WorldWideScience

Sample records for polar motion due

  1. Virtual Polar Motion and Universal Time Variations in Space Geodetic Techniques due to Atmospheric Pressure Loading

    Science.gov (United States)

    Mendes Cerveira, P. J.; Englich, S.; Boehm, J.; Weber, R.; Schuh, H.

    2006-12-01

    Earth rotation variations, in polar motion and universal time (ERP), appear as a response due to the sum of solid Earth displacements, fluid and gaseous mass transports. In finite networks, e.g., the network of eleven operational VLBI stations during the CONT05 VLBI experiment, horizontal displacements due to atmospheric pressure loading (APL) may accidentally introduce a net rotation. Generally, a no-net-rotation is expected, hypothesizing a surface normal stress due to APL upon a radially symmetric Earth. However, the horizontal crustal deformations due to APL given on a 2.5x2.5 degrees grid provided by the Goddard VLBI Group show systematic temporal net rotations. We compared the change of the eleven station network of CONT05 with and without APL, every six hours, by a three Helmert parameter transformation (three rotations). The "virtual" predicted ERP variations were validated w.r.t. the estimated ones, obtained from CONT05 (using the OCCAM 61E VLBI software). These tiny ERP variations, representing about 2 mm on Earth's surface, could statistically be detected if more VLBI sessions were processed. Even the inverted and non-inverted barometric assumptions of the response of the oceans to atmospheric pressure variations could potentially be verified.

  2. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  3. Improved geophysical excitations constrained by polar motion observations and GRACE/SLR time-dependent gravity

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-11-01

    Full Text Available At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice, which are usually provided by various global atmospheric, oceanic, and hydrological models (some with meteorological observations assimilated; e.g., NCEP, ECCO, ECMWF, OMCT and LSDM etc.. Unfortunately, these model outputs are far from perfect and have notable discrepancies with respect to polar motion observations, due to non-uniform distributions of meteorological observatories, as well as theoretical approximations and non-global mass conservation in these models. In this study, the LDC (Least Difference Combination method is adopted to obtain some improved atmospheric, oceanic, and hydrological/crospheric angular momentum (AAM, OAM and HAM/CAM, respectively functions and excitation functions (termed as the LDCgsm solutions. Various GRACE (Gravity Recovery and Climate Experiment and SLR (Satellite Laser Ranging geopotential data are adopted to correct the non-global mass conservation problem, while polar motion data are used as general constraints. The LDCgsm solutions can reveal not only periodic fluctuations but also secular trends in AAM, OAM and HAM/CAM, and are in better agreement with polar motion observations, reducing the unexplained excitation to the level of about 5.5 mas (standard derivation value; about 1/5–1/4 of those corresponding to the original model outputs.

  4. Polarization of Sunyaev-Zel'dovich signal due to electron pressure anisotropy in galaxy clusters

    Science.gov (United States)

    Khabibullin, I.; Komarov, S.; Churazov, E.; Schekochihin, A.

    2018-02-01

    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10-8 (˜10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β weakly collisional plasma from the point of view of both astrophysics and plasma theory.

  5. Collective motion of active Brownian particles with polar alignment.

    Science.gov (United States)

    Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio

    2018-04-04

    We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

  6. Hydrological excitation of polar motion by different variables from the GLDAS models

    Science.gov (United States)

    Winska, Malgorzata; Nastula, Jolanta; Salstein, David

    2017-12-01

    Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.

  7. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    Science.gov (United States)

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  8. Effects of the Earth’ s triaxiality on the polar motion excitations

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-05-01

    Full Text Available his study aims to evaluate the significance of the Earth’s triaxiality to the polar motion theory. First of all, we compare the polar motion theories for both the triaxial and rotationally-symmetric Earth models, which is established on the basis of the EGM2008 global gravity model and the MHB2000 Earth model. Then, we use the atmospheric and oceanic data (the NCEP/NCAR reanalyses and the ECCO assimulation products to quantify the triaxiality effect on polar motion excitations. Numerical results imply that triaxiality only cause a small correction (about 0. 1–0.2 mas to the geophysical excitations for the rotationally-symmetric case. The triaxiality correction is much smaller than the errors in the atmospheric and oceanic data, and thus can be neglected for recent studies on polar motion excitations.

  9. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    Science.gov (United States)

    Fu, R. R.; Kent, D.

    2017-12-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform

  10. RHIC Polarization Decay in FY15 pp Run due to Polarization Profile Development

    Energy Technology Data Exchange (ETDEWEB)

    Huang H.; Adams, P.

    2016-05-23

    The decay over time of ratio between polarization profile and beam profile has been analyzed previously. A follow up question is if we can get the decay of polarization profile and beam profile separately. With the beam profiles obtained from Ion Profile Monitor (IPM), this analysis was done and the results are analyzed. The results show that the contribution from polarization profile and beam profile is similar for yellow ring, but the contribution from polarization profile is much stronger in blue ring, which is consistent with lower polarization Blue ring.

  11. Decadal Polar Motion of the Earth Excited by the Convective Outer Core From Geodynamo Simulations

    Science.gov (United States)

    Kuang, W.; Chao, B. F.; Chen, J.

    2017-10-01

    Long time geodetic observation records show that the orientation of the Earth's rotation axis with respect to the terrestrial reference frame, or polar motion, changes on a broad range of timescales. Apart from external torques from the luni-solar tides, these changes are excited by interactions among different components of the Earth system. The convective fluid outer core has long been conjectured a likely contributor to the observed polar motion on timescales upward of decades, such as the ˜30 year Markowitz wobble. We investigated the electromagnetic coupling scenario across the core-mantle boundary via numerical geodynamo simulation for different geodynamo parameters (Rayleigh numbers and magnetic Rossby numbers). Our simulated polar motion varies strongly with the dynamo parameters, while its excitation on decadal timescales appear to converge asymptotically within the adopted range of numerical Rossby numbers. Three strongest asymptotic modes emerge from numerical results, with periods around 30, 40, and 60 years for the prograde excitation and around 24, 30, and 60 years for the retrograde excitation. Their amplitudes are all larger than 5 × 10-8, or approximately 10 milliseconds of arc. The results suggest that the electromagnetic core-mantle coupling could explain a substantial portion, if not all, of the observed decadal polar motion. In particular, the predicted 60 year polar motion deserves special attention for future observations and studies.

  12. Telescopic Vector Composition and Polar Accumulated Motion Residuals for Feature Extraction in Arabic Sign Language Recognition

    Directory of Open Access Journals (Sweden)

    Assaleh K

    2007-01-01

    Full Text Available This work introduces two novel approaches for feature extraction applied to video-based Arabic sign language recognition, namely, motion representation through motion estimation and motion representation through motion residuals. In the former, motion estimation is used to compute the motion vectors of a video-based deaf sign or gesture. In the preprocessing stage for feature extraction, the horizontal and vertical components of such vectors are rearranged into intensity images and transformed into the frequency domain. In the second approach, motion is represented through motion residuals. The residuals are then thresholded and transformed into the frequency domain. Since in both approaches the temporal dimension of the video-based gesture needs to be preserved, hidden Markov models are used for classification tasks. Additionally, this paper proposes to project the motion information in the time domain through either telescopic motion vector composition or polar accumulated differences of motion residuals. The feature vectors are then extracted from the projected motion information. After that, model parameters can be evaluated by using simple classifiers such as Fisher's linear discriminant. The paper reports on the classification accuracy of the proposed solutions. Comparisons with existing work reveal that up to 39% of the misclassifications have been corrected.

  13. Telescopic Vector Composition and Polar Accumulated Motion Residuals for Feature Extraction in Arabic Sign Language Recognition

    Directory of Open Access Journals (Sweden)

    T. Shanableh

    2007-10-01

    Full Text Available This work introduces two novel approaches for feature extraction applied to video-based Arabic sign language recognition, namely, motion representation through motion estimation and motion representation through motion residuals. In the former, motion estimation is used to compute the motion vectors of a video-based deaf sign or gesture. In the preprocessing stage for feature extraction, the horizontal and vertical components of such vectors are rearranged into intensity images and transformed into the frequency domain. In the second approach, motion is represented through motion residuals. The residuals are then thresholded and transformed into the frequency domain. Since in both approaches the temporal dimension of the video-based gesture needs to be preserved, hidden Markov models are used for classification tasks. Additionally, this paper proposes to project the motion information in the time domain through either telescopic motion vector composition or polar accumulated differences of motion residuals. The feature vectors are then extracted from the projected motion information. After that, model parameters can be evaluated by using simple classifiers such as Fisher's linear discriminant. The paper reports on the classification accuracy of the proposed solutions. Comparisons with existing work reveal that up to 39% of the misclassifications have been corrected.

  14. The polarization evolution of electromagnetic waves as a diagnostic method for a motional plasma

    Science.gov (United States)

    Shahrokhi, Alireza; Mehdian, Hassan; Hajisharifi, Kamal; Hasanbeigi, Ali

    2017-12-01

    The polarization evolution of electromagnetic (EM) radiation propagating through an electron beam-ion channel system is studied in the presence of self-magnetic field. Solving the fluid-Maxwell equations to obtain the medium dielectric tensor, the Stokes vector-Mueller matrix approach is employed to determine the polarization of the launched EM wave at any point in the propagation direction, applying the space-dependent Mueller matrix on the initial polarization vector of the wave at the plasma-vacuum interface. Results show that the polarization evolution of the wave is periodic in space along the beam axis with the specified polarization wavelength. Using the obtained results, a novel diagnostic method based on the polarization evolution of the EM waves is proposed to evaluate the electron beam density and velocity. Moreover, to use the mentioned plasma system as a polarizer, the fraction of the output radiation power transmitted through a motional plasma crossed with the input polarization is calculated. The results of the present investigation will greatly contribute to design a new EM amplifier with fixed polarization or EM polarizer, as well as a new diagnostic approach for the electron beam system where the polarimetric method is employed.

  15. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    Science.gov (United States)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  16. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    Science.gov (United States)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  17. Stochastic electron dynamics due to drift waves in a sheared magnetic field and other drift motion problems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1986-12-01

    Electron motion in a single electrostatic wave in a sheared magnetic field is shown to become stochastic in the presence of a second wave at an amplitude well below that obtained from the overlapping pendulum resonance approximation. The enhanced stochasticity occurs for low parallel velocity electrons for which the parallel trapping motion from eE/sub parallel//m interacts strongly with the E x B trapping motion due to the presence of magnetic shear. The guiding-center equations for single particle electron orbits in given fields are investigated using both analytical and numerical techniques. The model assumes a slab magnetic field geometry with shear and two electrostatic plane waves propagating at an angle with respect to each other. Collisions and the self-consistent effect of the electron motion upon the fields are ignored. The guiding-center motion in an inertial reference frame moving in phase with the two waves is given by a two degree-of-freedom, autonomous Hamiltonian system. The single wave particle motion may be reduced to a two parameter family of one degree-of-freedom Hamiltonians which bifurcate from a pendulum phase space to a topology with three chains of elliptic and hyperbolic fixed points separated in radius about the mode-rational surface. In the presence of a perturbing wave with a different helicity, electrons in the small parallel velocity regime become stochastic at an amplitude scaling as the fourth root of the wave potential. The results obtained for stochastic motion apply directly to the problem of electron diffusion in drift waves occurring in toroidal fusion confinement devices. The effect of an adiabatically changing radial electric field upon guiding-center orbits in tokamaks is also investigated. This perturbation causes a radial polarization drift of trapped particle tokamak orbits

  18. Vortex-induced vibration (VIV) effects of a drilling riser due to vessel motion

    Science.gov (United States)

    Joseph, R. S.; Wang, J.; Ong, M. C.; Jakobsen, J. B.

    2017-12-01

    A marine riser undergoes oscillatory motion in water due to the vessel motions, known as global dynamic response. This to-and-fro motion of the riser will generate an equivalent flow that can cause Vortex-Induced Vibrations (VIVs), even in the absence of the ocean current. In the present work, full-scale measurement data of a drilling riser operating in the Gulf of Mexico are analysed. The VIV occurrences for the riser are identified from the data and the possible excitation sources are discussed. The oscillatory flow due to vessel motion is compared with the ocean current and its possibility to excite VIV is analysed. The full-scale data analysis provides an insight into the vessel motion-induced VIV of marine risers in the actual field environment.

  19. Analyses of zonal atmospheric excitation functions and their correlation with polar motion excitation functions

    Directory of Open Access Journals (Sweden)

    J. Nastula

    1997-11-01

    Full Text Available The atmospheric influence on the Earth's, rotation can be described by the effective atmospheric angular momentum (EAAM functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions χ1 and χ2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.

  20. Analyses of zonal atmospheric excitation functions and their correlation with polar motion excitation functions

    Directory of Open Access Journals (Sweden)

    J. Nastula

    Full Text Available The atmospheric influence on the Earth's, rotation can be described by the effective atmospheric angular momentum (EAAM functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions χ1 and χ2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.

  1. Long-term simulations of polar motion: Variations of the Chandler oscillation over two centuries

    Science.gov (United States)

    Kirschner, Stephanie; Reinwald, Michael; Schmidt, Michael

    2014-05-01

    The Earth Rotation Parameters (ERP) polar motion and length-of-day have been observed with very high precision using space-geodetic techniques over many decades. Temporal changes of ERP on various temporal scales are directly connected with geophysical processes in the Earth system. Here we focus on long-term changes of polar motion, in particular on the development of the Chandler oscillation over a time-frame of two centuries. The study will be performed using five equiprobable ensemble runs of the consistently coupled atmosphere-hydrosphere model ECOCTH (1860-2060). Five respective long-term simulations with the Dynamic Model for Earth Rotation (DyMEG) result in five realizations of the Chandler oscillation. These will be analyzed for similarities and differences using different statistical methods and tools of signal analysis, e.g. wavelets. Furthermore it will be studied in which way the long time series of polar motion reflect effects of climate change as described by ECOCTH.

  2. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    Science.gov (United States)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  3. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  4. Defective motion processing in children with cerebral visual impairment due to periventricular white matter damage.

    Science.gov (United States)

    Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D

    2012-07-01

    We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.

  5. Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope

    Science.gov (United States)

    Anche, Ramya Manjunath; Sen, Asoke Kumar; Anupama, Gadiyara Chakrapani; Sankarasubramanian, Kasiviswanathan; Skidmore, Warren

    2018-01-01

    An analytical model has been developed to estimate the polarization effects, such as instrumental polarization (IP), crosstalk (CT), and depolarization, due to the optics of the Thirty Meter Telescope. These are estimated for the unvignetted field-of-view and the wavelengths of interest. The model estimates an IP of 1.26% and a CT of 44% at the Nasmyth focus of the telescope at the wavelength of 0.6 μm at field angle zero with the telescope pointing to zenith. Mueller matrices have been estimated for the primary, secondary, and Nasmyth mirrors. It is found that some of the Mueller matrix elements of the primary and secondary mirrors show a fourfold azimuthal antisymmetry, which indicates that the polarization at the Cassegrain focus is negligible. At the inclined Nasmyth mirror, there is no azimuthal antisymmetry in the matrix elements, and this results in nonzero values for IP and CT, which would negatively impact the polarization measurements at the telescope focus. The averaged Mueller matrix is estimated at the Nasmyth focus at different instrument ports and various zenith angles of the telescope. The variation in the Mueller matrix elements for different coatings is also estimated. The impact of this polarization effect on the science case requirements has been discussed. This analysis will help in achieving precise requirements for future instruments with polarimetric capability.

  6. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.

    Science.gov (United States)

    Berry, Hugues; Chaté, Hugues

    2014-02-01

    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent αmotion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.

  7. Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds

    Science.gov (United States)

    Handel, P. H.

    2007-05-01

    When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud

  8. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  9. Severe hypertension due to renal polar artery stenosis in an adolescent treated with coil embolization

    International Nuclear Information System (INIS)

    Docx, Martine K.; Vandenberghe, Philippe; Maleux, Geert; Gewillig, Marc; Mertens, Luc

    2009-01-01

    A 12-year-old boy presented with severe arterial hypertension due to a severe subsegmental renal artery stenosis. Treatment consisted of selective embolization of the stenosed polar artery, which resulted in near normalization of the arterial pressures. Renal artery stenosis should always be considered, even in young adolescents, as a cause for arterial hypertension. Only selective angiography was able to demonstrate the subsegmental artery stenosis in this patient. (orig.)

  10. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    Science.gov (United States)

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-08

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration.

  11. A Dynamic Model for Roll Motion of Ships due to Flooding

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    1999-01-01

    Because of the large undivided deck spaces, RoRo vessels are often sensitive to rapid capsizing due to sudden ingress of water. Following a high-energy damage, a rapidly increasing heeling moment is induced by the ingress of water, which generates a roll motion of the damaged vessel. If, addition......, additionally, the car deck is flooded and/or the cargo is shifted, the heeling moment may exceed the residual restoring moment, which results in capsizing....

  12. CMB polarization systematics due to beam asymmetry: Impact on inflationary science

    International Nuclear Information System (INIS)

    Shimon, Meir; Keating, Brian; Ponthieu, Nicolas; Hivon, Eric

    2008-01-01

    Cosmic microwave background (CMB) polarization provides a unique window into cosmological inflation; the amplitude of the B-mode polarization from last scattering is uniquely sensitive to the energetics of inflation. However, numerous systematic effects arising from optical imperfections can contaminate the observed B-mode power spectrum. In particular, systematic effects due to the coupling of the underlying temperature and polarization fields with elliptical or otherwise asymmetric beams yield spurious systematic signals. This paper presents a nonperturbative analytic calculation of some of these signals. We show that results previously derived in real space can be generalized, formally, by including infinitely many higher-order corrections to the leading order effects. These corrections can be summed and represented as analytic functions when a fully Fourier-space approach is adopted from the outset. The formalism and results presented in this paper were created to determine the susceptibility of CMB polarization probes of the primary gravitational wave signal but can be easily extended to the analysis of gravitational lensing of the CMB.

  13. Metallicity at interphase boundaries due to polar catastrophe induced by charge density discontinuity

    KAUST Repository

    Albar, Arwa

    2018-02-09

    The electronic properties of interphase boundaries are of basic importance for most materials, particularly when those properties deviate strongly from the bulk behavior. We introduce a mechanism that can result in metallicity at stoichiometric interphase boundaries between semiconductors based on the idea of polar catastrophe, which is usually considered only in the context of heterostructures. To this end, we perform ab initio calculations within density functional theory to investigate the electronic states at stoichiometric SnO/SnO2 (110) interphase boundaries. In this system, one would not expect polar catastrophe to have a role according to state-of-the-art theory because the interface lacks formal charge discontinuity. However, we observe the formation of a hole gas between the semiconductors SnO and SnO2. To explain these findings, we provide a generalized theory based on the idea that the charge density discontinuity between SnO and SnO2, a consequence of lattice mismatch, drives a polar catastrophe scenario. As a result, SnO/SnO2 (110) interphase boundaries can develop metallicity depending on the grain size. The concept of metallicity due to polar catastrophe induced by charge density discontinuity is of general validity and applies to many interphase boundaries with lattice mismatch.

  14. Synaptic polarity of the command interneurons for Caenorhabditis Elegans directional motion

    Directory of Open Access Journals (Sweden)

    Franciszek Maria Rakowski

    2014-03-01

    Full Text Available The command interneuron circuit for Caenorhabditis Elegans locomotion has been known for a long time [1,2]. However, synaptic polarities of these interneurons, and thus, the circuit functioning is largely unknown. Additionally, nematode command neurons express both glutamate-gated chloride channels and glutamate-gated cation channels, which causes that each synapse, even when belonging to the same neuron, might be either inhibitory or excitatory. We use an experimental behavioral data set: eighteen different neural ablations were performed and times spent in the forward and reverse motions were registered. Therefore one can consider eighteen different command neuron network structures where each one as a whole, controls the behavior of the nematode, and results with one of the eighteen different behavioral patterns. In order to decipher the particular polarities of each neuron we have constructed a theoretical (interneuron network model, in which neural activities are represented by a set of differential equations and searched all possible synaptic polarity combinations in the circuit to find the best match to the timing data [3,4]. Here, we present the extension of this model, where we explicitly incorporate calcium concentration dynamics as the regulatory factor and detailed connectivity diagram based on the transmission type of each synapse. Since the parameter space spanned by the morphological and regulatory factors is huge, we have applied an evolutionary strategy for finding the parameters of the mathematical model, for which the theoretical results and the experimental data fit the best. The overall model output consists of the averaged values: neuron activities, calcium concentration levels, input signal (the upstream neurons activity pattern and of the resolved detailed connectivity diagram. The deciphered list of the types of synapses states that most of the synapses, including strongest connections, e.g. ASH ->

  15. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  16. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    Science.gov (United States)

    Fu, Roger R.; Kent, Dennis V.

    2018-05-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30° rotation during Late Jurassic time (160-145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth's surface area and may not reflect motion of the entire mantle-crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth's surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167-133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49°-0.74° My-1 except for an interval between Kimmeridgian and Tithonian time (157-147 Ma), during which it underwent northward motion at 1.45° ± 0.76° My-1 (1σ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30°) rotation as continental lithosphere in the 160-145 Ma interval. Such coherent motion of a large majority of the Earth's surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth's inertia tensor in the Late Jurassic.

  17. The prominent 1.6-year periodicity in solar motion due to the inner planets

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    2007-06-01

    Full Text Available The solar motion due to the inner (terrestrial planets (Mercury, Me; Venus, V; Earth, E; Mars, Ma has been calculated (here for the years 1868–2030. The author found these basic properties of this motion: the toroidal volume in which the Sun moves has the inner radius of 101.3 km and the outer radius of 808.2 km. The solar orbit due to the inner (terrestrial planets is "heart-shaped". The orbital points which are the closest to the centre lie at the time distance of 1.6 years (584 days, on the average, and approximately coincide with the moments of the oppositions of V and E. The spectrum of periods shows the dominant period of 1.6 years (V-E and further periods of 2.13 years (E-Ma (25.6 months, QBO, 0.91 years (V-Ma, 0.8 years ((V-E/2 and 6.4 years. All the periods are above the 99% confidence level. A possible connection of this solar motion with the mid-term quasi-periodicities (MTQP, i.e. 1.5–1.7 years in solar and solar-terrestrial indices can be proposed.

  18. Land motion due to 20th century mass balance of the Greenland Ice Sheet

    Science.gov (United States)

    Kjeldsen, K. K.; Khan, S. A.

    2017-12-01

    Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.

  19. Mid-Cretaceous polar standstill of the Americas and motion of the Atlantic hotspots

    Science.gov (United States)

    Somoza, R.

    2008-05-01

    The hotspot (HS) fixity axiom installed early in the plate tectonics as an attractive toll for geodynamic analyzes. In particular, a mid-Cretaceous discrepancy between fixed Indo-Atlantic hotspot and paleomagnetic reference frames has been interpreted as evidence for true polar wander (TPW). Recent paleomagnetic findings (C.B. Zaffarana, this session) indicate that the Americas rotated (with different angular rates) about the spin axis between 125 and at least 100 Ma. This kinematic-paleogeographic scenario points to failure of the above mentioned TPW hypothesis, suggesting that the mid-Cretaceous HS-paleomagnetic discrepancy is related to motion of the Atlantic hotspots. On the other hand, dated outcrops and seamounts in the >2000 km White Mountains - New England trail define a tight cluster with no clear age progression when observed in African coordinates, suggesting that the sub-lithospheric melting anomaly responsible for the New England chain moved little with respect to Africa between 120 and 80 Ma. However, small circles centered in the feeder of the New England seamounts as seen from Africa misfit the 120-80 Ma trend of the Walvis ridge in the African South Atlantic, arguing for ~1 cm/yr inter-Atlantic HS motion, which in turn represents about 30 % the rate of coeval full spreading in the Central Atlantic. These observations suggest that a scenario where sub-lithospheric melting anomalies move and deform in concert with flow in the surrounding mantle needs to be allowed for assaying tectonic and geodynamic models. In agreement with this, reconstruction of Cretaceous poles from the Americas with respect to the moving-hotspot framework developed by O´Neill et al. (G3 6 (4), 2005) reduced to a half the paleopole-spin axis offset observed in fixed-HS coordinates (R. Somoza and C.B. Zaffarana, EPSL, in revision), with the residual offset being similar than that is found when large datasets of Cenozoic poles are observed in moving-HS coordinates.

  20. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  1. A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    Science.gov (United States)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2008-01-01

    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  2. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  3. Polar Motion Studies and NOAA's Legacy of International Scientific Cooperation: Ukiah and Gaithersburg Latitude Observatories

    Science.gov (United States)

    Caccamise, D. J., II; Stone, W. A.

    2017-12-01

    In 1895, the International Geodetic Association invited the United States Coast and Geodetic Survey (USC&GS) to join in an unprecedented international effort to observe and measure the earth's polar motion. This effort was in response to the American astronomer Seth C. Chandler Jr. announcing his 1891 discovery that the earth's axis of rotation—and hence the direction of true north—wobbles within the earth with a period of about 14 months, varying latitude everywhere on the globe. In 1899, two astro-geodetic observatories were built in Gaithersburg, Maryland and Ukiah, California with three others in Caloforte, Italy; Kitab, Russia (now Uzbekistan); and Mizusawa, Japan. (A sixth station was located and operated at an astronomical observatory in Cincinnati, Ohio until 1916 using instruments loaned by USC&GS). All five observatories were located along the same parallel - approximately 35 degrees - 8 minutes. The observatories were decommissioned in 1982, and subsequently, NOAA deeded the two remaining U.S. observatories to the cities of Gaithersburg and Ukiah. The observatories and adjacent property were to be used as parkland. Both cities have restored the observatories and opened public parks. Recently, Gaithersburg (Ukiah in progress) has had its latitude observatory dedicated as a National Historic Landmark. In 2014-15, the National Geodetic Survey (NGS, the present-day NOAA successor to the USC&GS) loaned the original zenith telescopes to the communities, returning the observatories to their original configuration. The contribution of NOAA observers and the data collected is still important to astronomers and geophysicists and has practical applications in spacecraft navigation and geospatial positioning. This poster will bring to fruition this multiyear effort among partners by providing examples of NOAA's mission and contribution to science, service, and stewardship at both geodetic observatories, through programs and historic exhibits for students and the

  4. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.

