.

  11. Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres

    Directory of Open Access Journals (Sweden)

    C. E. Valladares

    2009-04-01

    Full Text Available Measurements of total electron content (TEC using 263 GPS receivers located in the North and South America continents are presented to demonstrate the simultaneous existence of traveling ionospheric disturbances (TID at high, mid, and low latitudes, and in both Northern and Southern Hemispheres. The TID observations pertain to the magnetically disturbed period of 29–30 October 2003 also known as the Halloween storm. The excellent quality of the TEC measurements makes it possible to calculate and remove the diurnal variability of TEC and then estimate the amplitude, wavelength, spectral characteristics of the perturbations, and the approximate velocity of the AGW. On 29 October 2003 between 17:00 and 19:00 UT, there existed a sequence of TEC perturbations (TECP, which were associated with the transit of atmospheric gravity waves (AGW propagating from both auroral regions toward the geographic equator. A marked difference was found between the northern and southern perturbations. In the Northern Hemisphere, the preferred horizontal wavelength varies between 1500 and 1800 km; the propagation velocity is near 700 m/s and the perturbation amplitude about 1 TEC unit (TECu. South of the geographic equator the wavelength of the TECP is as large as 2700 km, the velocity is about 550 m/s, and the TECP amplitude is 3 TECu. Concurrently with our observations, the Jicamarca digisonde observed virtual height traces that exhibited typical features that are associated with TIDs. Here, it is suggested that differences in the local conductivity between northern and southern auroral ovals create a different Joule heating energy term. The quality of these observations illustrates the merits of GPS receivers to probe the ionosphere and thermosphere.

  12. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars.

    Science.gov (United States)

    Mitrofanov, I G; Zuber, M T; Litvak, M L; Boynton, W V; Smith, D E; Drake, D; Hamara, D; Kozyrev, A S; Sanin, A B; Shinohara, C; Saunders, R S; Tretyakov, V

    2003-06-27

    Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south.

  13. Earliest and first Northern Hemispheric hoatzin fossils substantiate Old World origin of a "Neotropic endemic".

    Science.gov (United States)

    Mayr, Gerald; De Pietri, Vanesa L

    2014-02-01

    The recent identification of hoatzins (Opisthocomiformes) in the Miocene of Africa showed part of the evolution of these birds, which are now only found in South America, to have taken place outside the Neotropic region. Here, we describe a new fossil species from the late Eocene of France, which constitutes the earliest fossil record of hoatzins and the first one from the Northern Hemisphere. Protoazin parisiensis gen. et sp. nov. is more closely related to South American Opisthocomiformes than the African taxon Namibiavis and substantiates an Old World origin of hoatzins, as well as a relictual distribution of the single extant species. Although recognition of hoatzins in Europe may challenge their presumed transatlantic dispersal, there are still no North American fossils in support of an alternative, Northern Hemispheric, dispersal route. In addition to Opisthocomiformes, other avian taxa are known from the Cenozoic of Europe, the extant representatives of which are only found in South America. Recognition of hoatzins in the early Cenozoic of Europe is of particular significance because Opisthocomiformes have a fossil record in sub-Saharan Africa, which supports the hypothesis that extinction of at least some of these "South American" groups outside the Neotropic region was not primarily due to climatic factors.

  14. Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima

    International Nuclear Information System (INIS)

    Hernández-Ceballos, M.A.; Hong, G.H.; Lozano, R.L.; Kim, Y.I.; Lee, H.M.; Kim, S.H.; Yeh, S.-W.; Bolívar, J.P.; Baskaran, M.

    2012-01-01

    Massive amounts of anthropogenic radionuclides were released from the nuclear reactors located in Fukushima (northeastern Japan) between 12 and 16 March 2011 following the earthquake and tsunami. Ground level air radioactivity was monitored around the globe immediately after the Fukushima accident. This global effort provided a unique opportunity to trace the surface air mass movement at different sites in the Northern Hemisphere. Based on surface air radioactivity measurements around the globe and the air mass backward trajectory analysis of the Fukushima radioactive plume at various places in the Northern Hemisphere by employing the Hybrid Single-Particle Lagrangian Integrated Trajectory model, we show for the first time, that the uninterrupted complete revolution of the mid-latitude Surface Westerlies took place in less than 21 days, with an average zonal velocity of > 60 km/h. The position and circulation time scale of Surface Westerlies are of wide interest to a large number of global researchers including meteorologists, atmospheric researchers and global climate modellers. -- Highlights: ► Evidence of the South Korea contamination with released radiocesium from Fukushima. ► Field samples and air mass analysis were utilized to elucidate the transport of those radionuclides. ► Characterization of the air mass movements at different sites at the Earth's surface. ► Verification of the uninterrupted complete revolution of the artificial radionuclides released in Fukushima. ► Quantification of the velocity of the artificial radionuclides released in Fukushima.

  15. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update

    Science.gov (United States)

    Durre, Imke; Williams, Claude N.; Yin, Xungang; Vose, Russell S.

    2009-03-01

    In an effort to update previous analyses of long-term changes in column-integrated water vapor, we have analyzed trends in surface-to-500-hPa precipitable water (PW) calculated from radiosonde measurements of dew point depression, temperature, and pressure at approximately 300 stations in the Northern Hemisphere for the period 1973-2006. Inhomogeneities were addressed by applying a homogenization algorithm that adjusts for both documented and undocumented change points. The trends of the adjusted PW time series are predominantly upward, with a statistically significant trend of 0.45 mm decade-1 for the Northern Hemisphere land areas included in the analysis. Particularly significant increases are found in all seasons over the islands of the western tropical Pacific, and trends are also positive and statistically significant for the year as a whole and in at least one season in Japan and the United States. These results indicate that the widespread increases in tropospheric water vapor, which earlier studies had reported and shown to be physically consistent with concurrent increases in temperature and changes in moisture transport, have continued in recent years.

  16. Current patterns of macroalgal diversity and biomass in northern hemisphere rocky shores.

    Directory of Open Access Journals (Sweden)

    Brenda Konar

    Full Text Available Latitudinal gradients in species abundance and diversity have been postulated for nearshore taxa but few analyses have been done over sufficiently broad geographic scales incorporating various nearshore depth strata to empirically test these gradients. Typically, gradients are based on literature reviews and species lists and have focused on alpha diversity across the entire nearshore zone. No studies have used a standardized protocol in the field to examine species density among sites across a large spatial scale while also focusing on particular depth strata. The present research used field collected samples in the northern hemisphere to explore the relationships between macroalgal species density and biomass along intertidal heights and subtidal depths and latitude. Results indicated no overall correlations between either estimates of species density or biomass with latitude, although the highest numbers of both were found at mid-latitudes. However, when strata were examined separately, significant positive correlations were found for both species numbers and biomass at particular strata, namely the intertidal ones. While the data presented in this paper have some limitations, we show that latitudinal macroalgal trends in species density and biomass do exist for some strata in the northern hemisphere with more taxa and biomass at higher latitudes.

  17. Water Ice Albedo Variations on the Martian Northern Polar Cap

    Science.gov (United States)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  18. Inter-hemispheric comparisons of SPE-associated Impulsive Nitrate Enhancements in Polar Ice

    Science.gov (United States)

    Kepko, L.; Spence, H. E.; Shea, M. A.; Smart, D. F.; Curran, M.; Dreschhoff, G. A.

    2006-05-01

    Several studies have suggested an association between impulsive nitrate enhancements observed in polar ice and solar proton events (SPEs). However, the validity of this association is still the subject of some controversy. One difficulty in addressing this controversy is the inherently high noise level of unconsolidated firn, which typically constitutes the top few tens of meters of ice cores. This high noise level hampers identification of impulsive nitrate enhancements during the space-age, when routine solar proton measurements are available. To overcome this difficulty we examine cores from both hemispheres, including Summit (Greenland), Windless Bight (Antarctica) and Law Dome (Antarctica). Cross-correlation of the cores reduces the effect of local noise and also provides a picture of the global response and insight into seasonal dependencies. We will compare our list of globally observed impulsive nitrate enhancements to the solar proton record.

  19. Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall.

    Science.gov (United States)

    Park, Jong-Yeon; Bader, Jürgen; Matei, Daniela

    2015-01-21

    Future projections of the Sahel rainfall are highly uncertain, with different climate models showing widely differing rainfall trends. Moreover, the twentieth-century cross-model consensus linking Sahel rainfall to tropical sea-surface temperatures (SSTs) is no longer applicable in the twenty-first century. Here we show that the diverse future Northern Hemisphere differential warming between extratropical and tropical SSTs can explain the discrepancy in the projected Sahel rainfall. The relationship between SST and Sahel rainfall that holds for the twentieth-century persists into the twenty-first century when the differential SST warming is taken into account. A suite of SST-sensitivity experiments confirms that strong Northern Hemisphere extratropical warming induces a significant increase in Sahel rainfall, which can predominate over the drying impact of tropical SST warming. These results indicate that a trustworthy projection of Sahel rainfall requires the estimation of the most likely future Northern-hemispheric differential warming.

  20. Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010

    Directory of Open Access Journals (Sweden)

    R. D. Hudson

    2012-08-01

    Full Text Available Previous studies have shown that the mean latitude of the sub-tropical jet streams in both hemispheres have shifted toward the poles over the last few decades. This paper presents a study of the movement of both the subtropical and Polar fronts, the location of the respective jet streams, between 1979 and 2010 at mid-latitudes, using total ozone measurements to identify the sharp horizontal boundary that occurs at the position of the fronts. Previous studies have shown that the two fronts are the boundaries of three distinct regimes in the stratosphere, corresponding to the Hadley, Ferrel, and polar meridionally overturning circulation cells in the troposphere. Over the period of study the horizontal area of the Hadley cell has increased at latitudes between 20 and 60 degrees while the area of the Polar cell has decreased. A linear regression analysis was performed to identify the major factors associated with the movement of the subtropical jet streams. These were: (1 changes in the Tropical land plus ocean temperature, (2 direct radiative forcing from greenhouse gases in the troposphere, (3 changes in the temperature of the lower tropical stratosphere, (4 the Quasi-Biennial Oscillation, and (5 volcanic eruptions. The dominant mechanism was the direct radiative forcing from greenhouse gases. Between 1979 and 2010 the poleward movement of the subtropical jet streams was 3.7 ± 0.3 degrees in the Northern Hemisphere and 6.5 ± 0.2 degrees in the Southern Hemisphere. Previous studies have shown that weather systems tend to follow the jet streams. The observed poleward movement in both hemispheres over the past thirty years represents a significant change in the position of the sub-tropical jet streams, which should lead to significant latitudinal shifts in the global weather patterns and the hydrologic cycle.

  1. Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

    Directory of Open Access Journals (Sweden)

    A. Belova

    2008-11-01

    Full Text Available A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976 do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005 that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

  2. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres.

    Science.gov (United States)

    Inda, Luis A; Segarra-Moragues, José Gabriel; Müller, Jochen; Peterson, Paul M; Catalán, Pilar

    2008-03-01

    Divergence times and biogeographical analyses have been conducted within the Loliinae, one of the largest subtribes of temperate grasses. New sequence data from representatives of the almost unexplored New World, New Zealand, and Eastern Asian centres were added to those of the panMediterranean region and used to reconstruct the phylogeny of the group and to calculate the times of lineage-splitting using Bayesian approaches. The traditional separation between broad-leaved and fine-leaved Festuca species was still maintained, though several new broad-leaved lineages fell within the fine-leaved clade or were placed in an unsupported intermediate position. A strong biogeographical signal was detected for several Asian-American, American, Neozeylandic, and Macaronesian clades with different affinities to both the broad and the fine-leaved Festuca. Bayesian estimates of divergence and dispersal-vicariance analyses indicate that the broad-leaved and fine-leaved Loliinae likely originated in the Miocene (13My) in the panMediterranean-SW Asian region and then expanded towards C and E Asia from where they colonized the New World. Further expansions in America (10-3.8My) showed a predominant migratory route from North to South (N Americathe AndesPatagonia). This late Tertiary scenario of successive colonizations and secondary polyploid radiations in the southern hemisphere from the northern hemisphere was accompanied by occasional transcontinental long-distance dispersal events between South America and New Zealand. Multiple Pliocene dispersal events (3.6-2.5My) from the near SW European and NW African continents gave rise to the Macaronesian Loliinae flora, while a more recent Pleistocene origin (2-1My) is hypothesized for the high polyploid lineages that successfully colonized newly deglaciated areas in both hemispheres.

  3. Interannual Modulation of Northern Hemisphere Winter Storm Tracks by the QBO

    Science.gov (United States)

    Wang, Jiabao; Kim, Hye-Mi; Chang, Edmund K. M.

    2018-03-01

    Storm tracks, defined as the preferred regions of extratropical synoptic-scale disturbances, have remarkable impacts on global weather and climate systems. Causes of interannual storm track variation have been investigated mostly from a troposphere perspective. As shown in this study, Northern Hemisphere winter storm tracks are significantly modulated by the tropical stratosphere through the quasi-biennial oscillation (QBO). The North Pacific storm track shifts poleward during the easterly QBO winters associated with a dipole change in the eddy refraction and baroclinicity. The North Atlantic storm track varies vertically with a downward shrinking (upward expansion) in easterly (westerly) QBO winters associated with the change of the tropopause height. These results not only fill the knowledge gap of QBO-storm track relationship but also suggest a potential route to improve the seasonal prediction of extratropical storm activities owing to the high predictability of the QBO.

  4. Long-term measurements of H*(10) at aviation altitudes in the northern hemisphere.

    Science.gov (United States)

    Wissmann, F

    2006-01-01

    Monitoring the radiation field at aviation altitudes is achieved by the dosemeter system piDOS installed in a passenger aircraft. The basic detector is a 2 in. tissue-equivalent proportional counter (TEPC) mounted in a cabin-baggage-sized aluminium suitcase. The entire system was characterised in neutron and photon reference fields from which two calibration factors were determined according to the splitting of the measured dose deposition spectrum yd(y) into low-LET and high-LET regions. A total of 255 flights in the northern hemisphere was analysed. The dependencies of the ambient dose equivalent rates on altitude, latitude and solar activity have been determined. These new data extend the data base used in Germany for the validation of program codes to calculate the radiation exposure of air crew members.

  5. Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-01-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies. - Simultaneous addressing air pollution and climate change effects on forests is an opportunity for capturing synergies in future research and monitoring

  6. Chlorovibrissea korfii sp. nov. from northern hemisphere and Vibrissea flavovirens new to China

    Directory of Open Access Journals (Sweden)

    Huan-Di Zheng

    2017-08-01

    Full Text Available A new species, Chlorovibrissea korfii, is described and illustrated, which is distinct from other members of the genus by the overall pale greenish apothecia 0.8–2.0 mm in diam. and 0.6–1.5 mm high, J+ asci 70–83 × 4.5–5.5 μm, and non-septate ascospores 44–52 × 1.2–1.5 μm. This is the first species of Chlorovibrissea reported from northern hemisphere. Vibrissea flavovirens is reported from China for the first time. Sequence analyses of the internal transcribed spacer of nuclear ribosomal DNA are used to confirm the affinity of the two taxa.

  7. Rayleigh lidar investigation of sudden stratospheric warming observed over northern and southern hemisphere stations

    CSIR Research Space (South Africa)

    Sivakumar, V

    2006-07-01

    Full Text Available .68°E ) Northern Hemisphere: Gadanki ( 13.5°N ; 79.2°E ), Mauna Loa ( 19.54°N ;155.58°E ) Mt Abu ( 24.41°N ; 72.50°E ), OHP ( 44°N ; 6°E ) Objective of the study Height profile of temperature obtained from Lidar and HALOE satellite data... for the height range of 30-90 km with height and time resolutions of 300 m and 250 sec. Time period of data : 2000-0200 LT. 2. HALOE satellite data : The overpass ( 10.46°N; 73.31°E ) HALOE satellite observation for the same day. The data corresponds to Net...

  8. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    Science.gov (United States)

    Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal

    2017-12-01

    Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  9. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Yang Fu

    Full Text Available Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2 product, we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model, 79% (the Biome-BGC phenology model, 73% (the Number of Growing Days model and 68% (the Number of Chilling Days-Growing Degree Day model of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  10. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Science.gov (United States)

    Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping

    2014-01-01

    Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  11. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    P. M. James

    Full Text Available An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel’s potential vorticity on isentropes (IPV both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristic of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology

  12. Mass balance investigation of perfluorooctanoic acid PFOA environmental levels, emissions and sinks in the northern hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, I.T.; Prevedouros, K. [Stockholm Univ., Stockholm (Sweden); Buck, R.C.; Korzeniowski, S.H. [Dupont Chemical Solutions, Wilmington, DE (United States)

    2005-07-01

    Perfluoroalkyl sulfonic acids (PFAS) and perfluoroalkyl carboxylic acids (PFCAs) and their precursors are found in a wide array of environmental samples, and have no known degradation mechanisms. PFCAs have been used for over 50 years as processing aids in the manufacture of fluoropolymers. PFASs and fluorotelomer products are used in a wide variety of products and industrial processes. This study provided a detailed account of direct and indirect sources of perfluorooctanoic acid (PFOA) in the environment. A mass balance investigation between sources and amounts residing in the northern hemisphere was conducted, and the magnitude of historical removal processes was estimated. It was hypothesized that the majority of historical PFOA production use, and emissions occurred in the northern hemisphere. The study considered both direct and indirect sources. Production and emissions were calculated from a number of published and unpublished chemical industry data. A mass balance computation was performed to estimate historical PFOA emissions with existing environmental levels and historical losses. A literature search was used to estimate representative PFOA levels in sediments and biota. The study confirmed the importance of surface water compartments for PFOA storage. Important sink processes included physical mixing and sedimentation to the deep oceans and sediment burial. Maximum and minimum ranges of the sum of the total environmental inventory and historical sink processes overlapped the ranges of emission estimates. It was concluded that a quantitative comparison of the atmospheric transport of PFOA precursors and the aquatic transport of the substances showed that ocean transport is the most significant transport routes of PFOAs. 13 refs., 1 tab., 1 fig.

  13. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    P. M. James

    2002-06-01

    Full Text Available An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel’s potential vorticity on isentropes (IPV both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristic of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology

  14. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation.

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Ciais, Philippe; Myneni, Ranga B; Chen, Anping; Chevallier, Frédéric; Dolman, Albertus J; Janssens, Ivan A; Peñuelas, Josep; Zhang, Gengxin; Vicca, Sara; Wan, Shiqiang; Wang, Shiping; Zeng, Hui

    2013-09-05

    Temperature data over the past five decades show faster warming of the global land surface during the night than during the day. This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, Tmax, whereas plant respiration occurs throughout the day and is therefore influenced by both Tmax and the minimum daily temperature, Tmin. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO2) fluxes. Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and Tmin, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 ± 11% for a +1 °C anomaly in Tmax from May to September over lands north of 51° N, but decreased by 28 ± 14% for a +1 °C anomaly in Tmin. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures.

  15. Observational characteristics of cloud radiative effects over three arid regions in the Northern Hemisphere

    Science.gov (United States)

    Li, Jiandong; Wang, Tianhe; Habib, Ammara

    2017-08-01

    Cloud-radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects (CREs) are used to quantitatively measure the aforementioned climatic role. This study investigates the characteristics of CREs and their temporal variations over three arid regions in central Asia (CA), East Asia (EA), and North America (NA), based on recent satellite datasets. Our results show that the annual mean shortwave (SW) and net CREs (SWCRE and NCRE) over the three arid regions are weaker than those in the same latitudinal zone of the Northern Hemisphere. In most cold months (November-March), the longwave (LW) CRE is stronger than the SWCRE over the three arid regions, leading to a positive NCRE and radiative warming in the regional atmosphere-land surface system. The cold-season mean NCRE at the top of the atmosphere (TOA) averaged over EA is 4.1 W m-2, with a positive NCRE from November to March, and the intensity and duration of the positive NCRE is larger than that over CA and NA. The CREs over the arid regions of EA exhibit remarkable annual cycles due to the influence of the monsoon in the south. The TOA LWCRE over arid regions is closely related to the high-cloud fraction, and the SWCRE relates well to the total cloud fraction. In addition, the relationship between the SWCRE and the low-cloud fraction is good over NA because of the considerable occurrence of low cloud. Further results show that the interannual variation of TOA CREs is small over the arid regions of CA and EA, but their surface LWCREs show certain decreasing trends that correspond well to their decreasing total cloud fraction. It is suggested that combined studies of more observational cloud properties and meteorological elements are needed for indepth understanding of cloud-radiation processes over arid regions of the Northern Hemisphere.

  16. Properties of Linear Contrails Detected in 2012 Northern Hemisphere MODIS Imagery

    Science.gov (United States)

    Duda, David P.; Chee, Thad; Khlopenkov, Konstantin; Bedka, Sarah; Spangenberg, Doug; Minnis, Patrick

    2015-01-01

    Observation of linear contrail cirrus coverage and retrieval of their optical properties are valuable data for validating atmospheric climate models that represent contrail formation explicitly. These data can reduce our uncertainty of the regional effects of contrail-generated cirrus on global radiative forcing, and thus improve our estimation of the impact of commercial aviation on climate change. We use an automated contrail detection algorithm (CDA) to determine the coverage of linear persistent contrails over the Northern Hemisphere during 2012. The contrail detection algorithm is a modified form of the Mannstein et al. (1999) method, and uses several channels from thermal infrared MODIS data to reduce the occurrence of false positive detections. A set of contrail masks of varying sensitivity is produced to define the potential range of uncertainty in contrail coverage estimated by the CDA. Global aircraft emissions waypoint data provided by FAA allow comparison of detected contrails with commercial aircraft flight tracks. A pixel-level product based on the advected flight tracks defined by the waypoint data and U-V wind component profiles from the NASA GMAO GEOS-4 reanalysis has been developed to assign a confidence of contrail detection for the contrail mask. To account for possible contrail cirrus missed by the CDA, a post-processing method based on the assumption that pixels adjacent to detected linear contrails will have radiative signatures similar to those of the detected contrails is applied to the Northern Hemisphere data. Results from several months of MODIS observations during 2012 will be presented, representing a near-global climatology of contrail coverage. Linear contrail coverage will be compared with coverage estimates determined previously from 2006 MODIS data.

  17. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere.

    Science.gov (United States)

    Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; Huang, Jian-Guo; Jyske, Tuula; Kašpar, Jakub; King, Gregory; Krause, Cornelia; Liang, Eryuan; Mäkinen, Harri; Morin, Hubert; Nöjd, Pekka; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K; Saracino, Antonio; Swidrak, Irene; Treml, Václav

    2016-11-01

    The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C -1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere. © 2016 John Wiley & Sons Ltd.

  18. Response of equatorial and low latitude mesosphere lower thermospheric dynamics to the northern hemispheric sudden stratospheric warming events

    Science.gov (United States)

    Koushik, N.; Kumar, Karanam Kishore; Ramkumar, Geetha; Subrahmanyam, K. V.

    2018-04-01

    The changes in zonal mean circulation and meridional temperature gradient brought about by Sudden Stratospheric Warming (SSW) events in polar middle atmosphere are found to significantly affect the low latitude counterparts. Several studies have revealed the signatures of SSW events in the low latitude Mesosphere- Lower Thermosphere (MLT) region. Using meteor wind radar observations, the present study investigates the response of semidiurnal oscillations and quasi 2-day waves in the MLT region, simultaneously over low latitude and equatorial stations Thumba (8.5oN, 76.5oE) and Kototabang (0.2oS, 100oE). Unlike many case studies, the present analysis examines the response of low and equatorial latitude MLT region to typical polar stratospheric conditions viz., Quiet winter, Major SSW winter and Minor SSW winter. The present results show that (i) the amplitudes of semidiurnal oscillations and quasi 2-day waves in the equatorial and low latitude MLT region enhance in association with major SSW events, (ii) the semidiurnal oscillations show significant enhancement selectively in the zonal and meridional components over the Northern Hemispheric low latitude and the equatorial stations, respectively (iii) The minor SSW event of January 2012 resulted in anomalously large amplitudes of quasi 2- day waves without any notable increase in the amplitude of semidiurnal oscillations. The significance of the present study lies in comprehensively bringing out the signatures of SSW events in the semidiurnal oscillations and quasi 2-day waves in low latitude and equatorial MLT region, simultaneously for the first time over these latitudes.

  19. Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2013-10-01

    Full Text Available Precise understanding of Greenland temperature variability is important in two ways. First, Greenland ice sheet melting associated with rising temperature is a major global sea level forcing, potentially affecting large populations in coming centuries. Second, Greenland temperatures are highly affected by North Atlantic Oscillation/Arctic Oscillation (NAO/AO and Atlantic multidecadal oscillation (AMO. In our earlier study, we found that Greenland temperature deviated negatively (positively from northern hemispheric (NH temperature trend during stronger (weaker solar activity owing to changes in atmospheric/oceanic changes (e.g. NAO/AO over the past 800 yr (Kobashi et al., 2013. Therefore, a precise Greenland temperature record can provide important constraints on the past atmospheric/oceanic circulation in the region and beyond. Here, we investigated Greenland temperature variability over the past 4000 yr reconstructed from argon and nitrogen isotopes from trapped air in a GISP2 ice core, using a one-dimensional energy balance model with orbital, solar, volcanic, greenhouse gas, and aerosol forcings. The modelled northern Northern Hemisphere (NH temperature exhibits a cooling trend over the past 4000 yr as observed for the reconstructed Greenland temperature through decreasing annual average insolation. With consideration of the negative influence of solar variability, the modelled and observed Greenland temperatures agree with correlation coefficients of r = 0.34–0.36 (p = 0.1–0.04 in 21 yr running means (RMs and r = 0.38–0.45 (p = 0.1–0.05 on a centennial timescale (101 yr RMs. Thus, the model can explain 14 to 20% of variance of the observed Greenland temperature in multidecadal to centennial timescales with a 90–96% confidence interval, suggesting that a weak but persistent negative solar influence on Greenland temperature continued over the past 4000 yr. Then, we estimated the distribution of multidecadal NH and northern high

  20. A polar cap absorption event observed using the Southern Hemisphere SuperDARN radar network.

    Science.gov (United States)

    Breed, A.; Morris, R.; Parkinson, M.; Duldig, M.; Dyson, P.

    A large X5 class solar flare and coronal mass ejection were observed emanating from the sun on July 14, 2000. Approximately 10 minutes later a large cosmic ray ground level enhancement was observed using neutron monitors located at Mawson station (70.5°S CGM), Antarctica; Large increases in proton flux were also observed using satellites during this time. This marked the start of a large polar cap absorption event with cosmic noise absorption peaking at 30 dB, as measured by a 30 MHz riometer located at Casey station (80.4°S CGM), Antarctica. The spatial evolution of this event and its subsequent recovery were studied using the Southern Hemisphere SuperDARN radar network, including the relatively low latitude observation provided by the Tasman International Geospace Environment Radar (TIGER) located on Bruny Island (54.6°S GGM), Tasmania. When the bulk of the CME arrived at the Earth two days later it triggered an intense geomagnetic storm. This paper presents observations of the dramatic sequence of events.

  1. Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Lanhui Wang

    2017-12-01

    Full Text Available Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH. Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations of length of vegetation growing season (LOS and vegetation productivity assessed by the growing season NDVI integral (GSI in the NH (>30°N to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS Normalized Difference Vegetation Index (NDVI dataset for a 32-year period (1982–2013. A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI, whereas diverging trends (opposing significant trends in LOS and GSI cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands, whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA and North America (NA. Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced

  2. Climate controls on future Northern Hemisphere snow-dependent water availability

    Science.gov (United States)

    Mankin, J. S.; Diffenbaugh, N. S.

    2013-12-01

    Mountain ice and snowpack supplies water for up to 40 percent of the worlds' irrigation, plays a critical role in providing hydropower, and a host of ecosystem functions in forests, riparian, and downstream communities. Climate models project that global warming from increased greenhouse gas concentrations will induce important changes in the quantity and timing of runoff from these mountain systems. Given the strategic importance of seasonal snow accumulation and the timing of its runoff for downstream systems we ask two sets of model ensembles four questions: 1. What are projected trends in Northern Hemisphere snow accumulation under the RCP8.5 forcing scenario? 2. Where and when are such trends driven by temperature or precipitation variability? 3. For regions of the world where temperature variability dominates precipitation variability in accounting for the accumulation of snow, how much of the uncertainty across the ensembles is attributable to internal variability versus model uncertainty? 4. Given these uncertainties, what are the implications of future snow accumulation for the timing and runoff of irrigation water availability in snow-dependent regions? We analyze the spatial and temporal variation in the signal-to-noise ratio of trends in Northern Hemisphere snow accumulation and the factors that drive these trends. We use two sets of climate experiments for our analysis, a single model's 40-member ensemble from version 3 of the Community Climate System Model (CCSM3.0) and the set of models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) with at least four realizations for the same initialization and parameterization schemes. This experimental design, centered on each model's having an ensemble of integrations with only minor differences in the initial atmospheric state (in the case of CCSM3.0) or the atmospheric and ocean state (in the case of the CMIP5) and the same external forcing, provides a sample to estimate each model

  3. Phylogeny and rapid northern and southern hemisphere speciation of goldfinches during the Miocene and Pliocene epochs.

    Science.gov (United States)

    Arnaiz-Villena, A; Alvarez-Tejado, M; Ruíz-del-Valle, V; García-de-la-Torre, C; Varela, P; Recio, M J; Ferre, S; Martínez-Laso, J

    1998-09-01

    Mitochondrial cytochrome b (cyt b) from 25 out of 31 extant goldfinches, siskins, greenfinches and redpolls (genus Carduelis) has been sequenced from living samples taken around the world, specimens have also been photographed. Phylogenetic analysis consistently gave the same groups of birds, and this grouping was generally related to geographical proximity. It has been supposed that Pleistocene glaciations played a crucial role in the origin of extant diversity and distribution of Northern Hemisphere vertebrates. Molecular comparison of most extant songbird species belonging to the genus Carduelis does not support this assertion. The fossil record of chicken and pheasant divergence time has been used to calibrate the molecular clock; cyt b DNA dendrograms suggest that speciation in Carduelinae birds occurred during the Miocene and Pliocene Epochs (9-2 million years ago) in both the Northern and Southern Hemispheres. Only about 4% average amount of nucleotide substitution per lineage is found between the most distant Carduelis species; this suggests a remarkably rapid radiation when compared with the radiation of other passerine songbird genera. In addition, a continuum of small songbird speciation may be found during the Miocene Epoch in parallel with speciation of other orders (i.e. Galliformes, chicken/pheasant). Pleistocene glaciations may have been important in subspeciation (i.e. Eastern European grey-headed goldfinches/Western European black-headed goldfinches) and also in ice-induced vicariance (isolation) (i.e. siskin in Western Europe vs. siskin in Far East Asia) around the world. European isolated Serinus citrinella (citril finch) is not a canary, but a true goldfinch. South American siskins have quickly radiated in the last 4 million years coinciding with the emergence of the Isthmus of Panama; probably, a North American siskin related to C. notata invaded a suitable and varied biotope (the South American island) for Carduelis birds. North American

  4. Spring migration of waterfowl in the Northern Hemisphere: a management and conservation perspective

    Science.gov (United States)

    Stafford, Joshua D.; Janke, Adam K.; Anteau, Michael J.; Pearse, Aaron T.; Fox, Anthony D.; Elmberg, Johan; Straub, Jacob N.; Eichholz, Michael W.; Arzel, Céline

    2014-01-01

    Spring migration is a key part of the annual cycle for waterfowl populations in the northern hemisphere, due to its temporal proximity to the breeding season and because resources may be limited at one or more staging sites. Research based on field observations during spring lags behind other periods of the year, despite the potential for fitness consequences through diminished survival or cross-seasonal effects of conditions experienced during migration. Consequently, conservation strategies for waterfowl on spring migration are often only refined versions of practices used during autumn and winter. Here we discuss the current state of knowledge of habitat requirements for waterfowl at their spring migratory sites and the intrinsic and extrinsic factors that lead to variability in those requirements. The provision of plant foods has become the main conservation strategy during spring because of the birds’ energy requirements at this time, not only to fuel migration but to facilitate early clutch formation on arrival at the breeding grounds. Although energy sources are important to migrants, there is little evidence on the extent to which the availability of carbohydrate-based food is limiting for many migratory waterfowl populations.  Such limitation is relatively unlikely among populations that exploit agricultural grain during migration (e.g. arctic-nesting geese), suggesting that conservation strategies for these populations may be misplaced. In general, however, we found few cases in which an ecological understanding of spring-migrating waterfowl was sufficient to indicate true resource limitation during migration, and still fewer cases where conservation efforts ameliorated these limitations. We propose a framework that aims to address knowledge gaps and apply empirical research results to conservation strategies based on documented limitations and associated fitness impacts on migrating waterfowl. Such a strategy would improve

  5. Final closure of the Panamaian Isthmus and the onset of northern hemisphere glaciation

    Science.gov (United States)

    Sarnthein, M.; Bartoli, G.; Weinelt, M.; Erlenkeuser, H.; Garbe-Schoenberg, D.; Lea, D. W.

    2005-12-01

    The Greenland ice sheet forms a key factor controlling the Quaternary-style glacial scenario. However, origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma have remained controversial. For this phase of intense cooling Ravelo et al. (2004) proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 /degC surface water warming during warm stages from 2.95 to 2.82 Ma (until glacial stage G10). These records support previous models (Haug and Tiedemann, 1998) claiming that the final closure of the Panama Isthmus (3.0 - ~2.5 Ma; Groeneveld, 2005) induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic thermohaline circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at glacial stage G6 (2.74 Ma). In summary, we see a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today. G r o e n e v e l d, J., The final closure of the Central American Seaway. PhD Thesis Kiel, 2005. H a u g, G. and T i e d e m a n n , R., 1 9 9 8. Nature 393, 676-678. R a v e l o , A.C., e t a l ., 2004. Nature 429, 263-267.

  6. Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium

    Directory of Open Access Journals (Sweden)

    M. Widmann

    2010-09-01

    Full Text Available Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past.

    Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode.

  7. How We Got to the Northern Hemisphere Ice Ages: Late Miocene Global Cooling and Plate Tectonic CO2 Forcing

    Science.gov (United States)

    Herbert, T.; Dalton, C. A.; Carchedi, C.

    2017-12-01

    The evolution of Earth's climate between "refrigeration" of East Antarctica and the onset of cyclic Northern Hemisphere glaciation spanned more than 11 Myr. In the latest Miocene (Messinian) time, approximately half way on this journey, changes on land, ranging from the expansion of arid zones to major floral and faunal ecosystem shifts, accelerated. Recent compilations of marine surface temperatures reveal that global cooling from the Miocene Optimum (14-16Ma) also accelerated in late Miocene (7-5.35 Ma) time to reach temperatures not much above Holocene conditions. Both hemispheres cooled in parallel, with the changes amplified at higher latitudes in comparison to the tropics. Despite the strong circumstantial case for CO2 decline as the dominant cause of late Miocene climatic and evolutionary change, proxy indicators of CO2concentrations paint an equivocal picture of greenhouse forcing. Here we provide evidence that global sea floor spreading (SFS) rates decelerated at exactly the times of major climatic cooling, linking a decline in tectonic degassing (at both subduction zones and mid-ocean ridges) to fundamental shifts in the global carbon cycle. Our work utilizes newly available global compilations of seafloor fabric and marine magnetic anomalies provided by the NSF-funded Global Seafloor Fabric and Magnetic Lineation Data Base Project. Previous global compilations of SFS typically binned estimates over 10 Myr increments, losing critical resolution on the timescale of late Neogene climate changes. We further improve the signal:noise of SFS estimates by incorporating recent advances in the astronomical calibration of the Miocene geomagnetic polarity timescale. We use two approaches to compile spreading rate estimates over the past 20 Myr at each spreading system: optimized finite rotation calculations, and averages of sea floor-spreading derived from the distances of magnetic lineations along flow lines on the sea floor. Weighted by ridge length, we find an 25

  8. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Piao, Shilong; Ciais, Philippe; Guo, Weichao; Yin, Yi; Poulter, Ben; Peng, Changhui; Viovy, Nicolas; Vuichard, Nicolas; Wang, Pei; Huang, Yongmei

    2017-06-01

    Interannual air temperature variability has changed over some regions in Northern Hemisphere (NH), accompanying with climate warming. However, whether and to what extent it regulates the interannual sensitivity of vegetation growth to temperature variability (i.e., interannual temperature sensitivity)—one central issue in understanding and predicting the responses of vegetation growth to changing climate—still remains poorly quantified and understood. Here we quantify the relationships between the interannual temperature sensitivity of mean growing-season (April-October) normalized difference vegetation index (NDVI) and ecosystem model simulations of gross primary productivity (GPP), and variability in mean growing-season temperature for forest, shrub, and grass over NH. We find that higher interannual variability in mean growing-season temperature leads to consistent decrease in interannual temperature sensitivity of mean growing-season NDVI among all vegetation types but not in model simulations of GPP. Drier condition associates with 130 ± 150% further decrease in interannual temperature sensitivity of mean growing-season NDVI by temperature variability in forest and shrub. These results illustrate that varying temperature variability can significantly regulate the interannual temperature sensitivity of vegetation growth over NH, interacted with drought variability and nonlinear responses of photosynthesis to temperature. Our findings call for an improved characterization of the nonlinear effects of temperature variability on vegetation growth within global ecosystem models.

  9. Biodiversity and Complexity Influence Seagrass Functioning: A Comparative-Experimental Approach Across the Northern Hemisphere

    Science.gov (United States)

    Reynolds, P. L.

    2016-02-01

    Coastal ecosystems are mediated by interactions between resource supply, consumer pressure, and community composition, with the balance shifting along environmental gradients. Comparative-experimental approaches, including observational and experimental networks, are a promising way forward to organizing this complexity into predictive models and to quantify the role of biodiversity on ocean processes. Through the Zostera Experimental Network we utilize this approach to study the community ecology of eelgrass (Zostera marina), the most widespread marine plant and foundation of important but threatened coastal ecosystems throughout the northern hemisphere. In 2014, parallel field surveys and experiments were conducted at 50 field sites to measure correlations between mesograzer species diversity, eelgrass genetic diversity, predation pressure, and seagrass dynamics. Biodiversity was positively correlated with plant and grazer biomass across sites. Predation pressure in these systems decreased with grazer biomass and latitude. In subsequent experiments in 2015, habitat complexity influenced the grazer community. These results suggest that the impacts of biodiversity loss on ecosystems will be of comparable magnitude to those of other global change factors and should be accounted for in relevant monitoring and restoration activities.

  10. Quantification of temperature persistence over the Northern Hemisphere land-area

    Science.gov (United States)

    Pfleiderer, Peter; Coumou, Dim

    2017-10-01

    Extreme weather events such as heat waves and floods are damaging to society and their contribution to future climate impacts is expected to be large. Such extremes are often related to persistent local weather conditions. Weather persistence is linked to sea surface temperatures, soil-moisture (especially in summer) and large-scale circulation patterns and these factors can alter under past and future climate change. Though persistence is a key characteristic for extreme weather events, to date the climatology and potential changes in persistence have only been poorly documented. Here, we present a systematic analysis of temperature persistence for the northern hemisphere land area. We define persistence as the length of consecutive warm or cold days and use spatial clustering techniques to create regional persistence distributions. We find that persistence is longest in the Arctic and shortest in the mid-latitudes. Parameterizations of the regional persistence distributions show that they are characterized by an exponential decay with a drop in the decay rate for very persistent events, implying that feedback mechanisms are important in prolonging these events. For the mid-latitudes, we find that persistence in summer has increased over the past 60 years. The changes are particularly pronounced for prolonged events suggesting a lengthening in the duration of heat waves.