    1992-01-01

    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  5. SAR wavefront reconstruction using motion-compensated phase history (polar format) data and DPCA-based GMTI

    Science.gov (United States)

    Soumekh, Mehrdad; Worrell, Steven W.; Zelnio, Edmund G.; Keaffaber, Brett L.

    2000-08-01

    This paper address the problem of processing an X-band SAR database that was originally intended for processing via a polar format imaging algorithm. In our approach, we use the approximation-free SAR wavefront reconstruction. For this, the measured and motion compensated phase history (polar format) data are processed in a multi-dimensional digital signal processing algorithm that yields alias-free slow-time samples. The resultant database is used for wavefront image formation. The X-band SAR system also provides a two channel along-track monopulse database. The alias-free monopulse SAR data are used in a coherent signal subspace algorithm for Ground Moving Target Indication (GMTI). Results are provided.

  6. Motion

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Motion is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind motion, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  7. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors

    Data.gov (United States)

    National Aeronautics and Space Administration — Daily ice motion vectors are computed from a wide variety of sensors ranging from passive microwave radiometers, such as the Scanning Multichannel Microwave...

  8. A Dynamic Model for Roll Motion of Ships Due to Flooding

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    1997-01-01

    approximation to the water flow process is derived on the basis of a numerical simulation which takes into account the influence of the air compression in the equalizing compartment and improves the formula given in the existing rules.The coupled air, water and roll motion are solved numerically and presented......A dynamic model is presented of the roll motion of damaged RoRo vessels which couples the internal cross-flooding flow and the air action in the equalizing compartment. The cross flooding flow and the air motion are modelled by a modified Bernoulli equation, where artificial damping is introduced...... a very large damage hole, implying that the water surface in the flooded compartment is always at the same level as the mean water surface.Ignoring roll motion, asymptotic and numerical solutions for the cross-flooding process and the associated air flow through the air pipe are obtained. A simple...

  9. Bias to CMB lensing reconstruction from temperature anisotropies due to large-scale galaxy motions

    Science.gov (United States)

    Ferraro, Simone; Hill, J. Colin

    2018-01-01

    Gravitational lensing of the cosmic microwave background (CMB) is expected to be amongst the most powerful cosmological tools for ongoing and upcoming CMB experiments. In this work, we investigate a bias to CMB lensing reconstruction from temperature anisotropies due to the kinematic Sunyaev-Zel'dovich (kSZ) effect, that is, the Doppler shift of CMB photons induced by Compton scattering off moving electrons. The kSZ signal yields biases due to both its own intrinsic non-Gaussianity and its nonzero cross-correlation with the CMB lensing field (and other fields that trace the large-scale structure). This kSZ-induced bias affects both the CMB lensing autopower spectrum and its cross-correlation with low-redshift tracers. Furthermore, it cannot be removed by multifrequency foreground separation techniques because the kSZ effect preserves the blackbody spectrum of the CMB. While statistically negligible for current data sets, we show that it will be important for upcoming surveys, and failure to account for it can lead to large biases in constraints on neutrino masses or the properties of dark energy. For a stage 4 CMB experiment, the bias can be as large as ≈15 % or 12% in cross-correlation with LSST galaxy lensing convergence or galaxy overdensity maps, respectively, when the maximum temperature multipole used in the reconstruction is ℓmax=4000 , and about half of that when ℓmax=3000 . Similarly, we find that the CMB lensing autopower spectrum can be biased by up to several percent. These biases are many times larger than the expected statistical errors. We validate our analytical predictions with cosmological simulations and present the first complete estimate of secondary-induced CMB lensing biases. The predicted bias is sensitive to the small-scale gas distribution, which is affected by pressure and feedback mechanisms, thus making removal via "bias-hardened" estimators challenging. Reducing ℓmax can significantly mitigate the bias at the cost of a decrease

  10. Jordan Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Science.gov (United States)

    Mota, R. D.; Xicoténcatl, M. A.; Granados, V. D.

    2004-02-01

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  11. Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Energy Technology Data Exchange (ETDEWEB)

    Mota, R D [Unidad Profesional Interdisciplinaria de IngenierIa y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico DF (Mexico); Xicotencatl, M A [Departamento de Matematicas del Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF, 07000 (Mexico); Granados, V D [Escuela Superior de FIsica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico)

    2004-02-20

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  12. The Growth, Polarization, and Motion of the Radio Afterglow from the Giant Flare from SGR 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G

    2005-04-20

    The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR1806-20, consisting of previously reported 8.5 GHz data covering days 7 to 20 after the GF, plus new observations at 8.5 and 22 GHz from day 24 to 81. For a symmetric outflow, we find a deceleration in the expansion, from {approx}4.5 mas/day to <2.5 mas/day. The time of deceleration is roughly coincident with the rebrightening in the radio light curve, as expected to result when the ejecta from the GF sweeps up enough of the external medium, and transitions from a coasting phase to the Sedov-Taylor regime. The radio afterglow is elongated and maintains a 2:1 axis ratio with an average position angle of -40{sup o} (north through east), oriented perpendicular to the average intrinsic linear polarization angle. We also report on the discovery of motion in the flux centroid of the afterglow, at an average velocity of 0.26 {+-} 0.03 c (assuming a distance of 15 kpc) at a position angle of -45{sup o}. This motion, in combination with the growth and polarization measurements, suggests an initially asymmetric outflow, mainly from one side of the magnetar.

  13. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  14. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  15. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  16. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a) 2 from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V 2 Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy β/m wall motion relative to the easy m/m motion of the A15's. For the V 2 Zr, a peak in delta is observed, qualitatively in agreement with expected β/m wall motion

  17. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    Energy Technology Data Exchange (ETDEWEB)

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the <100> directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a)/sup 2/ from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V/sub 2/Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy ..beta../m wall motion relative to the easy m/m motion of the A15's. For the V/sub 2/Zr, a peak in delta is observed, qualitatively in agreement with expected ..beta../m wall motion.

  18. Unusual motions due to nonlinear effects in a driven vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2005-09-01

    Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.

  19. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won

    2018-03-28

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  20. The rate of collisions due to Brownian or gravitational motion of small drops

    Science.gov (United States)

    Zhang, Xiaoguang; Davis, Robert H.

    1991-01-01

    Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.

  1. Fluid flow due to collective non-reciprocal motion of symmetrically-beating artificial cilia.

    Science.gov (United States)

    Khaderi, S N; den Toonder, J M J; Onck, P R

    2012-03-01

    Using a magneto-mechanical solid-fluid numerical model for permanently magnetic artificial cilia, we show that the metachronal motion of symmetrically beating cilia establishes a net pressure gradient in the direction of the metachronal wave, which creates a unidirectional flow. The flow generated is characterised as a function of the cilia spacing, the length of the metachronal wave, and a dimensionless parameter that characterises the relative importance of the viscous forces over the elastic forces in the cilia.

  2. Drift of the center of motion for a charged particle due to radiation effects

    International Nuclear Information System (INIS)

    Ares De Parga, G.; Mares, R.

    1999-01-01

    Through parametrization of the relativistic Larmor formula, one can find the trajectory of a charged particle in a uniform magnetic field. Simultaneously, there exists a drift of the center of curvature for the same. This effect is quantitatively compared with the predictions by other equations of motion, such as Dirac, Mo-Papas, Herrera, Bonnor and Cardirola and the one recently obtained by Hartemann and others. The paper proposes an experiment to verify the predicted effect, both qualitative and quantitative

  3. Dielectric polarization and electric field distortion due to heavy ions impinging on silicon detectors

    International Nuclear Information System (INIS)

    Parlog, M.; Wieleczko, J.P.; Parlog, M.; Hamrita, H.; Borderie, B.; Lavergne, L.; Rivet, M.F.

    2003-01-01

    The polarization of the electron-hole pairs induced by 80 MeV 12 C in a silicon detector was considered and connected to the relative dielectric permittivity, locally increased. The exact coordinate dependence of the modified electric field - inside and outside the ion range - was found as the solution of the one dimension Poisson's equation for the electric potential in this inhomogeneous medium. The improvement of the signal simulation is encouraging, as compared to an undisturbed electric field case. (authors)

  4. Single-Photon Interference due to Motion in an Atomic Collective Excitation

    Science.gov (United States)

    Whiting, D. J.; Šibalić, N.; Keaveney, J.; Adams, C. S.; Hughes, I. G.

    2017-06-01

    We experimentally demonstrate the heralded generation of bichromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats, a novel interference effect resulting from the relative motion of atoms in the CSE. A combination of velocity-selective excitation with strong laser dressing and the addition of a magnetic field allows for exquisite control of this collective beat phenomenon. The present experiment uses a diamond scheme with near-IR photons that can be extended to include telecommunications wavelengths or modified to allow storage and retrieval in an inverted-Y scheme.

  5. Coupled flap and edge wise blade motion due to a quadratic wind force definition

    International Nuclear Information System (INIS)

    Van der Male, P; Van Dalen, K N

    2014-01-01

    The wind force on turbine blades, consisting of a drag and lift component, depends nonlinearly on the relative wind velocity. This relative velocity comprises mean wind speed, wind speed fluctuations and the structural response velocity. The nonlinear wind excitation couples the flap wise and edge wise response of a turbine blade. To analyze this motion coupling, an isolated blade is modelled as a continuous cantilever beam and corresponding nonlinear expressions for the drag and lift force are defined. After reduction of the model on the basis of its principal modes, the nonlinear response up to the second order is derived with the help of a Volterra series expansion and the harmonic probing technique. This technique allows for response analysis in the frequency domain, via which the combined flap and edge wise responses can easily be visualized. As a specific case, the characteristics of the NREL5 turbine blades are adopted. For both non-operating and operating conditions, blade responses in a turbulent wave field, based on a Kaimal spectrum, are determined. The second-order responses are shown to cause additional motion coupling, and moreover, are proven not to be negligible straightforwardly

  6. Degradation of the z- resolution due to a longitudinal motion with a 64-channel CT scanner.

    Science.gov (United States)

    Grosjean, Romain; Sauer, Benoît; Guerra, Rui Matias; Blum, Alain; Felblinger, Jacques; Hubert, Jacques

    2007-01-01

    Isotropic acquisitions are routinely achievable with 64- channel CT scanners,. As it predecessors, it includes MultiPlanar Reformation (MPR) projection for the reconstruction of two-dimensional images and volume rendering for the creation of three dimensional images. The accuracy of images obtained with these postprocessing methods depends on the spatial resolution of image data acquired along the long axis of the patient (ie longitudinal, or z-inis spatial resolution). But physiologic motions can appear during a Computed Tomography (CT) exam and can leacd to a degradation of this spatial resolution. By using two different phantoms and a dynamic platform, we have studied the influence of a z-axis linear motion on the MPR images quality. Our results show that the corruption of the data results in the loss of information about the form, the contrast and/or the size of the scanned object. This corruption of data can lead to diagnostic errors by mimicking diseases or by masking physiologic details.

  7. Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics.

    Science.gov (United States)

    Shaw, A D; Champneys, A R; Friswell, M I

    2016-08-01

    Sudden onset of violent chattering or whirling rotor-stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.

  8. Ecohydrologic Changes due to Tree Expansion into Tundra in the Polar Urals, Russia

    Science.gov (United States)

    Ivanov, V. Y.; Wang, J.; El Sharif, H. A.; Liu, D.; Sheshukov, A. Y.; Mazepa, V.; Shiyatov, S.; Sokolov, A.

    2017-12-01

    The Arctic has been warming at an accelerating rate over the last several decades and the changing climate has caused the invasion of trees and shrubs into tundra across the polar regions of Alaska, Canada, and Russia. These vegetation changes may have the potential to impact regional hydrology and climate. This study aims to develop mechanistic and quantitative understanding of implications of forest encroachment into tundra. Specifically, for several areas with well-documented larch and spruce expansion in the Polar Urals and southern Yamal Peninsula of Russia over 1960-2010s, we hypothesize that the encroachment process alters the seasonality of energy budget characterized by enhanced total evapotranspiration and concomitant subsurface warming. We are collecting a comprehensive set of field observational data on micrometeorology, snow conditions, radiative fluxes, tree sap flows, soil temperature, moisture, and heat fluxes, and active layer thickness. A novel model of maximum entropy production (MEP) is used to derive the surface energy budgets as the partition of radiative fluxes into turbulent and conductive heat fluxes across the ecotone interface. We are presenting preliminary findings that illustrate the identified differences of seasonal snow and heat budget regimes for two contrasting sites: one of which has experienced a recent tree encroachment, while for the other this process has not yet occurred. Observed and modeled heat fluxes are used to inform a comprehensive physical model to study the impact of vegetation encroachment process on the permafrost dynamics.

  9. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  10. Irreversible particle motion in surfactant-laden interfaces due to pressure-dependent surface viscosity

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-09-01

    The surface shear viscosity of an insoluble surfactant monolayer often depends strongly on its surface pressure. Here, we show that a particle moving within a bounded monolayer breaks the kinematic reversibility of low-Reynolds-number flows. The Lorentz reciprocal theorem allows such irreversibilities to be computed without solving the full nonlinear equations, giving the leading-order contribution of surface pressure-dependent surface viscosity. In particular, we show that a disc translating or rotating near an interfacial boundary experiences a force in the direction perpendicular to that boundary. In unbounded monolayers, coupled modes of motion can also lead to non-intuitive trajectories, which we illustrate using an interfacial analogue of the Magnus effect. This perturbative approach can be extended to more complex geometries, and to two-dimensional suspensions more generally.

  11. Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with this code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.

  12. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2016-02-15

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  13. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    Science.gov (United States)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  14. Algorithm for calculating spectral intensity due to charged particles in arbitrary motion

    Directory of Open Access Journals (Sweden)

    A. G. R. Thomas

    2010-02-01

    Full Text Available An algorithm for calculating the spectral intensity of radiation due to the coherent addition of many particles with arbitrary trajectories is described. Direct numerical integration of the Liénard-Wiechert potentials, in the far field, for extremely high photon energies and many particles is made computationally feasible by a mixed analytic and numerical method. Exact integrals of spectral intensity are made between discretely sampled trajectories, by assuming the space-time four-vector is a quadratic function of proper time. The integral Fourier transform of the trajectory with respect to time, the modulus squared of which comprises the spectral intensity, can then be formed by piecewise summation of exact integrals between discrete points. Because of this, the calculation is not restricted by discrete sampling bandwidth theory and, hence, for smooth trajectories, time steps many orders larger than the inverse of the frequency of interest can be taken.

  15. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference

    Science.gov (United States)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-01

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n -band material.

  16. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    Science.gov (United States)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  17. Dynamic motions of floating nuclear plants (FNP) due to waves and earthquakes and feasibility studies on the FNP

    International Nuclear Information System (INIS)

    Sakakiyama, Tsutomu; Hagiwara, Yutaka; Ikeno, Masaaki; Tochigi, Hitoshi; Nakamura, Hideharu

    2002-01-01

    This report has summarized results on feasibility studies on floating nuclear plants (FNP). To extend siting options of the nuclear plants, the FNP is one of the most promising plants next to a siting technology on a man-made island because the FNP is effectively isolated from horizontal earthquake motions and designing plants is expected to be standardized irrelevant to ground conditions. One idea among those on the FNP is that the floating body is moored in a calm basin protected by breakwaters. Technical tasks on dynamic response of the floating body due to waves, wind and earthquakes were investigated using both physical model tests and numerical simulation models. It is required for the breakwaters to reduce a wave height inside the basin to 1.0 m. To reduce transmitted waves through the breakwater to a certain limited level under which the FNP's response to the waves is accepted, conventional rubble mound breakwaters do not function. Additional facilities such as sheet-pile type structure are required at the shallow water region. In deeper water sea, a caisson type breakwater work well to prohibit the transmitted waves. 2-D numerical simulation model was developed to estimate the wave motions in and near the breakwater. Dynamic motion of the FNP in short-crested waves joined to a dolphin-link mooring system was investigated using numerical simulation and physical model tests with multi-directional wave makers. Wind force acting the power plant was included together with the wave force. It is confirmed that under the design forces a magnitude of the FNP dynamic motion was smaller than the limited one to operate the nuclear plant. Displacement of the mooring system and its force were also smaller than the limited conditions. Because vertical earthquake motions on the FNP are almost the same as the ground motion, pneumatic chambers at the bottom of the barge are installed. It is evaluated by the solution that high frequency vertical acceleration greater than 1

  18. Bunch motion in the presence of the self-induced voltage due to a reactive impedance with RF off

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikova, E. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    Analytic self-consistent solutions have been found for the nonlinear Vlasov equation describing different types of behaviour with time of an intense bunch under the influence of voltage induced due to a reactive part of broad band impedance. The problem is solved for the particular type of the initial distribution function in longitudinal phase space which is elliptic and corresponds to parabolic line density. This paper is devoted to the consideration of the effects in the machine with RF off. In this case the induced voltage is changing with time and can significantly affect bunch motion. The same method applied in the case with RF on allows the time dependent effects of potential well distortion to be analysed. Numerical estimations for the CERN SPS show that effect of induced voltage is important for beam manipulations with RF off. Measurements of the change in the rate of debunching with intensity can be used to estimate the value of the reactive impedance. (author)

  19. Polar motions measurement study

    Science.gov (United States)

    Hanse, J.; Egli, W. H.; Ignagni, M.

    1984-09-01

    In this report we analyze the feasibility of subarc-second measurement of Earth crust warp and/or Earth spin axis deviation, in less than one day, using ring laser gyroscopes and accelerometers and/or tiltmeters. It is marginally feasible, using laser gyros equivalent to the Honeywell GG1389, either unidirectionally carouseled or with enhancement equivalent to the Honeywell closed-loop lockin correction (CLIC). Experimental results on the GG1389 show that input axis stability is more than adequate, and that its carouseled or CLIC-enhanced random drift and output resolution suffice marginally. Design and build of a one-axis feasibility demonstrator is recommended, using one CLIC-enhanced GG1389 ring laser gyro, two state-of-the-art tiltmeters, an Ultradex indexer, and a Hewlett-Packard micro-computer.

  20. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.

    Directory of Open Access Journals (Sweden)

    Kurt H Schütte

    Full Text Available Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS to the resultant vector RMS, step and stride regularity (autocorrelation procedure, and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05, decreased the anteroposterior step regularity (p < .05, and increased the anteroposterior sample entropy (p < .05 of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.

  1. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis.

    Science.gov (United States)

    Marshall, W F; Marko, J F; Agard, D A; Sedat, J W

    2001-04-17

    Mitosis involves the interaction of many different components, including chromatin, microtubules, and motor proteins. Dissecting the mechanics of mitosis requires methods of studying not just each component in isolation, but also the entire ensemble of components in its full complexity in genetically tractable model organisms. We have developed a mathematical framework for analyzing motion in four-dimensional microscopy data sets that allows us to measure elasticity, viscosity, and forces by tracking the conformational movements of mitotic chromosomes. We have used this approach to measure, for the first time, the basic biophysical parameters of mitosis in wild-type Drosophila melanogaster embryos. We found that Drosophila embryo chromosomes are significantly less rigid than the much larger chromosomes of vertebrates. Anaphase kinetochore force and nucleoplasmic viscosity were comparable with previous estimates in other species. Motion analysis also allowed us to measure the magnitude of the polar ejection force exerted on chromosome arms during metaphase by individual microtubules. We find the magnitude of this force to be approximately 1 pN, a number consistent with force generation either by collision of growing microtubules with chromosomes or by single kinesin motors. Motion analysis allows noninvasive mechanical measurements to be made in complex systems. This approach should allow the functional effects of Drosophila mitotic mutants on chromosome condensation, kinetochore forces, and the polar ejection force to be determined.

  2. Effects of atmospheric oscillations on the field-aligned ion motions in the polar F-region

    Directory of Open Access Journals (Sweden)

    S. Oyama

    in the F-region are thought to be due to the motion of neutrals.

    Key words: Ionosphere (Ionosphere–atmosphere interactions – Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  3. Strategies to reduce the systematic error due to tumor and rectum motion in radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Hoogeman, Mischa S.; Herk, Marcel van; Bois, Josien de; Lebesque, Joos V.

    2005-01-01

    Background and purpose: The goal of this work is to develop and evaluate strategies to reduce the uncertainty in the prostate position and rectum shape that arises in the preparation stage of the radiation treatment of prostate cancer. Patients and methods: Nineteen prostate cancer patients, who were treated with 3-dimensional conformal radiotherapy, received each a planning CT scan and 8-13 repeat CT scans during the treatment period. We quantified prostate motion relative to the pelvic bone by first matching the repeat CT scans on the planning CT scan using the bony anatomy. Subsequently, each contoured prostate, including seminal vesicles, was matched on the prostate in the planning CT scan to obtain the translations and rotations. The variation in prostate position was determined in terms of the systematic, random and group mean error. We tested the performance of two correction strategies to reduce the systematic error due to prostate motion. The first strategy, the pre-treatment strategy, used only the initial rectum volume in the planning CT scan to adjust the angle of the prostate with respect to the left-right (LR) axis and the shape and position of the rectum. The second strategy, the adaptive strategy, used the data of repeat CT scans to improve the estimate of the prostate position and rectum shape during the treatment. Results: The largest component of prostate motion was a rotation around the LR axis. The systematic error (1 SD) was 5.1 deg and the random error was 3.6 deg (1 SD). The average LR-axis rotation between the planning and the repeat CT scans correlated significantly with the rectum volume in the planning CT scan (r=0.86, P<0.0001). Correction of the rotational position on the basis of the planning rectum volume alone reduced the systematic error by 28%. A correction, based on the data of the planning CT scan and 4 repeat CT scans reduced the systematic error over the complete treatment period by a factor of 2. When the correction was

  4. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy

    International Nuclear Information System (INIS)

    Seppenwoolde, Yvette; Shirato, Hiroki; Kitamura, Kei; Shimizu, Shinichi; Herk, Marcel van; Lebesque, Joos V.; Miyasaka, Kazuo

    2002-01-01

    patients, shifts in the exhale tumor position were observed intra- and interfractionally. These shifts are the result of patient relaxation, gravity (posterior direction), setup errors, and/or patient movement. The 3D trajectory of the tumor showed hysteresis for 10 of the 21 tumors, which ranged from 1 to 5 mm. The extent of hysteresis and the amplitude of the tumor motion remained fairly constant during the entire treatment. Changes in shape of the trajectory of the tumor were observed between subsequent treatment days for only one patient. Fourier analysis revealed that for 7 of the 21 tumors, a measurable motion in the range 1-4 mm was caused by the cardiac beat. These tumors were located near the heart or attached to the aortic arch. The motion due to the heartbeat was greatest in the lateral direction. Tumor motion due to hysteresis and heartbeat can lower treatment efficiency in real-time tumor tracking-gated treatments or lead to a geographic miss in conventional or active breathing controlled treatments. Conclusion: The real-time tumor tracking system measured the tumor position in all three directions simultaneously, at a sampling rate that enabled detection of tumor motion due to heartbeat as well as hysteresis. Tumor motion and hysteresis could be modeled with an asymmetric function with varying asymmetry. Tumor motion due to breathing was greatest in the cranial-caudal direction for lower-lobe unfixed tumors

  5. Polarization transfer in x-ray transitions due to photoionization in highly charged copper-like ions

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong

    2018-02-01

    Using the density matrix theory and the multi-configuration Dirac-Fock method, the 3{d}3/2 subshell photoionization of highly charged ions is studied, together with their subsequent radiative decay. The effects of polarization transfer on the linear polarization and angular distribution of the 3{d}94{s}2{}2{D}3/2\\to 3{d}104p{}2{P}1/2 characteristic line photoemission for selected Cu-like Zn+, Ba27+, {{{W}}}45+, and {{{U}}}63+ ions are investigated. Our results show that the polarization transfer, arising from the originally polarized incident light, may lead to a considerable change in the alignment parameters and the polarization properties of the radiation, the character of which is highly sensitive to the initial photon polarization, yet virtually independent of the photon energy. These characteristics are very similar to those of the electron bremsstrahlung process reported by Märtin et al (2012 Phys. Rev. Lett. 108 264801). The present results are compared with available experimental results and show a good quantitative agreement.

  6. Polar motion as boundary condition in an adaptive Kalman filter approach for the determination of period and damping of the Chandler oscillation

    Science.gov (United States)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-12-01

    Earth rotation has been monitored using space geodetic techniques since many decades. The geophysical interpretation of observed time series of Earth rotation parameters (ERP) polar motion and length-of-day is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  7. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2005-12-01

    Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.

  8. Jurassic–Cretaceous low paleolatitudes from the circum-Black Sea region Crimea and Pontides) due to True Polar Wander

    NARCIS (Netherlands)

    Meijers, M.J.M.; Langereis, C.G.; van Hinsbergen, D.J.J.; Kaymakcl, N.; Stephenson, R.A.

    2010-01-01

    In a recent study, paleomagnetic and paleoenvironmental data from Adria (as part of the African plate) suggest a trend toward much lower (~15°) latitudes from Early Jurassic to Earliest Cretaceous at the position of Adria than suggested by the apparent polar wander (APW) paths. The smoothing of

  9. Changes in Upper Extremity Range of Motion and Efficiency in Multiple Sclerosis Patients Due to Water Activity.

    Science.gov (United States)

    Duthie, Pamela Rae

    To determine the effects of water exercise on the movements of multiple sclerosis patients, this study utilized tests to determine changes in the linear range of motion of the shoulder, elbow, and wrist after a 45-minute period of water activities and to determine if the movement became more effective. The test used was an overhead throw with a…

  10. Emittance Growth of the LHC Beam due to the Effect of Head-on Beam-Beam Interaction and Ground Motion

    CERN Document Server

    Sen, T

    2000-01-01

    The influence of ground motion on the LHC beam is estimated by applying the existing theories of particle diffusion due to a weak-strong beam-beam collision with random offset at the interaction point. Noise at odd harmonics of the betatron frequency contributes significantly to particle diffusion. Extrapolating the characteristics of the random offset from the ground motion spectrum at the LHC site shows a fast fall-off with frequency and the amplitude is very small even at the first harmonic. We find that the head-on beam-beam force in the weak-strong approximation and ground motion by themselves do not induce significant diffusion over the lifetime of the beam.

  11. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  12. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  13. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f.i.r. search for low energy traps. Progress report

    International Nuclear Information System (INIS)

    1981-01-01

    Progress is reported on experiments aimed at the measurement of the Hall mobility of injected electrons in classical non polar insulating liquids and the optical absorption associated with electrons captured by shallow traps in the liquefied rare gases. Theoretical work aimed at a better understanding of the trapping kinetics of electrons by SF 6 and O 2 dissolved in rare gas liquids was also carried out. Its conclusion is that the electric field dependence of the trapping probability can be explained, basically without adjustable parameters, by considering the Poole-Frenkel-Schotky ionization of the excited state of the traps. From the analysis of published data on the motion of electrons in liquid ethane it is tentatively concluded that at low temperatures the trapping of electrons in the liquid involves a Jahn-Teller like distortion of a single ethane molecule while at higher temperatures it is necessary to consider a small molecular cluster, possibly made up of 2 molecules

  14. An optical investigation of dentinal discoloration due to commonly endodontic sealers, using the transmitted light polarizing microscopy and spectrophotometry.

    Science.gov (United States)

    Suciu, Ioana; Ionescu, Ecaterina; Dimitriu, Bogdan Alexandru; Bartok, Ruxandra Ioana; Moldoveanu, Georgiana Florentina; Gheorghiu, Irina Maria; Suciu, Ileana; Ciocîrdel, Mihai

    2016-01-01

    The aim of this study was to establish the degree of tooth crown staining by commonly used endodontic sealers. Crown discolorations by tooth canal sealers [AH Plus (Dentsply DeTrey Gmbh, Konstanz, Germany); Endofill (Produits Dentaires SA, Vevey, Switzerland); Apexit (Dentsply DeTrey Gmbh, Konstanz, Germany); and MTA Fillapex (Angelus, Londrina, Brazil)] were tested on extracted human premolars. The samples were divided into five groups of five samples each, after root canal sealing. Five teeth were used as control groups. The spectrophotometric method was performed in order to quantify in terms of color change of the coronal part (it was also recorded a track on how the color changes over time). For the microscopic study of the extracted dental specimens subjected to this study, polarized transmitted light microscopy was used. This method involves the development of special microscopic preparations, called "thin sections". In our case, the thin section was performed on 20 prepared and obturated recently extracted teeth. The degree of discoloration was determined after one week and three months using spectrophotometry and polarized light microscopy. All sealers usually cause some degree of discoloration on the cervical aspect of the crowns that increases in time. AH Plus and Endofill caused the greatest discoloration, followed by Apexit and MTA Fillapex.

  15. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  16. Motions of CMS Detector structures due to the magnetic field forces as observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    CERN Document Server

    Calderón, Alicia; González-Sánchez, F J; Martínez-Rivero, C; Matorras, Francisco; Rodrigo, Teresa; Martínez, P; Scodellaro, Luca; Sobrón, M; Vila, Ivan; Virto, A L; Alberdi, Javier; Arce, Pedro; Barcala, Jose Miguel; Calvo, Enrique; Ferrando, Antonio; Josa-Mutuberria, I; Molinero, Antonio; Navarrete, Jose Javier; Oller, Juan Carlos; Yuste, Ceferino

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  17. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    International Nuclear Information System (INIS)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L.; Sobron, M.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.

    2009-01-01

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  18. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery

    International Nuclear Information System (INIS)

    Vedam, S.; Docef, A.; Fix, M.; Murphy, M.; Keall, P.

    2005-01-01

    The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the

  19. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion

    International Nuclear Information System (INIS)

    Yu Mingzhou; Lin Jianzhong; Jin Hanhui; Jiang Ying

    2011-01-01

    The closure of moment equations for nanoparticle coagulation due to Brownian motion in the entire size regime is performed using a newly proposed method of moments. The equations in the free molecular size regime and the continuum plus near-continuum regime are derived separately in which the fractal moments are approximated by three-order Taylor-expansion series. The moment equations for coagulation in the entire size regime are achieved by the harmonic mean solution and the Dahneke’s solution. The results produced by the quadrature method of moments (QMOM), the Pratsinis’s log-normal moment method (PMM), the sectional method (SM), and the newly derived Taylor-expansion moment method (TEMOM) are presented and compared in accuracy and efficiency. The TEMOM method with Dahneke’s solution produces the most accurate results with a high efficiency than other existing moment models in the entire size regime, and thus it is recommended to be used in the following studies on nanoparticle dynamics due to Brownian motion.

  20. Analytic solution of perturbed motion in near-circular orbit due to air drag from a rotating oblate atmosphere with day-to-night density variation

    Science.gov (United States)

    Kechichian, Jean Albert

    The analytic treatment of the atmospheric drag perturbation effect on the motion of a spacecraft in a low, near-circular orbit with arbitrary inclination energy and perigee location is presented. Due to the oblateness of the Earth it is assumed that the surfaces of constant density are spheroidal with the same flattening as the Earth. Furthermore, these constant density contours are assumed to form a bulge that lags behind the sun by about 2 h. Assuming an exponential decay law with radial distance from the Earth center for the air density ϱ, a constant scale height and a uniform rotation rate for the atmosphere as well as a sinusoidal variation of ϱ with angular distance ∅ between the spacecraft and the center of the diurnal bulge, a suitable expression for ϱ is derived in terms of the true anomaly which is then converted to a function of time as measured from any arbitrarily selected initial epoch on the near-circular orbit. Analytic expressions for the air relative velocity vector and its magnitude are also obtained and the acceleration vector due to drag is formed, from which radial tangential and out-of-plane components are derived. These components are then used to drive the linearized Euler-Hill equations of motion yielding thereby in the rotating frame attached to a reference circular orbit the six position and velocity components of the state vector in closed form as a function of time.

  1. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion

    Science.gov (United States)

    Yu, Mingzhou; Lin, Jianzhong; Jin, Hanhui; Jiang, Ying

    2011-05-01

    The closure of moment equations for nanoparticle coagulation due to Brownian motion in the entire size regime is performed using a newly proposed method of moments. The equations in the free molecular size regime and the continuum plus near-continuum regime are derived separately in which the fractal moments are approximated by three-order Taylor-expansion series. The moment equations for coagulation in the entire size regime are achieved by the harmonic mean solution and the Dahneke's solution. The results produced by the quadrature method of moments (QMOM), the Pratsinis's log-normal moment method (PMM), the sectional method (SM), and the newly derived Taylor-expansion moment method (TEMOM) are presented and compared in accuracy and efficiency. The TEMOM method with Dahneke's solution produces the most accurate results with a high efficiency than other existing moment models in the entire size regime, and thus it is recommended to be used in the following studies on nanoparticle dynamics due to Brownian motion.

  2. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion.

    Science.gov (United States)

    Hu, Pengcheng; Mao, Shuai; Tan, Jiu-Bin

    2015-11-02

    A measurement system with three degrees of freedom (3 DOF) that compensates for errors caused by incident beam drift is proposed. The system's measurement model (i.e. its mathematical foundation) is analyzed, and a measurement module (i.e. the designed orientation measurement unit) is developed and adopted to measure simultaneously straightness errors and the incident beam direction; thus, the errors due to incident beam drift can be compensated. The experimental results show that the proposed system has a deviation of 1 μm in the range of 200 mm for distance measurements, and a deviation of 1.3 μm in the range of 2 mm for straightness error measurements.

  3. Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Science.gov (United States)

    Hirabayashi, Masatoshi; Schwartz, Stephen R.; Yu, Yang; Davis, Alex B.; Chesley, Steven R.; Fahnestock, Eugene G.; Michel, Patrick; Richardson, Derek C.; Naidu, Shantanu P.; Scheeres, Daniel J.; Cheng, Andrew F.; Rivkin, Andrew S.; Benner, Lance A. M.

    2017-12-01

    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ∼0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.

  4. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Bao Xiaoyi; Zhang Chunshu; Li Wenhai; Eisa, M; El-Gamal, S; Benmokrane, B

    2008-01-01

    For the first time to our knowledge, distributed impact waves due to the highway traffic on concrete slabs reinforced with FRP bars are monitored in real time using stimulated Brillouin scattering. The impact wave is caused by the traffic passing on the highway pavement at high speed (>100 km h −1 ), which induced pressure on the concrete slabs, and in turn created a local birefringence change, leading to variation of the local state of polarization change (SOP). The pump and probe waves of the stimulated Brillouin scattering 'see' the SOP change and react with a decrease of the Brillouin gain or loss signal, when the pump and probe waves have the same input polarization state. The frequency difference between the pump and probe waves are locked at the static-strain-related Brillouin frequency. Optical fiber was embedded throughout the concrete pavement continuously reinforced with FRP bars in Highway 40 East, Montréal, Quebec to detect impact waves caused by cars and trucks passing on these pavements at a sampling rate of 10 kHz. A spatial resolution of 2 m was used over a sensing length of 300 m

  5. Paleozoic structure of Middle Tien Shan (Kyrgyzstan Central Asian Orogenic Belt): Insights on the polarity and timing of tectonic motions, subductions, and lateral correlations

    Science.gov (United States)

    Jourdon, Anthony; Loury, Chloé; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    The structure and Palaeozoic tectonic evolution in Kyrgyz and Chinese Tien Shan Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are numerous and conflicting models about the polarity of tectonic motions in the Paleozoic, the number of continental blocks and oceanic basins involved and the timing of tectonic events. In this study we propose new maps and structural cross-sections of Middle and South Kyrgyz Tien Shan (TS). These cross-sections allow us to highlight an overall South-verging structure in the Middle TS, with a thick-skin style involving the crystalline basement. This deformation occurred during the Early Carboniferous, and is sealed by an Upper Carboniferous unconformity. We ascribe this structure to an Upper Plate deformation linked to north-dipping subduction below Middle TS. In contrast, the South TS exhibits a north-verging structure, linked to south-dipping subduction, which is evidenced by an accretionary prism, a volcanic arc, and high-pressure rocks (Loury et al., 2015), and is correlated to similar structures in the Chinese TS (e.g., Charvet et al., 2011). Based on these observations, we propose a new interpretation of the tectonic evolution of the Middle and South TS CAOB. The resulting model comprises a long-lived north-dipping subduction of the Turkestan Ocean below the Middle TS-Karazakh Platform and a short-lived south-dipping subduction of a marginal back-arc basin below the Tarim. Consequently, the South TS is interpreted as a rifted block from the Tarim. Finally, the docking of the large Tarim Craton to the CAOB corresponds to a rapid collision phase (320-300 Ma). This put an end to the long-lived Paleozoic subduction history in the CAOB. Charvet, J., Shu, L., et al., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54, 166-184. Loury, C. , Rolland, Y., Guillot S., Mikolaichuk, A.V., Lanari, P., Bruguier, O., D.Bosch, 2015. Crustal-scale structure of South Tien Shan

  6. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  7. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  8. Angle-dependent rotation of calcite in elliptically polarized light

    Science.gov (United States)

    Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.

    2017-08-01

    Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.

  9. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f.i.r. search for low energy traps: progress report

    International Nuclear Information System (INIS)

    1981-01-01

    During the last year the first measurements were obtained of the Hall mobility of electrons injected in an insulating non polar liquid (tetramethyl silane). The resulting Hall mobility appears to be approx. 10% higher than the drift mobility measured on the same sample. We are completing a data acquisition system to be able to correct for several experimental errors that became apparent due, e.g., to the random fluctuations of accelerator current, the nonhomogeneity of the applied electric fields, etc. Theoretical work aimed at the understanding of the observed electric field induced increase of the electron capture rate constant by N 2 O dissolved in Ar and Xe was carried out. Similarly to the conclusions reached in the case of O 2 and SF 6 the Stark effect is responsible for the electric field induced changes of the capture probability. Finally a large portion of the equipment necessary for the f.i.r. photoconductivity experiment was constructed. During its testing it became obvious that changes of design were needed because the major source of noise is not expected to be detector noise but instead, shot noise associated with the main electron current

  10. Theoretical Analysis of Thermal Transport in Graphene Supported on Hexagonal Boron Nitride: The Importance of Strong Adhesion Due to π -Bond Polarization

    Science.gov (United States)

    Pak, Alexander J.; Hwang, Gyeong S.

    2016-09-01

    One important attribute of graphene that makes it attractive for high-performance electronics is its inherently large thermal conductivity (κ ) for the purposes of thermal management. Using a combined density-functional theory and classical molecular-dynamics approach, we predict that the κ of graphene supported on hexagonal boron nitride (h -BN) can be as large as 90% of the κ of suspended graphene, in contrast to the significant suppression of κ (more than 70% reduction) on amorphous silica. Interestingly, we find that this enhanced thermal transport is largely attributed to increased lifetimes of the in-plane acoustic phonon modes, which is a notable contrast from the dominant contribution of out-of-plane acoustic modes in suspended graphene. This behavior is possible due to the charge polarization throughout graphene that induces strong interlayer adhesion between graphene and h -BN. These findings highlight the potential benefit of layered dielectric substrates such as h -BN for graphene-based thermal management, in addition to their electronic advantages. Furthermore, our study brings attention to the importance of understanding the interlayer interactions of graphene with layered dielectric materials which may offer an alternative technological platform for substrates in electronics.

  11. Fermi liquid of two-dimensional polar molecules

    NARCIS (Netherlands)

    Lu, Z.K; Shlyapnikov, G.V.

    2012-01-01

    We study Fermi-liquid properties of a weakly interacting two-dimensional gas of single-component fermionic polar molecules with dipole moments d oriented perpendicularly to the plane of their translational motion. This geometry allows the minimization of inelastic losses due to chemical reactions

  12. The Large Scale Structure: Polarization Aspects R. F. Pizzo

    Indian Academy of Sciences (India)

    polarized filaments at the borders of the central radio halo. ... Halo models can be grouped in two main classes: (i) primary models, where electrons undergo in-situ acceleration by turbulent gas motion or by shocks (e.g. Brunetti et al. ..... location of the filaments, therefore, should be considered as due to a projection effect.

  13. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  14. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field

    International Nuclear Information System (INIS)

    Gomez R, F.; Ondarza R, R.

    2004-01-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  15. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  16. The CMS Experiment: on and under Ground Motions of Structures Due to the Magnetic Field Forces as Observed by the Link Alignment System

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, J.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M. G.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Ribero, C.; Matorras, F.; Rodrigo, T.; Rui-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.; Fernandez, J.

    2010-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.

  17. The CMS Experiment: on and under Ground Motions of Structures Due to the Magnetic Field Forces as Observed by the Link Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, J.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M. G.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Ribero, C.; Matorras, F.; Rodrigo, T.; Rui-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.; Fernandez, J.

    2010-05-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.

  18. The development of a wide band dynamic polarization spectrometer. Applications to the study of spectra due to electronic spin interactions with free nitroxide radicals in the solid phase

    International Nuclear Information System (INIS)

    Jouve, Hubert

    1970-01-01

    A dynamic polarization spectrometer working over the 2-8 GHz range is described. An inverse and anisotropic Overhauser effect is obtained with nitroxide free radicals in the solid phase. This effect is studied as a function of the frequency for a group of nitroxide free radicals which exhibit very different exchange interactions. The results show that the effective spectral density of the interactions between electronic spins is very intense at low frequencies. At low temperature a considerable decrease in the effect is observed. This is explained by a saturation of the exchange reservoir. (author) [fr

  19. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  20. Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves.

    Science.gov (United States)

    Averkov, Yu O; Yakovenko, V M; Yampol'skii, V A; Nori, Franco

    2012-07-13

    We predict a complete TM↔TE transformation of the polarization of terahertz electromagnetic waves reflected from a strongly anisotropic boundary of a layered superconductor. We consider the case when the wave is incident on the superconductor from a dielectric prism separated from the sample by a thin vacuum gap. The physical origin of the predicted phenomenon is similar to the Wood anomalies known in optics and is related to the resonance excitation of the oblique surface waves. We also discuss the dispersion relation for these waves, propagating along the boundary of the superconductor at some angle with respect to the anisotropy axis, as well as their excitation by the attenuated-total-reflection method.

  1. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  2. Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Science.gov (United States)

    Hirabayashi, M.; Schwartz, S. R.; Yu, Y.; Davis, A. B.; Chesley, S. R.; Fahnestock, E.; Michel, P.; Richardson, D. C.; Naidu, S.; Scheeres, D. J.; Cheng, A. F.; Rivkin, A.; Benner, L.

    2017-12-01

    (65803) Didymos is a binary near-Earth asteroid that consists of a top-shaped primary body rotating at a spin period of 2.26 hr and a secondary body orbiting around it at an orbital period of 11.92 hr. This asteroid is the target of the proposed NASA Double Asteroid Redirection Test (DART), which is part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. The goal of DART is to impact the secondary with the spacecraft and measure the momentum transfer by observing the perturbation of the orbital period of the system after the impact. Achieving this goal requires careful accounting for physical uncertainties that prevent accurate measurement of the momentum transfer. Here, we examine a scenario that might affect the momentum transfer measurement and a possible solution to avoiding issues due to this scenario. The primary's spin period is close to the spin barrier of rubble-pile asteroids, i.e., 2.3 hr. Also, some particles ejected from the secondary due to the DART impact may reach the primary and induce landslides or internal deformation of the primary, changing the gravity field. We have developed a numerical simulation technique for investigating how the mutual orbit of the system varies due to symmetric shape deformation of the primary along its spin axis after the DART impact. We find that if the deformation process occurs, the orbital period can change significantly, depending on the magnitude of the shape deformation. The mission currently plans a nearly head-on collision of the DART impactor with the secondary, making the orbital period of the system shorter. Our simulations show that since the deformation process always causes the primary to become more oblate, it shortens the orbital period as well. We also propose precise measurement of the primary's spin state to determine the deformation of the primary. This relies on the fact that any deformation process changes the spin state of the primary consistent with angular momentum

  3. Elastic passive source localization using rotational motion

    Science.gov (United States)

    Li, Zhenhua; van der Baan, Mirko

    2017-11-01

    As a complement to traditional particle velocity recordings, rotational motion provides information on the spatial gradient of particle displacement motion which aids in imaging passive sources using elastic waves. Event localization is for instance important in earthquake seismology and detection of microseismic events during hydraulic fracturing treatments of hydrocarbon reservoirs or injection of carbon dioxide (CO2) in depleted reservoirs. We propose an elastic reverse time extrapolation technique for passive event localization incorporating a new representation-theorem-based expression that explicitly uses recordings from rotational and particle velocity sensors either simultaneously or separately, leading to enhanced imaging results. We also introduce a novel focusing criterion based on the energy flux which is insensitive to polarity reversals due to non-isotropic source mechanisms. Energy flux combined with the Hough transform leads to a convenient and stable criterion for automatically detecting both event locations and origin times.

  4. Motion sickness

    NARCIS (Netherlands)

    Bles, Willem; Bos, Jelte E.; Kruit, Hans

    2000-01-01

    The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations

  5. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  6. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  7. Fuzzy/Kalman Hierarchical Horizontal Motion Control of Underactuated ROVs

    Directory of Open Access Journals (Sweden)

    Francesco M. Raimondi

    2010-06-01

    Full Text Available A new closed loop fuzzy motion control system including on-line Kalman's filter (KF for the two dimensional motion of underactuated and underwater Remotely Operated Vehicle (ROV is presented. Since the sway force is unactuated, new continuous and discrete time models are developed using a polar transformation. A new hierarchical control architecture is developed, where the high level fuzzy guidance controller generates the surge speed and the yaw rate needed to achieve the objective of planar motion, while the low level controller gives the thruster surge force and the yaw torque control signals. The Fuzzy controller ensures robustness with respect to uncertainties due to the marine environment, forward surge speed and saturation of the control signals. Also Lyapunov's stability of the motion errors is proved based on the properties of the fuzzy maps. If Inertial Measurement Unit data (IMU is employed for the feedback directly, aleatory noises due to accelerometers and gyros damage the performances of the motion control. These noises denote a kind of non parametric uncertainty which perturbs the model of the ROV. Therefore a KF is inserted in the feedback of the control system to compensate for the above uncertainties and estimate the feedback signals with more precision.

  8. Fuzzy/Kalman Hierarchical Horizontal Motion Control of Underactuated ROVs

    Directory of Open Access Journals (Sweden)

    Francesco M. Raimondi

    2010-09-01

    Full Text Available A new closed loop fuzzy motion control system including on-line Kalman's filter (KF for the two dimensional motion of underactuated and underwater Remotely Operated Vehicle (ROV is presented. Since the sway force is unactuated, new continuous and discrete time models are developed using a polar transformation. A new hierarchical control architecture is developed, where the high level fuzzy guidance controller generates the surge speed and the yaw rate needed to achieve the objective of planar motion, while the low level controller gives the thruster surge force and the yaw control signals. The Fuzzy controller ensures robustness with respect to uncertainties due to the marine environment, forward surge speed and saturation of the control signals. Also Lyapunov's stability of the motion errors is proved based on the properties of the fuzzy maps. If Inertial Measurement Unit data (IMU is employed for the feedback directly, aleatory noises due to accelerometers and gyros damage the performances of the motion control. These noises denote a king of non parametric uncertainty which perturbs the model of the ROV. Therefore a KF is inserted in the feedback of the control system to compensate for the above uncertainties and estimate the feedback signals with more precision.

  9. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  10. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  11. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    described the motions of the Moon, including the orientation and precession of its spin axis rela- tive to its orbit and the plane of the ecliptic. The Moon's polar axis is inclined only about one- and-a-half degrees from the ecliptic pole, with the result that sunlight is nearly continuous and always horizontal in lunar polar regions.

  12. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  13. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal.

    Science.gov (United States)

    Mao, Xinhua; Zhu, Daiyin; Nie, Xin; Zhu, Zhaoda

    2008-05-26

    In this work, a 2-D subaperture polar format algorithm (PFA) based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.

  14. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal

    Directory of Open Access Journals (Sweden)

    Zhaoda Zhu

    2008-05-01

    Full Text Available In this work, a 2-D subaperture polar format algorithm (PFA based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.

  15. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal

    OpenAIRE

    Mao, Xinhua; Zhu, Daiyin; Nie, Xin; Zhu, Zhaoda

    2008-01-01

    In this work, a 2-D subaperture polar format algorithm (PFA) based on stepped-chirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has valid...

  16. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    Science.gov (United States)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  17. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  18. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  19. Polarization properties of optical phase conjugation by two-photon resonant degenerate four-wave mixing

    Science.gov (United States)

    Kauranen, Martti; Gauthier, Daniel J.; Malcuit, Michelle S.; Boyd, Robert W.

    1989-08-01

    We develop a semiclassical theory of the polarization properties of phase conjugation by two-photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medium consisting of stationary atoms with a ground and excited state connected by two-photon transitions. As an illustration of the general results, we consider an S0-->S0 two-photon transition, which is known to lead to perfect polarization conjugation in the limit of third-order theory. We show that the fidelity of the polarization-conjugation process is degraded for excessively large pump intensities. The degradation can occur both due to transfer of population to the excited state and due to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Malcuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

  20. Contrast configuration influences grouping in apparent motion.

    Science.gov (United States)

    Ma-Wyatt, Anna; Clifford, Colin W G; Wenderoth, Peter

    2005-01-01

    We investigated whether the same principles that influence grouping in static displays also influence grouping in apparent motion. Using the Ternus display, we found that the proportion of group motion reports was influenced by changes in contrast configuration. Subjects made judgments of completion of these same configurations in a static display. Generally, contrast configurations that induced a high proportion of group motion responses were judged as more 'complete' in static displays. Using a stereo display, we then tested whether stereo information and T-junction information were critical for this increase in group motion. Perceived grouping was consistently higher for same contrast polarity configurations than for opposite contrast polarity configurations, regardless of the presence of stereo information or explicit T-junctions. Thus, while grouping in static and moving displays showed a similar dependence on contrast configuration, motion grouping showed little dependence on stereo or T-junction information.

  1. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  2. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  3. Acceleration of Polarized Protons to High Energy

    International Nuclear Information System (INIS)

    Roser, T.

    1999-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian Snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian Snakes and polarimeters are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  4. Precision Analytical Calculation of Geodynamical Effects on Satellite Motion

    Science.gov (United States)

    Kudryavtsev, Sergey M.

    2002-04-01

    A new analytical method for calculating satellite orbital perturbations due to different disturbing forces is developed. It is based on the Poincaré method of small parameter but takes advantages of modern high-performance computers and of the tools of computer algebra. All perturbations proportional up to and including the 5th-order of small parameters are obtained. The method can precisely calculate the effects of all geodynamical forces on satellite motion given by the most up-to-date IAU and IERS models, such as non-central Earth gravity potential, precession and nutation of the geoequator, polar motion and irregularities in the Earth's rotation, effect of ocean and solid Earth tides, pole tide, and secular variations of gravity coefficients.

  5. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  6. Two processes in stereoscopic apparent motion.