  11. PROBING THE LOCAL BUBBLE WITH DIFFUSE INTERSTELLAR BANDS. II. THE DIB PROPERTIES IN THE NORTHERN HEMISPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Farhang, Amin; Khosroshahi, Habib G.; Javadi, Atefeh; Molaeinezhad, Alireza; Tavasoli, Saeed; Habibi, Farhang; Kourkchi, Ehsan; Rezaei, Sara; Saberi, Maryam [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746 Tehran (Iran, Islamic Republic of); Van Loon, Jacco Th.; Bailey, Mandy [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Hardy, Liam, E-mail: a.farhang@ipm.ir [Isaac Newton Group, Apartado 321, E-38700 Santa Cruz de La Palma (Spain)

    2015-02-10

    We present a new high signal-to-noise ratio spectroscopic survey of the Northern hemisphere to probe the Local Bubble and its surroundings using the λ5780 Å and λ5797 Å diffuse interstellar bands (DIBs). We observed 432 sightlines to a distance of 200 pc over a duration of three years. In this study, we establish the λ5780 and λ5797 correlations with Na I, Ca II and E {sub B-V}, for both inside and outside the Local Bubble. The correlations show that among all neutral and ionized atoms, the correlation between Ca II and λ5780 is stronger than its correlation with λ5797, suggesting that λ5780 is more associated with regions where Ca{sup +} is more abundant. We study the λ5780 correlation with λ5797, which shows a tight correlation within and outside the Local Bubble. In addition, we investigate the DIB properties in UV irradiated and UV shielded regions. We find that, within and beyond the Local Bubble, λ5797 is located in denser parts of clouds, protected from UV irradiation, while λ5780 is located in the low-density regions of clouds.

  12. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.

    Science.gov (United States)

    Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett

    2018-01-01

    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.

  13. On the statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter

    International Nuclear Information System (INIS)

    Perlwitz, J.; Graf, H.F.

    1994-01-01

    The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopotential and temperature height fields of the northern hemisphere are determined applying the Canonical Correlation Analysis (CCA). With this linear multivariate technique the coupled modes of variability of time series of two fields are isolated in the EOF space. The one data set is the 50 hPa geopotential field, the other set consists of different height fields of the tropospheric pressure levels (200 hPa, 500 hPa, 700 hPa, 850 hPa) and the temperature of the 850 hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These 'Winter Warmings' are observed e.g. after violent volcanic eruptions. The barotropic mode is characterized by a zonal wave number one in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by Labitzke and van Loon (1987) that this mode can be enhanced e.g. by El Ninos via the intensification of the Aleutian low. (orig.)

  14. Proxy-based Northern Hemisphere temperature reconstruction for the mid-to-late Holocene

    Science.gov (United States)

    Pei, Qing; Zhang, David D.; Li, Jinbao; Lee, Harry F.

    2017-11-01

    The observed late twentieth century warming must be assessed in relation to natural long-term variations of the climatic system. Here, we present a Northern Hemisphere (NH) temperature reconstruction for the mid-to-late Holocene of the past 6000 years, based on a synthesis of existing paleo-temperature proxies that are capable of revealing centennial-scale variability. This includes 56 published temperature records across the NH land areas, with a sampling resolution ranging from 1 to 100 years and a time span of at least 1000 years. The composite plus scale (CPS) method is adopted with spatial weighting to develop the NH temperature reconstruction. Our reconstruction reveals abrupt cold epochs that match well the Bond events during the past 6000 years. The study further reveals two prominent cycles in NH temperature: 1700-2000-year cycle during the mid-to-late Holocene and 1200-1500-year cycle during the past 3500 years. Our reconstruction indicates that the late twentieth century NH temperature and its rate of warming are both unprecedentedly high over the past 5000 years. By comparing our reconstruction with the projected temperature increase scenarios, we find that temperature by the end of the twenty-first century would likely exceed any peaks during the mid-to-late Holocene.

  15. Robust signal of Northern Hemisphere summer monsoon variability during recent warming period

    Science.gov (United States)

    Kim, Hyung Jin

    2013-04-01

    Coupled global climate models (CGCMs) predict the overall weakening of tropical circulations in an anthropogenically warmed climate in accordance with a simple thermodynamic theory. However, the actual response of the climate systems, in particular, over the recent decades of unprecedented warming still remains a topic of debate. Here, we show that in a suite of cutting-edge atmospheric GCMs (AGCMs), the simulated Northern Hemisphere summer monsoon (NHSM) variability, measured by vertical wind shear of zonal winds, is in excellent agreement with observations on both interannual and inter-decadal timescales during 1979-2008. Furthermore, the trend of the NHSM variability is nearly unanimously enhanced among the AGCMs. The overriding factors in determining the simulated NHSM variations are El Niño on year-to-year timescale, and Mega-ENSO (defined as a leading mode of internal sea surface temperature variability over the Pacific) and Atlantic Multi-decadal Oscillation on decadal timescale and beyond, which ascertains the findings of a recent observational study. These results suggest that in contrast to the pivotal role of green-house gas forcing in the simulated future warmer climate, the basin-wide natural SST variability has exerted significant impacts on Earth's climate during the recent 30-year period.

  16. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool.

    Science.gov (United States)

    González, Eduardo; Martínez-Fernández, Vanesa; Shafroth, Patrick B; Sher, Anna A; Henry, Annie L; Garófano-Gómez, Virginia; Corenblit, Dov

    2018-04-25

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceae regeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The Search for Muon Neutrinos from Northern HemisphereGamma-Ray Bursts with AMANDA

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.

    2007-05-08

    We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the Northern Hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. Based on our observations of zero neutrinos during and immediately prior to the GRBs in the dataset, we set the most stringent upper limit on muon neutrino emission correlated with gamma-ray bursts. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalization at 1 PeV of E{sup 2}{Phi}{sub {nu}} {le} 6.0 x 10{sup -9} GeV cm{sup -2}s{sup -1}sr{sup -1}, with 90% of the events expected within the energy range of {approx}10 TeV to {approx}3 PeV. The impact of this limit on several theoretical models of GRBs is discussed, as well as the future potential for detection of GRBs by next generation neutrino telescopes. Finally, we briefly describe several modifications to this analysis in order to apply it to other types of transient point sources.

  18. A mesoscale model study of atmospheric circulations for the northern hemisphere summer on Mars

    Science.gov (United States)

    Tyler, Daniel, Jr.

    The Penn-State/NCAR MM5 mesoscale model was adapted for mesoscale simulations of the Martian atmosphere (the OSU MMM5). The NASA Ames Mars GCM provides initial and boundary conditions. High-resolution maps for albedo, thermal inertia and topography were developed from Mars Global Surveyor (MGS) data; these baseline maps are processed to appropriate resolutions for use in the GCM and the mesoscale model. The OSU MMM5 is validated in Chapter 2 by comparing with surface meteorology observed at the Viking Lander 1 (VL1) and Mars Pathfinder (MPF) landing sites. How the diurnal cycle of surface pressure (the surface pressure tide) is affected by boundaries, domain/nest choices and the resolution of surface properties (topography, albedo and thermal inertia) is examined. Chapter 2 additionally shows the influence of regional slope flows in the diurnal surface pressure cycle for certain locations on Mars. Building on the methods of Chapter 2, Chapter 3 describes the northern midsummer polar circulation and the circulations (both large and small scale) that influence it. Improvements to the model for these studies include: the topographical gradient is now considered when computing surface insolation, and the thermal inertia maps and model initialization are improved for high latitudes; this yields a realistic simulation of surface temperatures for the North Pole Residual Cap (NPRC) and the surrounding region. The midsummer polar circulation is vigorous, with abundant and dynamically important transient eddies. The preferred locations of transients varies significantly during this study, between L s = 120 and L s = 150. At L s = 120 transient circulations are seen primarily along the NPRC margin, consistently producing strong flow over the residual cap (~15 m/s). By L s = 135, transient eddies form a "storm track" between the northern slopes of Tharsis and the NPRC. By L s = 150, the circulation is becoming strong and winter-like. These transient eddies may be important in

  19. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere.

    Science.gov (United States)

    Tan, Jianguang; Piao, Shilong; Chen, Anping; Zeng, Zhenzhong; Ciais, Philippe; Janssens, Ivan A; Mao, Jiafu; Myneni, Ranga B; Peng, Shushi; Peñuelas, Josep; Shi, Xiaoying; Vicca, Sara

    2015-01-01

    Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day- vs. night-time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone--total area 12.6×10(6) km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes

  20. A very deep ozone minihole in the Northern Hemisphere stratosphere at mid-latitudes during the winter of 2000

    OpenAIRE

    Semane, N.; Teitelbaum, H.; Basdevant, C.

    2011-01-01

    Ozone miniholes appear on total ozone maps as localized ozone minima with horizontal extentsof a few hundreds of kilometres. They are characterized by a rapid and small-scale appearanceof a columnar ozone decrease with an equally rapid recovery after a few days. They are frequentlyobserved at Northern Hemisphere mid-latitudes in winter. Evolving too rapidly to be the resultof an ozone chemical destruction, miniholes should be the result of meteorological processes.According to some authors, m...

  1. Molecular phylogenetics and evolutionary history of sect. Quinquefoliae (Pinus): implications for Northern Hemisphere biogeography.

    Science.gov (United States)

    Hao, Zhen-Zhen; Liu, Yan-Yan; Nazaire, Mare; Wei, Xiao-Xin; Wang, Xiao-Quan

    2015-06-01

    Climatic changes and tectonic events in the Cenozoic have greatly influenced the evolution and geographic distribution of the temperate flora. Such consequences should be most evident in plant groups that are ancient, widespread, and diverse. As one of the most widespread genera of trees, Pinus provides a good model for investigating the history of species diversification and biogeographic disjunction in the Northern Hemisphere. In this study, we reconstructed the phylogeny and investigated the evolutionary and biogeographic history of sect. Quinquefoliae (Pinus), a species-rich lineage disjunctly distributed in Asia, Europe and North America, based on complete taxon sampling and by using nine DNA fragments from chloroplast (cp), mitochondrial (mt) and nuclear genomes. The monophyly of the three subsections, Krempfianae, Gerardianae, and Strobus, is well-supported by cpDNA and nuclear gene phylogenies. However, neither subsect. Gerardianae nor subsect. Strobus forms a monophyletic group in the mtDNA phylogeny, in which sect. Quinquefoliae was divided into two major clades, one consisting of the North American and northeastern Asian species as well as the European P. peuce of subsect. Strobus, and the other comprising the remaining Eurasian species belonging to three subsections. The significant topological incongruence among the gene trees, in conjunction with divergence time estimation and ancestral area reconstruction, indicates that both ancient and relatively recent introgressive hybridization events occurred in the evolution of sect. Quinquefoliae, particularly in northeastern Asia and northwestern North America. In addition, the phylogenetic analysis suggests that the species of subsect. Strobus from subtropical eastern Asia and neighboring areas may have a single origin, although species non-monophyly is very widespread in the nuclear gene trees. Moreover, our study seems to support a Tethyan origin of sect. Quinquefoliae given the distributions and

  2. The quasi-two-day wave studied using the Northern Hemisphere SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    S. B. Malinga

    2007-08-01

    Full Text Available Data from the Super Dual Radar Network (SuperDARN radars for 2002 were used to study the behaviour of the quasi-two-day wave (QTDW in the Northern Hemisphere auroral zone. The period of the QTDW is observed to vary in the range of ~42–56 h, with the most dominant period being ~48 h and secondary peaks at ~42- and ~52-h. The spectral power shows a seasonal variation with a peak power (max~70 in summer. The power shows variations of several days and there is also evidence of changes in wave strength with longitude. The 42-h and the 48-h components tend to be strongly correlated in summer. The onset of enhanced wave activity tends to coincide with the westward acceleration of the zonal mean flow and occurs at a time of strong southward meridional flow. The most frequent instantaneous hourly period is in the 40 to 50 h period band, in line with the simultaneous dominance of the 42-h and the 48-h components. The wave numbers are less variable and are around −2 to −4 during times of strong wave activity. For a period of ~48 h, the zonal wave number is about −3 to −4, using a negative value to indicate westward propagating waves. The 42-h and the 52-h components cover a wider band in the −4 to 1 range. The wide zonal wave number spectrum in our results may account for the observed longitudinal variation in the spectral power of the wave.

  3. Contrasting meridional structures of stratospheric and tropospheric planetary wave variability in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-11-01

    Full Text Available The meridional structures of stratospheric and tropospheric planetary wave variability (PWV over the Northern Hemisphere (NH extratropics were investigated and compared using reanalysis data. By performing the spherical double Fourier series expansion of geopotential height data, the horizontal structures of PWV at each vertical level could be examined in the two-dimensional (2D wavenumber (zonal and meridional wavenumbers space. Comparing the amplitudes of wave components during the last three decades, the results suggested that the structures of PWV in the NH troposphere significantly differ from the stratospheric counterparts. The PWV in the troposphere shows multiple meridional wave-like structures, most pronounced for the meridional dipole; while in contrast, PWV in the stratosphere mainly shows large-scale zonal wave patterns, dominated by zonal waves 1 and 2, and have little wave-like fluctuation in the latitudinal direction. The dominant patterns of the NH PWV also show contrasting features of meridional structure between the stratosphere and the troposphere. As represented in the 2D wavenumber space, the leading two empirical orthogonal functions of PWV in the stratosphere largely exhibit the zonal wave 1 pattern, while those in the troposphere clearly show meridional wave-like structures and are dominated by the dipole. The refractive index was derived based on the zonal mean basic state to qualitatively interpret the observational findings. The results suggested that the basic state in the NH troposphere is much more favourable for latitudinally propagating stationary waves than the stratosphere. The difference in meridional structure between stratospheric and tropospheric planetary waves can be well captured in a linear baroclinic model with the observed zonal mean basic state. Furthermore, both theoretical and modelling analyses demonstrated that the fact that zonal wave patterns are preferred in the NH stratosphere may be partly

  4. Biogeochemical cycling in the Bering Sea over the onset of major Northern Hemisphere Glaciation

    Science.gov (United States)

    Swann, George E. A.; Snelling, Andrea M.; Pike, Jennifer

    2016-09-01

    The Bering Sea is one of the most biologically productive regions in the marine system and plays a key role in regulating the flow of waters to the Arctic Ocean and into the subarctic North Pacific Ocean. Cores from Integrated Ocean Drilling Program (IODP) Expedition 323 to the Bering Sea provide the first opportunity to obtain reconstructions from the region that extend back to the Pliocene. Previous research at Bowers Ridge, south Bering Sea, has revealed stable levels of siliceous productivity over the onset of major Northern Hemisphere Glaciation (NHG) (circa 2.85-2.73 Ma). However, diatom silica isotope records of oxygen (δ18Odiatom) and silicon (δ30Sidiatom) presented here demonstrate that this interval was associated with a progressive increase in the supply of silicic acid to the region, superimposed on shift to a more dynamic environment characterized by colder temperatures and increased sea ice. This concluded at 2.58 Ma with a sharp increase in diatom productivity, further increases in photic zone nutrient availability and a permanent shift to colder sea surface conditions. These transitions are suggested to reflect a gradually more intense nutrient leakage from the subarctic northwest Pacific Ocean, with increases in productivity further aided by increased sea ice- and wind-driven mixing in the Bering Sea. In suggesting a linkage in biogeochemical cycling between the south Bering Sea and subarctic Northwest Pacific Ocean, mainly via the Kamchatka Strait, this work highlights the need to consider the interconnectivity of these two systems when future reconstructions are carried out in the region.

  5. Arctic Sea-ice and Patterns of the Northern Hemisphere Atmospheric Circulation

    Science.gov (United States)

    Cherchi, A.

    2017-12-01

    Over the past half century the Arctic has warmed at about twice the global rate (Arctic amplification) with important and worrying sea-ice declining in the region (around 4% per decade in the year but more than 10% per decade in the summer). As the climate continues to warm further reduction are expected: coupled model projections suggests that perennial Arctic sea-ice could disappear within the next few decades. Because of the importance of the sea-ice in modulating the energy in the climate system and the associated possible effects on the global atmospheric circulation, the understanding and quantification of the sea-ice changes is crucial for climate predictions. Of particular interest is the understanding of the effects of Arctic sea-ice reductions on the winter climate of Europe, North America and parts of Asia. The ocean-atmosphere coupling has been found important for the simulation of the response to sea-ice but the climatological background state could be crucial as well, as it may play a key role in the North Atlantic Oscillation (NAO) response to reduced Arctic sea-ice. Still there is no consensus even on the sign of the NAO response in different models and experimental setup. With a statistical approach we intend to investigate the relationship between the Arctic sea-ice and the main circulation patterns of the Northern Hemisphere winter (i.e. NAO, Arctic Oscillation and Pacific North American pattern). Lagged-time analyses as well as simultaneous teleconnections are considered to explore the influence of the minimum coverage in the Arctic (September) on the winter following, but also the effects of the main winter regimes on the Arctic sea-ice. A suite of atmospheric model experiments with prescribed sea-ice together with coupled model experiments complement the finding from atmospheric reanalysis and observations. Implications and aspects of predictability for winter sea-ice conditions and related atmospheric circulation are discussed.

  6. The Extratropical Northern Hemisphere Temperature Reconstruction during the Last Millennium Based on a Novel Method.

    Science.gov (United States)

    Xing, Pei; Chen, Xin; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Wang, Shaowu

    2016-01-01

    Large-scale climate history of the past millennium reconstructed solely from tree-ring data is prone to underestimate the amplitude of low-frequency variability. In this paper, we aimed at solving this problem by utilizing a novel method termed "MDVM", which was a combination of the ensemble empirical mode decomposition (EEMD) and variance matching techniques. We compiled a set of 211 tree-ring records from the extratropical Northern Hemisphere (30-90°N) in an effort to develop a new reconstruction of the annual mean temperature by the MDVM method. Among these dataset, a number of 126 records were screened out to reconstruct temperature variability longer than decadal scale for the period 850-2000 AD. The MDVM reconstruction depicted significant low-frequency variability in the past millennium with evident Medieval Warm Period (MWP) over the interval 950-1150 AD and pronounced Little Ice Age (LIA) cumulating in 1450-1850 AD. In the context of 1150-year reconstruction, the accelerating warming in 20th century was likely unprecedented, and the coldest decades appeared in the 1640s, 1600s and 1580s, whereas the warmest decades occurred in the 1990s, 1940s and 1930s. Additionally, the MDVM reconstruction covaried broadly with changes in natural radiative forcing, and especially showed distinct footprints of multiple volcanic eruptions in the last millennium. Comparisons of our results with previous reconstructions and model simulations showed the efficiency of the MDVM method on capturing low-frequency variability, particularly much colder signals of the LIA relative to the reference period. Our results demonstrated that the MDVM method has advantages in studying large-scale and low-frequency climate signals using pure tree-ring data.

  7. The initial dispersal and radiative forcing of a Northern Hemisphere mid-latitude super volcano: a model study

    Directory of Open Access Journals (Sweden)

    C. Timmreck

    2006-01-01

    Full Text Available The chemistry climate model MAECHAM4/ CHEM with interactive and prognostic volcanic aerosol and ozone was used to study the initial dispersal and radiative forcing of a possible Northern Hemisphere mid-latitude super eruption. Tropospheric climate anomalies are not analysed since sea surface temperatures are kept fixed. Our experiments show that the global dispersal of a super eruption located at Yellowstone, Wy. is strongly dependent on the season of the eruption. In Northern Hemisphere summer the volcanic cloud is transported westward and preferentially southward, while in Northern Hemisphere winter the cloud is transported eastward and more northward compared to the summer case. Aerosol induced heating leads to a more global spreading with a pronounced cross equatorial transport. For a summer eruption aerosol is transported much further to the Southern Hemisphere than for a winter eruption. In contrast to Pinatubo case studies, strong cooling tendencies appear with maximum peak values of less than −1.6 K/day three months after the eruption in the upper tropical stratosphere. This strong cooling effect weakens with decreasing aerosol density over time and initially prevents the aerosol laden air from further active rising. All-sky net radiative flux changes of less than −32 W/m2 at the surface are about a factor of 6 larger than for the Pinatubo eruption. Large positive flux anomalies of more than 16 W/m2 are found in the first months in the tropics and sub tropics. These strong forcings call for a fully coupled ocean/atmosphere/chemistry model to study climate sensitivity to such a super-eruption.

  8. Comparisons of simulated and observed Northern Hemisphere temperature variations during the past millennium – selected lessons learned and problems encountered

    Directory of Open Access Journals (Sweden)

    Anders Moberg

    2013-02-01

    Full Text Available Comparison of simulated and reconstructed past climate variability within the last millennium provides an opportunity to aid the understanding and interpretation of palaeoclimate proxy data and to test hypotheses regarding external forcings, feedback mechanisms and internal climate variability under conditions close to those of the present day. Most such comparisons have been made at the Northern Hemispheric scale, of which a selection of recent results is briefly discussed here. Uncertainties in climate and forcing reconstructions, along with the simplified representations of the true climate system represented by climate models, limit our possibility to draw certain conclusions regarding the nature of forced and unforced climate variability. Additionally, hemispheric-scale temperature variations have been comparatively small, wherefore the last millennium is apparently not a particularly useful period for estimating climate sensitivity. Nevertheless, several investigators have concluded that Northern Hemispheric-scale decadal-mean temperatures in the last millennium show a significant influence from natural external forcing, where volcanic forcing is significantly detectable while solar forcing is less robustly detected. The amplitude of centennial-scale variations in solar forcing has been a subject for much debate, but current understanding of solar physics implies that these variations have been small – similar in magnitude to those within recent sunspot cycles – and thus they have not been a main driver of climate in the last millennium. This interpretation is supported by various comparisons between forced climate model simulations and temperature proxy data. Anthropogenic greenhouse gas and aerosol forcing has been detected by the end of Northern Hemispheric temperature reconstructions.

  9. A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification

    Science.gov (United States)

    Yang, Qiuju; Hu, Ze-Jun

    2018-03-01

    Aurora is a very important geophysical phenomenon in the high latitudes of Arctic and Antarctic regions, and it is important to make a comparative study of the auroral morphology between the two hemispheres. Based on the morphological characteristics of the four labeled dayside discrete auroral types (auroral arc, drapery corona, radial corona and hot-spot aurora) on the 8001 dayside auroral images at the Chinese Arctic Yellow River Station in 2003, and by extracting the local binary pattern (LBP) features and using a k-nearest classifier, this paper performs an automatic classification of the 65 361 auroral images of the Chinese Arctic Yellow River Station during 2004-2009 and the 39 335 auroral images of the South Pole Station between 2003 and 2005. Finally, it obtains the occurrence distribution of the dayside auroral morphology in the Northern and Southern Hemisphere. The statistical results indicate that the four dayside discrete auroral types present a similar occurrence distribution between the two stations. To the best of our knowledge, we are the first to report statistical comparative results of dayside auroral morphology distribution between the Northern and Southern Hemisphere.

  10. Responses of surface ozone air quality to anthropogenic nitrogen deposition in the Northern Hemisphere

    Science.gov (United States)

    Zhao, Yuanhong; Zhang, Lin; Tai, Amos P. K.; Chen, Youfan; Pan, Yuepeng

    2017-08-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen - namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02-0.04 cm s-1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies

  11. How predictable is the northern hemisphere summer upper-tropospheric circulation?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, June-Yi; Wang, Bin [University of Hawaii/IPRC, International Pacific Research Center, Honolulu, HI (United States); Ding, Q. [University of Washington, Department of Earth and Space Sciences and Quaternary Research Center, Seattle, WA (United States); Ha, K.J.; Ahn, J.B. [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Kumar, A. [NCEP/CPC, Camp Springs, MD (United States); Stern, B. [Princeton University, NOAA/GFDL, Princeton, NJ (United States); Alves, O. [Bureau of Meteorology, Centre for Australia Weather and Climate Research (CAWCR), Melbourne, VIC (Australia)

    2011-09-15

    The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981-2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models' ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Nino-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME

  12. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  13. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    Science.gov (United States)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  14. Probabilistic evaluation of decadal prediction skill regarding Northern Hemisphere winter storms

    Directory of Open Access Journals (Sweden)

    Tim Kruschke

    2016-12-01

    Full Text Available Winter wind storms related to intense extra-tropical cyclones are meteorological extreme events, often with major impacts on economy and human life, especially for Europe and the mid-latitudes. Hence, skillful decadal predictions regarding the frequency of their occurrence would be of great socio-economic value. The present paper extends the study of Kruschke et al. (2014 in several aspects. First, this study is situated in a more impact oriented context by analyzing the frequency of potentially damaging wind storm events instead of targeting at cyclones as general meteorological features which was done by Kruschke et al. (2014. Second, this study incorporates more data sets by analyzing five decadal hindcast experiments – 41 annual (1961–2001 initializations integrated for ten years each – set up with different initialization strategies. However, all experiments are based on the Max-Planck-Institute Earth System Model in a low-resolution configuration (MPI-ESM-LR. Differing combinations of these five experiments allow for more robust estimates of predictive skill (due to considerably larger ensemble size and systematic comparisons of the underlying initialization strategies. Third, the hindcast experiments are corrected for model bias and potential drifts over lead time by means of a novel parametric approach, accounting for non-stationary model drifts. We analyze whether skillful probabilistic three-category forecasts (enhanced, normal or decreased can be provided regarding winter (ONDJFM wind storm frequencies over the Northern Hemisphere (NH. Skill is assessed by using climatological probabilities and uninitialized transient simulations as reference forecasts. It is shown that forecasts of average winter wind storm frequencies for winters 2–5 and winters 2–9 are skillful over large parts of the NH. However, most of this skill is associated with external forcing from transient greenhouse gas and aerosol concentrations

  15. A Next Model of Northern Hemisphere Glaciation History: ICE-6G (VM5a)

    Science.gov (United States)

    Peltier, W. R.; Argus, D.; Gyllencreutz, R.; Mangerud, J.; Lohne, O. S.; Svendsen, J.

    2009-12-01

    Models of the evolving paleo-topography of the continents and paleo-bathymetry of the oceans, together with the evolving “masks” of the land-sea and surface albedo distributions, are required inputs for the application of modern coupled climate models in the reconstruction of past climate conditions. Previous reconstructions in the ICE-NG (VMX) sequence have relied almost exclusively upon ice-margin data sets to control the time dependence of the regions covered by glacial ice and the availability of radio-carbon dated relative sea level histories to control the evolution of continental ice-sheet thickness. In the past several years new space-geodetically derived data sets have become available that are allowing a further improvement in the accuracy of these reconstructions of environmental conditions over the period from Last Glacial Maximum to the beginning of the Holocene interglacial. These geodetic measurements include the time dependent gravitational field data being provided by the GRACE satellite system, as well as Very Long Baseline Interferometry (VLBI), Global Positioning System (GPS), Satellite Laser Ranging (SLR), and DORIS measurements of the present day rates of surface crustal displacement in both the vertical and horizontal directions.Furthermore, and in connection with our ability to understand the details of Eurasian deglaciation, a new model of ice-margin positions in this region has been produced that similarly impacts our understanding of glacial history throughout northwestern Europe. In this paper we will describe the revised model of northern hemisphere deglaciation that has enabled us to significantly improve upon the most recent ICE-5G (VM2) model that has continued to serve as the standard in this area since it was first published in 2004. The misfits if this model to the new space-geodetic data sets have recently been tabulated in Argus and Peltier (2009, GJI, submitted). Specific improvements to the previous model that will be the

  16. Recent increase of ethane detected in the remote atmosphere of the Northern Hemisphere

    Science.gov (United States)

    Franco, Bruno; Bader, Whitney; Bovy, Benoît; Mahieu, Emmanuel; Fischer, Emily V.; Strong, Kimberly; Conway, Stephanie; Hannigan, James W.; Nussbaumer, Eric; Bernath, Peter F.; Boone, Chris D.; Walker, Kaley A.

    2015-04-01

    Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) - HOx - NOx chemistry responsible for generating and destroying tropospheric ozone. By acting as a major sink for tropospheric OH radicals, the abundance of C2H6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. Moreover, it is an important source of PAN, a thermally unstable reservoir for NOx radicals. On a global scale, the main sources of C2H6 are leakage from the production, transport of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C2H6 is a sensitive indicator of tropospheric pollution and transport. Using an optimized retrieval strategy (see Franco et al., 2014), we present here a 20-year long-term time series of C2H6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 3580 m a.s.l.), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). After a regular 1994 - 2008 decrease of the C2H6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011; Simpson et al., 2012) and our understanding of global C2H6 emissions, trend analysis using a bootstrap resampling tool reveals a C2H6 upturn and a statistically-significant sharp burden increase from 2009 onwards (Franco et al., 2014). We hypothesize that this observed recent increase in C2H6 could affect the whole Northern Hemisphere and may be related to the recent massive growth in the exploitation of shale gas and tight oil reservoirs. This hypothesis is supported by measurements derived from solar occultation observations performed since 2004 by the Atmospheric Chemistry Experiment - Fourier

  17. The Hemispheric Asymmetry of Polar Faculae LH Deng1,2,∗ , ZQ ...

    Indian Academy of Sciences (India)

    (middle panel) and TLs (bottom panel) respectively. The solid (dashed) lines mark the minimum (maximum) of solar cycles. different latitudinal bands differs from each other, and the asymmetrical distribution of the polar faculae is a function of latitudes. Although the N–S asymmetry of the polar faculae seems to have nothing ...

  18. Extra-long interglacial in Northern Hemisphere during MISs 15-13 arising from limited extent of Arctic ice sheets in glacial MIS 14.

    Science.gov (United States)

    Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Guo, Zhengtang

    2015-07-10

    Knowledge of the behavior of Northern Hemisphere (NH) ice sheets over the past million years is crucial for understanding the role of orbitally driven insolation changes on glacial/interglacial cycles. Here, based on the demonstrable link between changes in Chinese loess grain-size and NH ice-sheet extent, we use loess grain-size records to confirm that northern ice-sheets were restricted during marine oxygen isotope stage (MIS) 14. Thus, an unusually long NH interglacial climate of over 100 kyr persisted during MISs 15-13, much longer than expected from marine oxygen isotope records. Taking a global view of the paleoclimate records, MIS 14 inception seems to be a response to changes in Antarctic ice-sheets rather than to NH cooling. Orbital configuration in the two Polar regions shows that the onset of MIS 14 was forced by austral insolation changes, rather than by boreal summer insolation, as Milankovitch theory proposes. Our analysis of MIS 14 raises the possibility that southern insolation forcing may have played an important role in the inception of several other glacials. We suggest that the extra-long NH interglacial climate during MISs 15-13 provided favorable conditions for the second major dispersal episode of African hominins into Eurasia.

  19. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    N. L. Ng

    2010-05-01

    Full Text Available In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS datasets (27 of the datasets are reanalyzed in this work. The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA, hydrocarbon-like OA (HOA, and sometimes other components such as biomass burning OA (BBOA. We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA and semi-volatile OOA (SV-OOA. Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+ and m/z 43 (mostly C2H3O+, which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14 and SV-OOA (0.07±0.04, 0.35±0.14 components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA from all sites cluster within a well-defined triangular region in the f44 vs. f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a

  20. Dispersion of sulphur in the northern hemisphere. A study with a 3-dimensional time-resolved model

    Energy Technology Data Exchange (ETDEWEB)

    Tarrason, L.

    1995-12-31

    This thesis on atmospheric dispersion of sulphur presents a calculation of intercontinental transport of oxidized sulphur and allocates different contributions to sulphur background levels over Europe. It is found that a significant fraction of anthropogenic sulphur (AS) is transported out of continental boundaries thus affecting the background levels over major parts of the northern hemisphere. Over Europe, the contribution of AS from North America is similar in amount to that of Asian AS and natural sources from the North Atlantic Ocean. Although the yearly contribution of intercontinental transport to deposition of sulphur over Europe is quite small, it can be much more important over certain areas and seasons and is comparable to the contributions from individual European countries. The calculations are based on a three-dimensional Eulerian time-resolved model that describes sulphur dispersion in the atmosphere in connection with large-scale synoptic flows and agree well with observations. The thesis emphasizes the role of synoptic scale atmospheric motions in determining intercontinental transport of sulphur. It indicates the need to resolve individual cyclones and anticyclones in order to describe the dispersion and distribution of atmospheric sulphur in the northern hemisphere and stresses the value of comparing model calculations with observations, both in atmospheric chemistry studies and in climate applications. 260 refs., 50 figs., 17 tabs.

  1. Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age

    Science.gov (United States)

    Edwards, Thomas W. D.; Hammarlund, Dan; Newton, Brandi W.; Sjolte, Jesper; Linderson, Hans; Sturm, Christophe; St. Amour, Natalie A.; Bailey, Joscelyn N.-L.; Nilsson, Anders L.

    2017-06-01

    Here we report new reconstructions of winter temperature and summer moisture during the past millennium in southeastern Sweden, based on stable-isotope data from a composite tree-ring sequence, that further enhances our knowledge and understanding of seasonal climate variability in the Northern Hemisphere over the past millennium. Key features of these new climate proxy records include evidence for distinctive fluctuations in winter temperature in SE Sweden, superimposed upon the general pattern of cooling between the so-called Medieval Climate Anomaly (MCA) of the early millennium and the Little Ice Age (LIA) of the late millennium, as well as evidence for sustained summer wetness during the MCA, followed by drier and less variable conditions during the LIA. We also explore these new records within a circumpolar spatial context by employing self-organizing map analysis of meteorological reanalysis data to identify potential modern analogues of mid-tropospheric synoptic circulation types in the Northern Hemisphere extratropics that can reconcile varying seasonal climate states during the MCA and LIA in SE Sweden with less variable conditions in southwestern Canada, as portrayed by paleoclimate records developed in the same manner in an earlier study.

  2. Role of the Qinghai-Tibetan Plateau uplift in the Northern Hemisphere disjunction: evidence from two herbaceous genera of Rubiaceae.

    Science.gov (United States)

    Deng, Tao; Zhang, Jian-Wen; Meng, Ying; Volis, Sergei; Sun, Hang; Nie, Ze-Long

    2017-10-17

    To assess the role of the Qinghai-Tibetan Plateau uplift in shaping the intercontinental disjunction in Northern Hemisphere, we analyzed the origin and diversification within a geological timeframe for two relict herbaceous genera, Theligonum and Kelloggia (Rubiaceae). Phylogenetic relationships within and between Theligonum and Kelloggia as well as their relatives were inferred using five chloroplast markers with parsimony, Bayesian and maximum-likelihood approaches. Migration routes and evolution of these taxa were reconstructed using Bayesian relaxed molecular clock and ancestral area reconstruction. Our results suggest the monophyly of each Theligonum and Kelloggia. Eastern Asian and North American species of Kelloggia diverged at ca.18.52 Mya and the Mediterranean species of Theligonum diverged from eastern Asian taxa at ca.13.73 Mya. Both Kelloggia and Theligonum are Tethyan flora relicts, and their ancestors might have been occurred in warm tropical to subtropical environments along the Tethys coast. The Qinghai-Tibetan Plateau separated the eastern and western Tethyan area may contribute significantly to the disjunct distributions of Theligonum, and the North Atlantic migration appears to be the most likely pathway of expansion of Kelloggia to North America. Our results highlight the importance role of the QTP uplift together with corresponding geological and climatic events in shaping biodiversity and biogeographic distribution in the Northern Hemisphere.

  3. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern stratospheric polar vortex

    Science.gov (United States)

    Liberato, M. L. R.; Castanheira, J. M.; Dacamara, C. C.

    2009-04-01

    An analysis of the energy conversion of barotropic and baroclinic planetary waves for extended winter in the extratropical Northern Hemisphere is presented. The analysis is based on a three-dimensional normal mode expansion of the global circulation of the atmosphere (Castanheira et al. 2002; Liberato et al. 2007). This method allows separating the atmospheric circulation into planetary (Rossby) and inertio-gravity waves as well as characterising each type of wave by the respective zonal, meridional and vertical structures. The 3-D normal mode scheme further allows evaluating the contribution of each type of wave for the global total (i.e., kinetic + available potential) atmospheric energy. A brief overview of the normal mode energetics of the global atmospheric circulation is given, focusing on the energy conversions between barotropic and baroclinic components of different vertical and horizontal scales. The methodology is applied to the global NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalysis data set, using extended winter (November to March) daily means of the horizontal wind components (u, v) and of the geopotential height, at the 17 standard pressure levels, with the spatial horizontal resolution available (2.5° regular grid) and spanning the period 1957-2008. Obtained results are then used to relate the variability of the stratospheric polar vortex to the variability of the energy of the forcing planetary waves. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern winter polar vortex are finally analysed, during rapid stratospheric vortex decelerations and accelerations. Castanheira, J. M., H.-F. Graf, C. DaCamara, and A. Rocha, 2002: Using a physical reference frame to study global circulation variability. J. Atmos. Sci., 59, 1490-1501. Liberato, M. L. R., J. M. Castanheira, L. da la Torre, C. C. DaCamara and L. Gimeno, 2007: Wave Energy Associated

  4. On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2006-01-01

    Full Text Available Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at northern hemispheric (NH mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (equivalent effective stratospheric chlorine and on the other hand planetary wave driving (eddy heat flux or, alternatively, polar ozone loss (PSC volume in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible

  5. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  6. Data on present-day precipitation changes in the extratropical part of the northern hemisphere

    International Nuclear Information System (INIS)

    Groisman, P.Ya.

    1990-01-01

    100-year time series of spatially averaged annual precipitation and precipitation for the warm period of the year (May-September) for 12 regions of the USSR, Europe and North America are analyzed. It is shown that for land within 30-70 degree N the precipitation trend was about 6%/100 year, the increase in precipitation amount being a maximum in the Eastern Hemisphere north of 55 degree N

  7. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Polar Winds from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from 65...

  8. The breakup of the Southern Hemisphere spring polar ozone and temperature minimums from 1979 to 1987

    Science.gov (United States)

    Newman, Paul A.; Schoeberl, Mark R.

    1988-01-01

    The purpose of this study is to quantify the observations of the polar vortex breakup. The data used in this study consist of Total Ozone Mapping Spectrometer (TOMS) data, and National Meteorological Center (NMC) analyses. The final warming is diagnosed using the difference between zonal means at 80 degrees and 50 degrees S for temperature, ozone, and layer mean temperature. The polar vortex breakup can also be diagnosed by the onset of weak zonal mean zonal winds (i.e., u, overbar denotes a zonal average) at 60 degrees S. Computations of the polar vortex breakdown date using NMC meteorological data and TOMS total ozone data indicate that the breakdown is occurring later in the spring in the lowest portion of the stratosphere. At altitudes above 100 mb, the large interannual variance of the breakdown date renders any trend determination of the breakdown date difficult. Individual plots of TOMS total ozone indicate that the total ozone minimum remains intact for a longer period of time than is observed in earlier years.

  9. Why does the north-south gradient of incidence of multiple sclerosis seem to have disappeared on the northern hemisphere?

    DEFF Research Database (Denmark)

    Koch-Henriksen, Nils; Sorensen, Per Soelberg

    2011-01-01

    in environmental factors, levelling out differences in habits of life across Europe and North America, and, not least, that the interpretation of a latitudinal gradient in Europe was based primarily on prevalence studies and reviews. In addition, we observed in most regions a profound increase in female incidence......The traditional view, based on numerous early studies and reviews, is that MS is particularly prevalent in temperate zones both on the northern and southern hemisphere. This uneven distribution of MS can be attributed to differences in genes and environment and their interaction. Diagnostic...... accuracy and case ascertainment are sources of error and have their shares in the geographical and temporal variations, and improvements in diagnostic accuracy and case ascertainment influence incidence- and prevalence rates. In addition the prevalence also depends on survival. With this meta-analysis we...

  10. Why does the north-south gradient of incidence of multiple sclerosis seem to have disappeared on the Northern hemisphere?

    DEFF Research Database (Denmark)

    Koch-Henriksen, Nils; Sorensen, Per Soelberg

    2011-01-01

    in environmental factors, levelling out differences in habits of life across Europe and North America, and, not least, that the interpretation of a latitudinal gradient in Europe was based primarily on prevalence studies and reviews. In addition, we observed in most regions a profound increase in female incidence......The traditional view, based on numerous early studies and reviews, is that MS is particularly prevalent in temperate zones both on the northern and southern hemisphere. This uneven distribution of MS can be attributed to differences in genes and environment and their interaction. Diagnostic...... accuracy and case ascertainment are sources of error and have their shares in the geographical and temporal variations, and improvements in diagnostic accuracy and case ascertainment influence incidence- and prevalence rates. In addition the prevalence also depends on survival. With this meta-analysis we...

  11. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation

    Science.gov (United States)

    Wang, Bin; Liu, Jian; Kim, Hyung-Jin; Webster, Peter J.; Yim, So-Young; Xiang, Baoqiang

    2013-01-01

    Prediction of monsoon changes in the coming decades is important for infrastructure planning and sustainable economic development. The decadal prediction involves both natural decadal variability and anthropogenic forcing. Hitherto, the causes of the decadal variability of Northern Hemisphere summer monsoon (NHSM) are largely unknown because the monsoons over Asia, West Africa, and North America have been studied primarily on a regional basis, which is unable to identify coherent decadal changes and the overriding controls on planetary scales. Here, we show that, during the recent global warming of about 0.4 °C since the late 1970s, a coherent decadal change of precipitation and circulation emerges in the entirety of the NHSM system. Surprisingly, the NHSM as well as the Hadley and Walker circulations have all shown substantial intensification, with a striking increase of NHSM rainfall by 9.5% per degree of global warming. This is unexpected from recent theoretical prediction and model projections of the 21st century. The intensification is primarily attributed to a mega-El Niño/Southern Oscillation (a leading mode of interannual-to-interdecadal variation of global sea surface temperature) and the Atlantic Multidecadal Oscillation, and further influenced by hemispherical asymmetric global warming. These factors driving the present changes of the NHSM system are instrumental for understanding and predicting future decadal changes and determining the proportions of climate change that are attributable to anthropogenic effects and long-term internal variability in the complex climate system. PMID:23509281

  12. An Evaluation of the CHIMERE Chemistry Transport Model to Simulate Dust Outbreaks across the Northern Hemisphere in March 2014

    Directory of Open Access Journals (Sweden)

    Bertrand Bessagnet

    2017-12-01

    Full Text Available Mineral dust is one of the most important aerosols over the world, affecting health and climate. These mineral particles are mainly emitted over arid areas but may be long-range transported, impacting the local budget of air quality in urban areas. While models were extensively used to study a single specific event, or make a global analysis at coarse resolution, the goal of our study is to simultaneously focus on several affected areas—Europe, North America, Central Asia, east China and the Caribbean area—for a one-month period, March 2014, avoiding any parameter fitting to better simulate a single dust outbreak. The simulation is performed for the first time with the hemispheric version of the CHIMERE model, with a high horizontal resolution (about 10 km. In this study, an overview of several simultaneous dust outbreaks over the Northern Hemisphere is proposed to assess the capability of such modeling tools to predict dust pollution events. A quantitative and qualitative evaluation of the most striking episodes is presented with comparisons to satellite data, ground based particulate matter and calcium measurements. Despite some overestimation of dust concentrations far from emission source areas, the model can simulate the timing of the arrival of dust outbreaks on observational sites. For instance, several spectacular dust storms in the US and China are rather well captured by the models. The high resolution provides a better description and understanding of the orographic effects and the long-range transport of dust plumes.

  13. Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation.

    Science.gov (United States)

    Wang, Bin; Liu, Jian; Kim, Hyung-Jin; Webster, Peter J; Yim, So-Young; Xiang, Baoqiang

    2013-04-02

    Prediction of monsoon changes in the coming decades is important for infrastructure planning and sustainable economic development. The decadal prediction involves both natural decadal variability and anthropogenic forcing. Hitherto, the causes of the decadal variability of Northern Hemisphere summer monsoon (NHSM) are largely unknown because the monsoons over Asia, West Africa, and North America have been studied primarily on a regional basis, which is unable to identify coherent decadal changes and the overriding controls on planetary scales. Here, we show that, during the recent global warming of about 0.4 °C since the late 1970s, a coherent decadal change of precipitation and circulation emerges in the entirety of the NHSM system. Surprisingly, the NHSM as well as the Hadley and Walker circulations have all shown substantial intensification, with a striking increase of NHSM rainfall by 9.5% per degree of global warming. This is unexpected from recent theoretical prediction and model projections of the 21st century. The intensification is primarily attributed to a mega-El Niño/Southern Oscillation (a leading mode of interannual-to-interdecadal variation of global sea surface temperature) and the Atlantic Multidecadal Oscillation, and further influenced by hemispherical asymmetric global warming. These factors driving the present changes of the NHSM system are instrumental for understanding and predicting future decadal changes and determining the proportions of climate change that are attributable to anthropogenic effects and long-term internal variability in the complex climate system.

  14. Phylogenomic analyses of Crassiclitellata support major Northern and Southern Hemisphere clades and a Pangaean origin for earthworms.

    Science.gov (United States)

    Anderson, Frank E; Williams, Bronwyn W; Horn, Kevin M; Erséus, Christer; Halanych, Kenneth M; Santos, Scott R; James, Samuel W

    2017-05-30

    Earthworms (Crassiclitellata) are a diverse group of annelids of substantial ecological and economic importance. Earthworms are primarily terrestrial infaunal animals, and as such are probably rather poor natural dispersers. Therefore, the near global distribution of earthworms reflects an old and likely complex evolutionary history. Despite a long-standing interest in Crassiclitellata, relationships among and within major clades remain unresolved. In this study, we evaluate crassiclitellate phylogenetic relationships using 38 new transcriptomes in combination with publicly available transcriptome data. Our data include representatives of nearly all extant earthworm families and a representative of Moniligastridae, another terrestrial annelid group thought to be closely related to Crassiclitellata. We use a series of differentially filtered data matrices and analyses to examine the effects of data partitioning, missing data, compositional and branch-length heterogeneity, and outgroup inclusion. We recover a consistent, strongly supported ingroup topology irrespective of differences in methodology. The topology supports two major earthworm clades, each of which consists of a Northern Hemisphere subclade and a Southern Hemisphere subclade. Divergence time analysis results are concordant with the hypothesis that these north-south splits are the result of the breakup of the supercontinent Pangaea. These results support several recently proposed revisions to the classical understanding of earthworm phylogeny, reveal two major clades that seem to reflect Pangaean distributions, and raise new questions about earthworm evolutionary relationships.

  15. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    Science.gov (United States)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  16. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    DEFF Research Database (Denmark)

    Smith Korsholm, Ulrik; Astrup, Poul; Lauritzen, Bent

    The present atlas has been developed within the NKS/NordRisk-II project "Nuclear risk from atmospheric dispersion in Northern Europe". The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere...... spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion....

  17. High-resolution record of Northern Hemisphere climate extending into the last interglacial period

    DEFF Research Database (Denmark)

    North Greenland Ice Core Project members; Andersen, Katrine K.; Azuma, N.

    2004-01-01

    the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see...... a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5-8°C warmer than today. We find unexpectedly large temperature......-saw between the hemispheres (which dominated the last glacial period) was not operating at this time....

  18. Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere

    Science.gov (United States)

    Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.

    2017-12-01

    Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.

  19. Tropospheric ozone over a tropical Atlantic station in the Northern Hemisphere: Paramaribo, Surinam (6°N, 55°W)

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; Fortuin, J. P. F.; Kelder, H. M.; Thompson, A. M.; Becker, C. R.; Lelieveld, J.; Crutzen, P. J.

    2004-01-01

    We present an analysis of 2.5 yr of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6°N, 55°W). This is currently one of only three ozone sounding stations in the Northern Hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is

  20. Seasonal variations of the high-latitude geomagnetic field intensity in the northern hemisphere

    International Nuclear Information System (INIS)

    Rivin, Yu.R.; Chkhaidze, Z.Sh.

    1994-01-01

    Seasonal variation of the geomagnetic field three components is investigated using the data of the USA observatories chain separately for polar region, auroral zone and middle latitudes beginning from 1950. The variation consists of an annual and half-yearly waves. main attention is paid to time variability of the annual wave phase in the auroral zone, that is connected with superposition of waves of western and eastern jets

  1. An Investigation of Polar Ozone Recovery in the 1997 Southern Hemisphere Spring

    Science.gov (United States)

    Pierson, J. M.; Douglass, A. R.; Kawa, S. R.; Newman, P. A.

    2000-01-01

    A chemical transport model is used to investigate the processes that control the depth and duration of the ozone 'hole' in the lower stratosphere through comparisons of model output with measurements from the Total Ozone Mapping Spectrometer (TOMS) and from the Microwave Limb Sounder (MLS) and Halogen Occultation Experiment (HALOE), both on the Upper Atmosphere Research Satellite (UARS). This study extends previous model comparisons with observations into October and November and examine levels in (greater than 31 hPa) and above (less than 31 hPa) the chemical loss region. Averages of column ozone in the model decrease through mid-October below 31 hPa but begin to increase in mid-September above 31 hPa. An investigation of model-tracer data comparisons and other meteorological parameters indicate that the model presents a consistent picture of top-down recovery and tracer transport. An O03budget study at 500 K (below 31 hPa) and 840 K (above 31 hPa) is carried out to investigate the processes that control the timing of the transition of ozone from a chemical to dynamically driven regime. The model ozone decrease at 500 K is due to chemical loss in August and September but is due to upward motion in October. The ozone increase at 840 K is primarily due to photochemical production, with a smaller contribution from transport. These results show that chemistry and dynamics can play different roles in polar vortex ozone recovery at different levels.

  2. Lake records of Northern Hemisphere South American summer monsoon variability from the Cordillera Oriental, Colombia: Initial results from Lago de Tota and Laguna de Ubaque

    Science.gov (United States)

    Escobar, J.; Rudloff, O.; Bird, B. W.

    2013-12-01

    The lack of terrestrial paleoclimate records from the Northern Hemisphere Andes with decadal resolution has meant that our understanding of abrupt South American summer monsoon (SASM) variability during the Holocene is almost exclusively based on data from Southern Hemisphere sites. In order to develop a more integrated and complete picture of the SASM as a system and its response during rapid climate changes, high-resolution paleoclimate records are needed from the Northern Hemisphere Andes. We present initial results from analysis of lake sediment cores that were collected from Lago de Tota (N 5.554, W 72.916) and Laguna de Ubaque (N 4.500, W 73.935) in the Eastern Cordillera of the Colombian Andes. These sediment cores were collected in July 2013 as part on an ongoing paleoclimate research initiative in Colombia. Located in the Boyacá Provence, Lago de Tota is the largest high-altitude lake (3010 masl) in the Northern Hemisphere Andes and the second largest Andean lake in South America. As such, hydrologic changes recorded in the lake's sediment record reflect regional climate responses. Lago de Ubaque (2070 masl) is a small east facing moraine-dammed lake near the capital of Bogotá that contains finely laminated clastic sediments. The initial sedimentological and chronological results demonstrate that Lago de Tota and Laguna de Ubaque have excellent potential for resolving Northern Hemisphere SASM variability at decadal time scales or better. Such records will provide important counterparts to high-resolution paleoclimate records from the Southern Hemisphere Andes.

  3. The Effect of Zonally Asymmetric Ozone Heating on the Northern Hemisphere Winter Polar Stratosphere

    Science.gov (United States)

    2010-12-09

    solar ultraviolet ir- radiance, stratospheric ozone, and planetary wave activity that have often been cited as possible mechanisms linking solar... photochemistry both contribute to the ZAOH effect, up to ∼0.01 hPa (∼65 km) where the ZAOH effect is controlled by ozone photochemistry . Overall, the... photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972. December 9, 2010, 2:01pm X - 12 MCCORMACK ET

  4. Millennial-scale northern Hemisphere Atlantic-Pacific climate teleconnections in the earliest Middle Pleistocene.

    Science.gov (United States)

    Hyodo, Masayuki; Bradák, Balázs; Okada, Makoto; Katoh, Shigehiro; Kitaba, Ikuko; Dettman, David L; Hayashi, Hiroki; Kumazawa, Koyo; Hirose, Kotaro; Kazaoka, Osamu; Shikoku, Kizuku; Kitamura, Akihisa

    2017-08-30

    Suborbital-scale climate variations, possibly caused by solar activity, are observed in the Holocene and last-glacial climates. Recently published bicentennial-resolution paleoceanic environmental records reveal millennial-scale high-amplitude oscillations postdating the last geomagnetic reversal in the Marine Isotope Stage (MIS) 19 interglacial. These oscillations, together with decoupling of post-reversal warming from maximum sea-level highstand in mid-latitudes, are key features for understanding the climate system of MIS 19 and the following Middle Pleistocene. It is unclear whether the oscillations are synchronous, or have the same driver as Holocene cycles. Here we present a high resolution record of western North Pacific submarine anoxia and sea surface bioproductivity from the Chiba Section, central Japan. The record reveals many oxic events in MIS 19, coincident with cold intervals, or with combined cold and sea-level fall events. This allows detailed correlations with paleoceanic records from the mid-latitude North Atlantic and Osaka Bay, southwest Japan. We find that the millennial-scale oscillations are synchronous between East and West hemispheres. In addition, during the two warmest intervals, bioproductivity follows the same pattern of change modulated by bicentennial cycles that are possibly related to solar activity.

  5. Long-term impact of Amazon river runoff on northern hemispheric climate.

    Science.gov (United States)

    Jahfer, S; Vinayachandran, P N; Nanjundiah, Ravi S

    2017-09-08

    Amazon discharges a large volume of freshwater into the ocean, yet its impact on climate is largely unknown. Climate projections show that a warmer northern tropical Atlantic Ocean together with a warmer equatorial Pacific lead to extreme droughts in the Amazonia, considerably reducing the Amazon runoff. Here we present results from coupled model simulations and observations on the climatic response to a significant reduction in Amazon runoff into the Atlantic Ocean. Climate model simulation without Amazon runoff resulted in cooler equatorial Atlantic, weakening the Hadley cell and thereby the atmospheric meridional cells. Consequently, the extratropical westerlies turned weaker, leading to prevalent negative North Atlantic Oscillation (NAO) like climate, similar to the observed anomalies during Amazon drought years. This study reaffirms that spatial signature of NAO is in part driven by sea surface temperature (SST) anomalies in the tropical Atlantic. Winters of northern Europe and eastern Canada turned cooler and drier whereas southern Europe and the eastern United States experienced warmer and wetter winters without Amazon runoff. Significant warming over the Arctic reduced the local sea-ice extent and enhanced the high latitude river runoff. More importantly, our simulations caution against extreme exploitation of rivers for its far-reaching consequences on climate.

  6. Land–sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing

    Directory of Open Access Journals (Sweden)

    T. H. Donders

    2018-03-01

    Full Text Available We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (∼ 2.6–1.8 Ma multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial–interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST, vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct

  7. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  8. Land-sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing

    Science.gov (United States)

    Donders, Timme H.; van Helmond, Niels A. G. M.; Verreussel, Roel; Munsterman, Dirk; ten Veen, Johan; Speijer, Robert P.; Weijers, Johan W. H.; Sangiorgi, Francesca; Peterse, Francien; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Lourens, Lucas; Kuhlmann, Gesa; Brinkhuis, Henk

    2018-03-01

    We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (˜ 2.6-1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial-interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm-cold alterations are

  9. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  10. Palaeoceanographic Variability of the Benguela Upwelling System Depending on the Northern Hemisphere Glaciation (NHG) - Indicated by Organic-Walled Dinoflagellates

    Science.gov (United States)

    Bork, M.

    2003-12-01

    The causes and effects of the intensification of growth of the northern Hemisphere ice caps at around 3.2 and 2.74 Ma BP are still unclear. Possible causes are changes in the global ocean circulation and the global carbon cycle, which might have resulted from tectonic processes, solar insolation changes, or the interaction between both processes. The Benguela upwelling area forms a key area within the global ocean system. Here, warm and saline Indian Ocean waters enter the South Atlantic Ocean and are transported to the north. Variability of this inflow may thus result in changes in deep-water production in the North Atlantic, thereby influencing the global thermohaline circulation. Furthermore, the Benguela area is characterized by extremely high bioproductivity in surface waters as a result of year-round upwelling. Variations in the upwelling intensity might lead to changes in atmospheric ¤CO2. To study the changes in the circulation and the upwelling intensity, within this region organic-walled dinoflagellate cysts from two high-resolution cores (ODP 1084 and1082) covering the time interval from 3.3 to 2.5 Ma BP were investigated. Due to their sensitiveness to ecological parameters, organic-walled dinoflagellates reflect oceanographic characteristics keenly. The analyses discover clear distribution differences of individual species, especially of those that are sensible or resistant against aerobic decay. The sensible species, (Protoperidinium and Echinidinium), have their highest abundance from 2.76 to 2.73 Ma BP, a time interval in which the resistant species show no significant changes in their abundance. This implies that during this time interval the oxygen was reduced in the deep- and porewater suggesting that the global ocean deepwater circulation was weakened. Comparing these results with the known intensification of the NHG at around 2.74 Ma BP leads to the speculation that the increasing of ice caps in the northern hemisphere is highly associated with

  11. Seasonal erosion and restoration of Mars' northern polar dunes.

    Science.gov (United States)

    Hansen, C J; Bourke, M; Bridges, N T; Byrne, S; Colon, C; Diniega, S; Dundas, C; Herkenhoff, K; McEwen, A; Mellon, M; Portyankina, G; Thomas, N

    2011-02-04

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO(2) seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  12. Cloud morphology and dynamics in Saturn's northern polar region

    Science.gov (United States)

    Antuñano, Arrate; del Río-Gaztelurrutia, Teresa; Sánchez-Lavega, Agustín; Rodríguez-Aseguinolaza, Javier

    2018-01-01

    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent ;puffy; clouds with scales from 10 - 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of ;plume-like; activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.

  13. Statistical Analysis of Categorical Time Series of Atmospheric Elementary Circulation Mechanisms - Dzerdzeevski Classification for the Northern Hemisphere.

    Science.gov (United States)

    Brenčič, Mihael

    2016-01-01

    Northern hemisphere elementary circulation mechanisms, defined with the Dzerdzeevski classification and published on a daily basis from 1899-2012, are analysed with statistical methods as continuous categorical time series. Classification consists of 41 elementary circulation mechanisms (ECM), which are assigned to calendar days. Empirical marginal probabilities of each ECM were determined. Seasonality and the periodicity effect were investigated with moving dispersion filters and randomisation procedure on the ECM categories as well as with the time analyses of the ECM mode. The time series were determined as being non-stationary with strong time-dependent trends. During the investigated period, periodicity interchanges with periods when no seasonality is present. In the time series structure, the strongest division is visible at the milestone of 1986, showing that the atmospheric circulation pattern reflected in the ECM has significantly changed. This change is result of the change in the frequency of ECM categories; before 1986, the appearance of ECM was more diverse, and afterwards fewer ECMs appear. The statistical approach applied to the categorical climatic time series opens up new potential insight into climate variability and change studies that have to be performed in the future.

  14. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models

    International Nuclear Information System (INIS)

    Rangwala, Imtiaz; Sinsky, Eric; Miller, James R

    2013-01-01

    We use output from global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for three different greenhouse gas emission scenarios to investigate whether the projected warming in mountains by the end of the 21st century is significantly different from that in low elevation regions. To remove the effects of latitudinal variation in warming rates, we focus on seasonal changes in the mid-latitude band of the northern hemisphere between 27.5° N and 40° N, where the two major mountain systems are the Tibetan Plateau/Himalayas in Asia and the Rocky Mountains in the United States. Results from the multi-model ensemble indicate that warming rates in mountains will be enhanced relative to non-mountain regions at the same latitude, particularly during the cold season. The strongest correlations of enhanced warming with elevation are obtained for the daily minimum temperature during winter, with the largest increases found for the Tibetan Plateau/Himalayas. The model projections indicate that this occurs, in part, because of proportionally greater increases in downward longwave radiation at higher elevations in response to increases in water vapor. The mechanisms for enhanced increases in winter and spring maximum temperatures in the Rockies appear to be influenced more by increases in surface absorption of solar radiation owing to a reduced snow cover. Furthermore, the amplification of warming with elevation is greater for a higher greenhouse gas emission scenario. (letter)

  15. The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    K. Petzoldt

    1999-02-01

    Full Text Available Total ozone anomalies (deviation from the long-term mean are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative anomalies may be due to chemical ozone destruction. The statistics are derived from a 14 year data set of TOMS (Total Ozone Mapping Spectrometer January 1979-Dec. 1992 and corresponding 300 hPa geopotential (for the tropopause height together with 30 hPa temperature (for stratospheric waves at 60°N. The correlation coefficient for the linear multiple regression between total ozone (dependent variable and the dynamical parameters (independent variables is 0.88 for the zonal deviations in the winter of the Northern Hemisphere. Zonal means are also significantly dependent on circulation parameters, besides showing the known negative trend function of total ozone observed by TOMS. The significant linear trend for 60°N is \\sim3 DU/year in the winter months taking into account the dependence on the dynamics between the tropopause region and the mid-stratosphere. The highest correlation coefficient for the monthly mean total ozone anomalies is reached in November with 0.94.Key words. Atmospheric composition and structure (middle atmosphere · composition and chemistry · Meteorology and atmospheric dynamics (middle atmosphere dynamics.

  16. The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    K. Petzoldt

    Full Text Available Total ozone anomalies (deviation from the long-term mean are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative anomalies may be due to chemical ozone destruction. The statistics are derived from a 14 year data set of TOMS (Total Ozone Mapping Spectrometer January 1979-Dec. 1992 and corresponding 300 hPa geopotential (for the tropopause height together with 30 hPa temperature (for stratospheric waves at 60°N. The correlation coefficient for the linear multiple regression between total ozone (dependent variable and the dynamical parameters (independent variables is 0.88 for the zonal deviations in the winter of the Northern Hemisphere. Zonal means are also significantly dependent on circulation parameters, besides showing the known negative trend function of total ozone observed by TOMS. The significant linear trend for 60°N is sim3 DU/year in the winter months taking into account the dependence on the dynamics between the tropopause region and the mid-stratosphere. The highest correlation coefficient for the monthly mean total ozone anomalies is reached in November with 0.94.

    Key words. Atmospheric composition and structure (middle atmosphere · composition and chemistry · Meteorology and atmospheric dynamics (middle atmosphere dynamics.

  17. The northern hemisphere of asteroid (21) Lutetia—topography and orthoimages from Rosetta OSIRIS NAC image data

    Science.gov (United States)

    Preusker, Frank; Scholten, Frank; Knollenberg, Jörg; Kührt, Ekkehard; Matz, Klaus-Dieter; Mottola, Stefano; Roatsch, Thomas; Thomas, Nick

    2012-06-01

    During the flyby at asteroid (21) Lutetia by the Rosetta spacecraft in July 2010, the OSIRIS imaging system onboard acquired several hundred images of Lutetia's surface. Images of the OSIRIS NAC (Narrow Angle Camera) comprise up to 60 m/pixel ground resolution. We analyzed 84 multi-spectral NAC images with stereo-photogrammetric methods. A 3D point control network within a photogrammetric block adjustment was used to derive improved orientation data (pointing and position) for the Rosetta spacecraft as well as corrections of the pre-flight estimates of Lutetia's position in space. For the generation of a digital terrain model (DTM), we selected a subset of 10 OSIRIS NAC images within a multi-image matching process. We combined the matching results with the adjusted orientation data and derived more than 12 million of surface points with a 3D point accuracy of ˜40 m (2/3 pixel) and a vertical component of that of ˜15 m (1/4 pixel). The 3D surface points were converted to a final 60 m raster DTM, which covers about 78% of the entire northern hemisphere. All 84 NAC images were then ortho-rectified on the basis of the improved orientation and the DTM. Thus, orthoimage products with sub-pixel registration accuracy are available for multi-spectral mapping of the surface of Lutetia. Finally, the DTM was textured with an orthoimage mosaic to form a VRML dataset for full-resolution interactive 3D investigations.

  18. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation

    Science.gov (United States)

    Oudar, Thomas; Sanchez-Gomez, Emilia; Chauvin, Fabrice; Cattiaux, Julien; Terray, Laurent; Cassou, Christophe

    2017-12-01

    The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.

  19. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers.

    Science.gov (United States)

    Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C

    2017-11-01

    Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  1. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets

    Directory of Open Access Journals (Sweden)

    Y. Brugnara

    2013-07-01

    Full Text Available Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU. The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010, which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.

  2. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change.

    Science.gov (United States)

    Bussière, Elsa M S; Underhill, Les G; Altwegg, Res

    2015-06-01

    Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra-African migrants. Because climate change patterns are not uniform across the globe, we can expect regional disparities in bird phenological responses. It is also likely that they vary across species, as species show differences in the strength of affinities they have with particular habitats and environments. Here, we examine the arrival and departure of nine Palearctic and seven intra-African migratory species in the central Highveld of South Africa, where the former spend their nonbreeding season and the latter their breeding season. Using novel analytical methods based on bird atlas data, we show phenological shifts in migration of five species - red-backed shrike, spotted flycatcher, common sandpiper, white-winged tern (Palearctic migrants), and diederik cuckoo (intra-African migrant) - between two atlas periods: 1987-1991 and 2007-2012. During this time period, Palearctic migrants advanced their departure from their South African nonbreeding grounds. This trend was mainly driven by waterbirds. No consistent changes were observed for intra-African migrants. Our results suggest that the most consistent drivers of migration phenological shifts act in the northern hemisphere, probably at the breeding grounds. © 2015 John Wiley & Sons Ltd.

  3. A Polar Projection: The Northern Dimension in Modern Scottish Literature

    OpenAIRE

    Stachura, Michael Jon Anthony

    2015-01-01

    Drawing on a transnational turn in recent Scottish literary criticism, this dissertation examines a transnational northern dimension in modern Scottish literature. Following a ‘No’ vote in an historic referendum on independence in 2014, the question of what Scotland and ‘Scottishness’ is in a post-referendum twenty-first century world is once again being debated and reimagined. Literature, as always in Scotland, will play a major role in this process. While the nation and national identity re...

  4. Accelerating carbon uptake in the Northern Hemisphere - Evidence from the interhemispheric difference of atmospheric CO{sub 2} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxuan [Ministry of Education Key Lab. for Earth System Modeling, Center for Earth System Science, Tsinghua Univ., Beijing (China); Dept. of Marine Sciences, Texas A and M Univ. at Galveston, Galveston (United States)], e-mail: yxw@tsinghua.edu.cn; Li, Mingwei; Shen, Lulu [Ministry of Education Key Lab. for Earth System Modeling, Center for Earth System Science, Tsinghua Univ., Beijing (China)

    2013-11-15

    Previous studies have indicated that the regression slope between the interhemispheric difference (IHD) of CO{sub 2} mixing ratios and fossil fuel (FF) CO{sub 2} emissions was rather constant at about 0.5 ppm/Pg C yr{sup -1} during 1957 - 2003. In this study, we found that the average regression slopes between the IHD of CO{sub 2} mixing ratios and IHD of FF emissions for 16 sites in the Northern Hemisphere (NH) decreased from 0.69{+-}0.12 ppm/Pg C yr{sup -1} during 1982 - 1991 to 0.37{+-}0.06 ppm/Pg C yr{sup -1} during 1996 - 2008 (IHD of CO{sub 2} defined as the differences between each site and the South Pole, SPO). The largest difference was found in summer and autumn. The change in the spatial distribution of FF emissions driven by fast increasing Asian emissions may explain the slope change at three sites located north of 60 deg N but not at the other sites. A 30-yr SF{sub 6} simulation with time-varying meteorology and constant emissions suggests no significant difference in the decadal average and seasonal variation of interhemispheric exchange time{sub (}t{sub ex)} between the two periods. Based on the hemispheric net carbon fluxes derived from a two-box model, we attributed 75 % of the regression slope decrease at NH sites south of 60 deg N to the acceleration of net carbon sink increase in the NH and 25 % to the weakening of net carbon sink increase in the SH during 1996 - 2008. The growth rate of net carbon sink in the NH has increased by a factor of about three from 0.028{+-}0.023 [mean{+-}2{sigma}] Pg C yr{sup -2} during 1982 - 1991 to 0.093{+-}0.033 Pg C yr{sup -2} during 1996 - 2008, exceeding the percentage increase in the growth rate of IHD of FF emissions between the two periods (45%). The growth rate of net carbon sink in the SH has reduced 62 % from 0.058{+-}0.018 Pg C yr{sup -2} during 1982 - 1991 to 0.022{+-}0.012 Pg C yr{sup -2} during 1996 - 2008.

  5. NKS NordRisk. Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Baklanov, A.; Mahura, A.; Lauritzen, Bent; Mikkelsen, Torben

    2008-07-01

    Within the NKS NordRisk project, 'Nuclear risk from atmospheric dispersion in Northern Europe', the NKS NordRisk Atlas has been developed. The atlas describes risks from hypothetical long-range atmospheric dispersion and deposition of radionuclides from selected nuclear risk sites in the Northern Hemisphere. A number of case studies of long-term long-range atmospheric transport and deposition of radionuclides has been developed, based on two years of meteorological data. Radionuclide concentrations in air and radionuclide depositions have been evaluated and examples of long-term averages of the dispersion and deposition and of the variability around these mean values are provided. (au)

  6. Late Cenozoic deep weathering patterns on the Fennoscandian shield in northern Finland: A window on ice sheet bed conditions at the onset of Northern Hemisphere glaciation

    Science.gov (United States)

    Hall, Adrian M.; Sarala, Pertti; Ebert, Karin

    2015-10-01

    The nature of the regolith that existed on the shields of the Northern Hemisphere at the onset of ice sheet glaciation is poorly constrained. In this paper, we provide the first detailed account of an exceptionally preserved, deeply weathered late Neogene landscape in the ice sheet divide zone in northern Finland. We mine data sets of drilling and pitting records gathered by the Geological Survey of Finland to reconstruct regional preglacial deep weathering patterns within a GIS framework. Using a large geochemical data set, we give standardised descriptions of saprolite geochemistry using a variant of the Weathering Index of Parker (WIP) as a proxy to assess the intensity of weathering. We also focus on mineral prospects and mines with dense pit and borehole data coverage in order to identify links between geology, topography, and weathering. Geology is closely linked to topography on the preglacial shield landscape of northern Finland and both factors influence weathering patterns. Upstanding, resistant granulite, granite, gabbro, metabasalt, and quartzite rocks were associated with fresh rock outcrops, including tors, or with thin ( 50 m and included intensely weathered kaolinitic clays with WIPfines values below 1000. Late Neogene weathering profiles were varied in character. Tripartite clay-gruss-saprock profiles occur only in limited areas. Bipartite gruss-saprock profiles were widespread, with saprock thicknesses of > 10 m. Weathering profiles included two discontinuities in texture, materials and resistance to erosion, between saprolite and saprock and between saprock and rock. Limited core recovery when drilling below the soil base in mixed rocks of the Tana Belt indicates that weathering locally penetrated deep below upper fresh rock layers. Such deep-seated weathered bands in rock represent a third set of discontinuities. Incipient weathering and supergene mineralisation also extended to depths of > 100 m in mineralised fracture zones. The thin

  7. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  8. Changes to the chemical state of the Northern Hemisphere atmosphere during the second half of the twentieth century

    Science.gov (United States)

    Newland, Mike J.; Martinerie, Patricia; Witrant, Emmanuel; Helmig, Detlev; Worton, David R.; Hogan, Chris; Sturges, William T.; Reeves, Claire E.

    2017-07-01

    The NOx (NO and NO2) and HOx (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOx and HOx are highly variable in space and time, and so the measurements of these species are of limited value for examining long-term, large-scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the production efficiency of which is dependent on the atmospheric [NO] / [HO2] ratio. We derive long-term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 3-5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOx, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increased from around 1970 to the late 1990s. This is consistent with large changes to the [NO] / [HO2] ratio in the Northern Hemisphere atmosphere during this period. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.

  9. Changes to the chemical state of the Northern Hemisphere atmosphere during the second half of the twentieth century

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2017-07-01

    Full Text Available The NOx (NO and NO2 and HOx (OH and HO2 budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOx and HOx are highly variable in space and time, and so the measurements of these species are of limited value for examining long-term, large-scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the production efficiency of which is dependent on the atmospheric [NO] ∕ [HO2] ratio. We derive long-term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 3–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOx, lead to the formation of the alkyl nitrates. The ratios of the alkyl nitrates to their parent alkanes increased from around 1970 to the late 1990s. This is consistent with large changes to the [NO] ∕ [HO2] ratio in the Northern Hemisphere atmosphere during this period. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.

  10. Geomagnetic activity at Northern Hemisphere's mid-latitude ground stations: How much can be explained using TS05 model

    Science.gov (United States)

    Castillo, Yvelice; Pais, Maria Alexandra; Fernandes, João; Ribeiro, Paulo; Morozova, Anna L.; Pinheiro, Fernando J. G.

    2017-12-01

    For the 2007 to 2014 period, we use a statistical approach to evaluate the performance of Tsyganenko and Sitnov [2005] semi-empirical model (TS05) in estimating the magnetospheric transient signal observed at four Northern Hemisphere mid-latitude ground stations: Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA. Using hourly mean data, we find that the TS05 performance is clearly better for the X (North-South) than for the Y (East-West) field components and for more geomagnetically active days as determined by local K-indices. In ∼ 50% (X) and ∼ 30% (Y) of the total number of geomagnetically active days, correlation values yield r ≥ 0.7. During more quiet conditions, only ∼ 30% (X) and ∼ 15% (Y) of the number of analyzed days yield r ≥ 0.7. We compute separate contributions from different magnetospheric currents to data time variability and to signal magnitude. During more active days, all tail, symmetric ring and partial ring currents contribute to the time variability of X while the partial ring and field aligned currents contribute most to the time variability of Y. The tail and symmetric ring currents are main contributors to the magnitude of X. In the best case estimations when r ≥ 0.7, remaining differences between observations and TS05 predictions could be explained by global induction in the Earth's upper layers and crustal magnetization. The closing of field aligned currents through the Earth's center in the TS05 model seems to be mainly affecting the Y magnetospheric field predictions.

  11. Using a transient GCM simulation of the last deglaciation to model the evolution of Northern Hemisphere ice sheets

    Science.gov (United States)

    Gregoire, Lauren; Valdes, Paul; Payne, Tony; Kahana, Ron

    2010-05-01

    Climate-ice sheet interactions played an important role during the last deglaciation. To better understand these interactions, coupling between a 3D ice sheet model and an intermediate complexity model has been used to simulate the transient evolution of climate and ice sheets over the deglaciation (Charbit et al. 2005; Bonelli et al. 2009). As pointed out by these studies the geographical distribution of ice sheets obtained could be improved by having a better spatial distribution of precipitation. This could be achieved by using a General circulation model. It is only recently, however, that fully coupled GCM's can provide us with a continuous simulation of the climate during the last deglaciation and made it possible to simulate the transient evolution of climate and ice sheets. We use a transient climate simulation of the last deglaciation (21000 to 9000 years ago) realised with FAMOUS (a low resolution version of HadCM3) to force the 3D ice sheet model Glimmer, set up to simulate the Laurentide and Fennoscandian ice sheets. The climate model was forced with continuous changes in insolation, greenhouse gases concentration and realistic freshwater fluxes. The land sea mask, bathymetry, orography and ice sheets extent were updated every 1000 years following Ice-5G reconstruction. Evolving temperature and precipitation fields from this climate simulation were then used to force Glimmer using a standard PDD mass balance scheme. The simulated evolution of Northern hemisphere ice sheets through the deglaciation is presented. We investigate the causes of change in the ice sheet geometry by comparing the role of internal ice dynamic against climate forcing.

  12. Attribution of modeled atmospheric sulfate and SO2 in the Northern Hemisphere for June–July 1997

    Directory of Open Access Journals (Sweden)

    C. M. Benkovitz

    2006-01-01

    Full Text Available Anthropogenic sulfate aerosol is a major contributor to shortwave radiative forcing of climate change by direct light scattering and by perturbing cloud properties and to local concentrations of atmospheric particulate matter. Here we analyze results from previously published calculations with an Eulerian transport model for atmospheric sulfur species in the Northern Hemisphere in June–July, 1997 to quantify the absolute and relative contributions of specific source regions (North America, Europe, and Asia and SO2-to-sulfate conversion mechanisms (gas-phase, aqueous-phase and primary sulfate to sulfate and SO2 column burdens as a function of location and time. Although material emitted within a given region dominates the sulfate and SO2 column burden in that region, examination of time series at specific locations shows that material imported from outside can make a substantial and occasionally dominant contribution. Frequently the major fraction of these exogenous contributions to the sulfate column burden was present aloft, thus minimally impacting air quality at the surface, but contributing substantially to the burden and, by implication, to radiative forcing and diminution of surface irradiance. Although the dominant sulfate formation pathway in the domain as a whole is aqueous-phase reaction in clouds (62%, in regions with minimum opportunity for aqueous-phase reaction gas-phase oxidation is dominant, albeit with considerable temporal variability depending on meteorological conditions. These calculations highlight the importance of transoceanic transport of sulfate, especially at the western margins of continents under the influence of predominantly westerly transport winds.

  13. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series

    Directory of Open Access Journals (Sweden)

    Alfredo eDi Filippo

    2015-05-01

    Full Text Available Understanding the factors controlling the expression of longevity in trees is still an outstanding challenge for tree biologists and forest ecologists. We gathered tree-ring data and literature for broadleaf deciduous (BD temperate trees growing in closed-canopy old-growth forests in the Northern Hemisphere to explore the role of geographic patterns, climate variability, and growth rates on longevity. Our pan-continental analysis, covering 32 species from 12 genera, showed that 300-400 years can be considered a baseline threshold for maximum tree lifespan in many temperate deciduous forests. Maximum age varies greatly in relation to environmental features, even within the same species. Tree longevity is generally promoted by reduced growth rates across large genetic differences and environmental gradients. We argue that slower growth rates, and the associated smaller size, provide trees with an advantage against biotic and abiotic disturbance agents, supporting the idea that size, not age, is the main constraint to tree longevity. The oldest trees were living most of their life in subordinate canopy conditions and/or within primary forests in cool temperate environments and outside major storm tracks. Very old trees are thus characterized by slow growth and often live in forests with harsh site conditions and infrequent disturbance events that kill much of the trees. Temperature inversely controls the expression of longevity in mesophilous species (Fagus spp., but its role in Quercus spp. is more complex and warrants further research in disturbance ecology. Biological, ecological and historical drivers must be considered to understand the constraints imposed to longevity within different forest landscapes.

  14. Simulated Historical (1901-2010) Changes in the Permafrost Extent and Active Layer Thickness in the Northern Hemisphere

    Science.gov (United States)

    Guo, Donglin; Wang, Huijun

    2017-11-01

    A growing body of simulation research has considered the dynamics of permafrost, which has an important role in the climate system of a warming world. Previous studies have concentrated on the future degradation of permafrost based on global climate models (GCMs) or data from GCMs. An accurate estimation of historical changes in permafrost is required to understand the relations between changes in permafrost and the Earth's climate and to validate the results from GCMs. Using the Community Land Model 4.5 driven by the Climate Research Unit -National Centers for Environmental Prediction (CRUNCEP) atmospheric data set and observations of changes in soil temperature and active layer thickness and present-day areal extent of permafrost, this study investigated the changes in permafrost in the Northern Hemisphere from 1901 to 2010. The results showed that the model can reproduce the interannual variations in the observed soil temperature and active layer thickness. The simulated area of present-day permafrost fits well with observations, with a bias of 2.02 × 106 km2. The area of permafrost decreased by 0.06 (0.62) × 106 km2 decade-1 from 1901 to 2009 (1979 to 2009). A clear decrease in the area of permafrost was found in response to increases in air temperatures during the period from about the 1930s to the 1940s, indicating that permafrost is sensitive to even a temporary increase in temperature. From a regional perspective, high-elevation permafrost decreases at a faster rate than high-latitude permafrost; permafrost in China shows the fastest rate of decrease, followed by Alaska, Russia, and Canada. Discrepancies in the rate of decrease in the extent of permafrost among different regions were mostly linked to the sensitivity of permafrost in the regions to increases in air temperatures rather than to the amplitude of the increase in air temperatures. An increase in the active layer thickness of 0.009 (0.071) m decade-1 was shown during the period of 1901

  15. A Synthetical Estimation of Northern Hemisphere Sea-ice Albedo Radiative Forcing and Feedback between 1982 and 2009

    Science.gov (United States)

    Cao, Y.