    Science.gov (United States)

    Ito, H

    1999-08-01

    This study investigated the human ability to discriminate the motion direction of sequentially presented depth patterns produced by random-dot stereograms. The stereoscopic (cyclopean) patterns used here consisted of 256 rectangle patches, each of which had an alternative depth position (near or far). Two successive frames of correlated depth patterns made impressions of lateral motion when the pattern position in the second frame shifted laterally. The density of the patches that were near was varied. The Dmax that was measured using the 2AFC method was short when the density was high. The effect of depth reversing in the second frame was also tested. Under low density conditions, the performance was still good against reversing 3-D polarity. However, when the density was high, with depth reversal, motion in the reversed direction was perceived. Reversed motion was observed more often when SOA was small and when the density of near patches was near 1/2. Two strategies seem to exist in stereoscopic motion detecting: a polarity-independent process which matches figures, ignoring their depth polarity, and a polarity-dependent process which operates locally, ignoring 2-D shapes. The latter suggests the existence of a passive process in stereoscopic motion.

  7. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  8. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  9. Sunspots and Their Simple Harmonic Motion

    Science.gov (United States)

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  10. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  11. Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

    Science.gov (United States)

    Janda, T.; Roy, P. E.; Otxoa, R. M.; Šobáň, Z.; Ramsay, A.; Irvine, A. C.; Trojanek, F.; Surýnek, M.; Campion, R. P.; Gallagher, B. L.; Němec, P.; Jungwirth, T.; Wunderlich, J.

    2017-05-01

    Domain wall motion driven by ultra-short laser pulses is a pre-requisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study, we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin-transfer torque acts over a picosecond recombination time of the spin-polarized photo-carriers that only leads to a deformation of the initial domain wall structure. We show that subsequent depinning and micrometre-distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall.

  12. Cross-polarization applied to the study of liquid crystalline ordering

    CERN Document Server

    Ramanathan, K V

    2002-01-01

    Cross polarization is extensively used in solid state NMR for enhancing signals of nuclei with low gyromagnetic ratio. However, the use of the method for providing quantitative structural and dynamics information is limited. This arises due to the fact that the mechanism which is responsible for cross polarization namely, the dipolar interaction, has a long range and is also anisotropic. In nematic liquid crystals these limitations are easily overcome since molecules orient in a magnetic field. The uniaxial ordering of the molecules essentially removes problems associated with the angular dependence of the interactions encountered in powdered solids. The molecular motion averages out intermolecular dipolar interaction, while retaining partially averaged intramolecular interaction. In this article the use of cross polarization for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment were considered and their util...

  13. VIIRS/J1 polarization narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith R.; Young, James B.; Fest, Eric; Butler, James; Wang, Tung R.; Monroy, Eslim O.; Turpie, Kevin; Meister, Gerhard; Thome, Kurtis J.

    2015-09-01

    The polarization sensitivity of the Visible/NearIR (VISNIR) bands in the Joint Polar Satellite Sensor 1 (J1) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5 %, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4 %, 4.4 %, 3.1 %, and 4.3 %, respectively with a polarization characterization uncertainty of less than 0.38%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands is mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at the National Aeronautics and Space Administration's (NASA) Goddard center and at the National Institute of Science and Technology (NIST) facility and the use of NIST's Traveling Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (T-SIRCUS) for polarization testing and associated analyses and results.

  14. VIIRS-J1 Polarization Narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith; Butler, James; Meister, Gerhard; Thome, Kurtis J.

    2015-01-01

    The VIS/NIR bands polarization sensitivity of Joint Polar Satellite Sensor 1 (JPSS1) Visible/Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5%, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4%, 4.4%, 3.1%, and 4.3%, respectively with a polarization characterization uncertainty of less than 0.3%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands was mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the instruments two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at Goddard and NIST and the use of NIST's T-SIRCUS for polarization testing and associated analyses and results.

  15. Geomagnetic polarity transitions

    Science.gov (United States)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem

  16. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  17. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  18. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  19. Polarization bremsstrahlung in α decay

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Zon, B. A.; Kretinin, I. Yu.

    2007-01-01

    A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay

  20. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field

    International Nuclear Information System (INIS)

    Gomez R, F.; Ondarza R, R.

    2004-01-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  1. Complex susceptibility of the cage model of polar liquids

    CERN Document Server

    Coffey, W T; Kalmykov, Yu P; Titov, S V

    2003-01-01

    The Langevin equations of motion of the cage model of polar liquids originally proposed by Hill (1963 Proc. Phys. Soc. 82 723) are solved for the first time for the particular case of rotation about a fixed axis, using a newly developed matrix continued fraction method. It is shown that the cage model predicts both the low-frequency Debye relaxation and a pronounced high-frequency (Poley) absorption peak in the far-infrared (FIR) region. The similarity of the equations of motion of the cage model to the equations which arise in the problem of generalizing the Onsager model of polar fluids to include a time-varying applied field suggests that the FIR (Poley) absorption may have its origins in the combined influence of molecular inertia and the torque due to the reaction field in the frequency-dependent version of the Onsager model. The complex susceptibility yielded by the cage model is shown to be in good agreement with experimental data on CH sub 3 Cl that were taken as a typical example. Moreover, a simple ...

  2. Apparent Polar Wander of the Pacific Plate and Pacific Hotspots: Implications for True Polar Wander and Hotspot Fixity

    Science.gov (United States)

    Gordon, R. G.; Horner-Johnson, B. C.; Petronotis, K. E.; Acton, G. D.

    2004-05-01

    Whether the apparent polar wander (APW) path of the Indo-Atlantic hotspots is a record of true polar wander could be tested from a detailed APW path of the Pacific plate, the motion of which can be estimated relative to the hotpots independently of reconstructions in the Atlantic and Indian Ocean basins. Such an APW path has previously been lacking because of the difficulty in obtaining fully oriented paleomagnetic samples from oceanic plates. We present an APW path for the Pacific plate and for the hotspots of the Pacific basin. Our Pacific plate APW path from 125 Ma to the present is based mainly on the analysis of the skewness of marine magnetic anomalies due to seafloor spreading and is determined with better accuracy and resolution from 32 Ma to 81 Ma than is the APW path of any continent. Our path is defined by eleven paleomagnetic poles from non-overlapping age windows. Nine of these poles, those with ages from 32 Ma to 81 Ma, are determined from skewness analysis of 1563 crossings of marine magnetic anomalies due to seafloor spreading. They reveal the APW of the Pacific plate over this time interval with an accuracy and age-resolution far superior to other data sets. The skewness-only portion of the path indicates northward motion of the Pacific plate with 3 main swings in declination, clockwise from 81 Ma to 68 Ma, counterclockwise from 68 Ma to 40 Ma, and clockwise from 40 Ma to the present. The older two poles are from combinations of data types. There is no significant motion of the pole from 125 Ma to 88 Ma, but there is a sudden large counterclockwise shift of the pole in the brief interval from 88 to 81 Ma. This large and rapid shift of the pole is strongly supported by paleocolatitude data from azimuthally unoriented vertical cores of igneous rock obtained by deep sea drilling. In a reference frame attached to the Pacific hotspots, the spin axis lay near 80°N, 160°E during mid-Cenozoic time (32-40 Ma), near 80°N, 210°E during early Cenozoic time

  3. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  4. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  5. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  6. Due diligence

    International Nuclear Information System (INIS)

    Sanghera, G.S.

    1999-01-01

    The Occupational Health and Safety (OHS) Act requires that every employer shall ensure the health and safety of workers in the workplace. Issues regarding the practices at workplaces and how they should reflect the standards of due diligence were discussed. Due diligence was described as being the need for employers to identify hazards in the workplace and to take active steps to prevent workers from potentially dangerous incidents. The paper discussed various aspects of due diligence including policy, training, procedures, measurement and enforcement. The consequences of contravening the OHS Act were also described

  7. DISCOVERY OF POLARIZATION REVERBERATION IN NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, C. Martin; Shoji, Masatoshi [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0111 (United States); Goosmann, Rene W. [Observatoire astronomique de Strasbourg, 11 rue de l' Universite, F-67000 Strasbourg (France); Merkulova, Nelly I.; Shakhovskoy, Nikolay M., E-mail: martin.gaskell@uv.cl, E-mail: mshoji@astro.as.utexas.edu, E-mail: rene.goosmann@astro.unistra.fr [Crimean Astrophysical Observatory, Nauchny, Crimea 98409 (Ukraine)

    2012-04-20

    Observations of the optical polarization of NGC 4151 in 1997-2003 show variations of an order of magnitude in the polarized flux while the polarization position angle remains constant. The amplitude of variability of the polarized flux is comparable to the amplitude of variability of the total U-band flux, except that the polarized flux follows the total flux with a lag of 8 {+-} 3 days. The time lag and the constancy of the position angle strongly favor a scattering origin for the variable polarization rather than a non-thermal synchrotron origin. The orientation of the position angle of the polarized flux (parallel to the radio axis) and the size of the lag imply that the polarization arises from electron scattering in a flattened region within the low-ionization component of the broad-line region. Polarization from dust scattering in the equatorial torus is ruled out as the source of the lag in polarized flux because it would produce a larger lag and, unless the half-opening angle of the torus is >53 Degree-Sign , the polarization would be perpendicular to the radio axis. We note a long-term change in the percentage of polarization at similar total flux levels, and this could be due either to changing non-axisymmetry in the optical continuum emission or a change in the number of scatterers on a timescale of years.

  8. Motion of particles of non-zero rest masses exterior to ...

    African Journals Online (AJOL)

    In this article, we extend the metric tensor exterior to astrophysically real or imaginary spherical distributions of mass whose tensor field varies with polar angle only; to derive equations of motion for test particles in this field. The time, radial, polar and azimuthal equations of motion for particles of non-zero rest masses moving ...

  9. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  10. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  11. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  12. Field theory of polar continua

    International Nuclear Information System (INIS)

    Heinz, C.

    1988-01-01

    A Lagrangian density in the polar space X 1+3+3 depending of the potentials and their derivativs and of the fluxes is introduced. The potentials are then the mechanical and electromagnetic potentials, the potentials of gravity and in the polar space X 1+3+3 the components of affine connection. The fluxes are essentially the tangential motors of the mechanical and electromagnetic world-lines multiplied with the density of mass and electric charge. The Hamilton principle gives, with the in variational calculus usual integrations by part, here done via the theorem of Gauss, the equations of motion and the field equations. The conditions of integrability for these equations are discussed. (author)

  13. Dizziness and Motion Sickness

    Science.gov (United States)

    ... You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient Health Information News media interested in covering the latest ... medications Remember: Most cases of dizziness and motion sickness are ... Health Home Copyright © 2018 American Academy of Otolaryngology–Head ...

  14. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  15. A comparison between imaging radar and medical imaging polar format algorithm implementations

    Science.gov (United States)

    Gorham, LeRoy A.; Rigling, Brian D.; Zelnio, Edmund G.

    2007-04-01

    The polar format algorithm (PFA) is a well known method for forming imagery in both the radar community and the medical imaging community. PFA is attractive because it has low computational cost, and it partially compensates for phase errors due to a target's motion through resolution cells (MTRC). Since the imaging scenarios for remote sensing and medical imaging are traditionally different, the PFA implementation is different between the communities. This paper describes the differences in PFA implementation. The performance of two illustrative implementations is compared using synthetic radar and medical imagery.

  16. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  17. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  18. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  19. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  20. A polarizing neutron periscope for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)], E-mail: Michael.Schulz@frm2.tum.de; Boeni, Peter [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Calzada, Elbio; Muehlbauer, Martin [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Neubauer, Andreas [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Schillinger, Burkhard [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)

    2009-06-21

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  1. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...... alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant...

  2. Polar patterns of driven filaments.

    Science.gov (United States)

    Schaller, Volker; Weber, Christoph; Semmrich, Christine; Frey, Erwin; Bausch, Andreas R

    2010-09-02

    The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system

  3. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  4. Report of the polarization group

    International Nuclear Information System (INIS)

    Ford, W.; Kondo, K.; Martin, F.; Manning, G.; Miller, D.; Prescott, C.

    1975-01-01

    The use of longitudinal polarization in the reaction e + e - → μ + μ - was studied. Modifications of the magnetic insertion which could reduce synchrotron radiation by two or more were considered. In addition, a specific design is suggested which incorporates the optimized magnetic configuration; it is assumed that no particle detection is necessary near the interaction vertex and the synchrotron radiation is ''dumped'' up - and downstream. Also considered were vacuum chambers in which the synchrotron radiation is absorbed locally so that shielded regions are provided for detectors near the interaction vertex. A scheme for rotating the polarization outside the experiment areas is detailed; in this way the design of experiments is greatly simplified. Local intense ionization of residual gas in the interaction region due to synchrotron radiation at the insertion was studied. Finally, some general considerations in the production and measurement of beam polarization are summarized. 2 figures

  5. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  6. Large enhancement of deuteron polarization with frequency modulated microwaves

    CERN Document Server

    Adeva, B; Arik, S; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin,; Baum, G; Berglund, P; Betev, L; Birda, I G; Birsa, R; Bjrkholm, P; Bonner, B E; de Botton, N; Boutemeur, M; Bradamante, Franco; Bressan, A; Brullc, A; Buchanan, J; Bültmann, S; Burtin, E; Cavata, C; Chen, J P; Clement, J; Clocchiatti, M; Corcoran, M D; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Deshpande, S; Dalla Torre, A; Van Dantzig, R; Dhawan, S; Dulya, C; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Day, D; Feinstein, F; Fernández, C; Frois, B; Garabatos, C; Garzón, J A; Gaussiran, T; Giorgi, M; von Goeler, E; Goloutvin, Igor A; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, D; von Harrach, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; De Jong, M; Kabu, E M; Kageya, T; Kaiser, R; Karev, A; Kessler, H J; Ketel, T J; Kiryushin, Yu T; Kishi, A; Kisselev, Yu; Klostermann, L; Krämer, Dietrich; Kukhtin, V; Kyynarinen, J; Lamanna, M; Landgraf, U; Lau, V; Krivokhijinea, K; Layda, T; Le Go, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B; McCarthy, J S; van Middelkoop, K; Medved, G; Miller, D; Mitchell, J; Mori, K; Moromisato, J; Mutchler, G S; Nagaitsev, A; Nassalski, J; Naumann, Lutz; Neganov, B; Niinikoski, T O; Oberski, J E J; Ogawa, A; Okumi, S; Ozben, C S; Penzo, Aldo L; Pérez, C A; Perrot-Kunne, F; Piegaia, R; Pinsky, L; Platchkov, S; Pló, M; Pose, D; Postma, D; Peshekhonov, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rieubland, Jean Michel; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, E; Rondon, O; Ropelewski, Leszek; Rosado, A; Sabo, I; Saborido, J; Salvato, G; Sandacz, A; Sanders, D; Savin, I; Schiavon, Paolo; Schüler, K P; Segel, R; Seitz, R; Semertzidis, Y; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G; Staude, A; Steinmetz, A; Stuhrmann, H; Teichert, K M; Tessarotto, F; Thiel, W; Velasco, M; Vogt, J; Voss, R; Weinstein, R; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Yañez, A; Zanetti, A M; Zhao, J; Zamiatin, N I

    1996-01-01

    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.

  7. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  8. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  9. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  10. A Feasibility Study of Sea Ice Motion and Deformation Measurements Using Multi-Sensor High-Resolution Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Chang-Uk Hyun

    2017-09-01

    Full Text Available Sea ice motion and deformation have generally been measured using low-resolution passive microwave or mid-resolution radar remote sensing datasets of daily (or few days intervals to monitor long-term trends over a wide polar area. This feasibility study presents an application of high-resolution optical images from operational satellites, which have become more available in polar regions, for sea ice motion and deformation measurements. The sea ice motion, i.e., Lagrangian vector, is measured by using a maximum cross-correlation (MCC technique and multi-temporal high-resolution images acquired on 14–15 August 2014 from multiple spaceborne sensors on board Korea Multi-Purpose Satellites (KOMPSATs with short acquisition time intervals. The sea ice motion extracted from the six image pairs of the spatial resolutions were resampled to 4 m and 15 m yields with vector length measurements of 57.7 m root mean square error (RMSE and −11.4 m bias and 60.7 m RMSE and −13.5 m bias, respectively, compared with buoy location records. The errors from both resolutions indicate more accurate measurements than from conventional sea ice motion datasets from passive microwave and radar data in ice and water mixed surface conditions. In the results of sea ice deformation caused by interaction of individual ice floes, while free drift patterns of ice floes were delineated from the 4 m spatial resolution images, the deformation was less revealing in the 15 m spatial resolution image pairs due to emphasized discretization uncertainty from coarser pixel sizes. The results demonstrate that using multi-temporal high-resolution optical satellite images enabled precise image block matching in the melting season, thus this approach could be used for expanding sea ice motion and deformation dataset, with an advantage of frequent image acquisition capability in multiple areas by means of many operational satellites.

  11. Polarization preservation and control in a figure-8 ring

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Filatov, Yuri [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  12. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  13. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  14. Mixed motion in deterministic ratchets due to anisotropic permeability

    NARCIS (Netherlands)

    Kulrattanarak, T.; Sman, van der R.G.M.; Lubbersen, Y.S.; Schroën, C.G.P.H.; Pham, H.T.M.; Sarro, P.M.; Boom, R.M.

    2011-01-01

    Nowadays microfluidic devices are becoming popular for cell/DNA sorting and fractionation. One class of these devices, namely deterministic ratchets, seems most promising for continuous fractionation applications of suspensions (Kulrattanarak et al., 2008 [1]). Next to the two main types of particle

  15. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the international seminar on plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Beiersdorfer, Peter

    1998-06-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held in Kyoto during January 26-28, 1998. This Proceedings book includes the papers of the talks given at the meeting. These include: overviews of PPS from the aspects of atomic physics, and of plasma physics; several PPS and MSE (motional Stark effect) experiments on magnetically confined plasmas and a laser-produced plasma; polarized laser-induced fluorescence spectroscopy, several experiments on EBITs (electron beam ion trap) and their theoretical interpretations; polarized profiles of spectral lines, basic formulation of PPS; inelastic and elastic electron collisions leading to polarized atomic states; polarization in recombining plasma; relationship between the collisional polarization relaxation and the line broadening; and characteristics of the plasma produced by very short pulse and high power laser irradiation. The 19 of the presented papers are indexed individually. (J.P.N.)

  16. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2017-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  17. Note on the surface wave due to the prescribed elevation

    Indian Academy of Sciences (India)

    oscillatory motion with the increase of time, leaving behind the highest elevation initially. On the other hand in case of spiral cyclonic motion for which the sea surface experiences the elliptical pressure distribution, the motion diminishes as g the ac- celeration due to gravity diminishes and oscillates with the variation of time.

  18. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  19. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  20. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    tautochrone and brachistochrone properties. To Descartes, however, the rectification of curves such as the spiral (3) and the cycloid (4) was suspect - they...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012017 TITLE: Curves from Motion, Motion from Curves DISTRIBUTION...Approved for public release, distribution unlimited This paper is part of the following report: TITLE: International Conference on Curves and Surfaces [4th

  1. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  2. Motion Verbs in Learner Corpora

    Directory of Open Access Journals (Sweden)

    M. Pınar BABANOĞLU

    2018-01-01

    Full Text Available Motions verbs differ across languages in respect of spatial relations and syntactic/semantic conceptualization. Languages have two typological groups for motion events: (a verb-framed languages in which the main verb expresses the core information of the path of movement, and the manner information is expressed in a subordinate structure (e.g. a gerundive and (b satellite-framed languages where the main verb expresses information about manner of movement and a subordinate satellite element (e.g., a verb particle to the verb conveys the path of movement (Talmy, 1985; Chen & Guo, 2009. In this corpus-based study, two learner corpora from two different native languages as Turkish as a verb-framed language and German as satellite-framed language are investigated in terms of motion verbs in English like move, fly, walk, go via frequency and statistical analysis for corpora comparison. The purpose of the study is to find out whether there is a statistical difference in the use of motion verbs by Turkish (as a verb-framed L1 and German (as a satellite-framed L1 learners in due of cross-linguistic difference between Turkish and German which may be a factor that influence learners essay writing in English (as a satellite-framed L2 in the use of motion verbs. Results indicated that German learners of English use especially manner of motion verbs in English statistically more frequent and lexically more diverse in their essays than Turkish learners of English.

  3. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  4. Constraining foreground spectrum with the projection-induced polarization for the cosmological global 21-cm experiments

    Science.gov (United States)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Professor O.

    2018-01-01

    Detecting the cosmological global (sky-averaged) 21-cm spectrum as a function of observed frequency will provide a powerful tool to study the thermal history of intergalactic medium (IGM) in the high-redshift Universe (~ 400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21-cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (~ 1e4-1e5 K) to uncover the weak cosmological signal (~ 10-100 mK). The foreground is further corrupted by the frequency-dependent instrumental systematics. We have developed a new polarimetry-based observational approach that aims to measure the foreground emission by modulating it as a function of time through its circumpolar motion. Due to geometry, the projection of the anisotropic foreground sources onto the dual-polarized antenna induces a net foreground polarization, which is distinct from the much weaker intrinsic polarization of synchrotron sources. Instead of pointing the radio antenna at the zenith as in the conventional experiments, we point the antenna at the North Celestial Pole (NCP) and measure the projection-induced polarization modulated by the foreground's circumpolar diurnal periodicity. This temporal signature allows us to separate the dynamic foreground spectrum from the static cosmological background. In this presentation, we describe the design, construction, and initial results from the "Cosmic Twilight Polarimeter'' (CTP) as a proof-of-concept implementation of this technique. The instrument consists of a dual-polarized broadband antenna (60-120 MHz) with a two-stage thermally stabilized front-end electronics, tilted toward the NCP. The instrument is currently being evaluated at a site near Charlottesville, VA. Ultimately, the instrument will be relocated to an RFI-quiet site closer to the Geographic North Pole (GNP) to mitigate sky obstruction due to the horizon at a lower latitude.

  5. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  6. Modeling and visualization of carrier motion in organic films by optical second harmonic generation and Maxwell-displacement current

    Science.gov (United States)

    Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai

    2015-09-01

    The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we

  7. Computation of the brightness of the variably-polarizing undulator

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.; Schettini, G.; Carpanese, M.

    1999-02-01

    Undulators, producing variably polarized radiation, generate magnetic fields which induce different types of electron motion (vertically, horizontally sinusoidal and helical). The properties of the emitted radiation reflect the complexity of the motion and cannot be described with the method based on the conventional Bessel functions expansion. It's shown that the problem can be overcome by exploiting a method which employs generalized forms of Bessel functions. The proposed technique provides an effective tool to analyze the properties of the emitted radiation [it

  8. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  9. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    Science.gov (United States)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  10. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  11. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  12. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  13. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  14. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  15. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  16. Performance comparison of polarized white light emitting diodes using wire-grid polarizers with polymeric and glass substrates

    Science.gov (United States)

    Su, Jung-Chieh; Chou, Shih-Chieh

    2018-03-01

    Polarized white light emitting diodes (WLEDs) packaged with reflective metal wire-grid polarizer of polymeric and glass substrates were investigated. The performance comparison of polymeric wire-grid polarizer film (WGF) and nano wire-grid polarizer (NWGP) with glass substrate was evaluated. The transverse electric field (TE) polarization transmittance of WGF is less than that of NWGP due to its smaller grid parameters. Despite of the higher duty cycle of WGF, the angular-dependent extinction ratio (ER) of the polarized WLEDs (PWLEDs) with WGF is higher than that of with NWGP. Regarding increasing drive currents, the PWLEDs with NWGP had better color stability than that with WGF due to better substrate thermal stability. In summary, linewidth, period and substrate material are the crucial factors for the PWLED packaging using wire grid polarizer.

  17. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  18. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  19. Diabaticity of nuclear motion: problems and perspectives

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1993-01-01

    The assumption of adiabatic motion lies in foundations of many models of nuclear collective motion. To what extend can nuclear modes be treated adiabatically? Due to the richness and complexity of the nuclear many-body problem there is no unique answer to this question. The challenges of nuclear collective dynamics invite exciting interactions between several areas of physics such as nuclear structure, field theory, non-linear dynamics, transport theory, and quantum chaos. (orig.)

  20. Orbital motion effects in astrometric microlensing

    OpenAIRE

    Sajadian, Sedighe

    2014-01-01

    We investigate lens orbital motion in astrometric microlensing and its detectability. In microlensing events, the light centroid shift in the source trajectory (the astrometric trajectory) falls off much more slowly than the light amplification as the source distance from the lens position increases. As a result, perturbations developed with time such as lens orbital motion can make considerable deviations in astrometric trajectories. The rotation of the source trajectory due to lens orbital ...

  1. Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Nunhokee, C. D.; Bernardi, G.; Foster, G.; Grobler, T. L. [Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown, 6140 (South Africa); Kohn, S. A.; Aguirre, J. E.; Martinot, J. Z. E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Thyagarajan, N. [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Dillon, J. S. [Berkeley Center for Cosmological Physics, Berkeley, CA 94720 (United States); Parsons, A. R., E-mail: cnunhokee@gmail.com [Dept. of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2017-10-10

    A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc{sup −1} can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.

  2. Content Adaptive True Motion Estimator for H.264 Video Compression

    Directory of Open Access Journals (Sweden)

    P. Kulla

    2007-12-01

    Full Text Available Content adaptive true motion estimator for H.264 video coding is a fast block-based matching estimator with implemented multi-stage approach to estimate motion fields between two image frames. It considers the theory of 3D scene objects projection into 2D image plane for selection of motion vector candidates from the higher stages. The stages of the algorithm and its hierarchy are defined upon motion estimation reliability measurement (image blocks including two different directions of spatial gradient, blocks with one dominant spatial gradient and blocks including minimal spatial gradient. Parameters of the image classification into stages are set adaptively upon image structure. Due to search strategy are the estimated motion fields more corresponding to a true motion in an image sequence as in the case of conventional motion estimation algorithms that use fixed sets of motion vector candidates from tight neighborhood.

  3. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  4. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  5. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar

    2013-01-01

    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  6. Soliton trains in motion

    International Nuclear Information System (INIS)

    Hause, A.; Mitschke, F.