    2014-12-01

    The decreasing surface albedo caused by continously vanishing sea ice over the Arctic plays a very important role in Arctic warming amplification. However, the quantification of the change of radiative forcing at top of atmosphere (TOA) introduced by the decreasing sea ice albedo and its generated feedback to the climate remain uncertain. Two recent representative studies showed a large difference with each other: Flanner et al. (2011) used a method of synthesis of surface albedo and radiative kernels and found that the change of sea ice radiative forcing (ΔSIRF) in Northern Hemisphere (NH) from 1979 to 2008 was 0.22 (0.15 - 0.32) W m-2, and the corresponding sea ice albedo feedback (SIAF) over NH was 0.28 (0.19 - 0.41) W m-2 K-1; while Pistone et al. (2014) directly used the observed planetary albedo to estimate the NH ΔSIRF and SIAF from 1979 to 2011 and draw a NH ΔSIRF of 0.43 ± 0.07 W m-2, which was nearly twice as larger as Flanner's result, and the estimated global SIAF was 0.31 ± 0.04 W m-2 K-1. Motivated by reconciling the difference between these two studies and obtaining a more accurate qualification of the NH ΔSIRF, we used a newly released satellite-retrieved surface albedo product CLARA-A1 and made an attempt in two steps: Firstly, based on synthesising the surface albedo and raditive kernels, we calcualted the ΔSIRF from 1982 to 2009 was 0.20 ± 0.05 W m-2, and the NH SIAF was 0.25 W m-2 K-1; After comparing with TOA observed radiative flux, we found it's quite likely the kernel methods yield an underestimation for the all-sky ΔSIRF. Then, we tried to use TOA observed broadband radiative flux to adjust the estimation with kernels. After an adjustment, the NH all-sky ΔSIRF was 0.34 ± 0.09 W m-2, and the corresponding SIAF was 0.43 W m-2 K-1 over NH and 0.31 W m-2 K-1 over the entire globe.

  16. Are Changing Emission Patterns Across the Northern Hemisphere Influencing Long-range Transport Contributions to Background Air Pollution?

    Science.gov (United States)

    Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emissio...

  17. Transpolar arcs observed simultaneously in both hemispheres

    Science.gov (United States)

    Carter, J. A.; Milan, S. E.; Fear, R. C.; Walach, M.-T.; Harrison, Z. A.; Paxton, L. J.; Hubert, B.

    2017-06-01

    Two coexisting transpolar arcs are observed on 31 August 2005. We track the formation and motion of the arcs in both the Northern and Southern Hemispheres, using data from two independent satellites (Imager for Magnetopause to Aurora Global Exploration and a Defence Meteorological Satellite Program satellite). The observations are supported by supplementary ground-based ionospheric convection data from the Super Dual Auroral Radar Network. The two arcs form during a period of northward interplanetary magnetic field. Following a change in the direction of the interplanetary magnetic field BY component from negative to positive, the dawnside arc traverses the polar cap to the duskside in the Northern Hemisphere. Over the same time period and in the Southern Hemisphere, the duskside arc traverses the polar cap to the dawnside. A complex magnetic field line topology resulting in the coexistence of two tongues of closed field lines protruding into the otherwise open polar cap is implied. We discuss these observations in terms of magnetic conjugacy and a model of transpolar arcs formation.

  18. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  19. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  20. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  1. The formation and evolution of Titan’s winter polar vortex

    NARCIS (Netherlands)

    Teanby, Nicholas; Bezard, Bruno; Vinatier, Sandrine; Sylvestre, Melody; Nixon, Conor; Irwin, Patrick; de Kok, R.J.; Calcutt, Simon; Flasar, Michael

    2017-01-01

    Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter

  2. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  3. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...

  4. Seasonal and interplanetary magnetic field dependence of the field-aligned currents for both Northern and Southern Hemispheres

    Directory of Open Access Journals (Sweden)

    D. L. Green

    2009-04-01

    Full Text Available The configuration of the Earth's magnetosphere under various Interplanetary Magnetic Field (IMF and solar wind conditions alters the global distribution of Field-Aligned Currents (FACs at the high latitude ionospheres. We use magnetic field data obtained from the Iridium constellation to extend recent studies that infer the dependence of the global FAC configuration on IMF direction and magnitude, hemisphere and season. New results are a reduced IMF By influence on the FAC configuration for the winter hemisphere and a redistribution of FAC to the nightside for winter relative to the summer hemisphere. These effects are linked to the winter ionosphere conductance distribution being dominated by localised nightside enhancement associated with ionisation from energetic particle precipitation. A comparison of an estimated open-closed field line boundary (OCFLB with the Region 1 FAC locations shows reasonable agreement for summer FAC configurations. However, the OCFLB location is decoupled from the Region 1 FACs in winter, especially for IMF Bz>0.

  5. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Smith Korsholm, U.; Havskov Soerensen, J. (Danish Meteorological Institute (DMI), Copenhagen (Denmark)); Astrup, P.; Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-04-15

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  6. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Smith Korsholm, U.; Havskov Soerensen, J.; Astrup, P.; Lauritzen, B.

    2011-04-01

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  7. Planetary waves in ozone and temperature in the Northern Hemisphere winters of 2002/2003 and early 2005

    Directory of Open Access Journals (Sweden)

    A. Belova

    2009-03-01

    Full Text Available Temperature and ozone data from the sub-millimetre radiometer (SMR installed aboard the Odin satellite have been examined to study the relationship between temperature and ozone concentration in the lower and upper stratosphere in winter time. The retrieved ozone and temperature profiles have been considered between the range of 24–46 km during the Northern Hemisphere (NH winter of December 2002 to March 2003 and January to March 2005. A comparison between the ozone mixing ratio and temperature fields has been made for the zonal means, wavenumber one variations and 5-day planetary waves. The amplitude values in temperature variations are ~5 K in the wavenumber one and 0.5–1 K in the 5-day wave. In ozone mixing ratio, the amplitudes reach ~0.5 ppmv in the wavenumber one and 0.05–0.1 ppmv in the 5-day wave. Several stratospheric warming events were observed during the NH winters of 2002/2003 and early 2005. Along with these warming events, amplification of the amplitude has been detected in wavenumber one (up to 30 K in temperature and 1.25 ppmv in ozone and partly in the 5-day perturbation (up to 2 K in temperature and 0.2 ppmv in ozone. In general, the results show the expected in-phase behavior between the temperature and ozone fields in the lower stratosphere due to dynamic effects, and an out-of-phase pattern in the upper stratosphere, which is expected as a result of photochemical effects. However, these relationships are not valid for zonal means and wavenumber one components when the wave amplitudes are changing dramatically during the strongest stratospheric warming event (at the end of December 2002/beginning of January 2003. Also, for several shorter intervals, the 5-day perturbations in ozone and temperature are not well-correlated at lower heights, particularly when conditions change rapidly. Odin's basic observation schedule provides stratosphere mode data every third day and to validate the reliability of the 5-day waves

  8. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    Science.gov (United States)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  9. The influence on the radioxenon background during the temporary suspension of operations of three major medical isotope production facilities in the Northern Hemisphere and during the start-up of another facility in the Southern Hemisphere.

    Science.gov (United States)

    Saey, Paul R J; Auer, Matthias; Becker, Andreas; Hoffmann, Emmy; Nikkinen, Mika; Ringbom, Anders; Tinker, Rick; Schlosser, Clemens; Sonck, Michel

    2010-09-01

    Medical isotope production facilities (MIPF) have recently been identified to emit the major part of the environmental radioxenon measured at many globally distributed monitoring sites deployed to strengthen the radionuclide component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification regime. Efforts to raise a global radioxenon emission inventory revealed that the yearly global total emission from MIPF's is around 15 times higher than the total radioxenon emission from nuclear power plants (NPP's). Given that situation, from mid 2008 until early 2009 two out of the ordinary hemisphere-specific events occured: 1) In the Northern hemisphere, a joint temporary suspension of operations of the three largest MIPF's made it possible to quantify the effects of the emissions related to NPP's. The average activity concentrations of (133)Xe measured at a monitoring station close to Freiburg, Germany, went down significantly from 4.5 +/- 0.5 mBq/m(3) to 1.1 +/- 0.1 mBq/m(3) and in Stockholm, Sweden, from 2.0 +/- 0.4 mBq/m(3) to 1.05 +/- 0.15 mBq/m(3). 2) In the Southern hemisphere the only radioxenon-emitting MIPF in Australia started up test production in late November 2008. During eight test runs, up to 6.2 +/- 0.2 mBq/m(3) of (133)Xe was measured at the station in Melbourne, 700 km south-west from the facility, where no radioxenon had been observed before, originating from the isotopic production process. This paper clearly confirms the hypothesis that medical isotope production facility are at present the major emitters of radioxenon to the atmosphere. Suspension of operations of these facilities indicates the scale of their normal contribution to the European radioxenon background, which decreased two to four fold. This also gives a unique opportunity to detect and investigate the influence of other local and long distance sources on the radioxenon background. Finally the opposing effect was studied: the contribution of the start-up of a renewed

  10. ON THE ROTATION OF SUNSPOTS AND THEIR MAGNETIC POLARITY

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, Haimin; Wang, Shuo, E-mail: zlyang@bnu.edu.cn [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

    2016-07-20

    The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory . We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency of the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr{sup 1}. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr{sup 1}. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.

  11. Recent Very Hot Summers in Northern Hemispheric Land Areas Measured by Wet Bulb Globe Temperature Will Be the Norm Within 20 Years

    Science.gov (United States)

    Li, Chao; Zhang, Xuebin; Zwiers, Francis; Fang, Yuanyuan; Michalak, Anna M.

    2017-12-01

    Wet bulb globe temperature (WBGT) accounts for the effect of environmental temperature and humidity on thermal comfort, and can be directly related to the ability of the human body to dissipate excess metabolic heat and thus avoid heat stress. Using WBGT as a measure of environmental conditions conducive to heat stress, we show that anthropogenic influence has very substantially increased the likelihood of extreme high summer mean WBGT in northern hemispheric land areas relative to the climate that would have prevailed in the absence of anthropogenic forcing. We estimate that the likelihood of summer mean WGBT exceeding the observed historical record value has increased by a factor of at least 70 at regional scales due to anthropogenic influence on the climate. We further estimate that, in most northern hemispheric regions, these changes in the likelihood of extreme summer mean WBGT are roughly an order of magnitude larger than the corresponding changes in the likelihood of extreme hot summers as simply measured by surface air temperature. Projections of future summer mean WBGT under the RCP8.5 emissions scenario that are constrained by observations indicate that by 2030s at least 50% of the summers will have mean WBGT higher than the observed historical record value in all the analyzed regions, and that this frequency of occurrence will increase to 95% by mid-century.

  12. Polar bear population status in the northern Beaufort Sea, Canada, 1971-2006.

    Science.gov (United States)

    Stirling, Ian; McDonald, Trent L; Richardson, E S; Regehr, Eric V; Amstrup, Steven C

    2011-04-01

    Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open-population capture-recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest-ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2-4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 +/- 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (polar bear population in the northern Beaufort Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need to

  13. Seasonal Migration of Monsoons between the Northern and Southern Hemisphere as Revealed from Equatorially Symmetric and Asymmetric OLR Data

    OpenAIRE

    Jun, MATSUMOTO; Takio, MURAKAMI; Department of Earth and Planetary Science, University of Tokyo; Department of Meteorology, University of Hawaii

    2002-01-01

    The climatological pentad mean OLR data are partitioned into symmetric component OLR', and asymmetric component OLR", with reference to the equator. Objective criteria are then introduced to define the intensity, center and areal extent of strong convections with OLR' (OLR") of less than 220 (-20) Wm^-2 over the equatorial (subtropical) domains, and seasonal migration of monsoons between the two hemispheres is investigated. Over the equatorial continents, such as Africa and South America, OLR...

  14. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  15. Brucella species survey in polar bears (ursus maritimus) of northern Alaska.

    Science.gov (United States)

    O'Hara, Todd M; Holcomb, Darce; Elzer, Philip; Estepp, Jessica; Perry, Quinesha; Hagius, Sue; Kirk, Cassandra

    2010-07-01

    We report on the presence of specific antibodies to Brucella spp. and Yersinia enterocolitica in polar bears (Ursus maritimus) from northern Alaska (southern Beaufort Sea) during 2003-2006. Based on numerous known stressors (e.g., climate change and loss of sea ice habitat, contaminants), there is increased concern regarding the status of polar bears. Considering these changes, it is important to assess exposure to potentially pathogenic organisms and to improve understanding of transmission pathways. Brucella or specific antibodies to Brucella spp. has been reported in marine mammals. Various assays were used to elucidate the pathway or source of exposure (e.g., "marine" vs. "terrestrial" Brucella spp.) of northern Alaska polar bears to Brucella spp. The standard plate test (SPT) and the buffered Brucella antigen card test (BBA) were used for initial screening for antibodies specific to Brucella. We then evaluated positive reactors (presence of serum antibody specific for Brucella spp.) using immunoblots and competitive enzyme-linked immunosorbent assay (cELISA; based on pinniped-derived Brucella spp. antigen). Annual prevalence of antibody (BBA and SPT) for Brucella spp. ranged from 6.8% to 18.5% over 2003-2006, with an overall prevalence of 10.2%. Prevalence of Brucella spp. antibody did vary by age class. Western blot analyses indicated 17 samples were positive for Brucella spp. antibody; of these, 13 were negative by marine (pinniped) derived Brucella antigen cELISA and four were positive by marine cELISA. Of the four samples positive for Brucella antibody by marine cELISA, three cross-reacted with Y. enterocolitica and Brucella spp. (one sample was Brucella negative and Y. enterocolitica positive). It appears the polar bear antibody does not react with the antigens used on the marine cELISA assay, potentially indicating a terrestrial (nonpinniped) source of Brucella spp.

  16. Phenology Shifts at Start vs. End of Growing Season in Temperate Vegetation Over the Northern Hemisphere for the Period 1982-2008

    Science.gov (United States)

    Jeong, Su-Jong; Ho, Chang-Hoi; Gim, Hyeon-Ju; Brown, Molley E.

    2011-01-01

    Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982 2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. Keywords: climate change, growing season, NDVI (normalized difference vegetation index), Northern Hemisphere, phenology,

  17. SMAP Enhanced L3 Radiometer Northern Hemisphere Daily 9 km EASE-Grid Freeze/Thaw State V001

    Data.gov (United States)

    National Aeronautics and Space Administration — Daily global composite of up-to 30 half-orbit L1C_TB files and estimated binary freeze/thaw state based on passive normalized polarization ratio measurements by the...

  18. Northern Hemisphere Atmospheric Transient Eddy Fluxes from the MERRA and Their Co-variability with Ocean Frontal Variability near the Western Boundary Current Regions

    Science.gov (United States)

    Kwon, Y.-O.; Joyce, T. M.

    2012-04-01

    Time series of winter (January-March) meridional transient eddy heat and moisture fluxes ( and ) for 1979-2009 in two separate frequency bands, i.e. the synoptic (2-8 days) and intra-seasonal (8-90 days), are calculated for the whole Northern Hemisphere based on daily atmospheric variables from the NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) at 1/2 degrees latitude by 2/3 degrees longitude resolution. The climatological mean transient eddy fluxes in two frequency bands exhibit markedly distinct spatial patterns. The synoptic transient eddy fluxes show storm-track variability, of which maxima are co-located with the Gulf Stream and the Kuroshio-Oyashio Extensions, respectively in each basin. On the other hand, the intra-seasonal transient eddy fluxes exhibit maxima co-located with the major orography, e.g. the Rockies. In a vertically and zonally integrated poleward heat transport sense, the maximum heat transports in the two frequency bands are similar, while the sensible heat fluxes are twice greater than the latent heat fluxes. In addition, co-variability between the meridional transient eddy heat and moisture fluxes and their divergence in the Northern Hemisphere atmosphere and the variability in the position of ocean fronts associated with the Kuroshio Extension, Oyashio Extension and Gulf Stream is examined with a focus on the interannual to decadal time scale. Statistically significant correlations are found between the as well as and the ocean fronts from the surface up to 250 hPa for all three ocean fronts. The co-variability explains approximately half of the interannual and longer variance in the synoptic band, while only ~20 % for the intra-seasonal band.

  19. A new space-time characterization of Northern Hemisphere drought in model simulations of the past and future as compared to the paleoclimate record

    Science.gov (United States)

    Coats, S.; Smerdon, J. E.; Stevenson, S.; Fasullo, J.; Otto-Bliesner, B. L.

    2017-12-01

    The observational record, which provides only limited sampling of past climate variability, has made it difficult to quantitatively analyze the complex spatio-temporal character of drought. To provide a more complete characterization of drought, machine learning based methods that identify drought in three-dimensional space-time are applied to climate model simulations of the last millennium and future, as well as tree-ring based reconstructions of hydroclimate over the Northern Hemisphere extratropics. A focus is given to the most persistent and severe droughts of the past 1000 years. Analyzing reconstructions and simulations in this context allows for a validation of the spatio-temporal character of persistent and severe drought in climate model simulations. Furthermore, the long records provided by the reconstructions and simulations, allows for sufficient sampling to constrain projected changes to the spatio-temporal character of these features using the reconstructions. Along these lines, climate models suggest that there will be large increases in the persistence and severity of droughts over the coming century, but little change in their spatial extent. These models, however, exhibit biases in the spatio-temporal character of persistent and severe drought over parts of the Northern Hemisphere, which may undermine their usefulness for future projections. Despite these limitations, and in contrast to previous claims, there are no systematic changes in the character of persistent and severe droughts in simulations of the historical interval. This suggests that climate models are not systematically overestimating the hydroclimate response to anthropogenic forcing over this period, with critical implications for confidence in hydroclimate projections.

  20. Modes of interannual variability in northern hemisphere winter atmospheric circulation in CMIP5 models: evaluation, projection and role of external forcing

    Science.gov (United States)

    Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu

    2018-04-01

    Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.

  1. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences.

    Science.gov (United States)

    Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook

    2017-01-01

    Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis

  2. Monitoring of reported sudden emission rate changes of major radioxenon emitters in the northern and southern hemispheres in 2008 to assess their contribution to the respective radioxenon backgrounds

    Science.gov (United States)

    Saey, P. R. J.; Auer, M.; Becker, A.; Colmanet, S.; Hoffmann, E.; Nikkinen, M.; Schlosser, C.; Sonck, M.

    2009-04-01

    Atmospheric radioxenon monitoring is a key component of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Radiopharmaceutical production facilities (RPF) have recently been identified of emitting the major part of the environmental radioxenon measured at globally distributed monitoring sites deployed to strengthen the radionuclide part of the CTBT verification regime. Efforts to raise a global radioxenon emission inventory revealed that the global total emission from RPF's is 2-3 orders of magnitude higher than the respective emissions related to maintenance of all nuclear power plants (NPP). Given that situation we have seen in 2008 two peculiar hemisphere-specific situations: 1) In the northern hemisphere, a joint shutdown of the global largest four radiopharmaceutical facilities revealed the contribution of the normally 'masked' NPP related emissions. Due to an incident, the Molybdenum production at the "Institut des Radioéléments" (IRE) in Fleurus, Belgium, was shut down between Monday 25 August and 2 December 2008. IRE is the third largest global producer of medical isotopes. In the same period, but for different reasons, the other three worldwide largest producers (CRL in Canada, HFR in The Netherlands and NTP in South Africa) also had scheduled and unscheduled shutdowns. The activity concentrations of 133Xe measured at the Schauinsland Mountain station near Freiburg in Germany (situated 380 km SW of Fleurus) which have a mean of 4.8 mBq/m3 for the period February 2004 - August 2008, went down to 0.87 mBq/m3 for the period September - November 2008. 2) In the southern hemisphere, after a long break, the only radiopharmaceutical facility in Australia started up test production in late November 2008. In the period before the start-up, the background of radioxenon in Australia (Melbourne and Darwin) was below measurable quantities. During six test runs of the renewed RPF at ANSTO in Lucas Heights, up to 6 mBq/m3 of 133Xe were measured in

  3. Polar bear population status in the northern Beaufort Sea, Canada, 1971-2006

    Science.gov (United States)

    Stirling, I.; McDonald, T.L.; Richardson, E.S.; Regehr, E.V.; Amstrup, Steven C.

    2011-01-01

    Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open-population capture–recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest-ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2–4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 ± 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need to adapt.

  4. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    Science.gov (United States)

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  5. The North Atlantic Oscillation as a driver of multidecadal variability of the AMOC, the AMO, and Northern Hemisphere climate

    Science.gov (United States)

    Delworth, T. L.; Zeng, F. J.; Yang, X.; Zhang, L.

    2017-12-01

    We use suites of simulations with coupled ocean-atmosphere models to show that multidecadal changes in the North Atlantic Oscillation (NAO) can drive multidecadal changes in the Atlantic Meridional Overturning Circulation (AMOC) and the Atlantic Multidecadal Oscillation (AMO), with associated hemispheric climatic impacts. These impacts include rapid changes in Arctic sea ice, hemispheric temperature, and modulation of Atlantic hurricane activity. We use models that incorporate either a fully dynamic ocean or a simple slab ocean to explore the role of ocean dynamics and ocean-atmosphere interactions. A positive phase of the NAO is associated with strengthened westerly winds over the North Atlantic. These winds extract more heat than normal from the subpolar ocean, thereby increasing upper ocean density, deepwater formation, and the strength of the AMOC and associated poleward ocean heat transport. This warming leads to a positive phase of the AMO. The enhanced oceanic heat transport extends to the Arctic where it causes a reduction of Arctic sea ice. Large-scale atmospheric warming reduces vertical wind shear in the tropical North Atlantic, creating an environment more favorable for tropical storms. We use models to further show that observed multidecadal variations of the NAO over the 20th and early 21st centuries may have led to multidecadal variations of simulated AMOC and the AMO. Specifically, negative NAO values from the late 1960s through the early 1980s led to a weakened AMOC/cold North Atlantic, whereas increasing NAO values from the late 1980s through the late 1990s increased the model AMOC and led to a positive (warm) phase of the AMO. The warm phase contributed to increases in tropical storm activity and decreases in Arctic sea ice after the mid 1990s. Ocean dynamics are essential for translating the observed NAO variations into ocean heat content variations for the extratropical North Atlantic, but appear less important in the tropical North Atlantic

  6. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

    Science.gov (United States)

    Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin

    2018-04-01

    Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect

  7. Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming

    Directory of Open Access Journals (Sweden)

    Ying Kong

    2017-12-01

    Full Text Available In this study, the period that corresponds to the threshold of a 1.5 °C rise (relative to 1861–1880 in surface temperature is validated using a multi-model ensemble mean from 17 global climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5. On this basis, the changes in permafrost and snow cover in the Northern Hemisphere are investigated under a scenario in which the global surface temperature has risen by 1.5 °C, and the uncertainties of the results are further discussed. The results show that the threshold of 1.5 °C warming will be reached in 2027, 2026, and 2023 under RCP2.6, RCP4.5, RCP8.5, respectively. When the global average surface temperature rises by 1.5 °C, the southern boundary of the permafrost will move 1–3.5° northward (relative to 1986–2005, particularly in the southern Central Siberian Plateau. The permafrost area will be reduced by 3.43 × 106 km2 (21.12%, 3.91 × 106 km2 (24.1% and 4.15 × 106 km2 (25.55% relative to 1986–2005 in RCP2.6, RCP4.5 and RCP8.5, respectively. The snow water equivalent will decrease in over half of the regions in the Northern Hemisphere but increase only slightly in the Central Siberian Plateau. The snow water equivalent will decrease significantly (more than 40% relative to 1986–2005 in central North America, western Europe, and northwestern Russia. The permafrost area in the Qinghai–Tibet Plateau will decrease by 0.15 × 106 km2 (7.28%, 0.18 × 106 km2 (8.74%, and 0.17 × 106 km2 (8.25%, respectively, in RCP2.6, RCP4.5, RCP8.5. The snow water equivalent in winter (DJF and spring (MAM over the Qinghai–Tibet Plateau will decrease by 14.9% and 13.8%, respectively.

  8. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    2003-03-01

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  9. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  10. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    Science.gov (United States)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; hide

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  11. Glacier History of the Northern Antarctic Peninsula Region Since the End of the Last Ice Age and Implications for Southern Hemisphere Westerly-Climate Changes

    Science.gov (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Peltier, C.; Southon, J. R.; Lepper, K. E.; Winckler, G.

    2017-12-01

    For the area around James Ross Island, we present new cosmogenic 10Be exposure ages on glacial deposits, and 14C ages on associated fossil materials. These data allow us to reconstruct in detail when and how the Antarctic Peninsula Ice Sheet retreated around the Island as the last Ice Age ended, and afterward when local land-based glaciers fluctuated. Similar to other studies, we found widespread deglaciation during the earliest Holocene, with fjords and bays becoming ice free between about 11,000 and 8,000 years ago. After 7,000 years ago, neoglacial type advances initiated. Then, both expansions and ice free periods occurred from the middle to late Holocene. We compare the new glacier record to those in southern Patagonia, which is on the other side of the Drake Passage, and published Southern Ocean marine records, in order to infer past middle to high latitude changes in the Southern Hemisphere Westerlies. Widespread warmth in the earliest Holocene, to the north and south of the Drake Passage, led to small glacier systems in Patagonia and wide-ranging glacier recession around the northern Antarctic Peninsula. We infer that this early Holocene period of overall glacier recession - from Patagonia to the northern Peninsula - was caused by a persistent far-southerly setting of the westerlies and accompanying warm climates. Subsequently, during the middle Holocene renewed glacier expansions occurred on both sides of the Drake Passage, which reflects that the Westerlies and associated colder climate systems were generally more equatorward. From the middle to late Holocene, glacier expansions and ice free periods (and likely related ice shelf behavior) document how the Westerlies and associated higher-latitude climate systems varied.

  12. Water vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Afchine, Armin; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stefan; Spelten, Nicole; Riese, Martin

    2018-03-01

    The impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5 ppmv (11 %) and methane (CH4) of up to 20 ppbv (1.2 %) in the extratropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10 % in August to about 20 % in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region.

  13. Stable isotope-based Plio-Pleistocene southern hemisphere climate and vegetation reconstructions (Chiwondo Beds, Northern Malawi)

    Science.gov (United States)

    Luedecke, T.; Thiemeyer, H.; Schrenk, F.; Mulch, A.

    2013-12-01

    Oxygen and carbon isotope geochemistry of multi-proxy archives is a powerful tool to reconstruct paleoclimatic and paleoenvironmental conditions in particular when climate seasonality plays a key role in the evolution of ecosystems. Here we present the first pedogenic Plio-Pleistocene long-term East-African carbon, oxygen and clumped isotope (Δ47) records from some of the earliest hominid fossil sites in Eastern Africa. The studied 5.0 to 0.6 Ma paleosol, fluviatile, and lacustrine deposits of the Chiwondo Beds (Karonga-Chilumba area, NE shore of Lake Malawi) comprise abundant pedogenic carbonates and fossil remains of a diverse fauna which are dominated by large terrestrial mammals. The sediments are also home to two hominid fossil finds, a maxillary fragment of Paranthropus boisei and a mandible of Homo rudolfensis, both dated around 2.4 Ma. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope data from fossil enamel of different suid, bovid, and equid species as well as δ13C and δ18O values of pedogenic carbonate. We complement the latter by clumped isotope data as proxy for soil temperature. Our data represent the first southern hemisphere record in the East African Rift (EAR), a region particularly interesting for reconstructing vegetation patterns and correlating these across the ITCZ with data on the evolution and migration of early hominids. As our study site is situated between the well-known hominid-bearing sites of eastern and southern Africa it fills an important geographical gap for early hominid research. The δ13C values of enamel and pedogenic carbonate assess the evolutionary history of C3 and C4 biomass which is closely linked to climate patterns in the Malawi Rift Valley during the time of early hominid evolution. The reconstruction of the development of C4-grasslands give insights of changing atmospheric CO2-concentration, seasonality and distribution of precipitation, and the retreat of tree cover. Results of almost 500

  14. The Mass Balance of Glacier No. 1 at the Headwaters of the Urumqi River in Relation to Northern Hemisphere Teleconnection Patterns

    Directory of Open Access Journals (Sweden)

    Feifei Yuan

    2016-03-01

    Full Text Available Most small glaciers in the world have significantly decreased their volume during the last century, which has caused water shortage problems. Glacier No. 1, at the headwaters of the Urumqi River, Tianshan, China, has been monitored since 1959 and similarly has experienced significant mass and volume losses over the last few decades. Thus, we examined the trend and potential abrupt changes of the mass balance of Glacier No. 1. Principal component analysis and singular value decomposition were used to find significant relations between the mass balance of Glacier No. 1 and Northern Hemisphere teleconnection patterns using climate indices. It was found that the mass balance of Glacier No. 1 had a significantly decreasing trend corresponding to −14.5 mm/year from 1959 to 2010. A change point was detected in 1997 with 99% confidence level. Two time periods with different mass balances were identified as 1959–1996 and 1997–2010. The mass balance for the first period was −136.4 mm/year and up to −663.9 mm/year for the second period. The mass balance of Glacier No. 1 is positively related to the Scandinavian Pattern (SCA, and negatively related to the East Atlantic Pattern (EA. These relationships are useful in better understanding the interaction between glacier mass balance and climate variability.

  15. Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs

    Directory of Open Access Journals (Sweden)

    Ning Zeng

    2013-10-01

    Full Text Available Leaf Area Index (LAI represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN from the latest version (third generation of GIMMS AVHRR NDVI data over the period 1986–2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees.

  16. H3N2 Mismatch of 2014-15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps

    Science.gov (United States)

    Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong

    2015-10-01

    The poor performance of 2014-15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009-10, 2010-11 and 2014-15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014-15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014-15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model.

  17. Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2016-03-01

    Full Text Available Spatial and temporal variabilities of Kelvin waves during stratospheric sudden warming (SSW events are investigated by the ERA-Interim reanalysis data, and the results are validated by the COSMIC temperature data. A case study on an exceptionally large SSW event in 2009, and a composite analysis comprising 18 events from 1980 to 2013 are presented. During SSW events, the average temperature increases by 20 K in the polar stratosphere, while the temperature in the tropical stratosphere decreases by about 4 K. Kelvin wave with wave numbers 1 and 2, and periods 10–20 days, clearly appear around the tropical tropopause layer (TTL during SSWs. The Kelvin wave activity shows obvious coupling with the convection localized in the India Ocean and western Pacific (Indo-Pacific region. Detailed analysis suggests that the enhanced meridional circulation driven by the extratropical planetary wave forcing during SSW events leads to tropical upwelling, which further produces temperature decrease in the tropical stratosphere. The tropical upwelling and cooling consequently result in enhancement of convection in the equatorial region, which excites the strong Kelvin wave activity. In addition, we investigated the Kelvin wave acceleration to the eastward zonal wind anomalies in the equatorial stratosphere during SSW events. The composite analysis shows that the proportion of Kelvin wave contribution ranges from 5 to 35 % during SSWs, much larger than in the non-SSW mid-winters (less than 5 % in the stratosphere. However, the Kelvin wave alone is insufficient to drive the equatorial eastward zonal wind anomalies during the SSW events, which suggests that the effects of other types of equatorial waves may not be neglected.

  18. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) - implications for dust accumulation in the Carpathian Basin and the northern Hemisphere

    Science.gov (United States)

    Zeeden, Christian; Hambach, Ulrich; Kels, Holger; Schulte, Philipp; Eckmeier, Eileen; Marković, Slobodan; Klasen, Nicole; Lehmkuhl, Frank

    2016-04-01

    Recent investigations of the Semlac loess section in the Southeastern Carpathian Basin, which is situated at the Mureş River in its lower reaches (Banat region, western Romanian), are presented. Dating back to marine isotope stage (MIS) 10, the more than 10 m thick loess sequence includes four fossil sol-complexes developed in homogenous relatively fine silty loess. Because good preservation and sedimentation of fine silt Semlac is regarded as a key section for the Carpathian Basin, which offers possibilities to a) improve the understanding of the type and composition of the lowland loess sequences in the Carpathian Basin also beyond the last interglacial palaeosol complex, b) to reconstruct the temporal evolution of the local loess-palaeosol successions and c) to compare the loess of the region to loess-sequences in adjacent and dust proxy data in the northern hemisphere. A strikingly sinusoidal course of physical property data with depth/time point to relatively homogenous, quasi-continuous background sedimentation of dust, interpreted as long-range transport (LRT). An integrated age model based on correlation to reference records and luminescence dating is compiled. Applying this age model we compare climate proxy data from Semlac to both global data and to data from the very southeast of the Carpathian Basin (Vojvodina, Serbia). The obtained results provide new insight into the dust accumulation regime in the Carpathian Basin and offer new palaeoenvironmental information for the region and are an important step towards establishing a catena from the thin loess-like sediments of the Banat foothills in the East towards the thicker and seemingly more complete loess sections of the southeastern and central Carpathian Basin. Disentangling grain size data from soil formation proxies gives quantitative estimates for the contribution of original sediment and weathering (through soil formation) to the present clay fraction. Patterns of clay from direct sedimentation

  20. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. V. TNG, KPNO, AND OAN OBSERVATIONS OF BLAZAR CANDIDATES OF UNCERTAIN TYPE IN THE NORTHERN HEMISPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Crespo, N.; Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Ricci, F.; La Franca, F. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146, Roma (Italy); Landoni, M. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Patiño-Álvarez, V.; Chavushyan, V.; Torrealba, J. [Instituto Nacional de Astrofisica, Óptica y Electrónica, Apartado Postal 51-216, 72000 Puebla, México (Mexico); D’Abrusco, R.; Paggi, A.; Smith, Howard A. [Harvard—Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Jiménez-Bailón, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, Ensenada, 22800 Baja California, México (Mexico); Latronico, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2016-02-15

    The extragalactic γ-ray sky is dominated by emission from blazars, a peculiar class of active galactic nuclei. Many of the γ-ray sources included in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs) because there are no optical spectra available in the literature to confirm their nature. In 2013, we started a spectroscopic campaign to look for the optical counterparts of the BCUs and of the unidentified γ-ray sources to confirm their blazar nature. Whenever possible we also determine their redshifts. Here, we present the results of the observations carried out in the northern hemisphere in 2013 and 2014 at the Telescopio Nazionale Galileo, Kitt Peak National Observatory, and Observatorio Astronómico Nacional in San Pedro Mártir. In this paper, we describe the optical spectra of 25 sources. We confirmed that all of the 15 BCUs observed in our campaign and included in our sample are blazars and we estimated the redshifts for three of them. In addition, we present the spectra for three sources classified as BL Lacs in the literature but with no optical spectra available to date. We found that one of them is a quasar (QSO) at a redshift of z = 0.208 and the other two are BL Lacs. Moreover, we also present seven new spectra for known blazars listed in the Roma-BZCAT that have an uncertain redshift or are classified as BL Lac candidates. We found that one of them, 5BZB J0724+2621, is a “changing look” blazar. According to the spectrum available in the literature, it was classified as a BL Lac, but in our observation we clearly detected a broad emission line that led us to classify this source as a QSO at z = 1.17.

  1. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

    Science.gov (United States)

    Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K

    2013-12-01

    Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.

  2. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  3. Northern Hemisphere Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  4. The Southern Hemisphere circulation during the FGGE and its representativeness

    Science.gov (United States)

    Trenberth, K. E.; Christy, J. R.

    1985-01-01

    An analysis of the global redistribution of mass during the FGGE year indicates that the global circulation was highly anomalous in several respects, especially from April to July 1979. For the 56 to year period 1924-1980, sea-level pressures over the northern hemisphere during the FGGE year were second highest in spring and highest in summer. In April and June, the anomalies were 1-in-100-year events. At the same time, sea-level pressure deficits and an exceptionally deep circumpolar trough were recorded over the Southern Hemisphere. Such compensation between the hemispheres, through the constraint of conservation of mass, provides support for the highly typical nature of the circulation analyzed to exist over the Southern Hemisphere throughout the FGGE year. The Southern Hemisphere circulation was characterized by an exceptionally deep circumpolar trough, an increase in westerlies from 40 deg to 70 deg S, and a decrease in westerlies to the north. In winter, the subtropical jet was weaker and the polar jet stronger than normal, so that a pronounced double jet structure prevailed. In summer, the jet was shifted south by 3 deg latitude. A southward shift in storm tracks accompanied these changes year round in a manner consistent with theory.

  5. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  6. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Xin Lin

    Full Text Available Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N. Based on atmospheric CO2 observations at Point Barrow (BRW in Alaska, satellite-derived NDVI (a proxy of vegetation productivity, and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average. The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit the responsiveness of carbon assimilation and/or decomposition to warming under high (low precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future

  7. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Science.gov (United States)

    Lin, Xin; Li, Junsheng; Luo, Jianwu; Wu, Xiaopu; Tian, Yu; Wang, Wei

    2015-01-01

    Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N). Based on atmospheric CO2 observations at Point Barrow (BRW) in Alaska, satellite-derived NDVI (a proxy of vegetation productivity), and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average). The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit) the responsiveness of carbon assimilation and/or decomposition to warming under high (low) precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future precipitation

  8. Epidemiology of Hospital Admissions with Influenza during the 2013/2014 Northern Hemisphere Influenza Season: Results from the Global Influenza Hospital Surveillance Network

    Science.gov (United States)

    Puig-Barberà, Joan; Natividad-Sancho, Angels; Trushakova, Svetlana; Sominina, Anna; Pisareva, Maria; Ciblak, Meral A.; Badur, Selim; Yu, Hongjie; Cowling, Benjamin J.; El Guerche-Séblain, Clotilde; Mira-Iglesias, Ainara; Kisteneva, Lidiya; Stolyarov, Kirill; Yurtcu, Kubra; Feng, Luzhao; López-Labrador, Xavier; Burtseva, Elena

    2016-01-01

    Background The Global Influenza Hospital Surveillance Network was established in 2012 to obtain valid epidemiologic data on hospital admissions with influenza-like illness. Here we describe the epidemiology of admissions with influenza within the Northern Hemisphere sites during the 2013/2014 influenza season, identify risk factors for severe outcomes and complications, and assess the impact of different influenza viruses on clinically relevant outcomes in at-risk populations. Methods Eligible consecutive admissions were screened for inclusion at 19 hospitals in Russia, Turkey, China, and Spain using a prospective, active surveillance approach. Patients that fulfilled a common case definition were enrolled and epidemiological data were collected. Risk factors for hospitalization with laboratory-confirmed influenza were identified by multivariable logistic regression. Findings 5303 of 9507 consecutive admissions were included in the analysis. Of these, 1086 were influenza positive (534 A(H3N2), 362 A(H1N1), 130 B/Yamagata lineage, 3 B/Victoria lineage, 40 untyped A, and 18 untyped B). The risk of hospitalization with influenza (adjusted odds ratio [95% confidence interval]) was elevated for patients with cardiovascular disease (1.63 [1.33–2.02]), asthma (2.25 [1.67–3.03]), immunosuppression (2.25 [1.23–4.11]), renal disease (2.11 [1.48–3.01]), liver disease (1.94 [1.18–3.19], autoimmune disease (2.97 [1.58–5.59]), and pregnancy (3.84 [2.48–5.94]). Patients without comorbidities accounted for 60% of admissions with influenza. The need for intensive care or in-hospital death was not significantly different between patients with or without influenza. Influenza vaccination was associated with a lower risk of confirmed influenza (adjusted odds ratio = 0.61 [0.48–0.77]). Conclusions Influenza infection was detected among hospital admissions with and without known risk factors. Pregnancy and underlying comorbidity increased the risk of detecting influenza

  9. Reconstructing Southern Greenland Ice Sheet History During the Plio-Pleistocene Intensification of Northern Hemisphere Glaciation: Insights from IODP Site U1307

    Science.gov (United States)

    Blake-Mizen, K. R.; Hatfield, R. G.; Carlson, A. E.; Walczak, M. H.; Stoner, J. S.; Xuan, C.; Lawrence, K. T.; Bailey, I.

    2017-12-01

    Should it melt entirely, the Greenland Ice Sheet (GrIS) has the potential to raise global sea-level by 7 metres. With the Arctic continuing to warm at a remarkable rate, to better understand how the GrIS will respond to future anthropogenically-induced climate change we must constrain its natural variability in the geological past. In this regard, much uncertainty exists surrounding its pre-Quaternary history; particularly during the mid-Piacenzian warm period (mPWP; 3.3-3.0 Ma) - widely considered an analogue for near-future equilibrium climate with modern atmospheric CO2 levels and elevated temperatures relative to today - and the late Pliocene/early Pleistocene onset of widespread Northern Hemisphere glaciation (NHG, 2.7 Ma). GrIS reconstructions for these intervals have been largely hampered by a lack of well-dated, high-resolution records from suitable sites. To address this, we present new high-resolution, multi-proxy records from IODP Site U1307, a North Atlantic marine sediment core recovered from the Eirik Drift just south of Greenland. Generation of a new high-resolution relative palaeointensity (RPI)-based age-model - representing the first of its kind for high-latitude sediments deposited during NHG - has enabled strong orbital age control. Our ice-rafted debris (IRD) record confirms a 2.72 Ma initiation of major southern GrIS marine-terminating glaciations, which appear to persist even through interglacial periods up to at least 2.24 Ma. XRF-scanning and IRD evidence suggests, however, that an ephemeral ice-cap of likely considerable size persisted on southern Greenland prior to the mPWP. These data, together with the analysed provenance of individual IRD, indicate marine-based GrIS margins extended southward over the NHG interval and only occurred on Greenland's southern tip from 2.7 Ma. Despite a large increase in the deposition of GrIS-derived IRD from this time, bulk sedimentation rates and magnetic grain-size dropped significantly, implying that

  10. On the hemisphere symmetry of reflected shortwave radiation

    OpenAIRE

    Voigt, A.; Stevens, B.; Bader, J.; Mauritsen, T.

    2013-01-01

    While the concentration of landmasses and atmospheric aerosols on the NorthernHemisphere suggests that the Northern Hemisphere is brighter than the Southern Hemisphere, satellite measurements of top-of-atmosphere irradiances found that both hemispheres reflect nearly the same amount of shortwave irradiance.Here, the authors document that the most precise and accurate observation, the energy balanced and filled dataset of the Clouds and the Earth’sRadiant Energy System covering the period 2000...

  11. Reaching Across the Hemispheres with Science, Language, Arts and Technology

    Science.gov (United States)

    Sparrow, E. B.; Zicus, S.; Miller, A.; Baird, A.; Page, G.

    2009-12-01

    Twelve Alaskan elementary and middle school classes (grades 3-8) partnered with twelve Australian middle school classes, with each pair using web-based strategies to develop a collaborative ice-mystery fictional book incorporating authentic polar science. Three professional development workshops were held, bringing together educators and polar scientists in two IPY education outreach projects. The Alaska workshop provided an opportunity to bring together the North American teachers for lessons on arctic and antarctic science and an earth system science program Seasons and Biomes measurement protocols, as well as methods in collaborative e-writing and art in Ice e-Mysteries: Global Student Polar e-books project. Teachers worked with University of Alaska Fairbanks (UAF) and Australian scientists to become familiar with Arctic science research, science artifacts and resources available at UAF and the University of Alaska Museum of the North. In Australia, teachers received a similar project training through the Tasmania Museum and Art Gallery (TMAG) Center for Learning and Discovery on Antarctic science and the University of Tasmania. The long-distance collaboration was accomplished through Skype, emails and a TMAG supported website. A year later, Northern Hemisphere and Southern Hemisphere teacher partners met in a joint workshop in Tasmania, to share their experiences, do project assessments and propose activities for future collaborations. The Australian teachers received training on Seasons and Biomes scientific measurements and the Alaskan teachers, on Tasmanian vegetation, fauna and indigenous culture, Antarctic and Southern ocean studies. This innovative project produced twelve e-polar books written and illustrated by students; heightened scientific literacy about the polar regions and the earth system; increased awareness of the environment and indigenous cultures; stronger connections to the scientific community; and lasting friendships. It also resulted in

  12. Polarization of the cosmic background radiation

    International Nuclear Information System (INIS)

    Lubin, P.M.

    1980-03-01

    The results and technique of a measurement of the linear polarization of the Cosmic Background Radiation are discussed. The ground-based experiment utilizes a single horn (7 0 beam width) Dicke-type microwave polarimeter operating at 33 GHz (9.1 mm). Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. = 38 0 N) and the southern hemisphere (Lima Lat. = 12 0 S) show the radiation to be essentially unpolarized over all areas surveyed. For the 38 0 declination data the 95% confidence level limit on a linearly polarized component is 0.3 mK for the average and 12 and 24 hour periods. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. Constraints on various cosmological models are discussed in light of these limits

  13. Polar bears (Ursus maritimus mating during late June on the pack ice of northern Svalbard, Norway

    Directory of Open Access Journals (Sweden)

    Thomas G. Smith

    2015-03-01

    Full Text Available Polar bears are seasonal breeders and typically mate from late March to early May. Implantation is, however, delayed until autumn, which can allow plasticity in the date of mating. As for other seasonal breeders, a rapid return to estrus after the loss of dependent offspring can be expected, even into the summer. A few earlier observations and dissections of dead animals suggest that polar bears are able to mate in summer. We report on a mating incident on 29 June 2014, the first documented mating this late in the season among wild polar bears. The female had lost her dependent cub during the period prior to the mating event. We speculate that she lost this cub late in the mating season, entered estrus and successfully mated in late June.

  14. Study on the thermal structure of the Venusian polar atmosphere

    Science.gov (United States)

    Takamura, M.; Taguchi, M.; Fukuhara, T.; Kouyama, T.; Imamura, T.; Sato, T. M.; Futaguchi, M.; Yamada, T.; Nakamura, M.; Iwagami, N.; Suzuki, M.; Ueno, M.; Sato, M.; Hashimoto, G. L.; Takagi, S.

    2017-12-01

    The Venus atmosphere exhibits characteristic thermal features called `polar dipoles' and `polar collars' in both polar regions. The polar dipole which locates around the center of the polar region is warmer than mid-latitudes and the polar collar surrounding the polar dipole is colder than the other regions at the same altitude. These features were revealed by infrared observations of Venus by the previous missions. The previous observations showed that shapes of the polar dipoles can be characterized by three patterns which are the zonal wave numbers of 0-2, and that they change with time. The rotation periods of polar dipoles were determined to be 2.5 and 2.8-3.2 Earth days for the southern and northern polar regions, respectively. It has not been clear that the difference and variability in the rotation period is due to just a temporal variation, influence of solar activity, or other reasons. Sato et al. compared the appearances of both polar hot regions by a ground-based observation, rotation of the hot regions is synchronized between the northern and southern hemispheres. However, rotation periods of the northern and southern polar dipoles have not yet been directly compared. The Japanese Venus orbiter Akatsuki is a planetary meteorological satellite aiming at understanding the atmosphere dynamics of Venus. The Longwave Infrared Camera (LIR), observes thermal emission from the cloud top ( 65km). Akatsuki is in an equatorial orbit, which is suitable for simultaneous observations of both northern and southern polar regions. Rotation periods of polar vortices were derived using the LIR data by tracking a zonal position of maximum temperature. The rotation periods of polar vortices of southern and northern hemispheres are determined to be 3.0 - 8.2 and 1.6 - 5.5 Earth days, respectively (Fig.1). These rotation periods of southern polar vortex are longer than the values observed in the past. As a next step, we will derive rotation periods of the polar vortices for

  15. Post-den emergence behavior of polar bears (Ursus maritimus) in Northern Alaska

    Science.gov (United States)

    Smith, T.S.; Partridge, Steven T.; Amstrup, Steven C.; Schliebe, S.

    2007-01-01

    We observed polar bear (Ursus maritimus) maternity den sites on Alaska’s North Slope in March 2002 and 2003 in an effort to describe bears’ post-den emergence behavior. During 40 sessions spanning 459 h, we observed 8 adults and 14 dependent cubs outside dens for 37.5 h (8.2% of total observation time). There was no significant difference between den emergence dates in 2002 (mean = 15 Mar ± 4.1 d) and 2003 (mean = 21 Mar ± 2.1 d). Following initial den breakout, polar bears remained at their den sites for 1.5 to 14 days (mean = 8.1 ± 5.1 d). The average length of stay in dens between emergent periods was significantly shorter in 2002 (1.79 h) than in 2003 (4.82 h). While outside, adult bears were inactive 49.5% of the time, whereas cubs were inactive 13.4% of the time. We found no significant relationships between den emergence activity and weather. Adult polar bears at den sites subjected to industrial activity exhibited significantly fewer bouts of vigilance than denned bears in undisturbed areas (t = -5.5164, df = 4, p= 0.00). However, the duration of vigilance behaviors at sites near industrial activity was not significantly shorter than at the other sites studied (t = -1.8902, df = 4, p = 0.07). Results for these bears were within the range of findings in other studies of denned polar bears.

  16. Experimental urban heat island research of Norilsk city in northern Russia in the polar night

    Science.gov (United States)

    Varentsov, Mikhail; Konstantinov, Pavel; Repina, Irina; Samsonov, Timofey; Baklanov, Alexander

    2014-05-01

    Growing socioeconomic activity in Arctic zone and prospective of planning and building new settlements and cities in this region requires better understanding of the urban-caused microclimatic features and their behavior in the conditions of arctic and sub-arctic climate. The most important of these features is well-known urban heat island (UHI) effect, because in high latitudes it could mitigate severe climatic conditions within urban areas and provide the economy of fuel for house heating. The UHI effect is quietly good investigated and described for the cities in low and moderate latitudes (Oke, 1987), but there is significant lack of knowledge about UHI of the cities over the Polar Circle and especially about its behavior during the polar night, while anthropogenic heat is the only source of energy to form heat island. In this study, we consider the results of experimental research of the UHI of Norilsk - the second biggest city over the Polar Circle, which were obtained during the expedition of Russian Geographic Society in December 2013, practically around the middle of the polar night. Field measurements in Norilsk included installation of three automatic weather stations (AWS) and the net of small temperature sensors (iButton) in the city and surrounding landscape and also car-based temperature sounding of the city with AWS. The influence of the relief and stratification was filtered by using the data of MTP-5 microwave temperature profiler. Analysis of the collected data showed the existence of significant UHI with the difference between city center and surrounding landscape up to 6 °C. The dependence of UHI power and shape on the synoptic conditions were analyzed for several typical synoptic situations, which were observed during the expedition, and the negative correlation of the UHI power with air temperature was determined. The reported study was supported by Russian Geographic Society, research projects No. 69/2013-H7 and 27/2013-H3. References: 1

  17. Effective Area and Various Variations of The Northern Polar Cap Magnetic Activity Index (pcn)

    Science.gov (United States)

    Gromova, L.; Papitashvili, O.; Popov, V.; Rasmussen, O.

    We investigated the effective area and various variations (universal time, seasonal, and solar cycle) from the PCN time series available since 1975 and derived from cor- relation analyses of ground geomagnetic observations at Qaanaaq (Thule, Greenland) with the "merging" interplanetary electric field. We analyzed solar cycle variations in the normalization coefficients (slope and intercept) and preferred direction of the transpolar ionospheric current (all used for routine calculations of PCN) from 1964 to 1999 combining data monthly for three consecutive years and using a 3-year box- car sliding window. The obtained results show that the solar cycle effect is clearly seen in the studied parameters amounting to 25% of the magnitude change during winter and equinox but increasing to 40% during summer. We calculated similar sets of coefficients and the index for all high-latitude Greenlandic stations, Nord and Resolute Bay stations using data from 1991 to 1999 by the 3-year sliding window. It is concluded that (even a set of normalization coefficients is obtained for a specific station) the "station-based" PC-indices are almost identical only for two most north- ern observatories Thule (THL) and Savissivik (SVS) through an entire UT day; other stations located at lower latitudes produce the index similar to THL and SVS only during few nighttime hours. Thus, we firmly justified that the area where the Northern PC index stably preserves a value is located within 7 distance from the northern geomagnetic pole.

  18. What is happening in the International Polar Year? Latest news about the climate changes

    International Nuclear Information System (INIS)

    Orheim, Olav

    2008-01-01

    The International Polar (IPY) Year 2007-2008 is a large scientific programme focused on the Arctic and the Antarctic. Scientists from over 60 nations participates. The IPY have two primary objectives: to improve weather forecasts especially regarding extreme weather and to improve climatic models for better understanding of possible instabilities, especially regarding ocean currents. The presentation includes data on natural climate change, temperature anomaly, the ice in the Arctic Ocean and Northern and Southern Hemisphere sea ice area, current in Southern and Northern hemisphere sea ice area and variations of the surface temperature ice arctic regions antarctic regions. The presentation was held at the MNT-Forum, 29. January 2008

  19. Model of climate evolution based on continental drift and polar wandering

    Science.gov (United States)

    Donn, W. L.; Shaw, D. M.

    1977-01-01

    The thermodynamic meteorologic model of Adem is used to trace the evolution of climate from Triassic to present time by applying it to changing geography as described by continental drift and polar wandering. Results show that the gross changes of climate in the Northern Hemisphere can be fully explained by the strong cooling in high latitudes as continents moved poleward. High-latitude mean temperatures in the Northern Hemisphere dropped below the freezing point 10 to 15 m.y. ago, thereby accounting for the late Cenozoic glacial age. Computed meridional temperature gradients for the Northern Hemisphere steepened from 20 to 40 C over the 200-m.y. period, an effect caused primarily by the high-latitude temperature decrease. The primary result of the work is that the cooling that has occurred since the warm Mesozoic period and has culminated in glaciation is explainable wholly by terrestrial processes.

  20. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  1. An Empirical Orthogonal Function Reanalysis of the Northern Polar External and Induced Magnetic Field During Solar Cycle 23

    Science.gov (United States)

    Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.

    2018-01-01

    We apply the method of data-interpolating empirical orthogonal functions (EOFs) to ground-based magnetic vector data from the SuperMAG archive to produce a series of month length reanalyses of the surface external and induced magnetic field (SEIMF) in 110,000 km2 equal-area bins over the entire northern polar region at 5 min cadence over solar cycle 23, from 1997.0 to 2009.0. Each EOF reanalysis also decomposes the measured SEIMF variation into a hierarchy of spatiotemporal patterns which are ordered by their contribution to the monthly magnetic field variance. We find that the leading EOF patterns can each be (subjectively) interpreted as well-known SEIMF systems or their equivalent current systems. The relationship of the equivalent currents to the true current flow is not investigated. We track the leading SEIMF or equivalent current systems of similar type by intermonthly spatial correlation and apply graph theory to (objectively) group their appearance and relative importance throughout a solar cycle, revealing seasonal and solar cycle variation. In this way, we identify the spatiotemporal patterns that maximally contribute to SEIMF variability over a solar cycle. We propose this combination of EOF and graph theory as a powerful method for objectively defining and investigating the structure and variability of the SEIMF or their equivalent ionospheric currents for use in both geomagnetism and space weather applications. It is demonstrated here on solar cycle 23 but is extendable to any epoch with sufficient data coverage.

  2. Tendencies in Coccolithophorid Blooms in Some Marine Environments of the Northern Hemisphere according to the Data of Satellite Observations in 1998-2013

    Science.gov (United States)

    Kondrik, D.; Pozdnyakov, D.; Pettersson, L.

    2017-12-01

    Based on the method developed for the delineation of E. huxleyi blooms, a new technique is achieved for (1) the automated detection of E. huxleyi blooms among coexisting massive blooms of microalgae species of other phytoplankton groups and (2) quantifying the boom surface of this type of coccolithophores. As a result, according to the data of the Climate Change Initiative Ocean Colour (OC CCI) for 1998-2013, we have obtained multiyear time series of variability in both the incidence of E. huxleyi bloom and its area in the North, Norwegian, Greenland, Barents, and Bering seas. It is found that E. huxleyi blooms propagate within the intra-annual cycle from the studied middle-latitude marine areas towards the northern areas of the Northern Atlantic Ocean (NAO) and the Arctic Ocean (AO) following the pathways of the main Gulfstream and its branches. It is also found that E. huxleyi blooms are formed annually, initially in the vicinity of the British Islands; then they successively emerge in the northward direction following the western coast of the Great Britain, turn over its northern extremity to reach, firstly, the North Sea (in May), the Norwegian Sea, and finally the Greenland Sea (in June). Then they burst out in the Barents Sea, where the typical period of blooming lasts until late August and, in some years, even to mid-September. We determine the patterns of maximal rates and duration of blooms for each of the seas studied in the Atlantic and Arctic Oceans. As for the Bering Sea, the temporal and spatial variability in the growth of E. huxleyi has an irregular pattern: after a period of remarkably high expression of this phenomenon in 1998-2001, there was an abrupt decrease in both the number and, especially, extent of bloom areas.

  3. Geological Mapping of Tectonized Terrains in the Trailing Hemisphere of Enceladus

    Science.gov (United States)

    Crow-Willard, E. N.; Pappalardo, R. T.

    2009-05-01

    Saturn's moon Enceladus has a currently active South Polar Terrain (SPT) that is intensely tectonized. Other portions of the surface of Enceladus, specifically the trailing hemisphere, have also been intensely tectonized, inviting comparisons to the SPT. Through geological mapping, we recognize seven different geological units and their relative ages on the trailing hemisphere. From oldest to youngest, they are: (1) heavily cratered terrain, at the northern edge of the tectonized region; (2) moderately cratered terrain, to the northeast and northwest of the tectonized region; (3) finely striated ridge and trough terrain, which make up the bulk of Sarandib and Diyar Planitiae; (4) boundary curved terrain, which is similar in shape to the southern curved terrain that comprises the northern edge of the SPT, but with more subdued topography, and is composed of Samarkand, Hamah, and Harran Sulci; (5) ridged terrain, composed of the Cufa Dorsa and Ebony Dorsum, which probably formed through deformation of older finely striated ridge and trough terrain; (6) terrain with linear, widely spaced, smooth depressions, comprising the southern portion of the trailing hemisphere's tectonized region; (7) southern curved terrain of Cashmere Sulci, which forms the northern boundary of the SPT. Fractures that are younger than or contemporaneous with the SPT's southern curved terrain (including Labtayt Sulci and Khorasan Fossa) cut across the trailing hemisphere. We will present a geological map of the region, along with interpretations of the stratigraphy and geological history that our mapping implies. We will address geological and age comparisons relative to the SPT, with implications for whether similar or different processes have shaped the SPT and the tectonized trailing hemisphere.

  4. SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 4648601 (Japan)

    2017-01-20

    Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.

  5. The Hiccup: a dynamical coupling process during the autumn transition in the Northern Hemisphere – similarities and differences to sudden stratospheric warmings

    Directory of Open Access Journals (Sweden)

    V. Matthias

    2015-02-01

    Full Text Available Sudden stratospheric warmings (SSWs are the most prominent vertical coupling process in the middle atmosphere, which occur during winter and are caused by the interaction of planetary waves (PWs with the zonal mean flow. Vertical coupling has also been identified during the equinox transitions, and is similarly associated with PWs. We argue that there is a characteristic aspect of the autumn transition in northern high latitudes, which we call the "hiccup", and which acts like a "mini SSW", i.e. like a small minor warming. We study the average characteristics of the hiccup based on a superimposed epoch analysis using a nudged version of the Canadian Middle Atmosphere Model, representing 30 years of historical data. Hiccups can be identified in about half the years studied. The mesospheric zonal wind results are compared to radar observations over Andenes (69° N, 16° E for the years 2000–2013. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.

  6. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor

    Science.gov (United States)

    Ma, Jianmin; Hung, Hayley; Macdonald, Robie W.

    2016-11-01

    Following worldwide bans and restrictions on the use of many persistent organic pollutants (POPs) from the late 1970s, their regional and global distributions have become governed increasingly by phase partitioning between environmental reservoirs, such as air, water, soil, vegetation and ice, where POPs accumulated during the original applications. Presently, further transport occurs within the atmospheric and aquatic reservoirs. Increasing temperatures provide thermodynamic forcing to drive these chemicals out of reservoirs, like soil, vegetation, water and ice, and into the atmosphere where they can be transported rapidly by winds and then recycled among environmental media to reach locations where lower temperatures prevail (e.g., polar regions and high elevations). Global climate change, widely considered as global warming, is also manifested by changes in hydrological systems and in the cryosphere; with the latter now exhibiting widespread loss of ice cover on the Arctic Ocean and thawing of permafrost. All of these changes alter the cycling and fate of POPs. There is abundant evidence from observations and modeling showing that climate variation has an effect on POPs levels in biotic and abiotic environments. This article reviews recent progress in research on the effects of climate change on POPs with the intention of promoting awareness of the importance of interactions between climate and POPs in the geophysical and ecological systems.

  7. Midlatitude weather systems on Mars: Is there a hemispheric asymmetry?

    Science.gov (United States)

    Barnes, J. R.

    1992-01-01

    The Viking Lander meteorology observations confirmed that midlatitude weather systems are present in the Northern Hemisphere of Mars during the autumn, winter, and early spring. These systems have properties consistent with a development through baroclinic instability of the wintertime zonal-mean circulation. It is known that the weather systems must be of importance for the zonal-mean circulation by virtue of their heat and momentum transports. Observations show that they are associated with dust raising, and they must be involved in the transport of dust; the weather systems almost certainly must act to produce significant water transports as well. Recent simulations with the ARC Mars General Circulation Model (GCM) show that the heat transports by the weather system (and by the zonal-mean circulation) during northern winter can be very substantial: large enough to significantly reduce the CO2 condensation at polar latitudes. This could be largely responsible for the observed early spring halt in the north polar cap recession and for the presence of westerly winds near the cap edge during this season.

  8. The impact of land initialization on seasonal forecasts of surface air temperature: role of snow data assimilation in the Northern Hemisphere

    Science.gov (United States)

    Lin, P.; Wei, J.; Zhang, Y.; Yang, Z. L.

    2015-12-01

    Land initializations (i.e., snow, soil moisture, leaf area index) have been recognized as important sources of seasonal climate predictability besides ocean and atmosphere initializations. However, studies focusing on assessing how land data assimilation (DA) contributes to seasonal forecast skills are still lacking due to the limited number of large-scale land DA studies. In this study, taking advantage of the snow outputs from a multivariate global land DA system (i.e., DART/CLM), we systematically investigated the role of large-scale snow DA in influencing seasonal forecasts of surface air temperature. Three suites of ensemble seasonal forecast experiments were performed using the Community Earth System Model (CESM v1.2.1), in which three different snow initialization datasets were used. They are (1) CLM4 simulation without DA, (2) CLM4 simulation with MODIS snow cover DA, and (3) CLM4 simulation with joint GRACE and MODIS snow DA. Each suite of the experiment starts from multiple initialization dates of eight years from 2003 to 2010 and has three-month lead times. All experiments used the same atmosphere initializations from ERA-Interim (perturbed to get 8 ensembles) and the same prescribed SSTs. Our results show that snow DA plays an important role in surface air temperature predictions in regions such as Europe, western Canada, northern Alaska, Mongolia Plateau, Tibetan Plateau, and the Rocky Mountains. The analyses also account for multiple lead times as snow can influence the atmosphere through immediate snow-albedo effect and through delayed snow hydrological effect after snow melts and wets the soil. This is a first study to quantify the impacts of snow initializations on seasonal forecasts of surface air temperature with an emphasis on large-scale snow DA. The insights are helpful to both land DA studies as well as research on seasonal climate forecasts.

  9. The South American Meridional B-field Array (SAMBA) and opportunities for inter- hemispheric studies

    Science.gov (United States)

    Zesta, E.; Boudouridis, A.; Moldwin, M. B.; Weygand, J. M.; Chi, P. J.

    2009-05-01

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic latitudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarctica peninsula, and one auroral station along the same meridian. SAMBA is ideal for low and mid-latitude studies of geophysical events and ULF waves. It is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. We use 5 of the SAMBA stations and a number of conjugate stations from the Northern hemisphere to determine the field line resonance (FLR) frequency of closely spaced flux tubes in the inner magnetosphere. Standard inversion techniques are used to derive the equatorial mass density of these flux tubes from the FLRs. From our conjugate pairs we find, surprisingly, that the derived mass density of closely spaced flux tubes, from L=1.6 to L=2.5, drops at a rate that cannot be predicted by any of the existing models or agree with past observations. We also study asymmetries in the power of Pc3 waves. We find that during northern summer solstice the waves are significantly stronger at the northern conjugate point, while during northern winter solstice the wave power is comparable over both conjugate points. Finally, using the SAMBA auroral station, WSD, along with all available southern auroral stations we calculate a southern AE index and its direct conjugate northern AE index and compare both with the standard AE index. We explore under what conditions the north-south asymmetries in the AE calculation are due to the significant gap of auroral stations in the Southern hemisphere and under what conditions the asymmetries have a geophysical source.

  10. PIPER: Primordial Inflation Polarization Explorer

    Science.gov (United States)

    Lazear, Justin; Benford, D.; Chuss, D.; Fixsen, D.; Hinderks, J.; Hinshaw, G.; Jhabvala, C.; Johnson, B.; Kogut, A.; Mirel, P.; Mosely, H.; Staguhn, J.; Wollack, E.; Weston, A.; Vlahacos, K.; Bennett, C.; Eimer, J.; Halpern, M.; Irwin, K.; Dotson, J.; Ade, P.; Tucker, C.

    2011-05-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the polarization of the cosmic microwave background in search of the expected signature of primordial gravity waves excited during an inflationary epoch shortly after the Big Bang. PIPER consists of two co-aligned telescopes, one sensitive to the Q Stokes parameter and the other to U. Sky signals will be detected with 5120 transition edge sensor (TES) bolometers distributed in four rectangular close-packed arrays maintained at 100 mK. To maximize the sensitivity of the instrument, both telescopes are mounted within a single open bucket dewar and are maintained at 1.5 K throughout flight, with no ambient-temperature windows between the sky and the detectors. To mitigate the effects of systematic errors, the polarized sky signals will be modulated using a variable-delay polarization modulator. PIPER will observe at frequencies 200, 270, 350, and 600 GHz to separate the CMB from polarized dust emission within the Galaxy. A series of flights alternating between northern and southern hemisphere launch sites will produce nearly full-sky maps in Stokes I, Q, U, and V. I will discuss the current status and potential science returns from the PIPER project.

  11. Concentration of 90Sr, 137Cs, 144Ce in the Kirov region surface air estimated using the data on their content in stratosphere at the beginning of the year, fallout during the year, their near-ground concentration in a number of points of the Northern hemisphere

    International Nuclear Information System (INIS)

    Trufakin, V.A.; Malakhov, S.G.

    1976-01-01

    Calculation data are given on mean montly concentrations of strontium-90, cesium-137 and cerium-144 with the approximation of about 5g per cent in the near-ground layer of air near Kirov based on the obtained relation with their concentrations in the near-ground layer of air in some other areas of the northern hemisphere, in the zone lying in latitudes of 40-60 deg N.L.. Calculations of mean montly concentrations of strontium-90 and cesium-137 near Kirov during 1963-1972 are based on their beginning of the year, fallouts and density of fallouts to the ground which have proved close to each other and correlate with their calculations through the values of concentraitons in the near ground air layer in some areas of the northern hemisphere. Calculation values are in a good agreements with experimental data

  12. The Hemispheric Sign Rule of Current Helicity during the Rising ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We compute the signs of two different current helicity parameters (i.e., best and ) for 87 active regions during the rise of cycle 23. The results indicate that 59% of the active regions in the northern hemisphere have negative best and 65% in the southern hemisphere have positive. This is consistent ...

  13. Hemispheric Asymmetry of Global Warming Explained by a Conceptual Model

    Science.gov (United States)

    Funke, C. S.; Alexeev, V. A.

    2017-12-01

    Polar Amplification, the process of amplified warming at high latitudes, manifests itself differently in the Arctic and Antarctic. Not only is the temperature increase in the Arctic more pronounced than in the Antarctic but the dramatic sea ice decline in the Arctic over the last few decades also contrasts sharply with trendless to weak positive trend of Antarctic sea ice throughout the same period. This asymmetric behavior is often partly attributed to the differences in configuration of continents in the Arctic and Antarctic: the Arctic Ocean is surrounded by land while the Southern Ocean has a continent in the middle. A simple conceptual energy balance model of Budyko-Sellers type, accounting for differences between the Northern and Southern hemispheres, is applied to study the mechanisms of climate sensitivity to a variety of forcings. Asymmetry in major modes of variability is explained using an eigenmode analysis of the linearized model. Negative forcings over Antarctica such as from ozone depletion were found to have an amplified effect on southern hemisphere climate and may be an important cause of the muted warming and slightly positive Antarctic sea ice trend.

  14. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia.

    Science.gov (United States)

    Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Andreev, Andrei; Tarasov, Pavel; DeConto, Robert; Koenig, Sebastian; Nowaczyk, Norbert; Wennrich, Volker; Rosén, Peter; Haltia, Eeva; Cook, Tim; Gebhardt, Catalina; Meyer-Jacob, Carsten; Snyder, Jeff; Herzschuh, Ulrike

    2013-06-21

    Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.

  15. Solar modulation of Northern Hemisphere winter blocking

    Czech Academy of Sciences Publication Activity Database

    Barriopedro, D.; García-Herrera, R.; Huth, Radan

    2008-01-01

    Roč. 113, D14 (2008), D14118/1-D14118/11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3042401; GA AV ČR IAA300420805 Grant - others:VALIMOD(ES) REN2002-04558-C04-01 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar activity cycle * atmospheric blocking * climate variability * atmospheric circulation * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.147, year: 2008

  16. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    Science.gov (United States)

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  17. Polar ocean stratification in a cold climate.

    Science.gov (United States)

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H

    2004-03-04

    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  18. Multi-instrument observation of two different types of polar cap aurora occurring simultaneously during northward IMF

    Science.gov (United States)

    Reidy, J. A.; Fear, R. C.; Lanchester, B. S.; Whiter, D. K.; Kavanagh, A. J.; Paxton, L. J.; Zhang, Y.

    2016-12-01

    Polar cap aurora are a phenomena associated with periods of northwards IMF. By studying their appearance and formation, we can gain valuable information on the configuration of Earth's magnetosphere during the less understood `quiet' periods that occur approximately half of the time. Observations of high latitude aurora from multiple instruments on 19 January 2008 are presented, including almost simultaneous observations of the northern and southern auroral regions from the Special Sensor Ultra-violet Spectrographic Imager (SSUSI) instruments on board Defence Meteorological Satellite Programme (DMSP) spacecraft F16 and F17. SuperDARN flows are also explored in both hemispheres during the event. In the northern hemisphere, two high latitude structures were seen on opposite sides of the polar cap during the same interval. The energies of the precipitating electrons above the structure on the duskside was estimated to vary between 2-11 keV using the Auroral Structure and Kinetics (ASK) instrument in conjunction with the Southampton ion chemistry model. Further analysis of this structure revealed it to be formed on closed field lines that had protruded into the polar cap, consistent with the mechanism proposed for transpolar arcs. However this structure did not cross the entire polar cap but remained, in the northern hemisphere, at approximately 80° magnetic latitude for at least 40 minutes. This protrusion is hence suggested to be an example of a `failed transpolar arc'. The structure seen on the dawnside of the northern polar cap was analysed using DMSP particle spectrograph data. It was found to be associated with electron precipitation energies lower than 1 keV and no ion signature were present. Hence it is suggested that this sun-aligned structure is consistent with the common low intensity arcs formed by accelerated polar rain. The study shows there are at least two types of high latitude aurora occurring simultaneously during northwards IMF.

  19. First Views of North Polar Clouds and Circulation on Uranus

    Science.gov (United States)

    Sromovsky, Lawrence A.; Fry, P. M.; Hammel, H. B.; de Pater, I.; Rages, K. A.

    2012-10-01

    Post-equinox high S/N imaging of Uranus, by HST in 2009-10 and by Keck and Gemini telescopes in 2011, provide the first detailed views of its high northern latitudes. These images reveal numerous small cloud features from which we were able to extend the zonal wind profile of Uranus into its north polar region and accurately characterize its 60° N 250-m/s prograde jet. We also found a large N-S asymmetry in the morphology of polar cloud features (Sromovsky et al. 2012, Icarus 220, 694-712). The variation of wind speed with latitude in the north polar region is consistent with solid body rotation at a rate of 4.3°/h relative to the interior. When new measurements are combined with measurements from 1997 onward, there remains a small but significant asymmetry at middle latitudes, peaking near 35°, where southern hemisphere winds are 20 m/s more westward than corresponding northern hemisphere winds. The discovery of polar discrete cloud features is significant because of their possible connection to large scale meridional mass flows. Analysis of 2002 HST STIS spectra shows that the southern high latitudes are depleted of methane in the upper troposphere (Karkoschka & Tomasko 2009 Icarus 202 287-309; Sromovsky et al. 2011, Icarus 215, 292-312), suggesting an upper tropospheric downwelling in the south polar region that would tend to depress convective cloud formation there. Indeed, no comparable features have ever been seen in high southern latitudes. On the other hand, the existence of numerous small, possibly convective, features at high northern latitudes suggests that the predominant meridional flow there is not downwelling and that CH4 may not yet be depleted there. New HST STIS observations are expected to resolve this issue. This research was supported by grants from NASA Planetary Atmospheres and Astronomy programs, and from the Space Telescope Science Institute.

  20. Remote identification of potential polar bear maternal denning habitat in northern Alaska using airborne LiDAR

    Science.gov (United States)

    Jones, B. M.; Durner, G. M.; Stoker, J.; Shideler, R.; Perham, C.; Liston, G. E.

    2013-12-01

    Polar bear (Ursus maritimus) populations throughout the Arctic are being threatened by reductions in critical sea ice habitat. Throughout much of their range, polar bears give birth to their young in winter dens that are excavated in snowdrifts. New-born cubs, which are unable to survive exposure to Arctic winter weather, require 2-3 months of the relatively warm, stable, and undisturbed environment of the den for their growth. In the southern Beaufort Sea (BS), polar bears may den on the Alaskan Arctic Coastal Plain (ACP).The proportion of dens occurring on land has increased because of reductions in stable multi-year ice, increases in unconsolidated ice, and lengthening of the fall open-water period. Large portions of the ACP are currently being used for oil and gas activities and proposed projects will likely expand this footprint in the near future. Since petroleum exploration and development activities increase during winter there is the potential for human activities to disturb polar bears in maternal dens. Thus, maps showing the potential distribution of terrestrial denning habitat can help to mitigate negative interactions. Prior remote sensing efforts have consisted of manual interpretation of vertical aerial photography and automated classification of Interferometric Synthetic Aperture (IfSAR) derived digital terrain models (DTM) (5-m spatial resolution) focused on the identification of snowdrift forming landscape features. In this study, we assess the feasibility of airborne Light Detection and Ranging (LiDAR) data (2-m spatial resolution) for the automated classification of potential polar bear maternal denning habitat in a 1,400 km2 area on the central portion of the ACP. The study region spans the BS coast from the Prudhoe Bay oilfield in the west to near Point Thompson in the east and extends inland from 10 to 30 km. Approximately 800 km2 of the study area contains 19 known den locations, 51 field survey sites with information on bank height and

  1. The Shape of Things to Come: Estimating Northern-Hemisphere (NH) Transient Climate Response Through Hindcasting and Forecasting the Frequency Distribution of Earth's NH Land Temperature Anomalies for the Period 1951-2071

    Science.gov (United States)

    Leclerc, D. F.

    2016-12-01

    Northern-hemisphere (NH) heatwaves, during which temperatures rise 5 standard deviations (SD), sigma, above the historical mean temperature, mu, are becoming frequent; these events skew temperature anomaly (delta T) profiles towards extreme values. Although general extreme value (GEV) distributions have modeled precipitation data, their application to temperatures have met with limited success. This work presents a modified three-parameter (mu, sigma and tau (skew)) Exponential-Gaussian (eGd) model that hindcasts decadal NH land winter (DJF) and summer (JJA) delta Ts from 1951 to 2011, and forecasts profiles for a business-as-usual (BAU) scenario for 2061-2071. We accessed 12 numerical binned (0.05 °C/bin) z-scored NH decadal datasets (posted online until August 2015) from the publicly available website http://www.columbia.edu/ mhs119/PerceptionsAndDice/ mentioned in Hansen et al, PNAS 109 E2415-E2423 (2012) and stated to be in the public domain. No pre-processing was done. Parameters were calculated for the 12 NH datasets pasted into Microsoft Excel™ through the method of moments for 1-tail distributions and through the BEST deconvolution program described by Pommé and Marroyo, Applied Radiation and Isotopes 96 148-153 (2015) for 2-tail distributions. We used maximum likelihood estimation (MLE), residual sum of squares (RSS) and F-test to find optimal parameter values. Calculated 1st (= sigma + tau) and 2nd (= sigma2 + tau2) moments were found to be within 0.5% of observed values. Land delta Ts were recovered from the z-score values by multiplying the winter data by its SD (1.2 °C) and likewise the summer data by 0.6 °C. Results were all within 0.05 °C of 10-year averages from the GHCNv3 NH land dataset. Assuming BAU (increases from 2.1 to 2.6 ppm/y CO2) and using temperature rises of 0.27 °C and 0.35 °C per decade, for summer and winter, respectively, and forecasting to 2071, we obtain for the transient climate response for doubled CO2 (560 ppm CO2) mean

  2. Radioiodine (131I) in animal thyroids during nuclear tests in both hemispheres

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1975-01-01

    In mid-1974 a small increase of 131 I was observed in animal thyroids following a nuclear test in China. In late 1974 there was no public announcement of an atmospheric nuclear test in the Northern Hemisphere, but 131 I was readily measured in animal thyroids. This latter increase occurred while animals in the Southern Hemisphere accumulated 131 I from nuclear tests in the Southern Hemisphere. It is suggested that in late 1974 the Northern Hemisphere was contaminated by either late fallout from tests in June or by interhemispheric mixing or by a combination of these sources. (author)

  3. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    International Nuclear Information System (INIS)

    Moroney, J.R.

    1979-11-01

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed

  4. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    International Nuclear Information System (INIS)

    Moroney, J.R.

    1979-01-01

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed. (author)

  5. Extension of a qualitative model on nutrient cycling and transformation to include microtidal estuaries on wave-dominated coasts: Southern hemisphere perspective

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2009-11-01

    Full Text Available need resolving. It can also be applied to other regions in the southern hemisphere, and even the northern hemisphere, with similar hydrological and estuarine geomorphological characteristics (e.g. the Mediterranean coast, the west coasts of North...

  6. Music, Hemisphere Preference and Imagery.

    Science.gov (United States)

    Stratton, Valerie N.; Zalanowski, Annette H.

    Two experiments were conducted to determine a possible relationship between the right hemisphere, music perception, and mental imagery. The first experiment compared two groups of college students, one of which showed a preference for left hemisphere thinking (n=22) and the other a preference for right hemisphere thinking (n=20), in order to test…

  7. The polar cliff in the morning sector of the ionosphere

    Directory of Open Access Journals (Sweden)

    G. W. Prölss

    2013-05-01

    Full Text Available By "polar cliff" we mean the steep increase in the ionization density observed in the morning sector of the polar ionosphere. Here the properties of this remarkable feature are investigated. The data set consists of electron density and temperature measurements obtained by the Dynamics Explorer 2 satellite. Only data recorded in the Northern Hemisphere winter are considered (solar zenith angle ≥ 90°. We find that for moderately disturbed conditions, the foot of the polar cliff is located below 60° invariant latitude. Here, within about 4°, the density increases by a factor of 4, on average. The actual location of the polar cliff depends primarily on the level of geomagnetic activity, its associated density increase on geographic longitude and altitude. As to the longitudinal variations, they are attributed to asymmetries in the background ionization density at middle latitudes. Using a superposed epoch type of averaging procedure, mean latitudinal profiles of the polar cliff and the associated electron temperature changes are derived. Since these differ significantly from those derived for the afternoon/evening sector, we conclude that the subauroral ionospheric trough does not extend into the morning sector. As to the origin of the polar cliff in the morning sector, local auroral particle precipitation should play only a secondary role.