    2010-01-01

    Two solitons in an optical fiber can form pairs in which the double-humped shape is maintained even when the pair is shifted in frequency by the Raman effect. We show here analytically that this is possible even when the two solitons have unequal power. We discuss the forces that cause relative motion of the two solitons, and determine a condition for balance, i.e., for a pair to maintain their separation while the phase keeps evolving. At a specific parameter point we find a solution in which even the phase profile of the pulse pair is maintained. We then discuss that this special point exists also for multipeak structures, or soliton trains. These trains can move as an entity due to Raman shifting. The results are tested by numerical simulation. A comparison to literature reveals that both the rotating phase pair and the constant phase soliton pair apparently have been seen before by others in numerical simulations. Our treatment provides the general framework.

  7. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  8. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  9. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  10. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  11. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  12. Relation between Radio Polarization and Spectral Index of Blazars ...

    Indian Academy of Sciences (India)

    ties, including rapid variability, high and variability polarization, high luminosity and superluminal motion, etc. Their optical variability timescales can cover a range of hours to years from radio to γ-rays (Fan et al. 2004; Ulrich et al. 1997). When we analyse the different characters of blazars, spectral index (α) is very important.

  13. Relation between Radio Polarization and Spectral Index of Blazars ...

    Indian Academy of Sciences (India)

    Introduction. Blazars are a very special class of extragalactic objects showing some special proper- ties, including rapid variability, high and variability polarization, high luminosity and superluminal motion, etc. Their optical variability timescales can cover a range of hours to years from radio to γ-rays (Fan et al. 2004; Ulrich ...

  14. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  15. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  16. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  17. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  18. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  19. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  20. Measurement of Λ polarization from Z decays

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajlatouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The polarization of Λ baryons from Z decays is studied with the ALEPH apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is PLΛ = -0.32 ± 0.07 for z = {p}/{p beam} > 0.3 . This agrees with the prediction of -0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ overlineΛ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

  1. Measurement of $\\Lambda$ polarization from Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The polarization of \\Lambda baryons from Z decays is studied with the {\\sc Aleph} apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal \\Lambda polarization is P^{\\Lambda}_{L} = -0.32 \\pm 0.07 for z = p/p_{\\mathrm{beam}} > 0.3. This agrees with the prediction of -0.39 \\pm 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for \\Lambda production. The observed \\Lambda polarization is diluted with respect to the primary s quark polarization by \\Lambda baryons without a primary s quark. Measurements of the \\Lambda forward-backward asymmetry and of the correlation between back-to-back \\Lambda \\bar{\\Lambda} pairs are used to check this dilution. In addition the transverse \\Lambda polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the \\La...

  2. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  3. Motion sickness in migraine sufferers.

    Science.gov (United States)

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  4. Polarization of submillimetre lines from interstellar medium

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  5. Polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  6. LCD motion blur: modeling, analysis, and algorithm.

    Science.gov (United States)

    Chan, Stanley H; Nguyen, Truong Q

    2011-08-01

    Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms.

  7. Polarized fuel for controlled thermonuclear fusion

    Science.gov (United States)

    Bartalucci, Sergio

    2017-07-01

    The use of polarized nuclei as a fuel for thermonuclear fusion reactors was suggested more than 30 years ago, providing evidence for a significant increase of the total cross section. In particular, an enhancement factor close to 1.5 is expected in the energy range below 100 keV for the dominant nuclear fusion reactions 2H + 3H → 4He + n + 17.58 MeV and 2H + 3He → 4He + p + 18.34 MeV. Furthermore, the use of polarized fuel allows one to control the ejectile trajectories, via an enhancement in the forward-backward cross section asymmetry due to polarization. This allows some control on the energy transfer from the plasma to the reactor wall or helps concentrate the neutron flux to defined wall areas. Nevertheless, this idea was received with skepticism by the relevant scientific community, due to some uncertainty in the physics of the process, the low efficiency in the production of polarized beams for injection into plasma and the apparent difficulty of preserving the ion polarization for a time long compared with nuclear burning time. But more recently, as a consequence of significant progress in the field of atomic beam sources and polarized targets, the interest in this matter has been refreshed for both inertially and magnetically confined plasmas. The possibility of implementing nuclear polarization in present and future fusion reactors is discussed in this paper. In particular, the interaction between polarized ions and magnetic fields, both static and RF, which are typically used in a Tokamak for plasma heating via ion cyclotron resonance (ICRH), is considered. Also, experimental issues for practically performing a feasibility test on a real fusion reactors are illustrated.

  8. Unusual motions of a vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2003-10-01

    The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.

  9. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    Science.gov (United States)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh; Attah, Isaac K.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-07-01

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented.

  10. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  11. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  12. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  13. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  14. Simulation-Based Analysis of Ship Motions in Short-Crested Irregular Seas

    Directory of Open Access Journals (Sweden)

    Kıvanç Ali ANIL

    2017-03-01

    Full Text Available Demonstration of the seakeeping calculation results other than polar diagrams and Cartesian plots is important during the initial and detail design stages of naval platforms due to the necessity of numerical simulations (time series data for the design and validation of the systems on board. These time series simulations are called as “real time computer experiments”. Similar simulation algorithms for ship motions and wave elevation are also used by ship-handling simulators for realistic visualization. The goal of this paper is to create a basis for the simulation-based analysis of ship motions and wave elevation for future design and validation studies for both the naval platform itself and the systems on board. The focus of this paper is the clarification of the theoretical background of this process, i.e. all formulations required to create and validate a ship motion and wave surface simulation are given in detail. The results of this study may also be used in ship-handling simulators or helicopter landing on ship simulations.

  15. Polarization measurement in the COMPASS polarized target

    CERN Document Server

    Kondo, K; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Hasegawa, T; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Yu V; Koivuniemi, J H; Le Goff, J M; Magnon, A; Meyer, W; Reicherz, G; Matsuda, T

    2004-01-01

    Continuous wave nuclear magnetic resonance (NMR) is used to determine the target polarization in the COMPASS experiment. The system is made of the so-called Liverpool Q-meters, Yale-cards, and VME modules for data taking and system controlling. In 2001 the NMR coils were embedded in the target material, while in 2002 and 2003 the coils were mounted on the outer surface of the target cells to increase the packing factor of the material. Though the error of the measurement became larger with the outer coils than with the inner coils, we have performed stable measurements throughout the COMPASS run time for 3 years. The maximum polarization was +57% and -53% as the average in the target cells.

  16. Inverse Dynamics and the Immeasurable Motions

    DEFF Research Database (Denmark)

    Rasmussen, John; Andersen, Michael Skipper; Damsgaard, Michael

    /extension, and these movements cannot be registered reliably with skin-mounted markers. Motion and forces are related by the laws of mechanics, so knowledge of the acting forces in the system and the inherent elasticity in the knee could theoretically lead to estimation of the immeasurable motions. One of the primary......Motion capture technology is a set of experimental methods with finite accuracy. The current golden standard in the field is synchronized hi-speed infrared camera systems based on passive markers attached to the skin of the test subject. Due to skin artefacts and the tolerance of registering......, typically gait, and a well-conducted experiment with a good-quality motion capture system will register this degree-of-freedom with sufficient accuracy for most applications. However, it is known from bone pin studies (Benoit et al. 2006) that the knee has significant movements additional to flexion...

  17. The vacuum-arc plasma motion in a toroidal magnetic field

    International Nuclear Information System (INIS)

    Timoshenko, A.I.; Gnybida, M.V.; Taran, V.S.; Tereshin, V.I.; Chechelnitskij, O.G.

    2005-01-01

    The separation of the vacuum-arc plasma from macro-particles in the curvilinear plasma filters allows obtaining coatings with especially high characteristics. However, inside such filters the significant plasma losses also have been occurred. At the same time, increasing in the filter's efficiency is a difficult task without an effective mathematical model that really would describe the vacuum-arc plasma motion in a toroidal magnetic field. The description based on the flax-tube model was in fact only the first approximation in the decision of this problem. According to detailed flax-tube analysis of ions passage through the quarter torus plasma guide, the efficiency of the filter should grow up to 85% as the positive potential U, applied to the body of the plasma guide, is on the increase. However, the experiment showed that maximum of transparency reach up to ∼ 12%, at potential about of +18 Volts, and comes down under the further increase in potential. Such big digression from experiment does not justify the use of flux-tube model for designing of curvilinear plasma filters. We offer the new approach to the description of the vacuum-arc plasma motion in a toroidal magnetic field based on the solutions of steady-state (∂/∂t=0) Vlasov-Maxwell equations for the long plasma column aligned parallel to a constant axial magnetic field. The relations for the self-consistent electric polarization fields, which appear due to displacement of the electron component from ionic one on the curvilinear part of motion, were derived within a framework of the drift approximation. The dynamics of the central part of the plasma flow in the electric polarization fields was considered in detail. The displacement of the plasma flow at the output of the plasma guide was calculated for the carbon and titanium plasmas. The good agreement with the experimental data was obtained. (author)

  18. Male Spine Motion During Coitus

    Science.gov (United States)

    Sidorkewicz, Natalie

    2014-01-01

    Study Design. Repeated measures design. Objective. To describe male spine movement and posture characteristics during coitus and compare these characteristics across 5 common coital positions. Summary of Background Data. Exacerbation of pain during coitus due to coital movements and positions is a prevalent issue reported by low back pain patients. A biomechanical analysis of spine movements and postures during coitus has never been conducted. Methods. Ten healthy males and females engaged in coitus in the following preselected positions and variations: QUADRUPED, MISSIONARY, and SIDELYING. An optoelectronic motion capture system was used to measure 3-dimensional lumbar spine angles that were normalized to upright standing. To determine whether each coital position had distinct spine kinematic profiles, separate univariate general linear models, followed by Tukey's honestly significant difference post hoc analysis were used. The presentation of coital positions was randomized. Results. Both variations of QUADRUPED, mQUAD1 and mQUAD2, were found to have a significantly higher cycle speed than mSIDE (P = 0.043 and P = 0.034, respectively), mMISS1 (P = 0.003 and P = 0.002, respectively), and mMISS2 (P = 0.001 and P spine movement varied depending on the coital position; however, across all positions, the majority of the range of motion used was in flexion. Based on range of motion, the least-to-most recommended positions for a male flexion-intolerant patient are mSIDE, mMISS2, mQUAD2, mMISS1, and mQUAD1. Conclusion. Initial recommendations—which include specific coital positions to avoid, movement strategies, and role of the partner—were developed for male patients whose low back pain is exacerbated by specific motions and postures. Level of Evidence: N/A PMID:25208042

  19. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  20. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  1. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  2. Fast Optimal Motion Planning

    Data.gov (United States)

    National Aeronautics and Space Administration — Computationally-efficient, fast and real-time, and provably-optimal motion planner for systems with highly nonlinear dynamics that can be extended for cooperative...

  3. Motion Sickness: First Aid

    Science.gov (United States)

    ... com. Accessed July 29, 2017. Priesol AJ. Motion sickness. https://www.uptodate.com/content/search. Accessed July 29, 2017. Brunette GW, et al. CDC Health Information for International Travel 2018. New York, N. ...

  4. Toying with Motion.

    Science.gov (United States)

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  5. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  6. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  7. Motion of a Pendulum

    Directory of Open Access Journals (Sweden)

    Jared Wynn

    2010-01-01

    Full Text Available The objective of this project is to derive and solve the equation of motion for a pendulum swinging at small angles in one dimension. The pendulum may be either a simple pendulum like a ball hanging from a string or a physical pendulum like a pendulum on a clock. For simplicity, we only considered small rotational angles so that the equation of motion becomes a harmonic oscillator.

  8. Hsp Polarization Verification

    Science.gov (United States)

    Bless, Robert

    1991-07-01

    This proposal defines the procedure for determining the instrumental polarization of the polarimetric IDT (IDT#1, POL) on the HSP. 1 of 2 unpolarized standard stars wil be observed using various filter-polarizer combinations. These observations will permit the instrumental polarization to be calibrated. The instrumental polarization must be determined to a high precision in order to vectoriallly remove it from HSP polarization observations to determine the actual astronomical polarization. Final run of proposal will look at one of 2 possible stars previously observed to get another look at the throughput. Revision History: Mark H. Slovak 8/30/88 Translated to V2 proposal instructions (RPSS V6.2) S. Laurent 1/20/89 Updated: Sally Laurent 2/24/89, 3/20/89, 4/13/89, 5/12/89 Modified: P. Stanley 1/15/90 - change to use CTA selected targets only; Fixes for aberration problem - SALM 7/30/90; Based on SV/HSP 1386. New submission changed targets and revised scheduling strategy. Revised: 26 Aug 92 J. Dolan, L. Walter, P. Reppert want to re-run the proposal (3985) one last time to bring down errors.

  9. Coherent population trapping with polarization modulation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de [LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l' Observatoire, 75014 Paris (France)

    2016-06-28

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization. The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.

  10. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  11. A Real-time Inertial Motion Blur Metric: Application to Frame Triggering Based Motion Blur Minimization

    OpenAIRE

    Mutlu, Mehmet; Saranli, Afsar; Saranli, Uluc

    2014-01-01

    Mobile robots suffer from sensory data corruption due to body oscillations and disturbances. In particular, information loss on images captured with onboard cameras can be very high, and such loss may become irreversible or computationally costly to undo. In this paper, we propose a novel method to minimize average motion blur captured by such mobile visual sensors. To this end, we derive a motion blur metric (MMBM) that can be computed in real-time by using only inertial sensor measurements ...

  12. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  13. Local polar fluctuations in lead halide perovskite crystals

    International Nuclear Information System (INIS)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor

    2017-01-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH 3 NH 3 PbBr 3 ) and all-inorganic (CsPbBr 3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr 3 .

  14. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  15. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  16. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region

    Science.gov (United States)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals

  17. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus’ Polar Region

    Science.gov (United States)

    Widemann, Thomas; Marcq, Emmanuel; Tsang, Constantine; Mueller, Nils; Kappel, David; Helbert, Joern; Dyar, Melinda; Smrekar, Suzanne

    2017-10-01

    Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012).Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013).The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA’s Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of ~10 km. Circular polar orbit geometry would provide an unprecedented simultaneous study of both polar regions within the same mission. In addition, VEM’s pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals. Tracking lower cloud motions as proxies for wind measurements at high

  18. Subtle Motion Analysis and Spotting using the Riesz Pyramid

    OpenAIRE

    Arango, Carlos,; Alata, Olivier; Emonet, Rémi; Legrand, Anne-Claire; Konik, Hubert

    2018-01-01

    International audience; Analyzing and temporally spotting motions which are almost invisible to the human eye might reveal interesting information about the world. However, detecting these events is difficult due to their short duration and low intensities. Taking inspiration from video magnification techniques, we design a workflow for analyzing and temporally spotting subtle motions based on the Riesz pyramid. In addition, we propose a filtering and masking scheme that segments motions of i...

  19. Explaining polarization reversals in STEREO wave data

    Science.gov (United States)

    Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L. B., III; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.

    2012-04-01

    Recently, Breneman et al. (2011) reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (L plane transverse to the magnetic field showed that the transmitter waves underwent periodic polarization reversals. Specifically, their polarization would cycle through a pattern of right-hand to linear to left-hand polarization at a rate of roughly 200 Hz. The lightning whistlers were observed to be left-hand polarized at frequencies greater than the lower hybrid frequency and less than the transmitter frequency (21.4 kHz) and right-hand polarized otherwise. Only right-hand polarized waves in the inner radiation belt should exist in the frequency range of the whistler mode and these reversals were not explained in the previous paper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by ±200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo (1984) whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by ˜200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al. (2008).

  20. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  1. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  2. Hybrid Streamers for Polar Seismic

    Science.gov (United States)

    Gifford, C. M.; Agah, A.; Tsoflias, G. P.

    2006-12-01

    We propose a new hybrid streamer seismic approach for polar regions that incorporates insertion of spiked geophones, the land streamer method of transportation, and mobile robotics. Current land streamers do not plant the geophone spike at each node location on the streamer(s) nor use robotic control. This approach combines the two methods, and is therefore termed "Hybrid Streamers". Land seismic 3D surveying is costly and time consuming due to manual handling of geophones and cables. Multiple streamers make this process simpler by allowing efficient deployment of large numbers of geophones. Hybrid streamers go further to robotically insert the geophone spike at each node location to achieve higher frequency and better resolution seismic images. For deployment and retrieval, the geophone spikes are drilled into the ground, or inserted using heat. This can be accomplished by modifying the geophone spike to be similar to a threaded screw or similar to a soldering iron for polar environments. Heat could help melt the ice during deployment, which would refreeze around the geophone for firm coupling. Heat could also be used to make polar geophone retrieval easier. By ensuring that the towing robots are robust and effective, the problem of single point of failure can be less of an issue. Polar rovers have proven useful in harsh environments, and could be utilized in polar seismic applications. Towing geophone nodes in a tethered fashion not only provides all nodes with power to operate the onboard equipment, but also gives them a medium to transfer data to the towing rover. Hybrid streamers could be used in several ways. One or more hybrid streamers could be tethered and towed by a single robot. Several robots could be used to form a single grid, working in conjunction to image larger areas in three dimensions. Such an approach could speed up entire missions and make efficient use of seismic source ignitions. The reduction of human involvement by use of mobile robots

  3. Maturation of polarization and luminance contrast sensitivities in cuttlefish (Sepia officinalis).

    Science.gov (United States)

    Cartron, Lelia; Dickel, Ludovic; Shashar, Nadav; Darmaillacq, Anne-Sophie

    2013-06-01

    Polarization sensitivity is a characteristic of the visual system of cephalopods. It has been well documented in adult cuttlefish, which use polarization sensitivity in a large range of tasks such as communication, orientation and predation. Because cuttlefish do not benefit from parental care, their visual system (including the ability to detect motion) must be efficient from hatching to enable them to detect prey or predators. We studied the maturation and functionality of polarization sensitivity in newly hatched cuttlefish. In a first experiment, we examined the response of juvenile cuttlefish from hatching to the age of 1 month towards a moving, vertically oriented grating (contrasting and polarized stripes) using an optomotor response apparatus. Cuttlefish showed differences in maturation of polarization versus luminance contrast motion detection. In a second experiment, we examined the involvement of polarization information in prey preference and detection in cuttlefish of the same age. Cuttlefish preferentially chose not to attack transparent prey whose polarization contrast had been removed with a depolarizing filter. Performances of prey detection based on luminance contrast improved with age. Polarization contrast can help cuttlefish detect transparent prey. Our results suggest that polarization is not a simple modulation of luminance information, but rather that it is processed as a distinct channel of visual information. Both luminance and polarization sensitivity are functional, though not fully matured, in newly hatched cuttlefish and seem to help in prey detection.

  4. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  5. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  6. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  7. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  8. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  9. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  10. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  11. Measuring Behavior using Motion Capture

    NARCIS (Netherlands)

    Fikkert, F.W.; van der Kooij, Herman; Ruttkay, Z.M.; van Welbergen, H.; Spink, A.J.; Ballintijn, M.R.; Bogers, N.D.; Grieco, F; Loijens, L.W.S.; Noldus, L.P.J.J.; Smit, G; Zimmerman, P.H.

    2008-01-01

    Motion capture systems, using optical, magnetic or mechanical sensors are now widely used to record human motion. Motion capture provides us with precise measurements of human motion at a very high recording frequency and accuracy, resulting in a massive amount of movement data on several joints of

  12. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  13. South Polar Region of Mars: Topography and Geology

    Science.gov (United States)

    Schenk, P. M.; Moore, J. M.

    1999-01-01

    The polar layered deposits of Mars represent potentially important volatile reservoirs and tracers for the planet's geologically recent climate history. Unlike the north polar cap, the uppermost surface of the bright residual south polar deposit is probably composed of carbon dioxide ice. It is unknown whether this ice extends through the entire thickness of the deposit. The Mars Polar Lander (MPL), launched in January 1999, is due to arrive in December 1999 to search for water and carbon dioxide on layered deposits near the south pole (SP) of Mars. Additional information is contained in the original extended abstract.

  14. Polarization force-induced changes in the dust sheath formation

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  15. In-line Fiber Polarizer

    OpenAIRE

    Perumalsamy, Priya

    1998-01-01

    Polarizers and polarization devices are important components in fiber optic communication and sensor systems. There is a growing need for efficient low loss components that are compatible with optical fibers. An all fiber in-line polarizer is a more desirable alternative that could be placed at appropriate intervals along communication links. An in-line fiber polarizer was fabricated and tested. The in-line fiber polarizer operates by coupling optical energy propagatin...

  16. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  17. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signa...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice.......This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...

  18. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  19. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy...... and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...... between the two as well as different types of motivations filling in the gap between the two polar types, is urgently needed in the organizational science literature. By drawing on the research on intrinsic and extrinsic motivation conducted in social psychology and combining this with contributions from...

  20. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  1. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  2. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  3. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  4. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  5. Collective effects in spin polarized plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Cowley, S.; Detragiache, P.; Kulsrud, R.; Pegoraro, F.

    1984-10-01

    A fusing plasma with coherently polarized spin nuclei can be subject to instabilities due to the anisotropy of the reaction product distributions in velocity space, which is a result of their polarization. The characteristics of these instabilities depend strongly on the plasma spatial inhomogeneities and a significant rate of spin depolarization can be produced by them if adequate fluctuation amplitudes are reached. The results of the relevant analysis are, in addition, of interest for plasma heating processes with frequencies in the range of the cyclotron frequencies of the considered nuclei

  6. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  7. Non-coherent continuum scattering as a line polarization mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J., E-mail: tanausu@iac.es, E-mail: rsainz@iac.es, E-mail: jtb@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  8. Dark Polar Dunes

    Science.gov (United States)

    2005-01-01

    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  9. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  10. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  11. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  12. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa

    2013-01-01

    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  13. Climate-driven seasonal geocenter motion during the GRACE period

    Science.gov (United States)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  14. Study on polarities of methylphenylpolysiloxanes in gas chromatography

    International Nuclear Information System (INIS)

    Pias Barbeira, J. B.; Gasco Sanchez, L.

    1975-01-01

    When studying the correlations between molecular structure and retention parameters in alcohols, alcohol benzoyl derivatives and carbonyl 2,4-dinitrophe nyl hydrazones some anomalies probably due to polarities of methylphenylpolysiloxane stationary phases have been observed. (Author) 31 refs

  15. CIV Polarization Measurements Using a Vacuum Ultraviolet Fabry Perot

    Science.gov (United States)

    West, Edward A.

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry Perot that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry Perot.

  16. Synthetic aperture radar processing with polar formatted subapertures

    Science.gov (United States)

    Doerry, Armin W.

    Synthetic Aperture Radar (SAR) uses the motion of a small real antenna to synthesize a larger aperture, and thereby achieve very fine azimuth resolution. Efficient SAR image formation requires modelling the radar echo and compensating (focusing) the delay and phase for various positions in the target scene. Polar-Format processing is one successful algorithm developed to process large scenes at fine resolutions, but is still limited, especially at resolutions near a wavelength. This paper shows how using tiers of subapertures can overcome the limitations of Polar-Format processing and increase the focused scene size substantially while using only efficient vector multiplies and Fast Fourier Transforms.

  17. The physics of polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization.......A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...

  20. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  1. A world in motion

    Energy Technology Data Exchange (ETDEWEB)

    Boynton, J.A. [SAE, Warrendale, PA (United States)

    1994-12-31

    A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.

  2. MotionsFloorball

    DEFF Research Database (Denmark)

    Vorup, Jacob; Seidelin, Kåre

    Med denne "opskriftsbog" er I nu klar til at begynde med MotionsFloorball. Ingen vellykket middagsret tilbereder som bekendt sig selv - de vigtigste ingredienser til et succesfuldt forløb er vilje og handlingskraft. Tilsættes værktøjerne og vidensdelen fra denne bog, er der dog ikke langt fra tanke...

  3. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  4. A Harmonic Motion Experiment

    Science.gov (United States)

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  5. Algebraic Description of Motion

    Science.gov (United States)

    Davidon, William C.

    1974-01-01

    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  6. Optical polarization: background and camouflage

    Science.gov (United States)

    Škerlind, Christina; Hallberg, Tomas; Eriksson, Johan; Kariis, Hans; Bergström, David

    2017-10-01

    Polarimetric imaging sensors in the electro-optical region, already military and commercially available in both the visual and infrared, show enhanced capabilities for advanced target detection and recognition. The capabilities arise due to the ability to discriminate between man-made and natural background surfaces using the polarization information of light. In the development of materials for signature management in the visible and infrared wavelength regions, different criteria need to be met to fulfil the requirements for a good camouflage against modern sensors. In conventional camouflage design, the aimed design of the surface properties of an object is to spectrally match or adapt it to a background and thereby minimizing the contrast given by a specific threat sensor. Examples will be shown from measurements of some relevant materials and how they in different ways affect the polarimetric signature. Dimensioning properties relevant in an optical camouflage from a polarimetric perspective, such as degree of polarization, the viewing or incident angle, and amount of diffuse reflection, mainly in the infrared region, will be discussed.

  7. Lobbying and political polarization

    OpenAIRE

    Ursprung, Heinrich W.

    2002-01-01

    Standard spatial models of political competition give rise to equilibria in which the competing political parties or candidates converge to a common position. In this paper I show how political polarization can be generated in models that focus on the nexus between pre-election interest group lobbying and electoral competition.

  8. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  9. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  10. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  11. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  12. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  13. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.

    1980-01-01

    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  14. Study on the thermal structure of the Venusian polar atmosphere

    Science.gov (United States)

    Takamura, M.; Taguchi, M.; Fukuhara, T.; Kouyama, T.; Imamura, T.; Sato, T. M.; Futaguchi, M.; Yamada, T.; Nakamura, M.; Iwagami, N.; Suzuki, M.; Ueno, M.; Sato, M.; Hashimoto, G. L.; Takagi, S.

    2017-12-01

    The Venus atmosphere exhibits characteristic thermal features called `polar dipoles' and `polar collars' in both polar regions. The polar dipole which locates around the center of the polar region is warmer than mid-latitudes and the polar collar surrounding the polar dipole is colder than the other regions at the same altitude. These features were revealed by infrared observations of Venus by the previous missions. The previous observations showed that shapes of the polar dipoles can be characterized by three patterns which are the zonal wave numbers of 0-2, and that they change with time. The rotation periods of polar dipoles were determined to be 2.5 and 2.8-3.2 Earth days for the southern and northern polar regions, respectively. It has not been clear that the difference and variability in the rotation period is due to just a temporal variation, influence of solar activity, or other reasons. Sato et al. compared the appearances of both polar hot regions by a ground-based observation, rotation of the hot regions is synchronized between the northern and southern hemispheres. However, rotation periods of the northern and southern polar dipoles have not yet been directly compared. The Japanese Venus orbiter Akatsuki is a planetary meteorological satellite aiming at understanding the atmosphere dynamics of Venus. The Longwave Infrared Camera (LIR), observes thermal emission from the cloud top ( 65km). Akatsuki is in an equatorial orbit, which is suitable for simultaneous observations of both northern and southern polar regions. Rotation periods of polar vortices were derived using the LIR data by tracking a zonal position of maximum temperature. The rotation periods of polar vortices of southern and northern hemispheres are determined to be 3.0 - 8.2 and 1.6 - 5.5 Earth days, respectively (Fig.1). These rotation periods of southern polar vortex are longer than the values observed in the past. As a next step, we will derive rotation periods of the polar vortices for

  15. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  16. Characteristics of volume polarization holography with linear polarization light

    Science.gov (United States)

    Zang, Jinliang; Wu, An'an; Liu, Ying; Wang, Jue; Lin, Xiao; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    2015-10-01

    Volume polarization holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) (PQ-PMMA) photopolymer with linear polarized light is obtained. The characteristics of the volume polarization hologram are experimentally investigated. It is found that beyond the paraxial approximation the polarization states of the holographic reconstruction light are generally different from the signal light. Based on vector wave theoretical analyses and material properties, the special exposure condition for correctly holographic reconstruction is obtained and experimentally demonstrated.

  17. Familiarity affects collective motion in shoals of guppies (Poecilia reticulata).

    Science.gov (United States)

    Davis, Scarlet; Lukeman, Ryan; Schaerf, Timothy M; Ward, Ashley J W

    2017-09-01

    The coordinated and synchronized movement of animals in groups often referred to as collective motion emerges through the interactions between individual animals within the group. Factors which affect these interactions have the potential to shape collective movement. One such factor is familiarity, or the tendency to bias behaviour towards individuals as a result of social recognition. We examined the effect of familiarity on the expression of collective motion in small shoals of female guppies ( Poecilia reticulata ). Groups comprising familiar individuals were more strongly polarized than groups of unfamiliar individuals, particularly when in novel surroundings. The ability to form more strongly polarized shoals potentially promotes information transfer and enhances the anti-predator benefits of grouping.

  18. Thermal and nonthermal motions in dense cores

    Energy Technology Data Exchange (ETDEWEB)

    Myers, P.C.; Ladd, E.F.; Fuller, G.A. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA))

    1991-05-01

    Kinetic temperature and NH3 line width data for 61 dense cores with embedded IRAS sources show that the nonthermal component of the core motions increases with source luminosity more rapidly than does the thermal component. The trends cross in the luminosity range 7-22 solar luminosities, which divides the regimes of thermal and nonthermal motions. Maps of line widths in dense cores and their surrounding clouds indicate that nonthermal line broadening is due not only to stellar winds, but also to gas properties independent of the star. The 'initial conditions' for motions in cores forming lower-mass stars are primarily thermal, while those in cores forming higher mass stars are probably primarily nonthermal. These differences in core properties may arise from differences in the relative proportion of magnetic and gravitational energy in the condensing core. 30 refs.

  19. Body motion for powering biomedical devices.

    Science.gov (United States)

    Romero, Edwar; Warrington, Robert O; Neuman, Michael R

    2009-01-01

    Kinetic energy harvesting has been demonstrated as a useful technique for powering portable electronic devices. Body motion can be used to generate energy to power small electronic devices for biomedical applications. These scavengers can recharge batteries, extending their operation lifetime or even replace them. This paper addresses the generation of energy from human activities. An axial flux generator is presented using body motion for powering miniature biomedical devices. This generator presents a gear-shaped planar coil and a multipole NdFeB permanent magnet (PM) ring with an attached eccentric weight. The device generates energy by electromagnetic induction on the planar coil when subject to a changing magnetic flux due to the generator oscillations produced by body motion. A 1.5 cm(3) prototype has generated 3.9 microW of power while walking with the generator placed laterally on the ankle.

  20. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed

    Science.gov (United States)

    Tarduno, J. A.; Bono, R. K.

    2017-12-01

    Paleomagnetic study of volcanic rocks remains the gold standard on which to assess hotspot motion, true polar wander and plate motion recorded by oceanic plates. There is remarkable consistency between paleomagnetic results from basaltic lavas recovered by ocean drilling of the Emperor seamounts, and independent predictions of plate circuits. Both reveal greater than 40 mm/yr of southward hotspot motion; thus the dominant reason for the distinct bend morphology the Hawaiian-Emperor track is hotspot motion rather than plate motion. These findings provide the motivation for moving beyond hotspot fixity to understand mantle processes responsible for the observed motions. Global analyses as well as comparisons between the Hawaiian-Emperor and Louisville tracks indicate only a minor (if any) role for true polar wander. Two viable, non-mutually exclusive processes to explain the observed Hawaiian plume motion are: i. plume-ridge and ii plume-LLSVP interaction. Here we further explore these issues by paleomagnetic analyses of basalts from the Cenozoic Hawaiian chain and Late Cretaceous basalts of the southernmost Pacific Plate. The latter yield paleolatitudes consistent with those from the northern Pacific, indicating that long-standing non-dipole fields cannot have been large enough to affect conclusions on hotspot drift. Data from the former suggest some relative motions between the LLSVPs on tens-of-millions of year time scales, which probably record the continual reshaping of these provinces by plume motion in the lower mantle.

  1. Quaternary Polarization-Multiplexed Subsystem for High-Capacity IM/DD Optical Data Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Usuga Castaneda, Mario A.; Porto da Silva, Edson

    2015-01-01

    We demonstrate for the first time an intensitymodulated direct-detection link using four states of polarization. The four data-independent tributaries are each assigned distinct states of polarization to enable the receiver to separate the signals. Polarization rotation due to propagation over...

  2. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  3. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  4. Robust Object Tracking Based on Motion Consistency

    Science.gov (United States)

    He, Lijun; Qiao, Xiaoya; Wen, Shuai

    2018-01-01

    Object tracking is an important research direction in computer vision and is widely used in video surveillance, security monitoring, video analysis and other fields. Conventional tracking algorithms perform poorly in specific scenes, such as a target with fast motion and occlusion. The candidate samples may lose the true target due to its fast motion. Moreover, the appearance of the target may change with movement. In this paper, we propose an object tracking algorithm based on motion consistency. In the state transition model, candidate samples are obtained by the target state, which is predicted according to the temporal correlation. In the appearance model, we define the position factor to represent the different importance of candidate samples in different positions using the double Gaussian probability model. The candidate sample with highest likelihood is selected as the tracking result by combining the holistic and local responses with the position factor. Moreover, an adaptive template updating scheme is proposed to adapt to the target’s appearance changes, especially those caused by fast motion. The experimental results on a 2013 benchmark dataset demonstrate that the proposed algorithm performs better in scenes with fast motion and partial or full occlusion compared to the state-of-the-art algorithms. PMID:29438323

  5. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  6. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  7. Analytical polarization calculations beyond SLIM

    International Nuclear Information System (INIS)

    Barber, D.P.

    1989-01-01

    A comparison is made between the theories of Bell and Leinaas and of Derbenev and Kondratenko for the spin polarization in electron storage rings. A calculation of polarization in HERA using the program SMILE of Mane is presented

  8. Third-order superintegrable systems separating in polar coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Frederick; Winternitz, Pavel, E-mail: tremblaf@crm.umontreal.c, E-mail: wintern@crm.umontreal.c [Centre de Recherches Mathematiques and Departement de Mathematiques et de Statistique, Universite de Montreal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-04-30

    A complete classification of quantum and classical superintegrable systems in E{sub 2} is presented that allow the separation of variables in polar coordinates and admit an additional integral of motion of order 3 in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painleve transcendent or in terms of the Weierstrass elliptic function.

  9. Time reversal invariance in polarized neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Eric G. [Harvard Univ., Cambridge, MA (United States)

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10-4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10-5 is ultimately expected. The decay of free polarized neutrons (n → p + e + $\\bar{v}$e) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σn • pp x pe). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  10. Time reversal invariance in polarized neutron decay

    International Nuclear Information System (INIS)

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10 -4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10 -5 is ultimately expected. The decay of free polarized neutrons (n → p + e + bar v e ) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σ n · p p x p e ). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D

  11. On Determinants of Political Polarization

    OpenAIRE

    Grechyna, Daryna

    2015-01-01

    Political polarization has been shown to significantly influence a country's economic performance. However, little is known about the drivers of political polarization. In this article, we aim to identify the main determinants of political polarization using Bayesian Model Averaging to overcome the problem of model uncertainty. We find that the level of trust within a country and the degree of income inequality are the most robust determinants of political polarization.

  12. Lunar skylight polarization signal polluted by urban lighting

    Science.gov (United States)

    Kyba, C. C. M.; Ruhtz, T.; Fischer, J.; Hölker, F.

    2011-12-01

    On clear moonlit nights, a band of highly polarized light stretches across the sky at a 90 degree angle from the moon, and it was recently demonstrated that nocturnal organisms are able to navigate based on it. Urban skyglow is believed to be almost unpolarized, and is therefore expected to dilute this unique partially linearly polarized signal. We found that urban skyglow has a greater than expected degree of linear polarization (p = 8.6 ± 0.3%), and confirmed that its presence diminishes the natural lunar polarization signal. We also observed that the degree of linear polarization can be reduced as the moon rises, due to the misalignment between the polarization angles of the skyglow and scattered moonlight. Under near ideal observing conditions, we found that the lunar polarization signal was clearly visible (p = 29.2 ± 0.8%) at a site with minimal light pollution 28 km from Berlin's center, but was reduced (p = 11.3 ± 0.3%) within the city itself. Daytime measurements indicate that without skyglow p would likely be in excess of 50%. These results indicate that nocturnal animal navigation systems based on perceiving polarized scattered moonlight likely fail to operate properly in highly light-polluted areas, and that future light pollution models must take polarization into account.

  13. Polarization of Hazes and Aurorae on Jupiter

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; McLean, Will; PACA_Jupiter

    2017-10-01

    Our solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Changes in the clouds/thermal filed can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for outer planets is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. For example, at the equator, much of the observed reflected radiation is due to the presence of clouds and therefore, low polarization. Polar asymmetry exists between the two poles, while the planetary disk is unpolarized. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project. With NASA/Juno mission in a 53-day orbit around Jupiter, and recent outbreaks in the atmosphere, changes in the polarimetric signature will provide insight to the changes occurring in the atmosphere. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers based in the U.K., Australia and Europe. France

  14. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  15. HST observations of the limb polarization of Titan

    Science.gov (United States)

    Bazzon, A.; Schmid, H. M.; Buenzli, E.

    2014-12-01

    Context. Titan is an excellent test case for detailed studies of the scattering polarization from thick hazy atmospheres. Accurate scattering and polarization parameters have been provided by the in situ measurements of the Cassini-Huygens landing probe. For Earth-bound observations Titan can only be observed at a backscattering situation, where the disk-integrated polarization is close to zero. However, with resolved imaging polarimetry a second order polarization signal along the entire limb of Titan can be measured. Aims: We present the first limb polarization measurements of Titan, which are compared as a test to our limb polarization models. Methods: Previously unpublished imaging polarimetry from the HST archive is presented, which resolves the disk of Titan. We determine flux-weighted averages of the limb polarization and radial limb polarization profiles, and investigate the degradation and cancelation effects in the polarization signal due to the limited spatial resolution of our observations. Taking this into account we derive corrected values for the limb polarization in Titan. The results are compared with limb polarization models, using atmosphere and haze scattering parameters from the literature. Results: In the wavelength bands between 250 nm and 2 μm a strong limb polarization of about 2 - 7% is detected with a position angle perpendicular to the limb. The fractional polarization is highest around 1 μm. As a first approximation, the polarization seems to be equally strong along the entire limb. The comparison of our data with model calculations and the literature shows that the detected polarization is compatible with expectations from previous polarimetric observations taken with Voyager 2, Pioneer 11, and the Huygens probe. Conclusions: Our results indicate that ground-based monitoring measurements of the limb-polarization of Titan could be useful for investigating local haze properties and the impact of short-term and seasonal variations of

  16. Polarized electrogowdy spacetimes censored

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2010-05-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  17. Development of polarized negative hydrogen ion source with resonant charge-exchange plasma ionizer

    Science.gov (United States)

    Belov, A. S.; Esin, S. K.; Netchaeva, L. P.; Turbabin, A. V.; Vasil'Ev, G. A.

    2001-06-01

    Polarized negative hydrogen ion beam with peak current of 2.5 mA has been obtained from an atomic beam-type polarized ion source of Institute for Nuclear Research, Moscow. The intensity improvement has been achieved due to increase of efficiency of conversion of polarized hydrogen atoms into polarized negative ions. New converter for production of deuterium plasma with high density of unpolarized negative ions is described. Limitations of the method and possible improvements are discussed. .

  18. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  19. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  20. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  1. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  2. On polarization in biomembranes

    DEFF Research Database (Denmark)

    Zecchi, Karis Amata

    close to physiological conditions, making these effects biologically relevant. In this work, we consider the case of asymmetric membranes which can display spontaneous polarization in the absence of a field. Close to the phase transition, we find that the membrane displays piezoelectric, flexoelectric...... on different geometries point in the direction of a flexoelectric mechanism behind current rectification in lipid bilayers. Finally, we suggest that our updated equivalent circuit should be included in the interpretation of elctrophysiological data....

  3. Multifrequency Behaviour of Polars

    Directory of Open Access Journals (Sweden)

    K. Reinsch

    2015-02-01

    Full Text Available Cataclysmic variables emit over a wide range of the electromagnetic spectrum. In this paper I will review observations of polars in relevant passbands obtained during the last decade and will discuss their diagnostical potential to access the physics of the main components within the binary systems. This will include a discussion of intrinsic source variability and the quest for simultaneous multi-frequency observations.

  4. Force and motion

    CERN Document Server

    Robertson, William C

    2002-01-01

    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  5. Motion characterization scheme to minimize motion artifacts in intravital microscopy

    Science.gov (United States)

    Lee, Sungon; Courties, Gabriel; Nahrendorf, Matthias; Weissleder, Ralph; Vinegoni, Claudio

    2017-03-01

    Respiratory- and cardiac-induced motion artifacts pose a major challenge for in vivo optical imaging, limiting the temporal and spatial imaging resolution in fluorescence laser scanning microscopy. Here, we present an imaging platform developed for in vivo characterization of physiologically induced axial motion. The motion characterization system can be straightforwardly implemented on any conventional laser scanning microscope and can be used to evaluate the effectiveness of different motion stabilization schemes. This method is particularly useful to improve the design of novel tissue stabilizers and to facilitate stabilizer positioning in real time, therefore facilitating optimal tissue immobilization and minimizing motion induced artifacts.

  6. Polar Business Design

    Directory of Open Access Journals (Sweden)

    Sébastien Caisse

    2014-02-01

    Full Text Available Polar business design aims to enable entrepreneurs, managers, consultants, researchers, and business students to better tackle model-based analysis, creation, and transformation of businesses, ventures, and, more generically, collective endeavors of any size and purpose. It is based on a systems-thinking approach that builds on a few interrelated core concepts to create holistic visual frameworks. These core concepts act as poles linked by meaningful dyads, flows, and faces arranged in geometric shapes. The article presents two such polar frameworks as key findings in an ongoing analytic autoethnography: the three-pole Value−Activity−Stakeholder (VAS triquetra and the four-pole Offer−Creation−Character−Stakeholder (OCCS tetrahedron. The VAS triquetra is a more aggregated model of collective endeavors. The OCCS tetrahedron makes a trade-off between a steeper learning curve and deeper, richer representation potential. This article discusses how to use these two frameworks as well as their limits, and explores the potential that polar business design offers for future research.

  7. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    Abstract. Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling motion ...

  8. Statistics of bicycle rider motion

    NARCIS (Netherlands)

    Moore, J.K.; Hubbard, M.; Schwab, A.L.; Kooijman, J.D.G.; Peterson, D.L.

    2010-01-01

    An overview of bicycle and rider kinematic motions from a series of experimental treadmill tests is presented. The full kinematics of bicycles and riders were measured with an active motion capture system. Motion across speeds are compared graphically with box and whiskers plots. Trends and ranges

  9. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  10. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    Science.gov (United States)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  11. First trans-Neptunian object in polar resonance with Neptune

    Science.gov (United States)

    Morais, M. H. M.; Namouni, F.

    2017-11-01

    Capture in mean motion resonance has been observed in the Solar system for small objects with prograde as well as retrograde orbits of moderate inclinations. However, no example of an object with a nearly polar orbit was known to be in resonance with a planet. In this Letter, we report that the nearly-polar trans-Neptunian object (471325), nicknamed Niku, is in a 7:9 resonance with Neptune, with a mean lifetime in resonance of 16 ± 11 million years. While entrance and exit in the 7:9 resonance is caused by close encounters with Neptune, the resonant configuration provides a temporary protection mechanism against disruptive close encounters with this planet. The other nearly polar trans-Neptunian objects do not seem to be in resonance with the planets with the possible exception of 2008 KV42, also known as Drac, that has a small chance of being in the 8:13 resonance with Neptune.

  12. Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data

    Science.gov (United States)

    Pallardy, Quinn; Fox, Neil I.

    2018-02-01

    Implementation of dual-polarization radar should allow for improvements in quantitative precipitation estimates due to dual-polarization capability allowing for the retrieval of the second moment of the gamma drop size distribution. Knowledge of the shape of the DSD can then be used in combination with mesoscale model data to estimate the motion and evaporation of each size of drop falling from the height at which precipitation is observed by the radar to the surface. Using data from Central Missouri at a range between 130 and 140 km from the operational National Weather Service radar a rain drop tracing scheme was developed to account for the effects of evaporation, where individual raindrops hitting the ground were traced to the point in space and time where they interacted with the radar beam. The results indicated evaporation played a significant role in radar rainfall estimation in situations where the atmosphere was relatively dry. Improvements in radar estimated rainfall were also found in these situations by accounting for evaporation. The conclusion was made that the effects of raindrop evaporation were significant enough to warrant further research into the inclusion high resolution model data in the radar rainfall estimation process for appropriate locations.

  13. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    International Nuclear Information System (INIS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-01-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations. - Highlights: • The CE318-DP polarized measurements are not yet widely used except DoLP. • Compared with DoLP and I, difficulty in calculating Stokes Q and U is discussed. • A new polarized almucantar observation geometry based on CE318-DP is executed. • We derive Stokes Q, U, and AoP both in principal and almucantar plane geometries. • The results are comparable with previous DoLP and I, as well as model simulations

  14. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2000-06-01

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  15. Polarization observables in Virtual Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Luca

    2007-10-15

    Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p){gamma} was measured at MAMI using the A1 Collaboration three spectrometer setup with Q{sup 2}=0.33 (GeV/c){sup 2}. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)

  16. Particle confinement by a radially polarized laser Bessel beam

    Science.gov (United States)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  17. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    Science.gov (United States)

    Zhao, Huijie; Xu, Wujian

    2016-08-03

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.

  18. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  19. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  20. Cervical motion assessment using virtual reality.

    Science.gov (United States)

    Sarig-Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved

    2009-05-01

    Repeated measures of cervical motion in asymptomatic subjects. To introduce a virtual reality (VR)-based assessment of cervical range of motion (ROM); to establish inter and intratester reliability of the VR-based assessment in comparison with conventional assessment in asymptomatic individuals; and to evaluate the effect of a single VR session on cervical ROM. Cervical ROM and clinical issues related to neck pain is frequently studied. A wide variety of methods is available for evaluation of cervical motion. To date, most methods rely on voluntary responses to an assessor's instructions. However, in day-to-day life, head movement is generally an involuntary response to multiple stimuli. Therefore, there is a need for a more functional assessment method, using sensory stimuli to elicit spontaneous neck motion. VR attributes may provide a methodology for achieving this goal. A novel method was developed for cervical motion assessment utilizing an electromagnetic tracking system and a VR game scenario displayed via a head mounted device. Thirty asymptomatic participants were assessed by both conventional and VR-based methods. Inter and intratester repeatability analyses were performed. The effect of a single VR session on ROM was evaluated. Both assessments showed non-biased results between tests and between testers (P > 0.1). Full-cycle repeatability coefficients ranged between 15.0 degrees and 29.2 degrees with smaller values for rotation and for the VR assessment. A single VR session significantly increased ROM, with largest effect found in the rotation direction. Inter and intratester reliability was supported for both the VR-based and the conventional methods. Results suggest better repeatability for the VR method, with rotation being more precise than flexion/extension. A single VR session was found to be effective in increasing cervical motion, possibly due to its motivating effect.

  1. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  2. Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion

    Science.gov (United States)

    Lin, Shi-Zeng; Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh

    2014-05-01

    We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.

  3. Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shi-Zeng, E-mail: szl@lanl.gov; Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-07

    We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.

  4. Peculiarities of low-frequency dielectric spectra and domain wall motion in gadolinium molybdate

    International Nuclear Information System (INIS)

    Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.

    1994-01-01

    Low-frequency Debye dispersion of dielectric permeability in GMO with the low values of high-frequency limit ε ∞ was investigated in a wide temperature range as well as in fields of variable amplitude. The features of domain boundaries motion were studied at the partial repolarization in monopolar P-pulsed fields. The model of cooperationrelaxation motion brifing in parallel with positive to negative contribution to polarization that explained the low values of ε ∞ was suggested

  5. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  6. Polar Functions for Anisotropic Gaussian Random Fields

    Directory of Open Access Journals (Sweden)

    Zhenlong Chen

    2014-01-01

    Full Text Available Let X be an (N, d-anisotropic Gaussian random field. Under some general conditions on X, we establish a relationship between a class of continuous functions satisfying the Lipschitz condition and a class of polar functions of X. We prove upper and lower bounds for the intersection probability for a nonpolar function and X in terms of Hausdorff measure and capacity, respectively. We also determine the Hausdorff and packing dimensions of the times set for a nonpolar function intersecting X. The class of Gaussian random fields that satisfy our conditions includes not only fractional Brownian motion and the Brownian sheet, but also such anisotropic fields as fractional Brownian sheets, solutions to stochastic heat equation driven by space-time white noise, and the operator-scaling Gaussian random field with stationary increments.

  7. WORKSHOP: Stable particle motion

    International Nuclear Information System (INIS)

    Ruggiero, Alessandro G.

    1993-01-01

    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  8. Field spectrometer measurement errors in presence of partially polarized light; evaluation of ground truth measurement accuracy.

    Science.gov (United States)

    Lévesque, Martin P; Dissanska, Maria

    2016-11-28

    Considering that natural light is always partially polarized (reflection, Rayleigh scattering, etc.) and the alteration of the spectral response of spectrometers due to the polarization, some concerns were raised about the accuracy and variability of spectrometer outdoor measurements in field campaigns. We demonstrated by simple experiments that, in some circumstances, spectral measurements can be affected by the polarization. The signal variability due to polarization sensitivity of the spectrometer for the measured sample was about 5-10%. We noted that, measuring surfaces at right angle (a frequently used measurement protocol) minimized the problems due to polarization, producing valid results. On the other hand, measurements acquired with a slant angle are more or less accurate; an important proportion of the signal variability is due to the polarization. Direct sun reflection and reflection from close objects must be avoided.

  9. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...

  10. Electromechanical motion devices

    CERN Document Server

    Krause, Paul C; Pekarek, Steven D

    2012-01-01

    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  11. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  12. Plasma polarization spectroscopy

    CERN Document Server

    Iwamae, Atsushi

    2008-01-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment.

  13. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  14. Multiply charged negative ions of hydrogen in linearly polarized laser fields

    International Nuclear Information System (INIS)

    van Duijn, E.; Muller, H.G.

    1997-01-01

    Motivated by the prediction of the appearance of atomic multiply charged negative ions (AMCNI) of hydrogen, induced by a linearly polarized laser field, we present an analytical quantum mechanical treatment of the appearance and structure of AMCNI in a linearly polarized field, based on high-frequency Floquet theory (HFFT). For the simplest AMCNI of hydrogen, H 2- and H 3- , the values of α 0 at which the first bound state appears are α 0 =1.62x10 2 and α 0 =1.02x10 4 , where α 0 =I 1/2 /ω 2 is the amplitude of the oscillation of a free electron in the field with frequency ω and intensity I (unless stated otherwise, we use atomic units throughout this paper). Whereas in vacuum at least one of the electrons of an AMCNI autodetaches, an intense high-frequency field can change the character of the ion dramatically, such that bound states of AMCNI can appear. Due to the interaction with the field, the electrons of the AMCNI oscillate in phase along the polarization axis. This open-quotes quiverclose quotes motion enables the electrons to be spatially separated over distances of order α 0 , reducing the repulsive e-e interaction as α 0 increases. In other words, for α 0 large enough, the field enables a configuration in which the electrons, while widely separated, are bound to one proton. For the prediction of bound states of H N- with N>3, however, a relativistic description or low-frequency theory is required. copyright 1997 The American Physical Society

  15. Toward precision polarimetry of dense polarized {sup 3}He targets

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M.V.; Bogorad, P.L.; Cates, G.D.; Kumar, K.S. [Princeton Univ., NJ (United States); Chupp, T.E.; Coulter, K.P.; Smith, T.B.; Welsh, R. [University of Michigan, Ann Arbor, MI 48109 (United States); Hughes, E.W. [California Inst. of Technol., Pasadena, CA (United States); Johnson, J.R. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States); Thompson, A.K. [National Institute of Standards and Technology, Gainesville, MD 20899 (United States)

    1998-01-11

    We describe several new measurement and analysis techniques used to determine the polarization of the {sup 3}He target in a recently completed measurement of the neutron spin structure function g{sup n}{sub 1} at SLAC (E-154). The polarization was determined using two independent methods. The first method used a standard technique of adiabatic fast passage, calibrated by a measurement of Boltzmann polarization in a sample of water. We describe several systematic effects affecting this calibration procedure. The second method used a shift of the Rb Zeeman resonance frequency due to the polarization of {sup 3}He. Implementation and calibration of this technique are discussed in detail. Finally, the density of {sup 3}He in the cell was measured using two independent methods, one of them based on the pressure broadening of Rb D{sub 1} and D{sub 2} lines due to {sup 3}He. (orig.). 21 refs.