  8. Impacts of hemispheric solar geoengineering on tropical cyclone frequency.

    Science.gov (United States)

    Jones, Anthony C; Haywood, James M; Dunstone, Nick; Emanuel, Kerry; Hawcroft, Matthew K; Hodges, Kevin I; Jones, Andy

    2017-11-14

    Solar geoengineering refers to a range of proposed methods for counteracting global warming by artificially reducing sunlight at Earth's surface. The most widely known solar geoengineering proposal is stratospheric aerosol injection (SAI), which has impacts analogous to those from volcanic eruptions. Observations following major volcanic eruptions indicate that aerosol enhancements confined to a single hemisphere effectively modulate North Atlantic tropical cyclone (TC) activity in the following years. Here we investigate the effects of both single-hemisphere and global SAI scenarios on North Atlantic TC activity using the HadGEM2-ES general circulation model and various TC identification methods. We show that a robust result from all of the methods is that SAI applied to the southern hemisphere would enhance TC frequency relative to a global SAI application, and vice versa for SAI in the northern hemisphere. Our results reemphasise concerns regarding regional geoengineering and should motivate policymakers to regulate large-scale unilateral geoengineering deployments.

  9. Speech and the Right Hemisphere

    Directory of Open Access Journals (Sweden)

    E. M. R. Critchley

    1991-01-01

    Full Text Available Two facts are well recognized: the location of the speech centre with respect to handedness and early brain damage, and the involvement of the right hemisphere in certain cognitive functions including verbal humour, metaphor interpretation, spatial reasoning and abstract concepts. The importance of the right hemisphere in speech is suggested by pathological studies, blood flow parameters and analysis of learning strategies. An insult to the right hemisphere following left hemisphere damage can affect residual language abilities and may activate non-propositional inner speech. The prosody of speech comprehension even more so than of speech production—identifying the voice, its affective components, gestural interpretation and monitoring one's own speech—may be an essentially right hemisphere task. Errors of a visuospatial type may occur in the learning process. Ease of learning by actors and when learning foreign languages is achieved by marrying speech with gesture and intonation, thereby adopting a right hemisphere strategy.

  10. Speech and the right hemisphere.

    Science.gov (United States)

    Critchley, E M

    1991-01-01

    Two facts are well recognized: the location of the speech centre with respect to handedness and early brain damage, and the involvement of the right hemisphere in certain cognitive functions including verbal humour, metaphor interpretation, spatial reasoning and abstract concepts. The importance of the right hemisphere in speech is suggested by pathological studies, blood flow parameters and analysis of learning strategies. An insult to the right hemisphere following left hemisphere damage can affect residual language abilities and may activate non-propositional inner speech. The prosody of speech comprehension even more so than of speech production-identifying the voice, its affective components, gestural interpretation and monitoring one's own speech-may be an essentially right hemisphere task. Errors of a visuospatial type may occur in the learning process. Ease of learning by actors and when learning foreign languages is achieved by marrying speech with gesture and intonation, thereby adopting a right hemisphere strategy.

  11. Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming

    Science.gov (United States)

    Smith-Johnsen, Christine; Orsolini, Yvan; Stordal, Frode; Limpasuvan, Varavut; Pérot, Kristell

    2018-03-01

    Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH.

  12. Emotions and hemispheric specialization.

    Science.gov (United States)

    Kyle, N L

    1988-09-01

    Studies of lateralization and specialization of brain function have increased our understanding of emotional processes in the brain. It has been said that the way in which we understand the emotional interrelatedness of brain layers and segments may have important effects on human society. Earlier studies of brain function, especially of limbic effects, suggested a dichotomous state of affairs between the phylogenetically older brain and the newer cortical areas--between affect and cognition. Such concepts are considered here in the light of specialization studies. From the beginning hemispheric laterality research has implicated emotionality and emotional pathology. It also appears that some limbic functions may be mediated in a lateralized fashion. Neuropsychologists have directed much work toward localization of function from its earliest stage; since the 1960s an emphasis has been on "mapping" of cortical functions in terms of psychopathologic disabilities. Various disability groups have been studied in this way, and it may be concluded that neuropsychologic measures are sensitive to changes in cerebral functioning and may have effective lateralizing and localizing ability under specified conditions. Studies of limbic effects in the brain emphasize their importance in emotional behavior but also their interrelatedness with other structures, for example, the frontal and temporal lobes, and particularly the right hemisphere. Studies of commissurotomy (split-brain) patients tend to bear out these relationships. In split-brain subjects the marked reduction in affective verbal and nonverbal behavior reflects the interruption of transcallosal impulses that normally permit emotional infusion of cortical structures to take place. These effects include verbal, visual, and auditory patterns that mediate the ability to decode complex nonverbal patterns and may result in a reduction of "inner speech," that is, symbollexia. They may further lead to a condition of

  13. Retrieval of polar mesospheric cloud properties from CIPS: Algorithm description, error analysis and cloud detection sensitivity

    Science.gov (United States)

    Lumpe, J. D.; Bailey, S. M.; Carstens, J. N.; Randall, C. E.; Rusch, D. W.; Thomas, G. E.; Nielsen, K.; Jeppesen, C.; McClintock, W. E.; Merkel, A. W.; Riesberg, L.; Templeman, B.; Baumgarten, G.; Russell, J. M.

    2013-11-01

    The Cloud Imaging and Particle Size (CIPS) instrument has been in operation on the NASA Aeronomy of Ice in the Mesosphere (AIM) satellite since May 2007. CIPS is a multi-camera UV imager that makes unprecedented hemispheric-scale measurements of polar mesospheric clouds (PMC). The primary CIPS data products are cloud frequency, albedo, mean particle radius, ice water content and vertical column particle density. These quantities are retrieved at 25 km2 resolution at latitudes between ~55° and 84° over a range of local times in the summer hemisphere. CIPS has obtained data for six Northern Hemisphere and five Southern Hemisphere PMC seasons to date and is still in operation and performing flawlessly. The CIPS data are made available to the scientific community in a variety of formats and spatial and temporal resolution, including full-resolution single-orbit level 2 data files and images, daily (hemispheric) albedo maps and images, and full-season latitude-binned summary files. In this paper we describe the CIPS measurement strategy and sampling characteristics, calibration and the Version 4.20 processing algorithms and retrievals. We also provide a quantitative evaluation of the CIPS cloud detection sensitivity and estimated random and systematic errors of the V4.20 cloud data products.

  14. Phenological changes in the southern hemisphere.

    Directory of Open Access Journals (Sweden)

    Lynda E Chambers

    Full Text Available Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand, South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias, although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially

  15. Phenological Changes in the Southern Hemisphere

    Science.gov (United States)

    Chambers, Lynda E.; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J.; Crawford, Robert J. M.; Durant, Joel M.; Hughes, Lesley; Keatley, Marie R.; Low, Matt; Morellato, Patricia C.; Poloczanska, Elvira S.; Ruoppolo, Valeria; Vanstreels, Ralph E. T.; Woehler, Eric J.; Wolfaardt, Anton C.

    2013-01-01

    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically

  16. Phenological changes in the southern hemisphere.

    Science.gov (United States)

    Chambers, Lynda E; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J; Crawford, Robert J M; Durant, Joel M; Hughes, Lesley; Keatley, Marie R; Low, Matt; Morellato, Patricia C; Poloczanska, Elvira S; Ruoppolo, Valeria; Vanstreels, Ralph E T; Woehler, Eric J; Wolfaardt, Anton C

    2013-01-01

    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically

  17. Right Hemisphere and Left Hemisphere: Pedagogical Implications for CSL Reading.

    Science.gov (United States)

    Mickel, Stanley L.

    Students can be taught to read Chinese more efficiently and accurately by using the specific capabilities of the right and left hemispheres of the brain. The right hemisphere is the site of image and pattern recognition, and students can be taught to use those capacities to process individual characters efficiently by watching for the element of…

  18. Modeling the Influence of Hemispheric Transport on Trends in ...

    Science.gov (United States)

    We describe the development and application of the hemispheric version of the CMAQ to examine the influence of long-range pollutant transport on trends in surface level O3 distributions. The WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations were recently performed for the period spanning 1990-2010 to examine changes in hemispheric air pollution resulting from changes in emissions over this period. Simulated trends in ozone and precursor species concentrations across the U.S. and the northern hemisphere over the past two decades are compared with those inferred from available measurements during this period. Additionally, the decoupled direct method (DDM) in CMAQ is used to estimate the sensitivity of O3 to emissions from different source regions across the northern hemisphere. The seasonal variations in source region contributions to background O3 is then estimated from these sensitivity calculations and will be discussed. A reduced form model combining these source region sensitivities estimated from DDM with the multi-decadal simulations of O3 distributions and emissions trends, is then developed to characterize the changing contributions of different source regions to background O3 levels across North America. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas

  19. The interaction of a magnetic cloud with the Earth: Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    International Nuclear Information System (INIS)

    Freeman, M.P.; Farrugia, C.J.; Burlaga, L.F.; Lepping, R.P.; Hairston, M.R.; Greenspan, M.E.; Ruohoniemi, J.M.

    1993-01-01

    This is the second of three papers which study a large interplanetary magnetic cloud, and its interaction with the earth's magnetosphere. Here the authors study flows within the ionosphere during the passage of the magnetic cloud on Jan 13-15, 1988. This is the first study of ionospheric convections during prolonged periods of stable and different IMF orientations, which result from the stable, but spatially varying field structure within the magnetic cloud. Data from IMP-8 and DMSP-F8 are analyzed for this work. This observation gave information on ionospheric responses to greater than 10 hour period of northward and southward IMF, with a gradual change from one to the other. Issues studied included strengths of peak flows for north and south IMF; changes in cross polar cap potential with IMF B z ; types and variations of convective patterns vs IMF; variations in size of the polar cap; etc

  20. The Primordial Inflation Polarization ExploreR (PIPER)

    Science.gov (United States)

    Gandilo, Natalie; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward

    2018-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity, with mapping speed approximately 10 times faster than a similar instrument with a single ambient-temperature mirror. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of rMexico, and the first science flight is planned for June 2018 from Palestine, Texas.

  1. Geomorphological mapping of comet 67P/Churyumov-Gerasimenko's Southern hemisphere

    Science.gov (United States)

    Lee, Jui-Chi; Massironi, Matteo; Ip, Wing-Huen; Giacomini, Lorenza; Ferrari, Sabrina; Penasa, Luca; El-Maarry, Mohamed Ramy; Pajola, Maurizio; Lai, Ian-Lin; Lin, Zhong-Yi; Ferri, Francesca; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F.; Barucci, Maria Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Deller, Jakob; Fornasier, Sonia; Fulle, Marco; Groussin, Olivier; Gutiérrez, Pedro J.; Güttler, Carsten; Hofmann, Marc; Hviid, Stubbe F.; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, J.-Rainer; Kührt, Ekkehard; Küppers, Michael; Lara, Luisa M.; Lazzarin, Monica; Marzari, Francesco; Lopez Moreno, Josè J.; Naletto, Giampiero; Oklay, Nilda; Shi, Xian; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste

    2016-11-01

    In 2015 May, the Southern hemisphere of comet 67P/Churyumov-Gerasimenko became visible by the OSIRIS cameras on-board the Rosetta spacecraft. The resolution was high enough to carry out a detailed analysis of the surface morphology, which is quite different from the Northern hemisphere. Previous works show that fine particle deposits are the most extensive geological unit in the Northern hemisphere. In contrast, the Southern hemisphere is dominated by outcropping consolidated terrain. In this work, we provide geomorphological maps of the Southern hemisphere with the distinction of both geological units and linear features. The geomorphological maps described in this study allow us to gain a better understanding of the processes shaping the comet nucleus and the distribution of primary structures such as fractures and strata.

  2. The Primordial Inflation Polarization Explorer (PIPER)

    Science.gov (United States)

    Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James; hide

    2014-01-01

    The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.

  3. Evolution of Southern Hemisphere spring air masses observed by HALOE

    Science.gov (United States)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  4. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  5. First observations of polar mesosphere summer echoes in Antarctica

    Science.gov (United States)

    Woodman, Ronald F.; Balsley, Ben B.; Aquino, Fredy; Flores, Luis; Vazquez, Edilberto; Sarango, Martin; Huaman, Mercedes M.; Soldi, Hector

    1999-10-01

    A 25-kW peak power 50-MHz radar was installed at the Peruvian base on King George Island, Antarctica (62°S), in early 1993. A search for polar mesospheric summer echoes (PMSEs) was made during late January and early February of the first year of operation with negative results. These results have been reported in the literature [Balsley et al., 1993; 1995]. We report here results obtained during the austral summer of the second year (1994) of operation. Observations during the second year were begun earlier, i.e., closer to the austral summer solstice. PMSEs were observed during this period, albeit the echoes were much weaker than what one would expect based on earlier Poker Flat radar results at a comparable latitude (65°N) in the Northern Hemisphere. A large and measurable asymmetry in PMSE strength in the two hemispheres therefore exists. We explain this asymmetry by postulating a difference in summer mesopause temperatures between the two hemispheres of ~7.5 K. This difference has been estimated using an empirical relationship between the variations of the Poker Flat PMSE power as a function of temperature given by the mass spectrometer incoherent scatter extended (MSISE-90) model.

  6. Western Hemisphere Knowledge Partnerships

    Science.gov (United States)

    Malone, T. F.

    2001-05-01

    , and application of knowledge concerning the nature of -- and interaction among -- matter, living organisms, energy, information, and human behavior. This strategy calls for innovative partnerships among the physical, biological, health, and social sciences, engineering, and the humanities. New kinds of partnership must also be forged among academia, business and industry, governments, and nongovernmental organizations. Geophysicists can play an important role in these partnerships. A focus for these partnerships is to manage the individual economic productivity that drives both human development and global change. As world population approaches stability during the twenty-first century, individual economic productivity will be the critical link between the human and the natural systems on planet Earth. AGU is among a core group of individuals and institutions proposing Western Hemisphere Knowledge Partnerships (WHKP) to test the hypothesis that knowledge, broadly construed, is an important organizing principle in choosing a path into the future. The WHKP agenda includes: (1) life-long learning, (2) the health and resilience of natural ecosystems, (3) eco-efficiency in economic production and consumption, (4) extension of national income accounts, (5) environmentally benign sources of energy, (6) delivery of health care, (7) intellectual property rights, and (8) networks for action by local communities.Collaboratories and distance education technologies will be major tools. A panel of experts will explore this proposal.

  7. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    Science.gov (United States)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  8. Periodicities of polar mesospheric clouds inferred from a meteorological analysis and forecast system

    Science.gov (United States)

    Stevens, M. H.; Lieberman, R. S.; Siskind, D. E.; McCormack, J. P.; Hervig, M. E.; Englert, C. R.

    2017-04-01

    There is currently an ambiguity in what controls polar mesospheric cloud (PMC) periodicities near 83 km altitude. This is primarily because satellite and ground-based data sets cannot resolve global mesospheric temperature variability over the diurnal cycle. To address this limitation, we employ a global meteorological analysis and forecast system that assimilates mesospheric satellite data with two significant advances. The first is that we use output at a more rapid one hourly cadence, allowing for a quantitative description of diurnal (24 h), semidiurnal (12 h), and terdiurnal oscillations. The second is that the output drives a simple PMC parameterization which depends only on the local temperature, pressure, and water vapor concentrations. Our study focuses on results from July 2009 in the Northern Hemisphere and January 2008 in the Southern Hemisphere. We find that the 24 h migrating temperature tide as well as the 12 h and 24 h nonmigrating tides dominate northern PMC oscillations whereas the 12 h and 24 h nonmigrating tides dominate southern oscillations. Monthly averaged amplitudes for each of these components are generally 2-6 K with the larger amplitudes at lower PMC latitudes (50°). The 2 day and 5 day planetary waves also contribute in both hemispheres, with monthly averaged amplitudes from 1 to 3 K although these amplitudes can be as high as 4-6 K on some days. Over length scales of 1000 km and timescales of 1 week, we find that local temperature oscillations adequately describe midlatitude PMC observations.

  9. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  10. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  11. The northern edge of the band of solar wind variability: Ulysses at ∼4.5AU

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Neugebauer, M.

    1997-01-01

    Ulysses observations reveal that the northern edge of the low-latitude band of solar wind variability at ∼4.5AU was located at N30 degree in the latter part of 1996 when solar activity was at a minimum. This edge latitude is intermediate between edge latitudes found during previous encounters with the band edge along different portions of Ulysses close-quote polar orbit about the Sun. Corotating interaction regions, CIRs, near the northern edge of the band were tilted in such a manner that the forward and reverse shocks bounding the CIRs were propagating equatorward and poleward, respectively, providing definite confirmation that CIRs have opposed tilts in the opposite solar hemispheres. No shocks or coronal mass ejections, CMEs, were detected during the ∼1.5y traverse of the northern, high-latitude northern hemisphere; however, at the northern edge of the band of variability an expanding CME was observed that was driving a shock into the high-speed wind.copyright 1997 American Geophysical Union

  12. Electrical signature in polar night cloud base variations

    International Nuclear Information System (INIS)

    Harrison, R Giles; Ambaum, Maarten H P

    2013-01-01

    Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankylä (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Niño Southern Oscillation, is linked with layer cloud properties. (letter)

  13. Satellite Global and Hemispheric Lower Tropospheric Temperature Annual Temperature Cycle

    Directory of Open Access Journals (Sweden)

    Michael A. Brunke

    2010-11-01

    Full Text Available Previous analyses of the Earth’s annual cycle and its trends have utilized surface temperature data sets. Here we introduce a new analysis of the global and hemispheric annual cycle using a satellite remote sensing derived data set during the period 1979–2009, as determined from the lower tropospheric (LT channel of the MSU satellite. While the surface annual cycle is tied directly to the heating and cooling of the land areas, the tropospheric annual cycle involves additionally the gain or loss of heat between the surface and atmosphere. The peak in the global tropospheric temperature in the 30 year period occurs on 10 July and the minimum on 9 February in response to the larger land mass in the Northern Hemisphere. The actual dates of the hemispheric maxima and minima are a complex function of many variables which can change from year to year thereby altering these dates.Here we examine the time of occurrence of the global and hemispheric maxima and minima lower tropospheric temperatures, the values of the annual maxima and minima, and the slopes and significance of the changes in these metrics.  The statistically significant trends are all relatively small. The values of the global annual maximum and minimum showed a small, but significant trend. Northern and Southern Hemisphere maxima and minima show a slight trend toward occurring later in the year. Most recent analyses of trends in the global annual cycle using observed surface data have indicated a trend toward earlier maxima and minima.

  14. Stratospheric warmings in the Southern Hemisphere deduced from satellite radiation data, 1969-73

    Science.gov (United States)

    Quiroz, R. S.

    1974-01-01

    The investigation is largely based on radiation data from the vertical temperature profile radiometers on the satellite NOAA 2. The physical-statistical interpretation of the radiance data is considered. Aspects regarding the nonuniqueness of the minor warming in August 1973 are discussed. It is pointed out that conditions leading to major warmings in the Northern Hemisphere were not satisfied in the Southern Hemisphere during the period from 1969 to 1973.

  15. Comparing forward and inverse models to estimate the seasonal variation of hemisphere-integrated fluxes of carbonyl sulfide

    Directory of Open Access Journals (Sweden)

    A. J. Kettle

    2002-01-01

    Full Text Available A simple inverse model is proposed to deduce hemisphere-integrated COS flux based on published time series of total column COS. The global atmosphere is divided into two boxes representing the Northern and Southern Hemispheres, and the total column COS data from several stations are used to calculate hemispheric COS loadings. The integrated flux within each hemisphere is calculated as a linear combination of a steady-state solution and time-varying perturbation. The nature of the time-varying perturbation is deduced using two different approaches: an analytic solution based on a cosine function that was fitted to the original total column COS measurement time series and a Simplex optimization with no underlying assumption about the functional form of the total column time series. The results suggest that there is a steady-state COS flux from the Northern to the Southern Hemisphere. There is a seasonal variation superimposed on this flux that in the Southern Hemisphere has a maximum rate of COS input into the atmosphere around January and a maximum rate of COS removal from the atmosphere around August--September. In the Northern Hemisphere, the maximum rate of COS input into the atmosphere is around May--June, and the maximum rate of COS removal is either August or January, depending on which station in the Northern Hemisphere is considered. The results of the inverse model are compared with the outcome of a forward approach on the temporal and spatial variation of the dominant global sources and sinks published earlier. In general, the deduced hemisphere-integrated flux estimates showed good agreement with the database estimates, though it remains uncertain whether COS removal from the atmosphere in the Northern Hemisphere is dominated by plant and soil uptake in the boreal summer or by oceanic uptake in boreal winter.

  16. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  17. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  18. The effect of dual-hemisphere breeding on stallion fertility.

    Science.gov (United States)

    Walbornn, S R; Love, C C; Blanchard, T L; Brinsko, S P; Varner, D D

    2017-05-01

    Breeding records were analyzed from 24 Thoroughbred stallions that were subjected to dual-hemisphere breeding (DH), including novice (first-year; NOV; n = 11) and experienced (EXP; n = 13) stallions. Fertility variables included seasonal pregnancy rate, pregnancy rate per cycle, and first-cycle pregnancy rate. In addition, values for book size, total number of covers, distribution of mare type (maiden, foaling, and barren) within a stallion's book, cycles per mare, and mare age were examined. Some data were also categorized by mare type (maiden-M, foaling-F, and barren-B). Five separate analyses of the data were performed. For Analyses 1-3, the effects of hemisphere (northern hemisphere [NH] vs. southern hemisphere [SH]) and breeding order (refers to the first [O1] or second [O2] season within the first year of dual-hemisphere breeding) were examined for all stallions (combined group [CG]), NOV stallions only, and EXP stallions only, respectively. Fertility values were generally higher in the SH than the NH (P fertility of O1 was generally similar to O2 (P > 0.05). For Analysis 4, fertility of DH breeding seasons was compared to single hemisphere (SIN) breeding seasons within the same 16 stallions and was found to be similar between the two groups (P > 0.05). For Analysis 5, the effect of the number of consecutive DH breeding seasons on fertility was examined and was found to remain unchanged (P > 0.05). In summary, no adverse effects of DH breeding on fertility were detected. Fertility was higher when stallions were bred in the SH, as compared to the NH. Potential reasons for higher fertility achieved in the SH were smaller book sizes and better mare reproductive quality. Copyright © 2017. Published by Elsevier Inc.

  19. Hemispheric differences in electrical and hemodynamic responses during hemifield visual stimulation with graded contrasts.

    Science.gov (United States)

    Si, Juanning; Zhang, Xin; Zhang, Yujin; Jiang, Tianzi

    2017-04-01

    A multimodal neuroimaging technique based on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was used with horizontal hemifield visual stimuli with graded contrasts to investigate the retinotopic mapping more fully as well as to explore hemispheric differences in neuronal activity, the hemodynamic response, and the neurovascular coupling relationship in the visual cortex. The fNIRS results showed the expected activation over the contralateral hemisphere for both the left and right hemifield visual stimulations. However, the EEG results presented a paradoxical lateralization, with the maximal response located over the ipsilateral hemisphere but with the polarity inversed components located over the contralateral hemisphere. Our results suggest that the polarity inversion as well as the latency advantage over the contralateral hemisphere cause the amplitude of the VEP over the contralateral hemisphere to be smaller than that over the ipsilateral hemisphere. Both the neuronal and hemodynamic responses changed logarithmically with the level of contrast in the hemifield visual stimulations. Moreover, the amplitudes and latencies of the visual evoked potentials (VEPs) were linearly correlated with the hemodynamic responses despite differences in the slopes.

  20. Are Karakoram temperatures out of phase compared to hemispheric trends?

    Science.gov (United States)

    Asad, Fayaz; Zhu, Haifeng; Zhang, Hui; Liang, Eryuan; Muhammad, Sher; Farhan, Suhaib Bin; Hussain, Iqtidar; Wazir, Muhammad Atif; Ahmed, Moinuddin; Esper, Jan

    2017-05-01

    In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This "Karakoram Anomaly" has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April-July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation ( 3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575-2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955-2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.

  1. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  2. Hemispheric Specialization and Functional Plasticity during Development.

    Science.gov (United States)

    Levine, Susan Cohen

    1983-01-01

    Reviews literature on hemispheric specialization. Argues that foundations of hemispheric specialization are present very early in life and that children's greater ability to recover functions following brain injury suggests developmental changes in brain organization. (CMG)

  3. Hemispheric ultra-wideband antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  4. Assessing Northern Hemisphere Land-Atmosphere Hotspots Using Dynamical Adjustment

    Science.gov (United States)

    Merrifield, Anna; Lehner, Flavio; Deser, Clara; Xie, Shang-Ping

    2017-04-01

    Understanding the influence of soil moisture on surface air temperature (SAT) is made more challenging by large-scale, internal atmospheric variability present in the midlatitude summer atmosphere. In this study, dynamical adjustment is used to characterize and remove summer SAT variability associated with large-scale circulation patterns in the Community Earth System Model large ensemble (CESM-LE). The adjustment is performed over North America and Europe with two different circulation indicators: sea level pressure (SLP) and 500mb height (Z500). The removal of dynamical "noise" leaves residual SAT variability in the central U.S. and Mediterranean regions identified as hotspots of land-atmosphere interaction (e.g. Koster et al. 2004, Seneviratne et al. 2006). The residual SAT variability "signal" is not clearly related to modes of sea surface temperature (SST) variability, but is related to local soil moisture, evaporative fraction, and radiation availability. These local relationships suggest that residual SAT variability is representative of the aggregate land surface signal. SLP dynamical adjustment removes ˜15% more variability in the central U.S. hotspot region than Z500 dynamical adjustment. Similar amounts of variability are removed by SLP and Z500 in the Mediterranean region. Differences in SLP and Z500 signal magnitude in the central U.S. are likely due to the modification of SLP by local land surface conditions, while the proximity of European hotspots to the Mediterranean sea mitigates the land surface influence. Variations in the Z500 field more closely resemble large-scale midlatitude circulation patterns and therefore Z500 may be a more suitable circulation indicator for summer dynamical adjustment. Changes in the residual SAT variability signal under increased greenhouse gas forcing will also be explored.

  5. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mantsch, Paul M.; /Fermilab

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The detection techniques have been proven at Auger South. A small R&D array is being constructed at the Colorado site to test minor modifications of the detector units and the revised communications system. The ASPERA roadmap in Europe has endorsed Auger North and recommended funding during the next five years, after which the available resources will be needed for CTA, KM3NeT, and Megaton. Now is the time to step up to a new level of astroparticle science with a systematic approach to the study of trans-GZK cosmic rays.

  6. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    Science.gov (United States)

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Akerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjarnlund, Ulla; Oliveira, Kenneth; Strom, Karin; McCormick, Stephen D.; Karlsson, Simon; Strom, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Stromquist, Jennie; Collier, Tracy K.; Borjeson, Hans; Morner, Torsten; Hansson, Tomas

    2016-01-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.

  7. Climate Prediction Center (CPC) Northern and Southern Hemisphere Blocking Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atmospheric blocking is commonly referred to as the situation when the normal zonal flow is interrupted by strong and persistent meridional flow. The normal eastward...

  8. Optical observations of planetary nebula candidates from the northern hemisphere

    NARCIS (Netherlands)

    VandeSteene, GC; Jacoby, GH; Pottasch, [No Value

    We present H alpha+[N II] images of 17 and low resolution spectra of 14 IRAS-selected planetary nebula candidates. The H alpha+[N II] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images accurate optical positions and mean optical

  9. What-ifs for a Northern ozone hole

    Energy Technology Data Exchange (ETDEWEB)

    Newman, A.

    1993-08-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O[sub 3], persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction.

  10. What-ifs for a Northern ozone hole

    International Nuclear Information System (INIS)

    Newman, A.

    1993-01-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O 3 , persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction

  11. Geologic map of the northern plains of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.

    2005-01-01

    The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all

  12. Hemispheric Laterality in Music and Math

    Science.gov (United States)

    Szirony, Gary Michael; Burgin, John S.; Pearson, L. Carolyn

    2008-01-01

    Hemispheric laterality may be a useful concept in teaching, learning, training, and in understanding more about human development. To address this issue, a measure of hemispheric laterality was compared to musical and mathematical ability. The Human Information Processing Survey (HIPS) instrument, designed to measure hemispheric laterality, was…

  13. Right Hemisphere Dominance in Visual Statistical Learning

    Science.gov (United States)

    Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.

    2011-01-01

    Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…

  14. The Energy Budget of the Polar Atmosphere in MERRA

    Science.gov (United States)

    Cullather, Richard I.; Bosilovich, Michael G.

    2010-01-01

    Components of the atmospheric energy budget from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979-2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the energy budget is reflected by the analysis increments term, which results from virtual enthalpy and latent heating contributions and averages -11 W/sq m over the north polar cap and -22 W/sq m over the south polar cap. Total energy tendency and energy convergence terms from MERRA agree closely with previous study for northern high latitudes but convergence exceeds previous estimates for the south polar cap by 46 percent. Discrepancies with the Southern Hemisphere transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in TOA and surface radiative fluxes maximize in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W/sq m larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W/sq m throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously non-zero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium Range Weather Forecasts (ERA-I) are found to have better surface parameterizations, however these collections are also found to have significant discrepancies with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.

  15. Polar bear maternity denning in the Beaufort Sea

    Science.gov (United States)

    Amstrup, Steven C.; Gardner, Craig L.

    1994-01-01

    The distribution of polar bears (Ursus maritimus) is circumpolar in the NOrthern Hemisphere, but known locations of maternal dens are concentrated in relatively few, widely scattered locations. Denning is either uncommon or unknown within gaps. To understand effects of industrial development and propose increases in hunting, the temporal and spatial distribution of denning in the Beaufort Sea must be known. We caputred and radiocollared polar bears between 1981 and 1991 and determined tht denning in the Beaufort Sea region was sufficient to account for the estimated population there. Of 90 dend, 48 were on drifting pack ice, 38 on land, and 4 on land-fast ice. The portions of dens on land was higher (P= 0.029) in later compared with earlier years of the study. Bears denning on pack ice drifting as far as 997 km (x=385km) while in dens. there was no difference in cun production by bears denning on land and pack ice (P =0.66). Mean entry and exit dates were 11 November and 5 April for land dens and 22 November and 26 March for pack-ice dens. Female polar bears captured in the Beaufort Sea appeared to be isolated from those caught eat of Cape Bathurst in Canada. Of 35 polar bears that denned along the mainland coast of Alaska and Canada 80% denned between 137 00'W snf 146 59'W. Bears followed to >1 den did not reuse sites and consecutive dens were 20-1,304 km apart. However radio-collared bears are largely faithful to substrate (pack-ice, land, and land-fast ice) and the general geographic area of previous dens. Bears denning on land may be vunerable to human activities such as hunting and industrial development. However, predictable denning chronology and alck of site fidelity indicate that many potential impacts on denning polar bears could be mitigated.

  16. Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations and influence of inter-hemispheric transport

    Directory of Open Access Journals (Sweden)

    D. Howard

    2017-09-01

    Full Text Available Mercury is a toxic element of serious concern for human and environmental health. Understanding its natural cycling in the environment is an important goal towards assessing its impacts and the effectiveness of mitigation strategies. Due to the unique chemical and physical properties of mercury, the atmosphere is the dominant transport pathway for this heavy metal, with the consequence that regions far removed from sources can be impacted. However, there exists a dearth of long-term monitoring of atmospheric mercury, particularly in the tropics and Southern Hemisphere. This paper presents the first 2 years of gaseous elemental mercury (GEM measurements taken at the Australian Tropical Atmospheric Research Station (ATARS in northern Australia, as part of the Global Mercury Observation System (GMOS. Annual mean GEM concentrations determined at ATARS (0.95 ± 0.12 ng m−3 are consistent with recent observations at other sites in the Southern Hemisphere. Comparison with GEM data from other Australian monitoring sites suggests a concentration gradient that decreases with increasing latitude. Seasonal analysis shows that GEM concentrations at ATARS are significantly lower in the distinct wet monsoon season than in the dry season. This result provides insight into alterations of natural mercury cycling processes as a result of changes in atmospheric humidity, oceanic/terrestrial fetch, and convective mixing, and invites future investigation using wet mercury deposition measurements. Due to its location relative to the atmospheric equator, ATARS intermittently samples air originating from the Northern Hemisphere, allowing an opportunity to gain greater understanding of inter-hemispheric transport of mercury and other atmospheric species. Diurnal cycles of GEM at ATARS show distinct nocturnal depletion events that are attributed to dry deposition under stable boundary layer conditions. These cycles provide strong further evidence supportive of

  17. Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations and influence of inter-hemispheric transport

    Science.gov (United States)

    Howard, Dean; Nelson, Peter F.; Edwards, Grant C.; Morrison, Anthony L.; Fisher, Jenny A.; Ward, Jason; Harnwell, James; van der Schoot, Marcel; Atkinson, Brad; Chambers, Scott D.; Griffiths, Alan D.; Werczynski, Sylvester; Williams, Alastair G.

    2017-09-01

    Mercury is a toxic element of serious concern for human and environmental health. Understanding its natural cycling in the environment is an important goal towards assessing its impacts and the effectiveness of mitigation strategies. Due to the unique chemical and physical properties of mercury, the atmosphere is the dominant transport pathway for this heavy metal, with the consequence that regions far removed from sources can be impacted. However, there exists a dearth of long-term monitoring of atmospheric mercury, particularly in the tropics and Southern Hemisphere. This paper presents the first 2 years of gaseous elemental mercury (GEM) measurements taken at the Australian Tropical Atmospheric Research Station (ATARS) in northern Australia, as part of the Global Mercury Observation System (GMOS). Annual mean GEM concentrations determined at ATARS (0.95 ± 0.12 ng m-3) are consistent with recent observations at other sites in the Southern Hemisphere. Comparison with GEM data from other Australian monitoring sites suggests a concentration gradient that decreases with increasing latitude. Seasonal analysis shows that GEM concentrations at ATARS are significantly lower in the distinct wet monsoon season than in the dry season. This result provides insight into alterations of natural mercury cycling processes as a result of changes in atmospheric humidity, oceanic/terrestrial fetch, and convective mixing, and invites future investigation using wet mercury deposition measurements. Due to its location relative to the atmospheric equator, ATARS intermittently samples air originating from the Northern Hemisphere, allowing an opportunity to gain greater understanding of inter-hemispheric transport of mercury and other atmospheric species. Diurnal cycles of GEM at ATARS show distinct nocturnal depletion events that are attributed to dry deposition under stable boundary layer conditions. These cycles provide strong further evidence supportive of a multi-hop model of GEM

  18. Climate change induced by Southern Hemisphere desertification

    Science.gov (United States)

    Wang, Ye; Yan, Xiaodong

    2017-12-01

    Some 10-20% of global dry-lands are already degraded, and the ongoing desertification threatens the world's poorest populations. Studies on desertification effects are essential for humans to adapt to the environmental challenges posed by desertification. Given the importance of the much larger southern ocean to the global climate and the Southern Hemisphere (SH) climate changes in phase with those in the north, the biogeophysical effects of the SH desertification on climate are assessed using an Earth system model of intermediate complexity, MPM-2. This analysis focuses on differences in climate among the averages of simulations with desert expansion in different latitude bands by year 2000. The localized desertification causes significant global changes in temperature and precipitation as well as surface albedo. On the global scale, cooling dominates the SH desertification effects. However, the biogeophysical effects are most significant in regions with desertification, and the cooling is also prominent in northern mid-latitudes. Desert expansion in 15°-30°S reveals statistically most significant cooling and increased precipitation over the forcing regions during spring. The global and regional scale responses from desertification imply the climate teleconnection and address the importance of the effects from the SH which are contingent on the location of the forcing. Our study indicates that biogeophysical mechanisms of land cover changes in the SH need to be accounted for in the assessment of land management options especially for latitude band over 15°-30°S.

  19. Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere.

    Science.gov (United States)

    Vandergoes, Marcus J; Newnham, Rewi M; Preusser, Frank; Hendy, Chris H; Lowell, Thomas V; Fitzsimons, Sean J; Hogg, Alan G; Kasper, Haino Uwe; Schlüchter, Christian

    2005-07-14

    In agreement with the Milankovitch orbital forcing hypothesis it is often assumed that glacial-interglacial climate transitions occurred synchronously in the Northern and Southern hemispheres of the Earth. It is difficult to test this assumption, because of the paucity of long, continuous climate records from the Southern Hemisphere that have not been dated by tuning them to the presumed Northern Hemisphere signals. Here we present an independently dated terrestrial pollen record from a peat bog on South Island, New Zealand, to investigate global and local factors in Southern Hemisphere climate changes during the last two glacial-interglacial cycles. Our record largely corroborates the Milankovitch model of orbital forcing but also exhibits some differences: in particular, an earlier onset and longer duration of the Last Glacial Maximum. Our results suggest that Southern Hemisphere insolation may have been responsible for these differences in timing. Our findings question the validity of applying orbital tuning to Southern Hemisphere records and suggest an alternative mechanism to the bipolar seesaw for generating interhemispheric asynchrony in climate change.

  20. Dark Polar Dunes

    Science.gov (United States)

    2005-01-01

    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  1. Interhemispheric asynchrony of the sleep EEG in northern fur seals.

    Science.gov (United States)

    Mukhametov, L M; Lyamin, O I; Polyakova, I G

    1985-08-15

    In northern fur seals the two brain hemispheres can generate the EEG slow waves during sleep not only simultaneously, as in all the terrestrial mammals investigated, but also independently as in dolphins.

  2. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  3. A comparison of Polar Mesosphere Summer Echo observations from locations in the Arctic and Antarctica

    Science.gov (United States)

    Latteck, Ralph; Sato, Kaoru; Nishimura, Koji; Renkwitz, Toralf

    2017-04-01

    Polar Mesosphere Summer Echoes (PMSE) are observed with 50-MHz VHF radars at various locations in the Northern Hemisphere for more than 20 years. Continuous and homogeneous observations of PMSE have been done on the North-Norwegian island Andøya (69.3°N, 16.0°E) from 1999 until 2009 using the ALWIN radar and since 2011 using the Middle Atmosphere Alomar Radar System (MAARSY) at the same location. In 2011 the PANSY radar - a Mesosphere-Stratosphere-Troposphere/Incoherent Scattering (MST/IS) radar - was installed at Syowa Station, Antartica (69.0°S, 39.4°E) and continues observation of PMSE were started in the austral summer period 2013/2014. Since both MAARSY and PANSY are high-power-large aperture radars mesospheric echoes are observed almost continuously during the summer seasons in the Northern and Southern Hemisphere now. We present a first comparison of PMSE observations obtained at both radar sites during a period of 6 boreal summers (Andøya, NH) and 3 austral summers (Syowa, SH) and discuss similarities and differences of seasonal and diurnal variations of PMSE occurrence frequencies and echo intensity.

  4. On the causes of mid-Pliocene warmth and polar amplification

    Science.gov (United States)

    Lunt, Daniel J.; Haywood, Alan M.; Schmidt, Gavin A.; Salzmann, Ulrich; Valdes, Paul J.; Dowsett, Harry J.; Loptson, Claire A.

    2012-01-01

    The mid-Pliocene (~ 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to ~ 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes.

  5. A 20-day period standing oscillation in the northern winter stratosphere

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2013-04-01

    Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

  6. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate.