  16. Polar Grid Navigation Algorithm for Unmanned Underwater Vehicles.

    Science.gov (United States)

    Yan, Zheping; Wang, Lu; Zhang, Wei; Zhou, Jiajia; Wang, Man

    2017-07-09

    To solve the unavailability of a traditional strapdown inertial navigation system (SINS) for unmanned underwater vehicles (UUVs) in the polar region, a polar grid navigation algorithm for UUVs is proposed in this paper. Precise navigation is the basis for UUVs to complete missions. The rapid convergence of Earth meridians and the serious polar environment make it difficult to establish the true heading of the UUV at a particular instant. Traditional SINS and traditional representation of position are not suitable in the polar region. Due to the restrictions of the complex underwater conditions in the polar region, a SINS based on the grid frame with the assistance of the OCTANS and the Doppler velocity log (DVL) is chosen for a UUV navigating in the polar region. Data fusion of the integrated navigation system is realized by a modified fuzzy adaptive Kalman filter (MFAKF). By neglecting the negative terms, and using T-S fuzzy logic in the adaptive regulation of the noise covariance, the proposed filter algorithm can improve navigation accuracy. Simulation and experimental results demonstrate that the polar grid navigation algorithm can effectively navigate a UUV sailing in the polar region.

  17. Enhanced polarization of (11–22) semi-polar InGaN nanorod array structure

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T., E-mail: t.wang@sheffield.ac.uk [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-10-05

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11–22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.

  18. Enhanced polarization of (11–22) semi-polar InGaN nanorod array structure

    International Nuclear Information System (INIS)

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.

    2015-01-01

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11–22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission

  19. Multi-flexible-body dynamics capturing motion-induced stiffness

    Science.gov (United States)

    Banerjee, Arun K.; Lemak, Mark E.; Dickens, John M.

    1989-01-01

    A multi-flexible-body dynamics formulation incorporating a recently developed theory for capturing motion induced stiffness for a arbitrary structure undergoing large rotation and translation accompanied by small vibrations is presented. In essence, the method consists of correcting prematurely linearized dynamical equations for an arbitrary flexible body with generalized active forces due to geometric stiffness corresponding to a system of twelve inertia forces and nine inertia couples distributed over the body. Equations of motion are derived by means of Kane's method. A useful feature of the formulation is its treatment of prescribed motions and interaction forces. Results of simulations of motions of three flexible spacecraft, involving stiffening during spinup motion, dynamic buckling, and a repositioning maneuver, demonstrate the validity and generality of the theory.

  20. A Technique For Automatic Motion Correction In DSA

    Science.gov (United States)

    Pickens, David R.; Fitzpatrick, J. M.; Grefenstette, John J.; Price, Ronald R.; James, A. E., Jr.

    1986-06-01

    The motion of the contracting heart has made it impossible to study coronary arteries with venous injections of contrast using digital subtraction angiography (DSA), even with cardiac gating. Furthermore, for intravenous injections, the images are statistically very poor due to the small size of the vessels and dilution of the contrast media, rendering the images diagnostically useless. A technique based on polynomial transformations has been implemented and is being evaluated which permits removal of motion between a pair of images acquired during mask-mode DSA. This technique is capable of handling three-dimensional motion and is based on applications of techniques of fluid dynamics, statistical sampling theory, and artificial intelligence. A series of phantom images, exhibiting three dimensional motion, are shown which demonstrate the ability of the technique to remove motion.

  1. Correlated motions are a fundamental property of β-sheets

    Science.gov (United States)

    Fenwick, R. Bryn; Orellana, Laura; Esteban-Martín, Santi; Orozco, Modesto; Salvatella, Xavier

    2014-06-01

    Correlated motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. The mechanisms that underlie these processes remain largely unknown due mainly to limitations in their direct detection. Here, based on a detailed analysis of protein structures deposited in the protein data bank, as well as on state-of-the art molecular simulations, we provide general evidence for the transfer of structural information by correlated backbone motions, mediated by hydrogen bonds, across β-sheets. We also show that the observed local and long-range correlated motions are mediated by the collective motions of β-sheets and investigate their role in large-scale conformational changes. Correlated motions represent a fundamental property of β-sheets that contributes to protein function.

  2. Motion Pattern-Based Video Classification and Retrieval

    Directory of Open Access Journals (Sweden)

    Ma Yu-Fei

    2003-01-01

    Full Text Available Today′s content-based video retrieval technologies are still far from human′s requirements. A fundamental reason is the lack of content representation that is able to bridge the gap between visual features and semantic conception in video. In this paper, we propose a motion pattern descriptor, motion texture that characterizes motion in a generic way. With this representation, we design a semantic classification scheme to effectively map video clips to semantic categories. Support vector machines (SVMs are used as the classifiers. In addition, this scheme also improves significantly the performance of motion-based shot retrieval due to the comprehensiveness and effectiveness of motion pattern descriptor and the semantic classification capability as shown by experimental evaluations.

  3. Atomic Models for Motional Stark Effects Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  4. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  5. Empirical ground motion prediction

    Directory of Open Access Journals (Sweden)

    R. J. Archuleta

    1994-06-01

    Full Text Available New methods of site-specific ground motion prediction in the time and frequency domains are presented. A large earthquake is simulated as a composite (linear combination of observed small earthquakes (subevents assuming Aki-Brune functional models of the source time functions (spectra. Source models incorporate basic scaling relations between source and spectral parameters. Ground motion predictions are consistent with the entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to use all the available empirical Green’s functions (or any subset of observations at a site. Thus a prediction is not biased by a single record, and different possible source-receiver paths are taken into account. Directivity is accounted for by adjusting the apparent source duration at each site. Our time-series prediction algorithm is based on determination of a non-uniform distribution of rupture times of subevents. By introducing a specific rupture velocity we avoid the major problem of deficiency of predictions around the main event's corner frequency. A novel notion of partial coherence allows us to sum subevents' amplitude spectra directly without using any information on their rupture times and phase histories. Predictions by this spectral method are not Jependent on details of rupture nucleation and propagation, location of asperities and other predominantly phase-affecting factors, responsible for uncertainties in time-domain simulations.

  6. Perceptually Uniform Motion Space.

    Science.gov (United States)

    Birkeland, Asmund; Turkay, Cagatay; Viola, Ivan

    2014-11-01

    Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters, we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then performed a second study to investigate the performance of the compensation model. From the second study we detected a constant estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by comparing our model to a model based on Stevens' Power Law.

  7. Effect of electron thermal motion on plasma heating in a magnetized inductively coupled plasma

    International Nuclear Information System (INIS)

    Aman-ur-Rehman; Pu Yikang

    2007-01-01

    Power absorbed inside the magnetized inductively coupled plasma (MICP) is calculated using three different warm MICP models and is then compared with the result of the cold MICP model. The comparison shows that in the propagating region (ω e vertical bar), under the cavity resonance conditions, warm plasma heating S warm is significantly less than the cold plasma heating S cold , unless the distance traveled by the electrons due to their thermal motion, during the effective wave period, becomes significantly less than the wavelength of the cavity wave. Furthermore, in the propagating region, when ω≅ vertical bar Ω e vertical bar, there appears a valley on the plot of η(ω)=S warm /S cold versus ω showing the negative effect of electron thermal motion on plasma heating. This valley widens and gets smoother with an increase in the plasma length. In the nonpropagating region (ω> vertical bar Ω e vertical bar), the maximum value of η(ω) exists when ω- vertical bar Ω e vertical bar ≅v th /δ, showing that, in the presence of the external magnetic field, the thermal motion of the electrons leads to a Doppler shift of the frequencies, at which collisionless heating is the dominant mode of electron heating. Furthermore, in the nonpropagating region, when ω≅ vertical bar Ω e vertical bar, the skin depth of the right circularly polarized electric field decreases with magnetic field. This decrease in the skin depth results in an increase of collisionless heating under the Doppler-shifted wave particle resonant condition of ω- vertical bar Ω e vertical bar ≅v th /δ. It is also observed that, for large plasma length, the results of all the three warm MICP models are consistent with each other

  8. Cometary dust dynamics and polarization in electromagnetic radiation fields

    Science.gov (United States)

    Herranen, J.; Markkanen, J.; Muinonen, K.

    2017-09-01

    In our work, we apply a fast solution of electromagnetic scattering to determine the induced spin and movement of a dust particle in a cometary coma. The resulted aligned spinning state is then used to determine the observable polarization of the dust, and compared against the randomly averaged polarization of the same particle. We find that measurable effects arise due to the alignment. In the future, similar methods can be used to model the dynamics and in turn the polarization of the whole coma.

  9. Polar drive on OMEGA

    Directory of Open Access Journals (Sweden)

    Radha P.B.

    2013-11-01

    Full Text Available High-convergence polar-drive experiments are being conducted on OMEGA [T. R. Boehly et al., Opt. Commum. 133, 495 (1997] using triple-picket laser pulses. The goal of OMEGA experiments is to validate modeling of oblique laser deposition, heat conduction in the presence of nonradial thermal gradients in the corona, and implosion energetics in the presence of laser–plasma interactions such as crossed-beam energy transfer. Simulated shock velocities near the equator, where the beams are obliquely incident, are within 5% of experimentally inferred values in warm plastic shells, well within the required accuracy for ignition. High, near-one-dimensional areal density is obtained in warm-plastic-shell implosions. Simulated backlit images of the compressing core are in good agreement with measured images. Outstanding questions that will be addressed in the future relate to the role of cross-beam transfer in polar drive irradiation and increasing the energy coupled into the target by decreasing beam obliquity.

  10. Effects of Heave Washout Filtering on Motion Fidelity and Pilot Control Behavior for a Large Commercial Airliner

    NARCIS (Netherlands)

    Van Wieringen, A.T.; Pool, D.M.; Van Paassen, M.M.; Mulder, M.

    2011-01-01

    Due to the significant translational heave motion at the pilot station associated with changes in aircraft pitch attitude, themotion cueing for aircraft pitchmaneuvering typically requires significant heave washout filtering. Previous studies that attempted to motivate choices in the motion cueing

  11. Strong motion duration and earthquake magnitude relationships

    International Nuclear Information System (INIS)

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions

  12. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  13. MSPT: Motion Simulator for Proton Therapy

    International Nuclear Information System (INIS)

    Morel, Paul

    2014-01-01

    In proton therapy, the delivery method named spot scanning, can provide a particularly efficient treatment in terms of tumor coverage and healthy tissues protection. The dosimetric benefits of proton therapy may be greatly degraded due to intra-fraction motions. Hence, the study of mitigation or adaptive methods is necessary. For this purpose, we developed an open-source 4D dose computation and evaluation software, MSPT (Motion Simulator for Proton Therapy), for the spot-scanning delivery technique. It aims at highlighting the impact of intra-fraction motions during a treatment delivery by computing the dose distribution in the moving patient. In addition, the use of MSPT allowed us to develop and propose a new motion mitigation strategy based on the adjustment of the beam's weight when the proton beam is scanning across the tumor. In photon therapy, a main concern for deliveries using a multi-leaf collimator (MLC) relies on finding a series of MLC configurations to deliver properly the treatment. The efficiency of such series is measured by the total beam-on time and the total setup time. In our work, we study the minimization of these efficiency criteria from an algorithmic point of view, for new variants of MLCs: the rotating MLC and the dual-layer MLC. In addition, we propose an approximation algorithm to find a series of configurations that minimizes the total beam-on time for the rotating MLC. (author) [fr

  14. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  15. Evidence of two distinct mechanisms driving photoinduced matter motion in thin films containing azobenzene derivatives.

    Science.gov (United States)

    Fabbri, F; Garrot, D; Lahlil, K; Boilot, J P; Lassailly, Y; Peretti, J

    2011-02-17

    Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity pattern and the other by the light polarization pattern. The intensity-driven mechanism is found to critically depend on the polymer matrix while the polarization-driven mechanism occurs with almost the same efficiency in different materials. Depending on the relationship between the polarization and intensity patterns, the two processes may either compete or cooperate giving rise to a nontrivial directional mass transport process.

  16. An Investigation of Polar Ozone Recovery in the 1997 Southern Hemisphere Spring

    Science.gov (United States)

    Pierson, J. M.; Douglass, A. R.; Kawa, S. R.; Newman, P. A.

    2000-01-01

    A chemical transport model is used to investigate the processes that control the depth and duration of the ozone 'hole' in the lower stratosphere through comparisons of model output with measurements from the Total Ozone Mapping Spectrometer (TOMS) and from the Microwave Limb Sounder (MLS) and Halogen Occultation Experiment (HALOE), both on the Upper Atmosphere Research Satellite (UARS). This study extends previous model comparisons with observations into October and November and examine levels in (greater than 31 hPa) and above (less than 31 hPa) the chemical loss region. Averages of column ozone in the model decrease through mid-October below 31 hPa but begin to increase in mid-September above 31 hPa. An investigation of model-tracer data comparisons and other meteorological parameters indicate that the model presents a consistent picture of top-down recovery and tracer transport. An O03budget study at 500 K (below 31 hPa) and 840 K (above 31 hPa) is carried out to investigate the processes that control the timing of the transition of ozone from a chemical to dynamically driven regime. The model ozone decrease at 500 K is due to chemical loss in August and September but is due to upward motion in October. The ozone increase at 840 K is primarily due to photochemical production, with a smaller contribution from transport. These results show that chemistry and dynamics can play different roles in polar vortex ozone recovery at different levels.

  17. Polarized proton collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W. E-mail: mackay@bnl.govhttp://www.rhichome.bnl.gov/People/waldowaldo@bnl.gov; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to {radical}s=500 GeV.

  18. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  19. Purification of polar compounds from Radix isatidis using conventional C18 column coupled with polar-copolymerized C18 column.

    Science.gov (United States)

    Zeng, Jing; Guo, Zhimou; Xiao, Yuansheng; Wang, Chaoran; Zhang, Xiuli; Liang, Xinmiao

    2010-11-01

    Regarding hydrophilic interaction chromatography and normal phase liquid chromatography, RPLC is another choice used to separate polar compounds with the improvement of polar-modified C18 stationary phase. In this study, a method using conventional C18 column coupled with polar-copolymerized C18 column was successfully developed for the separation and purification of polar compounds from Radix isatidis, which is one of the most commonly used traditional Chinese medicines (TCMs). An XTerra MS C18 column was used to fractionate the extract of R. isatidis and a homemade polar-copolymerized C18 column was utilized for the final purification due to its good separation selectivity and high resolution for polar compounds. The established purification system demonstrated good orthogonality for the polar compounds. As a result, ten compounds were purified and three of them were identified as 3-methyl-5-vinyloxazolidin-2-one (compound A), 5-hydroxymethyl-2-furaldehyde (compound B) and 3-methylfuran-2-carboxylic acid (compound G) based on the MS, IR and extensive NMR data, respectively. It was demonstrated to be a feasible and powerful technique for the purification of polar compounds under RPLC mode and more chemical information of TCMs will be obtained to interpret the efficiency of TCMs.

  20. Long-term analytical prediction of geodetic satellites motion to centimeter accuracy

    Science.gov (United States)

    Kudryavtsev, S.

    Studies of motion of geodetic satellites like LAGEOS or ETALON help with solution of many actual problems of geodesy and geophysics, such as improving the Earth rotation parameters or measuring the variations in the geopotential expansion coefficients. Many of these tasks require processing of tracking measurements of passive geodetic satellites collected over a long intervals of time, up to several tens of years. In this case analytical integration methods are better applicable than numerical methods (the latter are usually used for accurate prediction of satellite motion over several days or so). An open issue is the accuracy of the available analytical prediction methods. It should be essentially increased to become compatible to the accuracy of the best laser measurements, i.e. to be to the order of 1 centimeter. This work presents the author's results obtained in solution of that ambitious task. A new analytical method for calculating satellite orbital perturbations due to different disturbing forces is developed. It is based on Poincare method of small parameter but takes advantages of modern high-performance computers and of tools of computer algebra. All perturbations proportional up to and including the fifth-order of small parameters are obtained. At present the method precisely calculates the effects of all geodynamical forces on satellite motion given by the most up-to-date IAU and IERS models, such as non-central Earth gravity potential, precession and nutation of the geoequator, polar motion and irregularities in the Earth's rotation, effect of ocean and solid Earth tides, pole tide, and secular variations of gravity coefficients. The relevant method's accuracy is proven to be equivalent to 1-2 centimeters (stable over one year at least) when calculating positions of high altitude geodetic satellites like ETALON. Recently the method is expanded by analytical calculation of luni-solar perturbations. For that a new high-precise harmonic development of

  1. Smooth Pursuit of Flicker-Defined Motion

    Science.gov (United States)

    Mulligan, Jeffrey B.; Stevenson, Scott B.

    2014-01-01

    We examined the pursuit response to stimuli defined by space-variant flicker of a dense random dot carrier pattern. On each frame, every element of the pattern could change polarity, with a probability given by a two-dimensional Gaussian distribution. A normal distribution produces a circular region of twinkle, while inverting the distribution results in a spot of static texture in a twinkling surround. In this latter case, the carrier texture could be stationary, or could move with the twinkle modulator, thereby producing first-order motion in the region of the spot. While the twinkle-defined spot produces a strong sensation of motion, the complementary stimulus defined by the absence of twinkle does not, when viewed peripherally, it appears to move in steps even when the generating distribution moves smoothly. We examined pursuit responses to these stimuli using two techniques: 1) the eye movement correlogram, obtained by cross-correlating eye velocity with the velocity of a randomly-moving stimulus; and 2) delayed visual feedback, where transient stabilization of a target can produce spontaneous oscillations of the eye, with a period empirically observed to vary linearly with the applied delay. Both techniques provide an estimate of the internal processing time, which can be as short as 100 milliseconds for a first-order target. Assessed by the correlogram method, the response to flicker-defined motion is delayed by more than 100 milliseconds, and significantly weaker (especially in the vertical dimension). When initially presented in the delayed feedback condition, purely saccadic oscillation is observed. One subject eventually developed smooth oscillations (albeit with significant saccadic intrusions), showing a period-versus-delay slope similar to that observed for first-order targets. This result is somewhat surprising, given that we interpret the slope of the period-versus-delay-function as reflecting the balance between position- and velocity

  2. Modelling Near-IR polarization to constrain stellar wind bow shocks

    Science.gov (United States)

    Neilson, Hilding R.; Ignace, R.; Shrestha, M.; Hoffman, J. L.; Mackey, J.

    2013-06-01

    Bow shocks formed from stellar winds are common phenomena observed about massive and intermediate-mass stars such as zeta Oph, Betelgeuse and delta Cep. These bow shocks provide information about the motion of the star, the stellar wind properties and the density of the ISM. Because bow shocks are asymmetric structures, they also present polarized light that is a function of their shape and density. We present a preliminary work modeling dust polarization from a Wilkin (1996) analytic bow shock model and explore how the polarization changes as a function of stellar wind properties.

  3. Linear polarization of BY Draconis

    International Nuclear Information System (INIS)

    Koch, R.H.; Pfeiffer, R.J.

    1976-01-01

    Linear polarization measurements are reported in four bandpasses for the flare star BY Dra. The red polarization is intrinsically variable at a confidence level greater than 99 percent. On a time scale of many months, the variability is not phase-locked to either a rotational or a Keplerian ephemeris. The observations of the three other bandpasses are useful principally to indicate a polarization spectrum rising toward shorter wavelengths

  4. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  5. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  6. The Perception of Depicted Motion

    Directory of Open Access Journals (Sweden)

    Livio Dobrez

    2013-12-01

    Full Text Available Everyone knows that you can read a galloping horse in a still image as galloping. This paper asks how it is that we perceive motion in pictures. It considers perception of real motion in point-light experiments and the perception of motion in stills via the work of various psychologists, in the course of which it raises theoretical questions about the nature of visual perception. It then offers a detailed examination of knowledge regarding neural substrates for both real and depicted motion perception. Finally, it combines psychological and neurophysiological perspectives with phenomenologically-oriented observation of pictures, discussing both frontoparallel motion and motion in depth (in particular the phenomenon of “looming” in terms of two kinds of depictions, the “narrative” and the “performative”. Examples are drawn from all kinds of pictures, but focus is on world rock art, whose time depth is especially amenable to the universalist approach adopted by the paper.

  7. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  8. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  9. Brownian motion of a dust particle in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T.; Shukla, P.K.; Martins, A.M.; Guerra, R. [Grupo de Lasers e Plasmas (GOLP)/Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal)

    1997-03-01

    A new version of the Brownian motion describing the motion of a dust particle in a turbulent plasma is considered. Here, the stochastic force acting on the dust particle is due to the fluctuations of the plasma potential and not due to the usual molecular collisions. Another significant difference is due to the fact that the dust electric charge is not constant but fluctuates with the potential. A four-dimensional formulation of the problem is also given. {copyright} {ital 1997 American Institute of Physics.}

  10. Peculiarities of motion at low velocities. Motion in space and motion in time

    International Nuclear Information System (INIS)

    Zheludev, I.S.

    1982-01-01

    Motion referred to certain space coordinate x and described by space-time relationships of the special theory of relativity, is interpreted as a motion in space. The concept of motion referred to the certain moment of time t, is introduced and called as a motion in time. Space-time relationships for the latter case are followed from the transformations x→t, t→x, v→α (α=1/v, mod(αsub(t))=mod(vsub(s))), c→αsub(max)=1/c 0 , mod(c)=mod(αsub(max)). The invariable characteristic of inertial motion in time is determined by a given equation. The peculiar features of motion in time are found at low velocities (α→αsub(max)). The combined approach is based on both limiting quantities c and αsub(max). If the space coordinate x is measured through motion in space and time t through motion in time (parity frame-reference), all inertial movements have the same velocity, velocity of self-divergence v 0 = √cc 0 . There is no distortion of spatial and temporal scales when the motion is described in the parity frame-reference. The use of different intervals characterizing invariable quantities of inertial motion in space and times makes it possible to understand some problems of cosmological expansion of non-interacting galaxies (Hubble's law v = HR and, the ''low of limited distances'', v = R/t characterizing linear dimension of Universe etc.). (Auth.)

  11. Using Great Circles to Understand Motion on a Rotating Sphere

    Science.gov (United States)

    McIntyre, David H.

    2000-05-01

    The Coriolis and centrifugal forces are fictitious forces introduced to explain motion in a rotating reference frame. However, the vector cross products and coupled differential equations required to make use of these forces generally provide little physical insight into the motion. To facilitate the understanding of these fictitious forces, I consider the motion from the inertial point of view and then transform to the rotating frame. This is a common approach to explain two-dimensional turntable motion, so I discuss motion on a rotating sphere. In this case, the inertial motion is along a great circle fixed in that frame, in analogy with simple straight-line motion in the turntable example. This great circle description is used to discuss ice hockey on a frozen, spherical earth. This simple "straight-line" viewpoint of the inertial observer is reconciled with the view of the rotating observer that requires fictitious forces to explain the motion. By using the great circles to discuss some simple examples, I isolate and illustrate the Coriolis and centrifugal forces, as well as effects due to the curvature of the earth.

  12. Perception of Biological Motion in Central and Peripheral Visual Fields

    Directory of Open Access Journals (Sweden)

    Laicāne Ilze

    2017-10-01

    Full Text Available Studies analysing biological motion perception based on reduced number of dots have demonstrated that biological motion can be perceived even when only the lower part of the body is visible or when the number of dots representing the object is reduced. What is the minimal amount of information that enables biological motion to be distinguished from its scrambled version? The results of the current experiment demonstrate that biological motion can be distinguished from its scrambled version when the object is formed of approximately 5 (4.7 ± 0.1 dots. Additionally, we also investigated whether the threshold value for biological motion perception differs in central and peripheral visual fields. By using stimulus magnification, we demonstrate that the number of dots sufficient for biological motion perception is similar in the central visual field and near periphery. Hence, stimulus magnification can compensate for reduced task performance in the peripheral visual field. The current results suggest that reduced performance of biological motion perception in the peripheral visual field (as demonstrated in other studies is due to difficulties with the global perception of biological motion.

  13. Motion of a skyrmionium driven by spin wave

    Science.gov (United States)

    Shen, Maokang; Zhang, Yue; Ou-Yang, Jun; Yang, Xiaofei; You, Long

    2018-02-01

    A skyrmionium is composed of two skyrmions with opposite skyrmion numbers and different sizes in the same track. In recent years, the motion of a skyrmionium driven by spin-polarized current has been investigated. However, the motion of a skyrmionium driven by a spin wave has not been reported. In this paper, we report our work concerning the numerical analysis of spin wave-driven motion of a skyrmionium in a nanotrack. The results show that the motion of a skyrmionium was significantly influenced by varying the frequency and amplitude of the AC magnetic field for exciting a spin wave, the distance between the spin wave source and the skyrmionium, the damping coefficient of the ferromagnetic track, and the track width. We found skyrmionium deformation during its initial motion process, but its shape could be recovered as it moved farther away from the spin wave source. Additionally, a series of velocity peaks were observed in the frequency range between 25 GHz and 175 GHz. When compared to a skyrmion, the skyrmionium could be driven by a spin wave to move in a wider frequency range at a higher velocity, and the velocity of the skyrmionium kept increasing with the increase in the track width till the track edge was far away from the skyrmionium. The result offers skyrmionium potential applications in wide-frequency spintronic devices.