    Science.gov (United States)

    Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo

    2018-01-26

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  7. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate

    Science.gov (United States)

    Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo

    2018-01-01

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  8. A Comparison of Southern Hemisphere Cyclone Track Climatology and Interannual Variability in Coarse-Gridded Reanalysis Datasets

    OpenAIRE

    Eichler, Timothy Paul; Gottschalck, Jon

    2013-01-01

    Southern Hemisphere (SH) extratropical cyclones have received less study than their Northern Hemisphere (NH) counterparts. Generating SH cyclone tracks from global reanalysis datasets is problematic due to data reliability, especially prior to 1979. It is therefore prudent to compare the climatology and variability of SH cyclone tracks from different reanalysis datasets. We generate cyclone track frequency and intensity climatologies from three reanalysis datasets: The National Center for Env...

  9. Beroe gracilis (Ctenophora) from the Humboldt Current System: first occurrence of this species in the southern hemisphere.

    Science.gov (United States)

    Oliveira, Otto M P; Feliú, Guillermo; Palma, Sergio

    2014-07-04

    Beroe gracilis Künne, 1939 is a small neritic ctenophore, previously recorded only from cold waters of the northern hemisphere. The present study provides the first record of the species in the southern hemisphere, found in the surface layer of the Humboldt Current System off the central Chilean coast (32°-36.5° S). A complete description of this material is provided.

  10. Hemispheric asymmetries: The comparative view

    Directory of Open Access Journals (Sweden)

    Sebastian eOcklenburg

    2012-01-01

    Full Text Available Hemispheric asymmetries play an important role in almost all cognitive functions. For more than a century, they were considered to be uniquely human but now an increasing number of findings in all vertebrate classes make it likely that we inherited our asymmetries from common ancestors. Thus, studying animal models could provide unique insights into the mechanisms of lateralization. We outline three such avenues of research by providing an overview of experiments on left-right differences in the connectivity of sensory systems, the embryonic determinants of brain asymmetries, and the genetics of lateralization. All these lines of studies could provide a wealth of insights into our own asymmetries that should and will be exploited by future analyses.

  11. Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts

    Science.gov (United States)

    McGee, David; Moreno-Chamarro, Eduardo; Green, Brian; Marshall, John; Galbraith, Eric; Bradtmiller, Louisa

    2018-01-01

    The atmospheric Hadley cells, which meet at the Intertropical Convergence Zone (ITCZ), play critical roles in transporting heat, driving ocean circulation and supplying precipitation to the most heavily populated regions of the globe. Paleo-reconstructions can provide concrete evidence of how these major features of the atmospheric circulation can change in response to climate perturbations. While most such reconstructions have focused on ITCZ-related rainfall, here we show that trade wind proxies can document dynamical aspects of meridional ITCZ shifts. Theoretical expectations based on angular momentum constraints and results from freshwater hosing simulations with two different climate models predict that ITCZ shifts due to anomalous cooling of one hemisphere would be accompanied by a strengthening of the Hadley cell and trade winds in the colder hemisphere, with an opposite response in the warmer hemisphere. This expectation of hemispherically asymmetric trade wind changes is confirmed by proxy data of coastal upwelling and windblown dust from the Atlantic basin during Heinrich stadials, showing trade wind strengthening in the Northern Hemisphere and weakening in the Southern Hemisphere subtropics in concert with southward ITCZ shifts. Data from other basins show broadly similar patterns, though improved constraints on past trade wind changes are needed outside the Atlantic Basin. The asymmetric trade wind changes identified here suggest that ITCZ shifts are also marked by intensification of the ocean's wind-driven subtropical cells in the cooler hemisphere and a weakening in the warmer hemisphere, which induces cross-equatorial oceanic heat transport into the colder hemisphere. This response would be expected to prevent extreme meridional ITCZ shifts in response to asymmetric heating or cooling. Understanding trade wind changes and their coupling to cross-equatorial ocean cells is key to better constraining ITCZ shifts and ocean and atmosphere dynamical

  12. Seasonal variations in Titan’s stratosphere observed with Cassini/CIRS during northern spring

    Science.gov (United States)

    Vinatier, Sandrine; Bézard, Bruno; Teanby, Nicholas; Lebonnois, Sébastien; Achterberg, Richard; Gorius, Nicolas; Flasar, F. Michael; CIRS Team

    2017-10-01

    Since 2004, Cassini performed 127 close Titan flybys, observing its atmosphere with instruments including the Cassini Composite InfraRed Spectrometer (CIRS). We know from CIRS observations that the global dynamics drastically changed after the northern spring equinox that occurred in August 2009 ([1], [2], [3], [4]). The pole-to-pole middle atmosphere dynamics (above 100 km) experienced a global reversal in less than 2 years after the equinox [4], while the northern hemisphere was entering spring. This new pattern, with downwelling at the south pole, resulted in an enrichment of almost all molecules inside the southern polar vortex since 2011. According to General Circulation Model calculations, this single circulation cell pattern should remain until 2025.We will present an analysis of CIRS limb observations up to 2017, during the entire northern spring. We show that many species (C2H2, HCN, HC3N, C6H6, C4H2, CH3CCH, C2H4) experienced their highest enrichments near the south pole near 500 km in March 2015, with abundances similar to in situ results from INMS at 1000 km [5], suggesting that the air inside the confined polar vortex (observed at latitudes higher than 80°S) was very efficiently transported downward from very high altitudes. In September 2015, an extension of the polar vortex towards lower latitudes (~65°S) was observed, while the molecular abundances decreased by a factor of 10 at 500 km. In the same region, unexpectedly cold stratospheric temperatures were observed below 300 km from May 2013 to the end of 2015. Simultaneously, after the disruption of the north polar vortex after the equinox, the enriched air that was previously confined at very high latitude gradually expended towards mid latitudes at altitudes higher than 300 km. At the beginning of 2016, a zone depleted in molecular gas and aerosol is observed in the entire northern hemisphere between 400 and 500 km, suggesting some complex unknown dynamical effect.References:[1] Teanby, N. et al

  13. Southern Hemisphere Upper Thermospheric Wind Climatology

    Science.gov (United States)

    Dhadly, M. S.; Emmert, J. T.; Drob, D. P.

    2017-12-01

    This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.

  14. Hemispheric Division of Labour in Reading

    Science.gov (United States)

    Shillcock, Richard C.; McDonald, Scott A.

    2005-01-01

    We argue that the reading of words and text is fundamentally conditioned by the splitting of the fovea and the hemispheric division of the brain, and, furthermore, that the equitable division of labour between the hemispheres is a characteristic of normal visual word recognition. We report analyses of a representative corpus of the eye fixations…

  15. Polar Geophysics Products Derived from AVHRR: The "AVHRR Polar Pathfinder

    Science.gov (United States)

    Maslanik, James; Fowler, Charles; Scambos, Theodore

    1999-01-01

    This NOAA/NASA Pathfinder effort was established to locate, acquire, and process Advanced Very High Resolution Radiometer (AVHRR) imagery into geo-located and calibrated radiances, cloud masks, surface clear-sky broadband albedo, clear-sky skin temperatures, satellite viewing times, and viewing and solar geometry for the, high-latitude portions of the northern and southern hemispheres (all area north of 48N and south of 53S). AVHRR GAC data for August 1981 - July 1998 were acquired, with some gaps remaining, and processed into twice-daily 5-km grids, with some products also provided at 25-km resolution. AVHRR LAC data for 3.5 years of coverage in the northern hemisphere and 2.75 years of coverage in the southern hemisphere were processed into 1.25-km grids for the same suite of products. The resulting data sets are presently being transferred to the National Snow and Ice Data Center (NSIDC) for archiving and distribution. Using these data, researchers now have at their disposal an extensive AVHRR data set for investigations of high-latitude processes. In addition, the data lend themselves to development and testing of algorithms. The products are particularly relevant for climate research and algorithm development as applied to relatively long time periods and large areas.

  16. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    Energy Technology Data Exchange (ETDEWEB)

    Ocker, Stella Koch [Department of Physics, Oberlin College, Oberlin, OH 44074 (United States); Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu [National Solar Observatory, Boulder, CO 80303 (United States)

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  17. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  18. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  19. Fluctuations of Induced Charge in Hemispherical Detectors

    Science.gov (United States)

    Samedov, V. V.

    2017-12-01

    Detectors with hemispherical geometry are used to eliminate the contribution from the hole component to the signal of a detector based on a compound semiconductor operating at room temperature. In this work, the random process of charge induction on electrodes of a detector with hemispherical geometry is theoretically considered with allowance for capture of electrons by traps. Formulas are obtained for the first two moments of the distribution function for the induced charge on the detector electrodes. These formulas help analyze the contribution of the electron transport in detectors with hemispherical geometry.

  20. Second harmonic generation from hemicyanine self-assembled monolayer on near-hemispherical gold nanoparticles

    Science.gov (United States)

    Tanaka, Daisuke; Yamaguchi, Tatsuya; Gupta, Gaurav; Okawa, Haruki; Hashimoto, Kazuhiko; Kajikawa, Kotaro

    2011-10-01

    Second-harmonic generation (SHG) was observed from hemicyanine-terminated alkanethiolate self-assembled monolayers (SAMs) formed on near-hemispherical gold nanoparticles (GNPs) prepared by annealing a vacuum-evaporated thin gold film deposited on a quartz glass substrate. The hemicyanine SAMs were formed on the near-hemispherical GNP by immersion of the substrate in an ethanol solution of hemicyanine-terminated alkanedisulfide. Polarized SHG measurements with the support of theoretical calculations revealed that the near-hemispherical GNP surfaces are fully covered with the hemicyanine SAMs. This result is in contrast to our previous study that showed that the hemicyanine SAM does not form fully over the spherical GNPs immobilized on a quartz glass substrate.

  1. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  2. Dyslexia Treated by Hemisphere Stimulation Technic

    OpenAIRE

    J Gordon Millichap

    1997-01-01

    Results of treatment of severe dyslexia in 80 children, ages 6 to 15 years, using hemisphere stimulation technics, are reported from the outpatient Department for Dyslexia, Child Psychiatric Center, Paedological Institute, Amsterdam, The Netherlands.

  3. Phylogeography of Burkholderia pseudomallei Isolates, Western Hemisphere.

    Science.gov (United States)

    Gee, Jay E; Gulvik, Christopher A; Elrod, Mindy G; Batra, Dhwani; Rowe, Lori A; Sheth, Mili; Hoffmaster, Alex R

    2017-07-01

    The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America.

  4. Evolution of microwave limb sounder ozone and the polar vortex during winter

    Science.gov (United States)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1995-01-01

    The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.

  5. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  6. Imaging of fast moving electron-density structures in the polar cap

    Directory of Open Access Journals (Sweden)

    C. N. Mitchell

    2007-06-01

    Full Text Available The imaging of fast-moving electron-density structures in the polar cap presents a unique set of challenges that are not encountered in other ionospheric imaging problems. GPS observations of total electron content in the polar cap are sparse compared to other regions in the Northern Hemisphere. Furthermore, the slow relative motion of the satellites across the sky complicates the problem since the velocity of the plasma can be large in comparison and traditional approaches could result in image blurring. This paper presents a Kalman-filter based method that incorporates a forward projection of the solution based on a model plasma drift velocity field. This is the first time that the plasma motion, rather than just integrations of electron density, has been used in an ionospheric imaging algorithm. The motion is derived from the Weimer model of the electric field. It is shown that this novel approach to the implementation of a Kalman filter provides a detailed view of the polar cap ionosphere under severe storm conditions. A case study is given for the October 2003 Halloween storm where verification is provided by incoherent scatter radars.

  7. Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data

    Directory of Open Access Journals (Sweden)

    N. A. Tsyganenko

    2009-04-01

    Full Text Available A detailed statistical study of the magnetic structure of the dayside polar cusps is presented, based on multi-year sets of magnetometer data of Polar and Cluster spacecraft, taken in 1996–2006 and 2001–2007, respectively. Thanks to the dense data coverage in both Northern and Southern Hemispheres, the analysis spanned nearly the entire length of the cusps, from low altitudes to the cusp "throat" and the magnetosheath. Subsets of data falling inside the polar cusp "funnels" were selected with the help of TS05 and IGRF magnetic field models, taking into account the dipole tilt and the solar wind/IMF conditions. The selection funnels were shifted within ±10° of SM latitude around the model cusp location, and linear regression parameters were calculated for each sliding subset, further divided into 10 bins of distance in the range 2≤R≤12 RE, with the following results. (1 Diamagnetic depression, caused by the penetrated magnetosheath plasma, becomes first visible at R~4–5 RE, rapidly deepens with growing R, peaks at R~6–9 RE, and then partially subsides and widens in latitude at the cusp's outer end. (2 The depression peak is systematically shifted poleward (by ~2° of the footpoint latitude with respect to the model cusp field line, passing through the min{|B|} point at the magnetopause. (3 At all radial distances, clear and distinct peaks of the correlation between the local By and By(IMF and of the corresponding proportionality coefficient are observed. A remarkably regular variation of that coefficient with R quantitatively confirms the field-aligned geometry of the cusp currents associated with the IMF By, found in earlier observations.

  8. Low latitude southern hemisphere mesospheric dynamics from meteor radars measurements

    Science.gov (United States)

    Batista, Paulo; Schuch, Nelson Jorge; Clemesha, Barclay; Buriti, Ricardo; Paulino, Ana Roberta; Guharay, Amitava; Andrioli, Vania Fatima

    Three meteor radars of the SkiYmet type have been installed in Brazil covering low, tropical and sub-tropical latitudes. The first at Cachoeira Paulista(22.7° S, 45.0° W) started in march 1999, the second at Cariri(7.4° S, 36.5° W) in May, 2005, and the last one at Santa Maria( 29.7° S, 53.8° W) in December, 2005. Data obtained in coincident periods of measurements permitted the determination of the Mean Winds, Planetary Waves, Tides and Gravity Wave Variances for these different latitudes and the comparison of them. Amplitude and phase structures are similar for Cachoeira Paulista and Santa Maria, but differ from the near-equatorial site Cariri. Also the Lunar Semidiurnal Tides have been studied at the three sites for the period January 2005 to December 2008. Amplitudes between 1 and 8 m/s were determined with the meridional winds being larger than the zonal in the three sites. It is found that northern hemisphere SSW’s affect the QTDW , and the Solar and Lunar tides at southern low latitudes but the 2002 southern hemisphere major SSW had a small effect in tropical MLT. Wind measurements have also been used to study Kelvin waves, terdiurnal Tide and QTDW variability. In this presentation we summarize the main results obtained.

  9. The USNO-UKIRT K-band Hemisphere Survey

    Science.gov (United States)

    Dahm, Scott; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Fred J.; Dorland, Bryan; Dye, Simon; Kerr, Tom; Varricatt, Watson; Irwin, Mike; Lawrence, Andy; McLaren, Robert; Hodapp, Klaus; Hasinger, Guenther

    2018-01-01

    We present initial results from the United States Naval Observatory (USNO) and UKIRT K-band Hemisphere Survey (U2HS), currently underway using the Wide Field Camera (WFCAM) installed on UKIRT on Maunakea. U2HS is a collaborative effort undertaken by USNO, the Institute for Astronomy, University of Hawaii, the Cambridge Astronomy Survey Unit (CASU) and the Wide Field Astronomy Unit (WFAU) in Edinburgh. The principal objective of the U2HS is to provide continuous northern hemisphere K-band coverage over a declination range of δ=0o – +60o by combining over 12,700 deg2 of new imaging with the existing UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Galactic Plane Survey (GPS) and Galactic Cluster Survey (GCS). U2HS will achieve a 5-σ point source sensitivity of K~18.4 mag (Vega), over three magnitudes deeper than the Two Micron All Sky Survey (2MASS). In this contribution we discuss survey design, execution, data acquisition and processing, photometric calibration and quality control. The data obtained by the U2HS will be made publicly available through the Wide Field Science Archive (WSA) maintained by the WFAU.

  10. Hemispheric transport and influence of meteorology on global aerosol climatology

    Directory of Open Access Journals (Sweden)

    T. L. Zhao

    2012-08-01

    Full Text Available Based on a 10-yr simulation with the global air quality modeling system GEM-AQ/EC, the northern hemispheric aerosol transport with the inter-annual and seasonal variability as well as the mean climate was investigated. The intercontinental aerosol transport is predominant in the zonal direction from west to east with the ranges of inter-annual variability between 14% and 63%, and is 0.5–2 orders of magnitude weaker in the meridional direction but with larger inter-annual variability. The aerosol transport is found to fluctuate seasonally with a factor of 5–8 between the maximum in late winter and spring and the minimum in late summer and fall. Three meteorological factors controlling the intercontinental aerosol transport and its inter-annual variations are identified from the modeling results: (1 Anomalies in the mid-latitude westerlies in the troposphere. (2 Variations of precipitation over the intercontinental transport pathways and (3 Changes of meteorological conditions within the boundary layer. Changed only by the meteorology, the aerosol column loadings in the free troposphere over the source regions of Europe, North America, South and East Asia vary inter-annually with the highest magnitudes of 30–37% in January and December and the lowest magnitudes of 16–20% in August and September, and the inter-annual aerosol variability within the boundary layer influencing the surface concentrations with the magnitudes from 6% to 20% is more region-dependent. As the strongest climatic signal, the El Niño-Southern Oscillation (ENSO can lead the anomalies in the intercontinental aerosols in El Niño- and La Niña-years respectively with the strong and weak transport of the mid-latitude westerlies and the low latitude easterlies in the Northern Hemisphere (NH.

  11. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a near-real-time (NRT) map of sea ice concentrations for both the Northern and Southern Hemispheres. The near-real-time passive microwave...

  12. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  13. Dependence of thermospheric zonal winds on solar flux, geomagnetic activity, and hemisphere as measured by CHAMP

    Science.gov (United States)

    Zhang, Xiaofang; Liu, Libo; Liu, Songtao

    2017-08-01

    The thermospheric zonal winds measured by the CHAllenging Minisatellite Payload (CHAMP) satellite are used to statistically determine the climatology under quiet and active geomagnetic conditions. By collectively analyzing the bin-averaged wind trend with F10.7 and the solar-induced difference in wind structures, the solar flux dependence of global thermosphere zonal wind is determined. The increase of solar flux enhances the eastward winds at low latitudes from dusk to midnight. The increased ion drag reduces the nighttime eastward wind in the subauroral latitudes, and the daytime westward winds from 06 to 08 MLT at all latitudes decrease with increasing solar flux. Zonal winds show coupled seasonal/extreme ultraviolet (EUV) dependency. The equatorial zonal winds from 18 to 04 magnetic local time (MLT) indicate weaker eastward winds during the June solstice at high solar flux levels. Quiet time eastward winds at subauroral latitudes from 16 to 20 MLT are further decreased in the winter hemisphere. Influenced by asymmetries in solar illumination and the magnetic field, zonal winds show hemispheric asymmetries. Quiet daytime winds are additionally influenced by solar illumination effects, and the westward winds at the middle and subauroral latitudes are always stronger in the summer. The nighttime eastward winds are higher in the winter hemisphere during the solstices, as in the Southern Hemisphere during equinoxes, with the winter-summer asymmetry lessened or receding at the solar maxima. Storm-induced subauroral westward disturbance winds are higher in the summer hemisphere and in the Northern Hemisphere during equinoxes. At a high level of solar flux, the westward disturbance winds are comparable in the two hemispheres during December solstice. Geomagnetic disturbance wind observations from CHAMP agree well with the empirical geomagnetic disturbance wind model, except for stronger subauroral westward jets. Westward winds during the afternoon may be enhanced in

  14. Molecular evidence for long distance dispersal across the Southern Hemisphere in the Ganoderma applanatum-australe species complex (Basidiomycota).

    Science.gov (United States)

    Moncalvo, Jean-Marc; Buchanan, Peter K

    2008-04-01

    We examined phylogeographic relationships in the cosmopolitan polypore fungus Ganoderma applanatum and allies, and conservatively infer a possible age of origin for these fungi. Results indicate that it is very unlikely that members of this species complex diversified before the break-up of Gondwana from Laurasia ca 120M years ago, and also before the final separation of the Gondwanan landmasses from each other that was achieved about 66M years ago. An earliest possible age of origin of 30M years was estimated from nucleotide substitution rates in the 18S rDNA gene. Phylogenetic reconstruction of a worldwide sampling of ITS rDNA sequences reveals at least eight distinct clades that are strongly correlated with the geographic origin of the strains, and also correspond to mating groups. These include one Southern Hemisphere clade, one Southern Hemisphere-Eastern Asia clade, two temperate Northern Hemisphere clades, three Asian clades, and one neotropical clade. Geographically distant collections from the Southern Hemisphere shared identical ITS haplotypes, and an ITS recombinant was noted. Nested clade analysis of a parsimony network among isolates of the Southern Hemisphere clade indicated restricted gene flow with isolation-by-distance among the New Zealand, Australia-Tasmania, Chile-Argentine, and South Africa populations, suggesting episodic events of long-distance dispersal within the Southern Hemisphere. This study indicates that dispersal bias plays a more important role than generally admitted to explain the Southern Hemisphere distribution of many taxa, at least for saprobic fungi.

  15. TEST OF THE HEMISPHERIC RULE OF MAGNETIC HELICITY IN THE SUN USING THE HELIOSEISMIC AND MAGNETIC IMAGER (HMI) DATA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Hoeksema, J. T.; Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2014-03-01

    Magnetic twist in solar active regions (ARs) has been found to have a hemispheric preference in sign (hemisphere rule): negative in the northern hemisphere and positive in the southern. The preference reported in previous studies ranges greatly, from ∼ 58% to 82%. In this study, we examine this hemispheric preference using vector magnetic field data taken by Helioseismic and Magnetic Imager and find that 75% ± 7% of 151 ARs studied obey the hemisphere rule, well within the preference range in previous studies. If the sample is divided into two groups—ARs having magnetic twist and writhe of the same sign and having opposite signs—the strength of the hemispheric preference differs substantially: 64% ± 11% for the former group and 87% ± 8% for the latter. This difference becomes even more significant in a sub-sample of 82 ARs having a simple bipole magnetic configuration: 56% ± 16% for the ARs having the same signs of twist and writhe, and 93% with lower and upper confidence bounds of 80% and 98% for the ARs having the opposite signs. The error reported here is a 95% confidence interval. This may suggest that, prior to emergence of magnetic tubes, either the sign of twist does not have a hemispheric preference or the twist is relatively weak.

  16. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    OpenAIRE

    Boran LI; Guangcheng MA; Changhong WANG

    2014-01-01

    Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gy...

  17. Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

    Science.gov (United States)

    Rajesh, R.; Tiwari, R. K.

    2018-02-01

    Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean-atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for 15-23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of 9-11 and 21-22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic

  18. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-02-01

    Full Text Available Double-layer structures in polar mesospheric clouds (PMCs are observed by using Solar Occultation for Ice Experiment (SOFIE data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH and Southern Hemisphere (SH respectively. Double-layer PMCs almost always have less mean ice water content (IWC than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs' potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.

  19. Polar Vortex Conditions during the 1995-96 Artic Winter: Meteorology and MLS Ozone

    Science.gov (United States)

    Manney, G. L.; Santee, M. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1996-01-01

    The 1995-96 northern hemisphere (NH) 205 winter stratosphere was colder than in any of the previous 17 winters, with lower stratospheric temperatures continuously below the type 1 (primarily HN03) polar stratospheric cloud (PSC) threshold for over 2 1/2 months. Upper tropospheric ridges in late Feb and early Mar 1996 led to the lowest observed NH lower stratospheric temperatures, and the latest observed NH temperatures below the type 2 (water ice) PSC threshold. Consistent with the unusual cold and chemical processing on PSCS, Upper Atmosphere Research Satellite (UARS) MLS observed a greater decrease in lower stratospheric ozone (03) in 1995-96 than in any of the previous 4 NH winters. 03 decreased throughout the vortex over an altitude range nearly as large as that typical of the southern hemisphere (SH). The decrease between late Dec 1995 and early Mar 1996 was about 2/3 of that over the equivalent SH period. As in other NH winters, temperatures in 1996 rose above the PSC threshold before the spring equinox, ending chemical processing in the NH vortex much earlier than is usual in the SH. A downward trend in column 03 above 100 hPa during Jan and Feb 1996 appears to be related to the lower stratospheric 03 depletion.

  20. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    Science.gov (United States)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  1. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  2. Statistical Patterns of Ionospheric Convection Derived From Mid-Latitude, High-Latitude, and Polar SuperDARN HF Radar Observations

    Science.gov (United States)

    Thomas, E. G.; Shepherd, S. G.

    2017-12-01

    Global patterns of ionospheric convection have been widely studied in terms of the interplanetary magnetic field (IMF) magnitude and orientation in both the Northern and Southern Hemispheres using observations from the Super Dual Auroral Radar Network (SuperDARN). The dynamic range of driving conditions under which existing SuperDARN statistical models are valid is currently limited to periods when the high-latitude convection pattern remains above about 60° geomagnetic latitude. Cousins and Shepherd [2010] found this to correspond to intervals when the solar wind electric field Esw 0) the high-latitude radars often experience difficulties in measuring convection above about 85° geomagnetic latitude. In this presentation, we introduce a new statistical model of ionospheric convection which is valid for much more dominant IMF Bz conditions than was previously possible by including velocity measurements from the newly constructed tiers of radars in the Northern Hemisphere at midlatitudes and in the polar cap. This new model (TS17) is compared to previous statistical models derived from high-latitude SuperDARN observations (RG96, PSR10, CS10) and its impact on instantaneous Map Potential solutions is examined.

  3. Practice makes two hemispheres almost perfect.

    Science.gov (United States)

    Cherbuin, Nicolas; Brinkman, Cobie

    2005-08-01

    Some tasks produce a performance advantage for conditions that require the processing of stimuli in two visual fields compared to conditions where single hemifield processing is sufficient. This advantage, however, disappears with practice. Although no definitive evidence yet exists, there are several possible mechanisms that might lead to improved performance of within- compared to across-hemisphere processing with practice. These include a shift from a more demanding, algorithmic strategy to a less demanding memory-retrieval strategy (e.g., [G. Logan, Toward an instance theory of automatisation. Psych. Rev. 95 (1988) 492-527]), as discussed by Weissman and Compton [D.H. Weissman, R.J. Compton, Practice makes a hemisphere perfect: the advantage of interhemispheric recruitment is eliminated with practice. Laterality, 8 (4) (2003) 361-375], and/or a more generalised practice effect [K. Kirsner, C. Speelman, Skill acquisition and repetition priming: one principle, many processes? J. Exp. Psychol., Learn. Mem. Cogn., 22 (1996) 563-575]. Contrary to Weissman and Compton findings, our results suggest that although single-hemisphere performance improves with practice, bi-hemispheric performance also improves substantially. Furthermore, these effects do not appear to be due to a shift in strategy but rather due to a general practice effect.

  4. An Evaluative Review of Hemispheric Learning Potential

    Science.gov (United States)

    1985-10-01

    function in the cerebral cortex first assumed importance in the work of the phrenologist Franz Joseph Gall. The early 19th-century neu- rologists...Einstein, Picasso, Kafka , and Eileen Garrett. Cortes and Montezuma are also opposed as the contrast of two hemisphere styles. Moore (1984) integrated

  5. Pharyngeal Swallowing Mechanics Secondary to Hemispheric Stroke.

    Science.gov (United States)

    May, Nelson H; Pisegna, Jessica M; Marchina, Sarah; Langmore, Susan E; Kumar, Sandeep; Pearson, William G

    2017-05-01

    Computational analysis of swallowing mechanics (CASM) is a method that utilizes multivariate shape change analysis to uncover covariant elements of pharyngeal swallowing mechanics associated with impairment using videofluoroscopic swallowing studies. The goals of this preliminary study were to (1) characterize swallowing mechanics underlying stroke-related dysphagia, (2) decipher the impact of left and right hemispheric strokes on pharyngeal swallowing mechanics, and (3) determine pharyngeal swallowing mechanics associated with penetration-aspiration status. Videofluoroscopic swallowing studies of 18 dysphagic patients with hemispheric infarcts and age- and gender-matched controls were selected from well-controlled data sets. Patient data including laterality and penetration-aspiration status were collected. Coordinates mapping muscle group action during swallowing were collected from videos. Multivariate morphometric analyses of coordinates associated with stroke, affected hemisphere, and penetration-aspiration status were performed. Pharyngeal swallowing mechanics differed significantly in the following comparisons: stroke versus controls (D = 2.19, P mechanics associated with each comparison were visualized using eigenvectors. Whereas current literature focuses on timing changes in stroke-related dysphagia, these data suggest that mechanical changes are also functionally important. Pharyngeal swallowing mechanics differed by the affected hemisphere and the penetration-aspiration status. CASM can be used to identify patient-specific swallowing impairment associated with stroke injury that could help guide rehabilitation strategies to improve swallowing outcomes. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Significance of Hemispheric Security for Mexico

    Science.gov (United States)

    2003-04-07

    WORD COUNT = 7,976 20 21 ENDNOTES 1 Eugenio Anguiano, “ America Latina , en marcha hacia una nueva crisis,” El Universal, 20 Noviembre 2002 [newspaper...language=printer; Internet ; accessed 12 Sep 2002. 46 Joseph R. Nuñez, A 21st Century Security Architecture for the Americas : Multilateral...1 LATIN AMERICA AND GLOBAL CHALLENGES........................................................... 1 HEMISPHERIC COOPERATIVE

  7. A vision of graded hemispheric specialization.

    Science.gov (United States)

    Behrmann, Marlene; Plaut, David C

    2015-11-01

    Understanding the process by which the cerebral hemispheres reach their mature functional organization remains challenging. We propose a theoretical account in which, in the domain of vision, faces and words come to be represented adjacent to retinotopic cortex by virtue of the need to discriminate among homogeneous exemplars. Orthographic representations are further constrained to be proximal to typically left-lateralized language-related information to minimize connectivity length between visual and language areas. As reading is acquired, orthography comes to rely more heavily (albeit not exclusively) on the left fusiform region to bridge vision and language. Consequently, due to competition from emerging word representations, face representations that were initially bilateral become lateralized to the right fusiform region (albeit, again, not exclusively). We review recent research that describes constraints that give rise to this graded hemispheric arrangement. We then summarize empirical evidence from a variety of studies (behavioral, evoked response potential, functional imaging) across different populations (children, adolescents, and adults; left handers and individuals with developmental dyslexia) that supports the claims that hemispheric lateralization is graded rather than binary and that this graded organization emerges dynamically over the course of development. Perturbations of this system either during development or in adulthood provide further insights into the principles governing hemispheric organization. © 2015 New York Academy of Sciences.

  8. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  9. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  10. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records

    Directory of Open Access Journals (Sweden)

    Z. T. Guo

    2009-02-01

    Full Text Available We correlate the China loess and Antarctica ice records to address the inter-hemispheric climate link over the past 800 ka. The results show a broad coupling between Asian and Antarctic climates at the glacial-interglacial scale. However, a number of decoupled aspects are revealed, among which marine isotope stage (MIS 13 exhibits a strong anomaly compared with the other interglacials. It is characterized by unusually positive benthic oxygen (δ18O and carbon isotope (δ13C values in the world oceans, cooler Antarctic temperature, lower summer sea surface temperature in the South Atlantic, lower CO2 and CH4 concentrations, but by extremely strong Asian, Indian and African summer monsoons, weakest Asian winter monsoon, and lowest Asian dust and iron fluxes. Pervasive warm conditions were also evidenced by the records from northern high-latitude regions. These consistently indicate a warmer Northern Hemisphere and a cooler Southern Hemisphere, and hence a strong asymmetry of hemispheric climates during MIS-13. Similar anomalies of lesser extents also occurred during MIS-11 and MIS-5e. Thus, MIS-13 provides a case that the Northern Hemisphere experienced a substantial warming under relatively low concentrations of greenhouse gases. It suggests that the global climate system possesses a natural variability that is not predictable from the simple response of northern summer insolation and atmospheric CO2 changes. During MIS-13, both hemispheres responded in different ways leading to anomalous continental, marine and atmospheric conditions at the global scale. The correlations also suggest that the marine δ18O record is not always a reliable indicator of the northern ice-volume changes, and that the asymmetry of hemispheric climates is one of the prominent factors controlling the strength of Asian, Indian and African monsoon circulations, most likely through modulating the position of

  11. Resting state EEG power, intra-hemisphere and inter-hemisphere coherence in bipolar disorder

    Science.gov (United States)

    Handayani, Nita; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, Warsito P.

    2017-02-01

    This paper examines the differences of EEG power and coherence between bipolar disorder patients and healthy subjects in the resting state. Observations are focused on the prefrontal cortex area by calculating intra-hemisphere and inter-hemisphere coherence. EEG data acquisition are conducted by using wireless Emotiv Epoc on AF3, AF4, FC5, FC6, F7 and F8 channels. The power spectral analysis shows that in bipolar disoder there is an increase of power in the delta, theta and beta frequencies, and power decrease in the alpha frequency. The coherence test results show that both intra-hemisphere and inter-hemisphere coherence in bipolar disorder patients are lower than healthy subjects. This shows the lack of brain synchronization in bipolar disorder patients.

  12. Global observations of electromagnetic and particle energy flux for an event during northern winter with southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    H. Korth

    2008-06-01

    Full Text Available The response of the polar ionosphere–thermosphere (I-T system to electromagnetic (EM energy input is fundamentally different to that from particle precipitation. To understand the I-T response to polar energy input one must know the intensities and spatial distributions of both EM and precipitation energy deposition. Moreover, since individual events typically display behavior different from statistical models, it is important to observe the global system state for specific events. We present an analysis of an event in Northern Hemisphere winter for sustained southward interplanetary magnetic field (IMF, 10 January 2002, 10:00–12:00 UT, for which excellent observations are available from the constellation of Iridium satellites, the SuperDARN radar network, and the Far-Ultraviolet (FUV instrument on the IMAGE satellite. Using data from these assets we determine the EM and particle precipitation energy fluxes to the Northern Hemisphere poleward of 60° MLAT and examine their spatial distributions and intensities. The accuracy of the global estimates are assessed quantitatively using comparisons with in-situ observations by DMSP along two orbit planes. While the location of EM power input evaluated from Iridium and SuperDARN data is in good agreement with DMSP, the magnitude estimated from DMSP observations is approximately four times larger. Corrected for this underestimate, the total EM power input to the Northern Hemisphere is 188 GW. Comparison of IMAGE FUV-derived distributions of the particle energy flux with DMSP plasma data indicates that the IMAGE FUV results similarly locate the precipitation accurately while underestimating the precipitation input somewhat. The total particle input is estimated to be 20 GW, nearly a factor of ten lower than the EM input. We therefore expect the thermosphere response to be determined primarily by the EM input even under winter conditions, and accurate assessment of the EM energy input is therefore key

  13. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    Science.gov (United States)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  14. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  15. The "Polar Light Sign" is a useful tool to detect discrete membranous supravalvular mitral stenosis.

    Science.gov (United States)

    Hertwig, Christine; Haas, Nikolaus A; Habash, Sheeraz; Hanslik, Andreas; Kececioglu, Deniz; Sandica, Eugen; Laser, Kai-Thorsten

    2015-02-01

    Mitral valve stenosis caused by a discrete supravalvular membrane is a rare congenital malformation haemodynamically leading to significant mitral valve stenosis. When the supravalvular mitral stenosis consists of a discrete supravalvular membrane adherent to the mitral valve, it is usually not clearly detectable by routine echocardiography. We report about the typical echocardiographic finding in three young patients with this rare form of a discrete membranous supravalvular stenosis caused by a membrane adherent to the mitral valve. These cases present a typical echocardiographic feature in colour Doppler generated by the pathognomonic supramitral flow acceleration. Whereas typical supravalvular mitral stenosis caused by cor triatriatum or a clearly visible supravalvular ring is easily detectable by echocardiography, a discrete supravalvular membrane adjacent to the mitral valve leaflets resembling valvular mitral stenosis is difficult to differentiate by routine echocardiography. In our opinion, this colour phenomenon does resemble the visual impression of polar lights in the northern hemisphere; owing to its typical appearance, it may therefore be named as "Polar Light Sign". This phenomenon may help to detect this anatomical entity by echocardiography in time and therefore improve the prognosis for repair.

  16. Calibration of fisheye lenses for hemispherical photography

    International Nuclear Information System (INIS)

    Diaci, J.; Kolar, U.

    2000-01-01

    Hemispherical photography represents one of the most appropriate methods of estimating averages of solar radiation over extended periods of time. This method is based upon the use of extremely wide-angle fisheye lenses, which produce large projection distortion. To correctly interpret hemispherical photography we have to know the projection characteristics of the fisheye lens in combination with a camera body. This can be achieved through lens calibration. The first part of the article explains in detail the calibration method for fisheye lenses which are used to assess the solar radiation in forest ecology research. In the second part the results of calibration for fisheye lens Sigma 8 mm, f/4 (MF, N) are presented. The lens was used on a Nikon F50 camera body

  17. Solar performance of hemispherical vault roofs

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Munoz, V.M. [Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico). Centro Interdisciplinario de Ciencias Marinas; Porta-Gandara, M.A. [Centro de Investigaciones Biologicas del Noroeste S.C., Baja California Sur (Mexico); Heard, C. [Instituto Mexinano de Petroleo (Mexico)

    2003-12-01

    In hot climates, the improvement of comfort by passive solar techniques is a very important issue. In many parts of the world such as the Middle East, vault roofs are widely used in construction. The solar and energy performance of a hemispherical vault roof is studied, including the auto-shading instant effect during several days for different latitudes and throughout the year also. The results are compared with the standard horizontal flat roofing used in the typical modern low-cost housing in Mexico. The hemispherical vault receives around 35% less energy than the flat roof between the equinoxes, besides having other advantages such as a greater ceiling height, natural ventilation and illumination possibilities, and structural stability. (author)

  18. Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012

    Directory of Open Access Journals (Sweden)

    B. Vogel

    2016-12-01

    Full Text Available Global simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS using artificial tracers of air mass origin are used to analyze transport mechanisms from the Asian monsoon region into the lower stratosphere. In a case study, the transport of air masses from the Asian monsoon anticyclone originating in India/China by an eastward-migrating anticyclone which broke off from the main anticyclone on 20 September 2012 and filaments separated at the northeastern flank of the anticyclone are analyzed. Enhanced contributions of young air masses (younger than 5 months are found within the separated anticyclone confined at the top by the thermal tropopause. Further, these air masses are confined by the anticyclonic circulation and, on the polar side, by the subtropical jet such that the vertical structure resembles a bubble within the upper troposphere. Subsequently, these air masses are transported eastwards along the subtropical jet and enter the lower stratosphere by quasi-horizontal transport in a region of double tropopauses most likely associated with Rossby wave breaking events. As a result, thin filaments with enhanced signatures of tropospheric trace gases were measured in the lower stratosphere over Europe during the TACTS/ESMVal campaign in September 2012 in very good agreement with CLaMS simulations. Our simulations demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere. Young, moist air masses, in particular at the end of the monsoon season in September/October 2012, flooded the extratropical lower stratosphere in the Northern Hemisphere with contributions of up to  ≈  30 % at 380 K (with the remaining fraction being aged air. In contrast, the contribution of young air masses to the Southern Hemisphere is much lower. At the end of October 2012, approximately 1.5 ppmv H2O is found in the lower

  19. Top-Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels

    Science.gov (United States)

    Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C.

    2018-02-01

    Assessments of carbon monoxide emissions through inverse modeling are dependent on the modeled abundance of the hydroxyl radical (OH) which controls both the primary sink of CO and its photochemical source through hydrocarbon oxidation. However, most chemistry transport models (CTMs) fall short of reproducing constraints on hemispherically averaged OH levels derived from methylchloroform (MCF) observations. Here we construct five different OH fields compatible with MCF-based analyses, and we prescribe those fields in a global CTM to infer CO fluxes based on Infrared Atmospheric Sounding Interferometer (IASI) CO columns. Each OH field leads to a different set of optimized emissions. Comparisons with independent data (surface, ground-based remotely sensed, aircraft) indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (7.8 × 105 molec cm-3, ˜18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation data sets.