  14. Single-molecule detection of chaperonin dynamics through polarization rotation modulation of CdSe QD luminescence imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Oda, Masaru; Araki, Daisuke; Miyashita, Tatsuki; Nakajima, Koudai; Arita, Mayuno; Yohda, Masafumi

    2014-01-01

    We report our recent trials examining the single-molecule three-dimensional (3D) detection of protein conformational dynamics at room temperature. Using molecular chaperones as model proteins and cadmium selenide (CdSe) semiconductor quantum dots (QDs) as nanometer-scale probes, we monitored the temporal evolution of ATP-induced conformation changes with a total internal reflection fluorescence (TIRF) microscopy imaging technique in buffer solutions. The two-dimensional (2D) degenerate nature of the emission dipoles of the QDs, due to the uniaxial wurtzite crystal structure, made it possible to capture the 3D orientation using a polarization modulation technique in real time. The temporal resolution was half the period of analyzer rotation. Although still insufficient, the obtained signals suggest possible 3D detection of specific motions, which supports the two-step conformational changes triggered by ATP attachment. - Highlights: • We report our recent trials examining the single-molecule three-dimensional (3D) detection of protein conformational dynamics at room temperature. • Using molecular chaperones as model proteins and cadmium selenide (CdSe) semiconductor quantum dots (QDs) as nanometer-scale probes, we monitored the temporal evolution of ATP-induced conformation changes with a total internal reflection fluorescence (TIRF) microscopy imaging technique in buffer solutions. • The two-dimensional (2D) degenerate nature of the emission dipoles of the QDs, due to the uniaxial wurtzite crystal structure, made it possible to capture the 3D orientation using a polarization modulation technique in real time. • The temporal resolution was half the period of analyzer rotation. • Although still insufficient, the obtained signals suggest possible 3D detection of specific motions, which supports the two-step conformational changes triggered by ATP attachment

  15. Traffic congestion classification using motion vector statistical features

    Science.gov (United States)

    Riaz, Amina; Khan, Shoab A.

    2013-12-01

    Due to the rapid increase in population, one of the major problems faced by the urban areas is traffic congestion. In this paper we propose a method for classifying highway traffic congestion using motion vector statistical properties. Motion vectors are estimated using pyramidal Kanada-Lucas-Tomasi (KLT) tracker algorithm. Then motion vector features are extracted and are used to classify the traffic patterns into three categories: light, medium and heavy. Classification using neural network, on publicly available dataset, shows an accuracy of 95.28%, with robustness to environmental conditions such as variable luminance. Our system provides a more accurate solution to the problem as compared to the systems previously proposed.

  16. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  17. Polarization dependent micro-structuring of silicon with a femtosecond laser

    International Nuclear Information System (INIS)

    Al-Khazraji, H.; Bhardwaj, V.R.

    2015-01-01

    Highlights: • We demonstrate polarization sensitive rim formation around an ablation crater in silicon. • In n-type and intrinsic silicon, the rim height asymmetry is along laser polarization. • In p-type silicon, the rim height asymmetry is perpendicular to laser polarization. • Field enhancement during light-plasma interaction causes asymmetric energy deposition. • Motion of the molten material from the ablation center causes asymmetric rim formation. - Abstract: We experimentally demonstrate formation of a sub-micron rim around femtosecond laser ablated crater on silicon whose height and width were sensitive to laser polarization. Except for circularly polarized light we show that the rim height and width were asymmetric – larger along the direction of the laser polarization for n-type and intrinsic silicon, while in p-type silicon the asymmetry was perpendicular. Polarization dependent rim formation is attributed to the transient light–plasma interaction that gives rise to local-field enhancements resulting in an asymmetric electron density and energy deposition. Picoseconds later when the electron energy is transferred to the lattice, the asymmetry is retained in the temperature distribution within the interaction region. The temperature distribution eventually leads to non-symmetric radial outward fluid motion of a thin layer of molten material from the centre of the ablation crater that subsequently re-solidifies on a nanosecond timescale.

  18. Effect of ground motion from nuclear excavation: interim canal studies

    Energy Technology Data Exchange (ETDEWEB)

    King, C. Y.; Nadolski, M. E.

    1969-09-01

    The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.

  19. A Real-time Inertial Motion Blur Metric

    OpenAIRE

    Mutlu, Mehmet; Saranli, Afsar; Saranli, Uluc

    2014-01-01

    Mobile robots suffer from sensor data corruption due to body oscillations and disturbances. Especially, information loss on images captured with onboard cameras can be extremely high and such loss may become irreversible or deblurring can be computationally costly. In this paper, a novel method is proposed to minimize average motion blur captured by mobile cameras. A real-time computable motion blur metric (MMBM) is derived by using only inertial sensor measurements. MMBM is validated by comp...

  20. Ultrafast Imaging of Electronic Motion in Atoms and Molecules

    Science.gov (United States)

    2016-01-12

    AFRL-AFOSR-VA-TR-2016-0045 Ultrafast Imaging of Electronic Motion in Atoms and Molecules Martin Centurion UNIVERSITY OF NEBRSKA Final Report 01/12...Ultrafast Imaging of Electronic Motion in Atoms and Molecules 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0149 5c. PROGRAM ELEMENT NUMBER 6...a gaseous target of atoms or molecules. An optical setup was designed and constructed to compensate for the blurring of the temporal resolution due

  1. Globally Polarized Quark-gluon Plasma in Non-central A+ACollisions

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zuo-tang; Wang, Xin-Nian

    2004-10-01

    Produced partons have large local relative orbital angular momentum along the direction opposite to the reaction plane in the early stage of non-central heavy-ion collisions. Parton scattering is shown to polarize quarks along the same direction due to spin-orbital coupling.Such global quark polarization will lead to many observable consequences,such as left-right asymmetry of hadron spectra, global transverse polarization of thermal photons, dileptons and hadrons. Hadrons from the decay of polarized resonances will have azimuthal asymmetry similar to the elliptic flow. Global hyperon polarization is predicted with indifferent hadronization scenarios and can be easily tested.

  2. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  3. Decision-level adaptation in motion perception.

    Science.gov (United States)

    Mather, George; Sharman, Rebecca J

    2015-12-01

    Prolonged exposure to visual stimuli causes a bias in observers' responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer's criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants' task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participants' task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-making.

  4. Polarized particle levitation in hexapole field

    International Nuclear Information System (INIS)

    Jones, T.B.; Kallio, G.A.; Robinson, K.S.

    1976-06-01

    Proposed here is a novel electrostatic levitation scheme which uses the force exerted by a non-uniform electric field on a polarized particle. The scheme differs from conventional quadrupole levitation devices principally in that the levitated particle is uncharged. In order to provide the proper force required to achieve dynamic stabilization, a very intense non-uniform time-varying electric field produced by a three-dimensional hexapole electrode structure is utilized. The primary advantage of this levitation scheme might accrue in target fabrication operations where particle charge is undesirable or where reproducible charging of the particles themselves is difficult, due to high resistivity. The disadvantages of this scheme, as compared to charged particle levitation, are (i) a more complex electrode structure and (ii) significantly higher voltages. The scheme has possible application to molecular mass spectrometry, in situations where un-ionized but strongly polar or polarizable molecules are to be trapped or confined for analysis

  5. Vacuum polarization and chiral lattice fermions

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-09-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs

  6. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Shibai, Hiroshi [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Hanawa, Tomoyuki [Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522 (Japan); Murakawa, Koji, E-mail: kataoka@uni-heidelberg.de [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka 574-8530 (Japan)

    2016-11-10

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. The polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.

  7. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  8. Respiratory impact on motion sickness induced by linear motion

    NARCIS (Netherlands)

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.

    2009-01-01

    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency

  9. Prehospital Cervical Spine Motion: Immobilization Versus Spine Motion Restriction.

    Science.gov (United States)

    Swartz, Erik E; Tucker, W Steven; Nowak, Matthew; Roberto, Jason; Hollingworth, Amy; Decoster, Laura C; Trimarco, Thomas W; Mihalik, Jason P

    2018-02-16

    This study aims to evaluate the efficacy of two different spinal immobilization techniques on cervical spine movement in a simulated prehospital ground transport setting. A counterbalanced crossover design was used to evaluate two different spinal immobilization techniques in a standardized environment. Twenty healthy male volunteers (age = 20.9 ± 2.2 yr) underwent ambulance transport from a simulated scene to a simulated emergency department setting in two separate conditions: utilizing traditional spinal immobilization (TSI) and spinal motion restriction (SMR). During both transport scenarios, participants underwent the same simulated scenario. The main outcome measures were cervical spine motion (cumulative integrated motion and peak range of motion), vital signs (heart rate, blood pressure, oxygen saturation), and self-reported pain. Vital signs and pain were collected at six consistent points throughout each scenario. Participants experienced greater transverse plane cumulative integrated motion during TSI compared to SMR (F 1,57 = 4.05; P = 0.049), and greater transverse peak range of motion during participant loading/unloading in TSI condition compared to SMR (F 1,57 = 17.32; P TSI compared to 25% of participants during SMR (χ 2 = 1.29; P = 0.453). Spinal motion restriction controlled cervical motion at least as well as traditional spinal immobilization in a simulated prehospital ground transport setting. Given these results, along with well-documented potential complications of TSI in the literature, SMR is supported as an alternative to TSI. Future research should involve a true patient population.

  10. Motion direction discrimination training reduces perceived motion repulsion.

    Science.gov (United States)

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  11. 41 CFR 60-30.8 - Motions; disposition of motions.

    Science.gov (United States)

    2010-07-01

    ... a supporting memorandum. Within 10 days after a written motion is served, or such other time period... writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may require that they be reduced to writing and filed and served on all parties in the same manner as a formal...

  12. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  13. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  14. Enhancement of Motion Estimation Robustness Against Noise and Brightness Variations in Digital Image Sequences

    Directory of Open Access Journals (Sweden)

    Homayoun Mahdavi-Nasab

    2010-07-01

    Full Text Available Motion estimation and compensation are main stages in hybrid video coding standards. Due to structural simplicity the block-matching motion estimation is the most used method in digital video technology. In recent years the mesh-based motion estimation is considered by the researchers because of its more complex motion models and lack of blocking artifacts. However, mesh-based motion estimation suffers from error propagation and weak performance in noisy and brightness varying conditions. In this paper motion adaptive interpolation functions are proposed for the mesh-based motion estimation to overcome these problems. The simulation results show the better robustness of the proposed scheme against noise and brightness variations, not only regarding to mesh-based but also block-matching motion estimation techniques.

  15. Diplopia due to Dacryops

    Directory of Open Access Journals (Sweden)

    Rahmi Duman

    2013-01-01

    Full Text Available Dacryops is a lacrimal ductal cyst. It is known that it can cause globe displacement, motility restriction, and proptosis because of the mass effect. Diplopia due to dacryops has not been reported previously. Here, we present a 57-year-old man with binocular horizontal diplopia that occurred during left direction gaze due to dacryops.

  16. From schooling to shoaling: patterns of collective motion in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Noam Miller

    Full Text Available Animal groups on the move can take different configurations. For example, groups of fish can either be 'shoals' or 'schools': shoals are simply aggregations of individuals; schools are shoals exhibiting polarized, synchronized motion. Here we demonstrate that polarization distributions of groups of zebrafish (Danio rerio are bimodal, showing two distinct modes of collective motion corresponding to the definitions of shoaling and schooling. Other features of the group's motion also vary consistently between the two modes: zebrafish schools are faster and less dense than zebrafish shoals. Habituation to an environment can also alter the proportion of time zebrafish groups spend schooling or shoaling. Models of collective motion suggest that the degree and stability of group polarization increases with the group's density. Examining zebrafish groups of different sizes from 5 to 50, we show that larger groups are less polarized than smaller groups. Decreased fearfulness in larger groups may function similarly to habituation, causing them to spend more time shoaling than schooling, contrary to most models' predictions.

  17. Polar Biomedical Research - An Assessment.

    Science.gov (United States)

    1982-10-01

    to grow more crops in subpolar Alaska. The severity of the polar conditions in Antarctica allow no practical method for providing volumes of plant food...for an expanded population. Any experiments in polar regions in food production involving geothermal heat, solar energy, hydroponics , or aquaculture

  18. Create a Polarized Light Show.

    Science.gov (United States)

    Conrad, William H.

    1992-01-01

    Presents a lesson that introduces students to polarized light using a problem-solving approach. After illustrating the concept using a slinky and poster board with a vertical slot, students solve the problem of creating a polarized light show using Polya's problem-solving methods. (MDH)

  19. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  20. Polarized Scintillating Targets at Psi

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2001-02-01

    Scintillating polarized targets are now routinely available: blocks of 18×18×5 mm scintillating organic polymer, doped with TEMPO, polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  1. UV Coatings, Polarization, and Coronagraphy

    Science.gov (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  2. Polarization Imaging and Insect Vision

    Science.gov (United States)

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  3. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  4. Seismic wavefield polarization: a study of spatial coherency within the LSBB 3-component broadband array to extract seismic phases

    Science.gov (United States)

    Labonne, Claire; Sèbe, Olivier; Gaffet, Stéphane; Schindelé, François

    2017-04-01

    In seismology, the key to interpreting data is wavefield characterization independent from the nature of the wavefield whether it is seismogram from earthquake or seismic noise from hydrocarbon production or ocean swell. The seismic wavefield is a combination of polarized waves. These waves are characterized not only by their propagation properties (i.e. velocity and direction of propagation) but also by the local particle motion trajectories they generate. These particle motion trajectories are the polarization properties of the waves and play a large part in identifying and extracting the seismic phases. To study the polarization, 3-component data are required. The LSBB (Low Noise Underground Laboratory) 3-component seismic array offers the possibility to study the spatial coherency of polarization properties of propagating waves through the array. An optimized time-frequency decomposition of the polarization properties, such as the ellipticity, the rectilinearity vector or the planarity vector, is done for each station of the array by approximating each time-frequency contribution by an elliptical motion lying in a plane in the 3D space. By assuming coherent polarization properties for plane waves propagating through a seismic array, these properties' spatial coherency could be integrated in advanced array processing techniques. Applied to teleseismic records, the study of the spatial coherency of the polarization yields three main results: (i) a very precise station orientation (lower than 1 degree) is required to observe a significant spatial coherency, (ii) a relative station orientation can be done by maximizing the spatial coherency of the polarization, and (iii) if the precision of the station orientation is sufficient, identifying seismic phases according to their coherent polarization parameters becomes possible. This type of array polarization analysis can be performed as well on telesismic records as on seismic noise. Our first results demonstrate the

  5. Joint model of motion and anatomy for PET image reconstruction

    International Nuclear Information System (INIS)

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-01-01

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem

  6. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  7. Hyperon polarization: An experimental overview

    International Nuclear Information System (INIS)

    Lach, J.

    1992-12-01

    The fact that inclusively produced hyperons are produced with significant polarization was first discovered at Fermilab about seventeen years ago. This and subsequent experiments showed that Λ degree were produced polarized while bar Λ degree had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex than previously thought and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments and hyperon β-decay. Recently, hyperon radiative decays have been studied and magnetic moment precession of channeled particles in bent crystals has been observed

  8. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    2015-02-19

    Feb 19, 2015 ... Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling ...

  9. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.

    2003-01-01

    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory...

  10. Rigid Motion and Adapted Frames

    Science.gov (United States)

    Lyle, Stephen N.

    The aim here is to describe the rigid motion of a continuous medium in special and general relativity. Section 7.1 defines a rigid rod in special relativity, and Sect. 7.2 shows the link with the space coordinates of a certain kind of accelerating frame in flat spacetimes. Section 7.3 then sets up a notation for describing the arbitrary smooth motion of a continuous medium in general curved spacetimes, defining the proper metric of such a medium. Section 7.4 singles out rigid motions and shows that the rod in Sect. 7.1 undergoes rigid motion in the more generally defined sense. Section 7.5 defines a rate of strain tensor for a continuous medium in general relativity and reformulates the rigidity criterion. Section 7.6 aims to classify all possible rigid motions in special relativity, reemphasizing the link with semi-Euclidean frames adapted to accelerating observers in special relativity. Then, Sects. 7.7 and 7.8 describe rigid motion without rotation and rigid rotation, respectively. Along the way we introduce the notion of Fermi-Walker transport and discuss its relevance for rigid motions. Section 7.9 brings together all the above themes in an account of a recent generalization of the notion of uniform acceleration, thereby characterizing a wide class of rigid motions.

  11. Motion signals bias localization judgments

    Science.gov (United States)

    Eagleman, David M.; Sejnowski, Terrence J.

    2008-01-01

    In the flash-lag illusion, a moving object aligned with a flash is perceived to be offset in the direction of motion following the flash. In the “flash-drag” illusion, a flash is mislocalized in the direction of nearby motion. In the “flash-jump” illusion, a transient change in the appearance of a moving object (e.g., color) is mislocalized in the direction of subsequent motion. Finally, in the Frohlich illusion, the starting position of a suddenly appearing moving object is mislocalized in the direction of the subsequent motion. We demonstrate, in a series of experiments, a unified explanation for all these illusions: Perceptual localization is influenced by motion signals collected over ∼80 ms after a query is triggered. These demonstrations rule out “latency difference” and asynchronous feature binding models, in which objects appear in their real positions but misaligned in time. Instead, the illusions explored here are best understood as biases in localization caused by motion signals. We suggest that motion biasing exists because it allows the visual system to account for neural processing delays by retrospectively “pushing” an object closer to its true physical location, and we propose directions for exploring the neural mechanisms underlying the dynamic updating of location by the activity of motion-sensitive neurons. PMID:17461687

  12. Isynchronous motion in classical mechanics

    International Nuclear Information System (INIS)

    Osypowski, E.; Olsson, M.G.

    1987-01-01

    Those oscillatory motions for which the period is independent of the total energy are investigated. There is only one corresponding symmetric potential, the quadratic potential of the simple harmonic motion but infinite classes of asymmetric potentials must be considered. Geometric and analytic requirements of isochronism are discussed and several specific examples are given

  13. Motion simulator with exchangeable unit

    NARCIS (Netherlands)

    Mulder, J.A.; Beukers, A.; Baarspul, M.; Van Tooren, M.J.; De Winter, S.E.E.

    2001-01-01

    A motion simulator provided with a movable housing, preferably carried by a number of length-adjustable legs, in which housing projection means are arranged for visual information supply, while in the housing a control environment of a motion apparatus to be simulated is situated, the control

  14. Commercially available video motion detectors

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A market survey of commercially available video motion detection systems was conducted by the Intrusion Detection Systems Technology Division of Sandia Laboratories. The information obtained from this survey is summarized in this report. The cutoff date for this information is May 1978. A list of commercially available video motion detection systems is appended.

  15. Higher order equations of motion

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1989-01-01

    The possibility that the motion of elementary particles be described by higher order differential equations induced by supersymmetry in higher dimensional space-time is discussed. The specific example of six dimensions writing the corresponding Lagrangian and equations of motion, is presented. (author) [pt

  16. Commercially available video motion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    A market survey of commercially available video motion detection systems was conducted by the Intrusion Detection Systems Technology Division of Sandia Laboratories. The information obtained from this survey is summarized in this report. The cutoff date for this information is May 1978. A list of commercially available video motion detection systems is appended

  17. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  18. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael

    2011-01-01

    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value

  19. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Polarization sensitive optical frequency domain imaging system for endobronchial imaging.

    Science.gov (United States)

    Li, Jianan; Feroldi, Fabio; de Lange, Joop; Daniels, Johannes M A; Grünberg, Katrien; de Boer, Johannes F

    2015-02-09

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens.

  1. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  2. Polarized absorption in determination of impurities in olive oil

    Science.gov (United States)

    Alias, A. N.; Zabidi, Z. M.; Yaacob, Y.; Amir, I. S.; Alshurdin, S. H. N.; Aini, N. A.

    2017-08-01

    The effect of impurities in olive oil blending with palm oil was characterized using polarized absorption method. Polarized absorption was based on the absorption of light which vibrating in a particular plane to pass through the sample. This polarized light allowed the molecule to absorb at the specific orientation. There were four samples have been prepared that were 100:0, 70:30, 50:50 and 0:100 with volume ratio of the olives to palm oil. Two linear polarizers were mounting between the samples in order to get linearly polarized. This specific orientation was affected the absorption spectra of the sample. The results have shown that the analyzing polarizer with angle 00 has bell shape spectra. All the orientation of analyzing polarizer had shown the maximum current output at 100% olive oil. Whereas 100% palm oil has shown the minimum current output. The changing in absorption spectra indicates that the anisotropic properties of each sample were different due to the present of impurities.

  3. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  4. Ratchet due to broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...... be provided with sonic internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments...... with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion, In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments, Despite the setup being...

  5. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  6. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  7. First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud

    Science.gov (United States)

    Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2018-04-01

    Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.

  8. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  9. Measurement of shoulder motion fraction and motion ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeong Han [Daegu Catholic University Hospital, Daegu (Korea, Republic of)

    2006-06-15

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability.

  10. Reduction of the Thompson scattering cross section in a strong circularly polarized light field in a plasma with the change of its spectrum. “quantum-classical” electron

    Science.gov (United States)

    Korobkin, V. V.; Romanovsky, M. Yu.

    1992-12-01

    It is shown that in a strong circularly polarized laser field a classical electron motion around ions can occur. The scattering of these electrons in a plasma has the Thompson cross section in the limit of strongs field only and for a subrelativistic motion of the electrons. There are non-ion satellites apart from the basic frequency in the scattering spectrum.

  11. Vorticity and Λ polarization in baryon rich matter

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin

    2018-02-01

    The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of ¯ has the same sihn and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  12. Trichinella and polar bears: a limited risk for humans.

    Science.gov (United States)

    Dupouy-Camet, J; Bourée, P; Yera, H

    2017-07-01

    In this review, we identified 63 cases reported since World War II of human trichinellosis linked to the consumption of parasitized polar bear (Ursus maritimus) meat. This low number contrasts to the numerous cases of human trichinellosis related to consumption of the meat of black (U. americanus) or brown bears (U. arctos). The prevalence of Trichinella infection is high in bears, but larval muscular burden is usually lower in polar bears compared to other bear species. Polar bears, therefore, seem to play a limited role in the transmission of trichinellosis to humans, as native residents living in the Arctic traditionally consume well-cooked bear meat, and travellers and foreign hunters have only limited access to this protected species due to the declining polar bear population.

  13. Influences of optical elements on the polarization measurement

    International Nuclear Information System (INIS)

    Goto, M.; Hayakawa, M.; Atake, M.; Iwamae, A.

    2004-01-01

    An emission line of He I λ 667.8 nm is observed and the Large Helical Device (LHD) with a polarimeter, with which two linearly polarized components if the light from the same line of sight is simultaneously measured. The emission line exhibits splitting due to the normal Zeeman effect and the π and σ lights are respectively observed. The results indicate the polarization state of emission lines is different from our expectation. From two measurements, for the second of which the polarimeter is rotated 45 degrees form the first, the polarization ellipses of all the three polarized lights are determined. Some observations for a reversed magnetic field plasma operation, for different emission lines of different ions, and also for operation with some different magnetic field strengths suggest that the distortion state originates not in the atomic radiation itself or the plasma condition, but in the optical window at the observation port of the vacuum chamber. (author)

  14. Studies of polarized beam acceleration and Siberian Snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined

  15. Software package for modeling spin-orbit motion in storage rings

    Science.gov (United States)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  16. POLARIZED LIGHT IN PHYSIOTHERAPY

    Directory of Open Access Journals (Sweden)

    L. D. Tondiy

    2015-12-01

    Full Text Available The data on polarized light (PS - a new promising treatment, rehabilitation and prevention, which took its deserved place among the known therapeutic physical factors and may even compete with laser radiation of low and LED therapy. It is reflected the significant contribution of domestic scientists in the study of aircraft action on the body, its introduction in the treatment, rehabilitation and prevention of grippe, ARI. These action's mechanisms of the aircraft on the electro-physiological processes in the body that have the leading role in the regulation of its life. The new moment in the study of aircraft on the body is the evidence of its positive impact on the mechanisms of self body - its different units: the disease's banning - a revitalization of the stress-protective, stress-limiting system antioxidial, detoxification and other protection systems, the formation by the body antiviral and antimicrobial specific substances (interferon and lysozyme, activation of the immune system, phagocytosis, protective functions of skin. The protective and mobilizing role of the second link is studied: which is triggered in case of occurrence of disease or preexisting diseases: PL mobilized processes of restitution, reparations, compensation, immunity and microcirculation. The authors studied the possibility of aircraft's using to enhance performance, reduce side effects of physical factors, which are often used in the treatment (electric methods, treatment by sound, fresh and mineral water, etc..

  17. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  18. Absolute polarization determinations of 33 pulsars using the Green Bank Telescope

    Science.gov (United States)

    Force, Megan M.; Demorest, Paul; Rankin, Joanna M.

    2015-11-01

    Absolute polarimetry observations of 33 pulsars were carried out with the Green Bank Telescope in the 1100-1900 MHz band using the Green Bank Ultimate Pulsar Processing Instrument. This group was selected to help complete a larger sample for which accurate proper-motion measurements were available. A combination of profile analysis using the core/double cone model and polarization-angle fitting methods were applied to estimate the `fiducial' longitude of the magnetic axis for each star and refer the linear polarization angle at that point to infinite frequency. As had been found previously, a number of the pulsars are found to have fiducial polarization directions that fall either along or at right angles to their proper-motion directions, whereas upwards of a third of the stars studied show alignments that are neither parallel nor orthogonal.

  19. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  20. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.

    2005-01-01

    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in