  20. Continuous Planetary Polar Observation from Hybrid Pole-Sitters at Venus, Earth, and Mars

    NARCIS (Netherlands)

    Heiligers, M.J.; van den Oever (student TUDelft), Tom; Ceriotti, M.; Mulligan, P.; McInnes, CR

    2017-01-01

    A pole-sitter is a satellite that is stationed along the polar axis of the Earth, or any other planet, to generate a continuous, hemispherical view of the planet’s polar regions. In order to maintain such a vantage point, a low-thrust propulsion system is required to counterbalance the gravitational

  1. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  2. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  3. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  4. Hemispherical Capsule Implosions for Fast Ignition*

    Science.gov (United States)

    Hanson, D. L.; Vesey, R. A.; Sinars, D. B.; Adams, R. G.; Cuneo, M. E.; Porter, J. L.; Slutz, S. A.; Johnston, R. R.; Wenger, D. F.; Schroen, D. G.

    2003-10-01

    The fast ignitor approach to ICF ignition separates the fuel assembly and fast heating processes. After compressing the fuel with the main driver, the fuel is ignited using a focused electron or ion beam generated by a fast, ultra-high power laser pulse. This significantly relaxes the drive symmetry, energy, and shock timing requirements compared to hot spot ignition. A hemispherical capsule target is a fast ignitor geometry well-adapted to symmetric fuel compression by a single-ended z-pinch radiation drive. The hemispherical capsule implodes radially, constrained at its equator by a flat high-density surface (a special case of the spherical capsule "cone-focus" geometry). This glide plane is mounted on a hollow pedestal that provides a plasma-free, short-pulse laser path to the compressed fuel core region. In experiments on the Z accelerator at Sandia, we are studying implosions of 2.0-mm-diameter, 60-micron-thick hemispherical capsules in cylindrical secondary hohlraums heated to 90-100 eV from one end by a 120 TW wire-array z-pinch. Analysis of ZBL 6.7 keV point-projection backlighter images of pole-hot implosions in a tall secondary and 6.18 keV monochromatic crystal backlighter images of more symmetric implosions in a short secondary will be presented. We will also discuss progress on the development of a cryogenic liquid fuel target for this fast ignitor compression geometry. * Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Millenial-scale climatic and vegetation changes in a northern Cerrado (Northeast, Brazil) since the Last Glacial Maximum

    Science.gov (United States)

    Ledru, Marie-Pierre; Ceccantini, Gregorio; Gouveia, Susy E. M.; López-Sáez, José Antonio; Pessenda, Luiz C. R.; Ribeiro, Adauto S.

    2006-05-01

    In the Southern Hemisphere, lacustrine sediments started to be deposited with the beginning of the deglaciation at ca 19,000 cal yr BP. At this time the region of Lake Caço was dominated by sparse and shrubby vegetation with dominance of steppic grasses in a poor sandy soil. The landscape did not present any ecological characteristics of a modern Cerrado. However single pollen grains of two Cerrado indicators, Byrsonima and Mimosa, suggest that some Cerrado species were able to survive under the prevailing arid climate, probably as small shrubs. After 15,500 cal yr BP, a sudden increase in the moisture rates is evidenced with the progressive expansion of rainforest showing successive dominance of various associations of taxa. The development of the forest stopped abruptly at the end of the Pleistocene between 12,800 and 11,000 cal yr BP, as attested by strong fires and the expansion of Poaceae. In the early Holocene an open landscape with a relatively high level of water in the lake preceded the progressive expansion of Cerrado species towards a denser forested landscape; fires are recorded from then on, resulting in the physiognomy of the Cerrado we know today. Late Pleistocene paleoenvironmental records from northern Brazil reflect the interplay between insolation forcing of two hemispheres with the local components represented by the interannual shift of the Inter Tropical Convergence Zone and the influence of seasonal equatorwards polar air incursions.

  6. Hemispheric dominance and cell phone use.

    Science.gov (United States)

    Seidman, Michael D; Siegel, Bianca; Shah, Priyanka; Bowyer, Susan M

    2013-05-01

    A thorough understanding of why we hold a cell phone to a particular ear may be of importance when studying the impact of cell phone safety. To determine if there is an obvious association between sidedness of cell phone use and auditory hemispheric dominance (AHD) or language hemispheric dominance (LHD). It is known that 70% to 95% of the population are right-handed, and of these, 96% have left-brain LHD. We have observed that most people use their cell phones in their right ear. An Internet survey was e-mailed to individuals through surveymonkey.com. The survey used a modified Edinburgh Handedness Inventory protocol. Sample questions surveyed which hand was used to write with, whether the right or left ear was used for phone conversations, as well as whether a brain tumor was present. General community. An Internet survey was randomly e-mailed to 5000 individuals selected from an otology online group, patients undergoing Wada testing and functional magnetic resonance imaging, as well as persons on the university listserv, of which 717 surveys were completed. Determination of hemispheric dominance based on preferred ear for cell phone use. A total of 717 surveys were returned. Ninety percent of the respondents were right handed, and 9% were left handed. Sixty-eight percent of the right-handed people used the cell phone in their right ear, 25% in the left ear, and 7% had no preference. Seventy-two of the left-handed respondents used their left ear, 23% used their right ear, and 5% had no preference. Cell phone use averaged 540 minutes per month over the past 9 years. An association exists between hand dominance laterality of cell phone use (73%) and our ability to predict hemispheric dominance. Most right-handed people have left-brain LHD and use their cell phone in their right ear. Similarly, most left-handed people use their cell phone in their left ear. Our study suggests that AHD may differ from LHD owing to the difference in handedness and cell phone ear use

  7. The genus Platychara from the Western Hemisphere

    Science.gov (United States)

    Peck, R.E.; Forester, R.M.

    1979-01-01

    The systematics of four species belonging to the genus Platychara (Charophyta) from the Western Hemisphere is discussed. Three of the species, as defined herein, occur in Cretaceous and Paleocene rocks from Mexico through South America. The type species, P. compressa (Peck and Reker) Grambast, also of Cretaceous and Paleocene age, is herein restricted to deposits north of Mexico. These latter restrictions geographically separate P. compressa and P. perlata as presently defined but the relationship between these two species is still uncertain. A new species, P. grambastii, is proposed for specimens from Maestrichtian sediments in Jamaica. ?? 1979.

  8. Late Quaternary aridity changes in the winter-rain areas on the Southern Hemisphere: inferences from the marine sediment archive

    Science.gov (United States)

    Stuut, J.-B.; Temmesfeld, F.; Hebbeln, D.; Dedeckker, P.

    2012-04-01

    At present, the Southern Westerlies migrate zonally over the southern hemisphere through the seasons and cause winter rains in the generally dry west coasts of South America, South Africa, and the southern parts of Australia. On a geological time scale this winter-rain causing atmospheric system has shifted zonally as well, with a more equator-ward position during glacial times and a more pole-ward position during interglacial times. These glacial-interglacial changes are recorded in the marine sediment archive where aeolian dust and fluvial mud are deposited depending on the environmental conditions on land. Here we present aridity records from sediment cores off three continents on the southern hemisphere that register changes in runoff on different timescales throughout the late Quaternary. We demonstrate how the zonal movements of the atmospheric frontal systems dominate past environmental conditions and try to put these in a global context. The sediment records were retrieved from the sea floor at about the same latitude offshore the three large austral continents. The two aridity records off South America and South Africa show a pertinent southern-hemisphere signal with relatively wet glacials and dry interglacials, a pattern that is opposite to the general pattern on the northern hemisphere with dry glacials and wet interglacials. The record offshore northwestern Australia does not show the typical southern-hemisphere winter-rain pattern, which we explain by the strong influence of the Australian monsoon.

  9. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  10. Hemispheric specialization in dogs for processing different acoustic stimuli.

    Directory of Open Access Journals (Sweden)

    Marcello Siniscalchi

    Full Text Available Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  11. northern Tanzania

    African Journals Online (AJOL)

    Department of Zoology and Marine Biology, University of Dar es Salaam,. P O Box 35064, Dar es Salaam, Tanzania ... National Parks and neighbouring villages in northern Tanzania between 1993 and l996 (Kabigumila 1998a). Most of ..... International Congress ofChelonian Conservation. SOPTOM,. Gonfaron France. pp: ...

  12. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons

    Science.gov (United States)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Seppälä, A.; Päivärinta, S.-M.; Rodger, C. J.; Clilverd, M. A.; Kalakoski, N.; van de Kamp, M.

    2018-01-01

    One of the key challenges in polar middle atmosphere research is to quantify the total forcing by energetic particle precipitation (EPP) and assess the related response over solar cycle time scales. This is especially true for electrons having energies between about 30 keV and 1 MeV, so-called medium-energy electrons (MEE), where there has been a persistent lack of adequate description of MEE ionization in chemistry-climate simulations. Here we use the Whole Atmosphere Community Climate Model (WACCM) and include EPP forcing by solar proton events, auroral electron precipitation, and a recently developed model of MEE precipitation. We contrast our results from three ensemble simulations (147 years) in total with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to investigate the importance of a more complete description of EPP to the middle atmospheric ozone, odd hydrogen, and odd nitrogen over decadal time scales. Our results indicate average EPP-induced polar ozone variability of 12-24% in the mesosphere, and 5-7% in the middle and upper stratosphere. This variability is in agreement with previously published observations. Analysis of the simulation results indicate the importance of inclusion of MEE in the total EPP forcing: In addition to the major impact on the mesosphere, MEE enhances the stratospheric ozone response by a factor of 2. In the Northern Hemisphere, where wintertime dynamical variability is larger than in the Southern Hemisphere, longer simulations are needed in order to reach more robust conclusions.

  13. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  14. The Southern Kalahari: a potential new dust source in the Southern Hemisphere?

    International Nuclear Information System (INIS)

    Bhattachan, Abinash; D’Odorico, Paolo; Baddock, Matthew C; Zobeck, Ted M; Okin, Gregory S; Cassar, Nicolas

    2012-01-01

    Most sources of atmospheric dust on Earth are located in the Northern Hemisphere. The lower dust emissions in the Southern Hemisphere in part limit the supply of micronutrients (primarily soluble iron) to the Southern Ocean, thereby constraining its productivity. Climate and land use change can alter the current distribution of dust source regions on Earth. Can new dust sources be activated in the Southern Hemisphere? Here we show that vegetation loss and dune remobilization in the Southern Kalahari can promote dust emissions comparable to those observed from major contemporary dust sources in the Southern African region. Dust generation experiments support the hypothesis that, in the Southern Kalahari, aeolian deposits that are currently mostly stabilized by savanna vegetation are capable of emitting substantial amounts of dust from interdune areas. We show that dust from these areas is relatively rich in soluble iron, an important micronutrient for ocean productivity. Trajectory analyses show that dust from the Kalahari commonly reaches the Southern Ocean and could therefore enhance its productivity. (letter)

  15. A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana.

    Science.gov (United States)

    Beaulieu, Jeremy M; Tank, David C; Donoghue, Michael J

    2013-04-08

    New powerful biogeographic methods have focused attention on long-standing hypotheses regarding the influence of the break-up of Gondwana on the biogeography of Southern Hemisphere plant groups. Studies to date have often concluded that these groups are too young to have been influenced by these ancient continental movements. Here we examine a much larger and older angiosperm clade, the Campanulidae, and infer its biogeographic history by combining Bayesian divergence time information with a likelihood-based biogeographic model focused on the Gondwanan landmasses. Our analyses imply that campanulids likely originated in the middle Albian (~105 Ma), and that a substantial portion of the early evolutionary history of campanulids took place in the Southern Hemisphere, despite their greater species richness in the Northern Hemisphere today. We also discovered several disjunctions that show biogeographic and temporal correspondence with the break-up of Gondwana. While it is possible to discern traces of the break-up of Gondwana in clades that are old enough, it will generally be difficult to be confident in continental movement as the prime cause of geographic disjunctions. This follows from the need for the geographic disjunction, the inferred biogeographic scenario, and the dating of the lineage splitting events to be consistent with the causal hypothesis.

  16. Paleocene/Eocene boundary changes in atmospheric and oceanic circulation: A Southern Hemisphere record

    Science.gov (United States)

    Hovan, Steven A.; Rea, David K.

    1992-01-01

    Deep Sea Drilling Project (DSDP) Site 215 provides an expanded section across the Paleocene/Eocene boundary, the most complete mid-latitude sequence from a Southern Hemisphere location in the Indo-Pacific area. The events of this transition occurred during a span of about 1.2 m.y. Oxygen isotope values derived from benthic foraminiferal calcite decrease by about 1.0‰, a decrease most likely related to warming of deep ocean waters. Turnovers of benthic foraminifera accompany δ18O changes and culminate in the predominant extinction event at the end of the Paleocene Epoch. Carbon isotope ratios also shift dramatically toward lighter values near the end of the Paleocene, beginning about 0.45 m.y. after oxygen isotope values start to change. The intensity of Southern Hemisphere atmospheric circulation as recorded by grain sizes of eolian particles shows a large and rapid reduction beginning another 0.45 m.y. later. A significant reduction of zonal wind strength at the Paleocene/Eocene boundary, until now observed only at Northern Hemisphere locations, appears to have been a global phenomenon related to decreased latitudinal thermal gradients occasioned by more effective poleward heat transport via the deep ocean.

  17. Why Are the Right and Left Hemisphere Conceptual Representations Different?

    Directory of Open Access Journals (Sweden)

    Guido Gainotti

    2014-01-01

    Full Text Available The present survey develops a previous position paper, in which I suggested that the multimodal semantic impairment observed in advanced stages of semantic dementia is due to the joint disruption of pictorial and verbal representations, subtended by the right and left anterior temporal lobes, rather than to the loss of a unitary, amodal semantic system. The main goals of the present review are (a to survey a larger set of data, in order to confirm the differences in conceptual representations at the level of the right and left hemispheres, (b to examine if language-mediated information plays a greater role in left hemisphere semantic knowledge than sensory-motor information in right hemisphere conceptual knowledge, and (c to discuss the models that could explain both the differences in conceptual representations at the hemispheric level and the prevalence of the left hemisphere language-mediated semantic knowledge over the right hemisphere perceptually based conceptual representations.

  18. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  19. Northern Pintail

    Science.gov (United States)

    Clark, Robert G.; Fleskes, Joseph P.; Guyn, Karla L.; Haukos, David A.; Austin, Jane E.; Miller, Michael R.

    2014-01-01

    This medium-sized dabbling duck of slender, elegant lines and conservative plumage coloration is circumpolar in distribution and abundant in North America, with core nesting habitat in Alaska and the Prairie Pothole Region of southern Canada and the northern Great Plains. Breeders favor shallow wetlands interspersed throughout prairie grasslands or arctic tundra. An early fall migrant, the species arrives on wintering areas beginning in August, after wing molt, often forming large roosting and feeding flocks on open, shallow wetlands and flooded agricultural fields. The birds consume grains, marsh plant seeds, and aquatic invertebrates throughout fall and winter.Northern Pintails are among the earliest nesting ducks in North America, beginning shortly after ice-out in many northern areas. Individuals form new pair bonds each winter but are highly promiscuous during the nesting season, with mated and unmated males often involved in vigorous, acrobatic Pursuit Flights. Annual nest success and productivity vary with water conditions, predation, and weather. Females build nests on the ground, often far from water. Only the female incubates; her mate leaves shortly after incubation begins. Ducklings hatch together in one day, follow the female to water after a day in the nest, and fledge by July or August. Adults and ducklings consume mainly aquatic invertebrates during the breeding season.Predators and farming operations destroy many thousands of Northern Pintail nests annually; farming has also greatly reduced the amount of quality nesting cover available. Winter habitats are threatened by water shortages, agricultural development, contamination, and urbanization. Periods of extended drought in prairie nesting regions have caused dramatic population declines, usually followed by periods of recovery. Over the long term, however, the continental population of Northern Pintails has declined significantly from 6 million birds in the early 1970s to less than 3 million in

  20. Hemispheric asymmetry and theory of mind: is there an association?

    Science.gov (United States)

    Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine

    2012-01-01

    In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.

  1. Shortwave Array Spectroradiometer–Hemispheric (SASHe) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Shortwave Array Spectroradiometer–Hemispheric (SASHe) provides measurements of direct solar, hemispheric diffuse, and total hemispheric shortwave irradiance over a continuous spectral range from approximately 300 nm to 1700 nm at a rate of about 30 seconds. The SASHe design connects an optical collector located outdoors to a pair of spectrometers and data collections systems located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector uses a small Spectralon button as a hemispheric diffuser with a shadowband to distinguish signal from diffuse sky and direct sun.

  2. Right-hemispheric processing of non-linguistic word features

    DEFF Research Database (Denmark)

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-01-01

    -hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made......, in some instances, be driven by a "nonlinguistic perceptual processing" mode that focuses on nonlinguistic word features. This raises the possibility that stronger activation of right inferior frontal areas during language tasks in aphasic patients with left-hemispheric stroke may at least partially...

  3. Visual attention capacity after right hemisphere lesions

    DEFF Research Database (Denmark)

    Habekost, Thomas; Rostrup, Egill

    2007-01-01

    for both VSTM capacity and ipsilesional processing speed. The study also showed that lesions in a large region of the right hemisphere, including the putamen, insula, and inferior frontal cortex, do not lead to general deficits in the capacity of visual attention. Udgivelsesdato: 2007-Apr-8......Recently there has been a growing interest in visual short-term memory (VSTM) including the neural basis of the function. Processing speed, another main aspect of visual attention capacity, has received less investigation. For both cognitive functions human lesion studies are sparse. We used...... a whole report experiment for estimation of these two parameters in 22 patients with right side stroke. Psychophysical performance was analyzed using Bundesen's [Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523-547] Theory of Visual Attention (TVA) and compared...

  4. Plutonium in Southern Hemisphere ocean Waters

    DEFF Research Database (Denmark)

    Hirose, K.; Aoyama, M.; Gastaud, J.

    2013-01-01

    Plutonium in seawater collected by the BEAGLE2003 cruise was determined using ICP- SF-MS and alpha spectrometry after Fe co-precipitation and radiochemical purification. Levels and distributions of dissolved plutonium activity concentrations in Southern Hemisphere ocean waters are summarized here......, including historical data. Pu-239 concentrations in surface water----of the central South Pacific (32.5 °S) in 2003 were around 1 mBq/m3. The 239Pu concentrations in the Indian Ocean surface waters (20°S) were similar to that in the South Pacific, whereas the 239Pu concentrations in the South Atlantic...... surface waters (30°S) were markedly lower than those in the South Pacific and Indian Oceans. The 239Pu vertical profile pattern was similar to that in the North Pacific subtropical gyre, although 239Pu concentrations in the deep South Pacific were significantly lower than those in the North Pacific. One...

  5. Visual attention capacity after right hemisphere lesions

    DEFF Research Database (Denmark)

    Habekost, Thomas; Rostrup, Egill

    2007-01-01

    Recently there has been a growing interest in visual short-term memory (VSTM) including the neural basis of the function. Processing speed, another main aspect of visual attention capacity, has received less investigation. For both cognitive functions human lesion studies are sparse. We used...... a whole report experiment for estimation of these two parameters in 22 patients with right side stroke. Psychophysical performance was analyzed using Bundesen's [Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523-547] Theory of Visual Attention (TVA) and compared...... for both VSTM capacity and ipsilesional processing speed. The study also showed that lesions in a large region of the right hemisphere, including the putamen, insula, and inferior frontal cortex, do not lead to general deficits in the capacity of visual attention. Udgivelsesdato: 2007-Apr-8...

  6. Hemispheric lateralization in an analysis of speech sounds. Left hemisphere dominance replicated in Japanese subjects.

    Science.gov (United States)

    Koyama, S; Gunji, A; Yabe, H; Oiwa, S; Akahane-Yamada, R; Kakigi, R; Näätänen, R

    2000-09-01

    Evoked magnetic responses to speech sounds [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M. Vainio, P. Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.] were recorded from 13 Japanese subjects (right-handed). Infrequently presented vowels ([o]) among repetitive vowels ([e]) elicited the magnetic counterpart of mismatch negativity, MMNm (Bilateral, nine subjects; Left hemisphere alone, three subjects; Right hemisphere alone, one subject). The estimated source of the MMNm was stronger in the left than in the right auditory cortex. The sources were located posteriorly in the left than in the right auditory cortex. These findings are consistent with the results obtained in Finnish [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M.Vainio, P.Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.][T. Rinne, K. Alho, P. Alku, M. Holi, J. Sinkkonen, J. Virtanen, O. Bertrand and R. Näätänen, Analysis of speech sounds is left-hemisphere predominant at 100-150 ms after sound onset. Neuroreport, 10 (1999) 1113-1117.] and English [K. Alho, J.F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects. Instead of the P1m observed in Finnish [M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi and R. Näätänen, Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage, 9 (1999) 330-336.] and English [K. Alho, J. F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko

  7. Testing the language of German cerebral palsy patients with right hemispheric language organization after early left hemispheric damage.

    Science.gov (United States)

    Schwilling, Eleonore; Krägeloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-02-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right hemispheric reorganized language (RL) is not associated with obvious language deficits. In this pilot study we compared a group of German-speaking patients with left hemispheric brain damage and RL with a group of matched healthy controls. The novel combination of reliable language lateralization as assessed by neuroimaging (functional magnetic resonance imaging) and specific linguistic tasks revealed significant differences between patients with RL and healthy controls in both language comprehension and production. Our results provide evidence for the hypothesis that RL is significantly different from normal left hemispheric language. This knowledge can be used to improve counselling of parents and to develop specific therapeutic approaches.

  8. Structural hemispheric asymmetries underlie verbal Stroop performance.

    Science.gov (United States)

    Vallesi, Antonino; Mazzonetto, Ilaria; Ambrosini, Ettore; Babcock, Laura; Capizzi, Mariagrazia; Arbula, Sandra; Tarantino, Vincenza; Semenza, Carlo; Bertoldo, Alessandra

    2017-09-29

    Performance on tasks involving cognitive control such as the Stroop task is often associated with left lateralized brain activations. Based on this neuro-functional evidence, we tested whether leftward structural grey matter asymmetries would also predict inter-individual differences in combatting Stroop interference. To check for the specificity of the results, both a verbal Stroop task and a spatial one were administered to a total of 111 healthy young individuals, for whom T1-weighted magnetic resonance imaging (MRI) images were also acquired. Surface thickness and area estimations were calculated using FreeSurfer. Participants' hemispheres were registered to a symmetric template and Laterality Indices (LI) for the surface thickness and for the area at each vertex in each participant were computed. The correlation of these surface LI measures with the verbal and spatial Stroop effects (incongruent-congruent difference in trial performance) was assessed at each vertex by means of general linear models at the whole-brain level. We found a significant correlation between performance and surface area LI in an inferior posterior temporal cluster (overlapping with the so-called visual word form area, VWFA), with a more left-lateralized area in this region associated with a smaller Stroop effect only in the verbal task. These results point to an involvement of the VWFA for higher-level processes based on word reading, including the suppression of this process when required by the task, and could be interpreted in the context of cross-hemispheric rivalry. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hemispherical Resonator Gyro: an IRU for Cassini

    Science.gov (United States)

    Litty, Edward C.; Gresham, Lennor L.; Toole, Patrick A.; Beisecker, Debra A.

    1996-10-01

    The JPL Inertial Reference Unit (IRU) is the single most sophisticated assembly on the Cassini spacecraft. At the core of the IRU is the state-of-the-art, Litton Hemispherical Resonator Gyro (HRG). Launched in October 1997, Cassini's trajectory utilizes gravity assist maneuvers around Venus (two), Earth, and Jupiter over a seven year period, arriving at Saturn in June 2004. Its tour of the Saturnian system will last an additional four years. Although the Stellar Reference Unit (SRU) provides the ultimate reference for the spacecraft Attitude and Articulation Control System (AACS) and can be used to control the spacecraft under benign conditions, the Cassini IRU is essential during maneuvers and fault recovery operations, and for precision attitude stabilization during science data acquisition. Therefore, IRU reliability over the long Cassini mission is a critical concern. Following an extensive evaluation of possible alternatives, the Hemispherical Resonator Gyro (HRG) based IRU developed by Litton Guidance and Control Systems, was chosen for the Cassini mission. The HRG is an attitude rate sensor that has no physical wear-out mechanisms. Based on a principle first described by G. H. Bryan (1890) in his paper, 'On Beats in the Vibrations of a Revolving Cylinder or Bell', the HRG is created by vibrating a quartz resonator. This paper discusses the theory and modifications required to the design of the standard Space Inertial Reference Unit to adapt it to meet the requirements of the Cassini mission and the AACS interface. The Cassini mission is the first use of an IRU for a deep space planetary mission that does not use a spun-mass sensor.

  10. Северный идентитет как основа развития традиций в исследовании арктики 1890-1917(Northern identity in Russian and Norwegian cultures as a background for polar explorations 1890-1917

    Directory of Open Access Journals (Sweden)

    S. A. Xorkina

    1998-02-01

    Northern identity and attachment to the Arctic created the cultural background for both Russian and Norwegian traditions of polar ex- ploration. However, if Norwegian culture confined itself to northernness, the northern identity of the Russians was only one part of a heterogeneous national identity. During the second part of the nineteenth and the beginning of the twentieth centuries the central place of northernness in Norwegian culture and national self-consciousness made polar exploration a natural part of nation-building and promoted Norwegian involvement in the Arctic. For Russia, on the other hand, this period was marked by both decline and reanimation of northern identity. It seems to be that in case of Russia, the geographic factor of the northern identity and political and economic interests in the north were of more importance than cultural predispositions for renewed research activity in the Arctic during the period 1890-1917. At the same time, cultural attributes related to the North were an important part of the Norwegian exploring tradition.

  11. The Polar Ocean in a Warming Planet: Understanding for managing a unique resource of the Humankind

    Science.gov (United States)

    Azzolini, R.; Campus, P.; Weber, J.

    2012-04-01

    There is no doubt that changes in the Polar Regions are of great significance at the global level, such as having far-reaching effects on atmospheric and ocean circulation. Changes in ocean currents, temperature conditions, ice cover and reduction of permafrost regions are having impacts on marine and terrestrial ecosystems in the Arctic Regions of Europe and Northern Hemisphere. Human activity is putting pressure on the environment in these regions; maritime transport between Europe and Asia through the northern sea route and accessibility conditions to hidden Arctic resources as well as new technologies of exploitation will have a significant impact on the marine environment, on the living resources and on the regional social organization and needs. There are still unresolved issues related to national claims on continental shelf and sea areas that involve international law; in these respects science can provide crucial elements for supporting political agreements. Such scenarios will present new opportunities for economic activities, but also risks which will result in new demands for marine management, monitoring systems, emergency response systems, search and rescue services as well as closer international cooperation. It will also require the development of an international regime based on the improvement of the present regulations on exploration, accessibility, exploitation and liability. Dialogue and international agreements based on scientific evidences and foresight are key elements for finding solutions. On the opposite hemisphere, the ocean surrounding Antarctica plays a primary role in all global climatic processes, through the annual sea ice evolution, the circum-Antarctic circulation driving the exchange of heat between low and high latitudes and the atmospheric circulation, through the density bottom currents that affect the global Thermohaline circulation (THC), and the biogeochemical cycles that have peculiar characteristics in the icy Antarctic

  12. Spring snowmelt variability in northern Eurasia 2000-2007

    Science.gov (United States)

    Bartsch, A.; Naeimi, V.; McCallum, I.; Shvidenko, A.; Wagner, W.

    2009-04-01

    Snowmelt dynamics play an essential role in the hydrological cycle of northern latitudes. Entire northern Eurasia is seasonally covered by snow. It instantaneously impacts not only surface hydrology and the energy budget but also terrestrial biota and thus the carbon cycle. Scatterometer such as SeaWinds Quikscat (Ku-band) are sensitive to changes at snow surfaces due to thaw and provide several measurements per day at high latitudes. Diurnal differences (frozen in the morning, thawed in the evening) are investigated in a range of studies since they indicate exactly when snowmelt is taking place. The actual number of dates of snow thaw is of most interest for glacier mass balance studies but the final disappearance of snow together with the length of spring thaw is required in regions with seasonal snow cover. Clusters of consecutive days of diurnal cycling of freeze/thaw are characteristic for the final snowmelt period in boreal and tundra environments. The start, end and duration of such periods give insight into spring CO2 emissions, vegetation fire prediction and river runoff behaviour. Results of the clustering of diurnal thaw and refreeze days as detected from active microwave satellite data over polar Eurasia is presented in this paper. The aim is the monitoring of spring snowmelt variability for assessment of impact of climate change on hydrology and energy budget. SeaWinds Quikscat measurements are available since 1999. The first entire snowmelt period on the northern hemisphere is covered in 2000. Large changes in backscatter between morning and evening acquisitions are characteristic for the snowmelt period, when freezing takes place over night and thawing of the surface during the day. A change from volume to surface scattering occurs in case of melting. When significant changes due to freeze/thaw cycling cease, closed snow cover also disappears. The exact day of year of beginning and end of freeze/thaw cycling can be clearly determined with

  13. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres

    Science.gov (United States)

    Güttler, D.; Adolphi, F.; Beer, J.; Bleicher, N.; Boswijk, G.; Christl, M.; Hogg, A.; Palmer, J.; Vockenhuber, C.; Wacker, L.; Wunder, J.

    2015-02-01

    In 2012, Miyake et al. reported a sudden and strong increase of the atmospheric radiocarbon (14C) content in Japanese cedar trees of 1.2% between AD 774 and 775. While their findings were quickly confirmed by a German oak chronology for the Northern Hemisphere (NH), the question remained if the effect was seen in both hemispheres. Here we present the first annually resolved Southern Hemisphere (SH) 14C record spanning the interval AD 760-787, using New Zealand kauri (Agathis australis) chronology wood. An almost identical distinct increase compared to Northern Hemisphere data was observed, suggesting a cosmic event with globally uniform impact as a potential cause for the increase. Deploying a carbon cycle box model a worldwide averaged net 14C production of 2.2 ×108 14C atoms cm-2 was estimated, which is 3.7 times higher than the average annual 14C production. The immediate appearance of the event in tree rings on both hemispheres suggests a short duration event of significantly less than 1 yr.

  14. High Northern Latitude Insolation Forcing of Tropical Monsoons or Monsoon Forcing of High Northern Latitude Ice Volume?

    Science.gov (United States)

    Beck, W.; Zhou, W.; Cheng, L.; Wu, Z.; Xian, F.; Kong, X.; Cottam, T.; An, Z.; White, L.

    2017-12-01

    eddy energy transport to the north polar region. Likewise, the Trades and Westerlies in the Indian Ocean both influence AMOC strength by regulating Agulhas leakage into the Atlantic, or can influence air/sea CO2 fluxes. These mechanisms may all strongly influence northern hemisphere ice volume, begging the question: Where does global climate control originate?

  15. Cardiac asystole associated with seizures of right hemispheric onset

    Directory of Open Access Journals (Sweden)

    Jennifer Chu

    2014-01-01

    Full Text Available Ictal asystole is frequently underrecognized despite being a potentially lethal condition. We report two cases of ictal asystole with right hemispheric onset. These cases are unique since previous literature reports that seizures associated with bradyarrhythmias typically arise from left hemispheric foci. These cases further underscore the importance of clinical vigilance and the need of an enhanced diagnostic biomarker.

  16. Disentangling the Relationship between Hemispheric Asymmetry and Cognitive Performance

    Science.gov (United States)

    Hirnstein, Marco; Leask, Stuart; Rose, Jonas; Hausmann, Markus

    2010-01-01

    It is widely believed that advantages of hemispheric asymmetries originated in better cognitive processing, hence it is often implied that the relationship between hemispheric asymmetry and cognitive performance is linearly positive: the higher the degree of lateralization in a specific cognitive domain, the better the performance in a…

  17. Estimation of Polar Cap Potential and the Role of PC Index

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2012-09-01

    Full Text Available Polar cap potential has long been considered as an indicator for the amount of energy flowing in the magnetosphere-ionosphere system. Thus, the estimation of polar cap potential is important to understand the physical process of the magnetosphere. To estimate the polar cap potential in the Northern Hemisphere, merging electric field by Kan & Lee (1979 is adopted. Relationships between the PC index and calculated merging electric field (E* are examined during full-time and storm-time periods separately. For this purpose Dst, AL, and PC indices and solar wind data are utilized during the period from 1996-2003. From this linear relationship, polar cap potential (Φ* is estimated using the formula by Doyle & Burke (1983. The values are represented as 58.1 ± 26.9 kV for the full-time period and 123.7 ± 84.1 kV for a storm-time period separately. Considering that the average value of polar cap potential of Doyle & Burke (1983 is about 47 kV during moderately quiet intervals with the S3-2 measurements, these results are similar to such. The monthly averaged variation of Dst, AL, and PC indices are then compared. The Dst and AL indices show distinct characteristics with peaks during equinoctial season whereas the average PC index according to the month shows higher values in autumn than in spring. The monthly variations of the linear correlation coefficients between solar wind parameters and geomagnetic indices are also examined. The PC-AL linear correlation coefficient is highest, being 0.82 with peaks during the equinoctial season. As with the AL index, the PC index may also prove useful for predicting the intensity of an auroral substorm. Generally, the linear correlation coefficients are shown low in summer due to conductance differences and other factors. To assess the role of the PC index during the recovery phase of a storm, the relation between the cumulative PC index and the duration is examined. Although the correlation coefficient lowers

  18. Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy

    Science.gov (United States)

    Ergeneman, Olgaç; Peters, Christian; Gullo, Maurizio R.; Jacot-Descombes, Loïc; Gervasoni, Simone; Özkale, Berna; Fatio, Philipe; Cadarso, Victor J.; Mastrangeli, Massimo; Pané, Salvador; Brugger, Jürgen; Hierold, Christofer; Nelson, Bradley J.

    2014-08-01

    We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks.We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this

  19. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  20. Hemispheric processing of memory is affected by sleep.

    Science.gov (United States)

    Monaghan, Padraic; Shaw, John J; Ashworth-Lord, Anneliese; Newbury, Chloe R

    2017-04-01

    Sleep is known to affect learning and memory, but the extent to which it influences behavioural processing in the left and right hemispheres of the brain is as yet unknown. We tested two hypotheses about lateralised effects of sleep on recognition memory for words: whether sleep reactivated recent experiences of words promoting access to the long-term store in the left hemisphere (LH), and whether sleep enhanced spreading activation differentially in semantic networks in the hemispheres. In Experiment 1, participants viewed lists of semantically related words, then slept or stayed awake for 12h before being tested on seen, unseen but related, or unrelated words presented to the left or the right hemisphere. Sleep was found to promote word recognition in the LH, and to spread activation equally within semantic networks in both hemispheres. Experiment 2 ensured that the results were not due to time of day effects influencing cognitive performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Hemispheric asymmetry in the influence of language on visual perception.

    Science.gov (United States)

    Sun, Yanliang; Cai, Yongchun; Lu, Shena

    2015-07-01

    Many studies have shown that language can affect visual perception; however, our understanding of the neural basis of linguistic influence is inadequate. This can be investigated by examining the hemispheric asymmetry of linguistic influence. The left and right hemispheres are dominant in close and distant semantic processing, respectively. In this study, we investigated whether the hemispheric asymmetry of semantic processing led to hemispheric asymmetry for concept priming on the detection of objects degraded by continuous flash suppression. We combined a priming paradigm with the divided visual field paradigm and used continuous flash suppression, which renders objects invisible. The results indicated that the hemispheric asymmetry of semantic processing led to a right lateralization in the influence of more abstract concepts on visual perception. The lateralization of brain connectomes may be the underlying neural basis of this effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Seismic hazard map of the western hemisphere

    Science.gov (United States)

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  3. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner

    1999-06-01

    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  4. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  5. Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom); Laboratoire des Sciences du Climat et de l' Environment, CEA/CNRS/UVSQ, Saclay (France); Harrison, S.P. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom); Macquarie University, School of Biological Sciences, North Ryde, NSW (Australia)

    2012-09-15

    The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean-atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean-atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean-atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the

  6. When One Hemisphere Takes Control: Metacontrol in Pigeons (Columba livia)

    Science.gov (United States)

    Adam, Ruth; Güntürkün, Onur

    2009-01-01

    Background Vertebrate brains are composed of two hemispheres that receive input, compute, and interact to form a unified response. How the partially different processes of both hemispheres are integrated to create a single output is largely unknown. In some cases one hemisphere takes charge of the response selection – a process known as metacontrol. Thus far, this phenomenon has only been shown in a handful of studies with primates, mostly conducted in humans. Metacontrol, however, is even more relevant for animals like birds with laterally placed eyes and complete chiasmatic decussation since visual input to the hemispheres is largely different. Methodology/Principal Findings Homing pigeons (Columba livia) were trained with a color discrimination task. Each hemisphere was trained with a different color pair and therefore had a different experience. Subsequently, the pigeons were binocularly examined with two additional stimuli that combined the positive color of one hemisphere with a negative color that had been shown to the other, omitting the availability of a coherent solution and confronting the pigeons with a conflicting situation. Some of the pigeons responded to both stimuli, indicating that none of the hemispheres dominated the overall preference. Some birds, however, responded primarily to one of the conflicting stimuli, showing that they based their choice on the left- or right-monocularly learned color pair, indicating hemispheric metacontrol. Conclusions/Significance We could demonstrate for the first time that metacontrol is a widespread phenomenon that also exists in birds, and thus in principle requires no corpus callosum. Our results are closely similar to those in humans: monocular performance was higher than binocular one and animals displayed different modes of hemispheric dominance. Thus, metacontrol is a dynamic and widely distributed process that possibly constitutes a requirement for all animals with a bipartite brain to confront the

  7. Late Cretaceous paleosols as paleoclimate proxies of high-latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina

    Science.gov (United States)

    Varela, Augusto N.; Raigemborn, M. Sol; Richiano, Sebastián; White, Tim; Poiré, Daniel G.; Lizzoli, Sabrina

    2018-01-01

    Although there is general consensus that a global greenhouse climate characterized the mid-Cretaceous, details of the climate state of the mid-Cretaceous Southern Hemisphere are less clearly understood. In particular, continental paleoclimate reconstructions are scarce and exclusively derived from paleontological records. Using paleosol-derived climofunction studies of the mid- to Upper Cretaceous Mata Amarilla Formation, southern Patagonia, Argentina, we present a reconstruction of the mid-Cretaceous climate of southern South America. Our results indicate that at 60° south paleolatitude during the Cenomanian-Santonian stages, the climate was subtropical temperate-warm (12 °C ± 2.1 °C) and humid (1404 ± 108 mm/yr) with marked rainfall seasonality. These results are consistent with both previous estimations from the fossil floras of the Mata Amarilla Formation and other units of the Southern Hemisphere, and with the previous observations of the displacement of tropical and subtropical floras towards the poles in both hemispheres. The data presented here show a more marked seasonality and slightly lower mean annual precipitation and mean annual temperature values than those recorded at the same paleolatitudes in the Northern Hemisphere.

  8. Global drivers of the stratospheric polar vortex via nonlinear causal discovery

    Science.gov (United States)

    Kretschmer, M.; Runge, J.; Coumou, D.

    2016-12-01

    The stratospheric polar vortex plays a major role in the Northern Hemisphere midlatitudes, especially in driving extreme weather conditions. Many different global drivers, from Arctic sea ice to tropical climate patterns, are hypothesized to influence its stability, including linear and nonlinear mechanisms. Here a novel causal discovery approach, extending previous work [1], that is adapted to the particular challenges posed by such a high-dimensional dataset comprised of multiple, possibly nonlinearly coupled time series is demonstrated. While links in the reconstructed network can be called causal only with respect to the set of analyzed variables, the absence of causal links allows to assess where physical mechanisms are unlikely.The present work confirms recent results obtained with a similar, but linear, approach [2], regarding the impact of Barents and Kara sea ice concentrations, and extends the analysis also to tropical drivers to cover more proposed mechanisms. [1] Jakob Runge, Vladimir Petoukhov, and Jürgen Kurths, 2014: Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models. J. Climate 27, 720-739, doi: 10.1175/JCLI-D-13-00159.1.[2] Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge, 2016: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. J. Climate 29, 4069-4081, doi: 10.1175/JCLI-D-15-0654.1.