WorldWideScience

Sample records for polar magnetic substorms

  1. Some problems associated with the inversion of polar magnetic substorm data recorded at the Earth's surface

    International Nuclear Information System (INIS)

    Mareschal, M.

    1975-01-01

    The major thrust of this dissertation was to test an original method for resolving the current system associated with polar magnetic substorms from ground based magnetic observations. This method is based on a general technique of inversion reviewed by Wiggins in 1972 and appears to give quite satisfactory results, at least, when the current system considered is simulated by a three-dimensional current system consisting of field-aligned currents flowing down to the ionosphere, westward in the ionosphere, and back up again to the magnetosphere. Conclusions suggest that, for the purpose of inverting polar magnetic substorm data with the use of the three-dimensional model of current, the Earth's induction effects can be simulated by introducing a perfectly conducting layer inside the Earth. However, the depth of this equivalent conductor should be allowed to vary with the source frequency as the substorm develops with time. To determine how satisfactorily each model parameter could be expected to be resolved during the process of inversion, a study of the magnetic disturbance variations under specific parameter variations was then performed. The results of that study were encouraging enough to foster the inversion of an actual polar magnetic substorm data, the event of June 15, 1970. Despite the success of the enterprise, it seems reasonable to suggest that the technique of inversion should be further tested before being systematically used to resolve polar magnetic substorms

  2. Problem of simulating the Earth's induction effects in modeling polar magnetic substorms

    International Nuclear Information System (INIS)

    Mareschal, M.

    1976-01-01

    A major problem encountered in trying to model the current system associated with a polar magnetic substorm from ground-based magnetic observations is the difficulty of adequately evaluating the earth's induction effects. Two methods for simulating these effects are reviewed here. Method 1 simply reduces the earth to a perfect conductor and leads to very simple field equations. Method 2 considers the earth as a ''horizontally'' layered body of finite conductivity but requires a large amount of computational time. The performances of both methods are compared when the substorm current system can be approximated by an infinitely long electrojet flowing over a flat earth. In this case it appears that for most substorm modeling problems it is sufficient to treat the earth as a perfect conductor. The depth of this perfect conductor below the earth's surface should be selected in function of the source frequency content

  3. Polar cap deflation during magnetospheric substorms

    Science.gov (United States)

    Moses, J. J.; Siscoe, G. L.; Heelis, R. A.; Winningham, J. D.

    1989-01-01

    The expanding/contracting polar cap model has been used to simulate DE-2 ion drift data during substorms as determined using the AL index. Of the 39 cases modeled, 57 percent required the opening of a nightside gap which maps to where reconnection occurs in the tail; 75 percent of the 16 recovery phase cases required a nightside gap, while only 29 percent of the 17 expansion phase cases required a nightside gap. On the basis of this result, it is concluded that if a nightside gap implies tail reconnection, then reconnection probably occurs after expansion phase onset and continues throughout most of the recovery phase of a substorm.

  4. Polar cap contraction and expansion during a period of substorms

    Science.gov (United States)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  5. Variations in the polar cap area during two substorm cycles

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-05-01

    Full Text Available This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP and National Oceanographic and Atmospheric Administration (NOAA satellites, and the Fast Auroral SnapshoT (FAST spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere – Magnetospheric physics (magnetospheric configuration and dynamics

  6. Spontaneous and trigger-associated substorms compared: Electrodynamic parameters in the polar ionosphere

    Science.gov (United States)

    Liu, Jun-Ming; Zhang, Bei-Chen; Kamide, Y.; Wu, Zhen-Sen; Hu, Ze-Jun; Yang, Hui-Gen

    2011-01-01

    An attempt is made to study the difference, if any, between the response of the polar ionosphere to spontaneous substorms and that to trigger-associated substorms in terms of electrodynamic parameters including ionospheric current vectors, the electric potential, and the current function. The results show that, in the first approximation, the ionospheric parameters for the two types of substorms are quite similar. It is therefore conceived that spontaneous substorms are not very different from trigger-associated substorms in the development of substorm processes in the magnetosphere-ionosphere system. We demonstrate, however, that spontaneous substorms seem to have a more clearly identifiable growth phase, whereas trigger-associated substorms have a more powerful unloading process. Changes in the current intensity and the electric potential drop across the polar cap in the recovery phase are also quite different from each other. Both the current intensity and the cross-polar cap potential drop show a larger decrease in the recovery phase of trigger-associated substorms, but the potential drop decreases only slightly and the currents in the late morning sector are still strong for spontaneous substorms. We interpret these findings as an indication of the relative importance of the unloading process and the directly driven process in conjunction with the north-south polarity of the interplanetary magnetic field. There still exists a strong directly driven process in the recovery phase of spontaneous substorms. For trigger-associated substorms, however, both the directly driven process and the unloading process become weak after the peak time.

  7. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  8. The response of ionospheric convection in the polar cap to substorm activity

    Directory of Open Access Journals (Sweden)

    M. Lester

    Full Text Available We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°λ-78°λ. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF. We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71°λ by the time of the expansion phase onset. A westward electrojet, centred at 65.4°λ, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1°λ at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the "distant" neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap

  9. PC index as a proxy of the solar wind energy that entered into the magnetosphere: Development of magnetic substorms

    Science.gov (United States)

    Troshichev, O. A.; Podorozhkina, N. A.; Sormakov, D. A.; Janzhura, A. S.

    2014-08-01

    The Polar Cap (PC) index has been approved by the International Association of Geomagnetism and Aeronomy (IAGA XXII Assembly, Merida, Mexico, 2013) as a new index of magnetic activity. The PC index can be considered to be a proxy of the solar wind energy that enters the magnetosphere. This distinguishes PC from AL and Dst indices that are more related to the dissipation of energy through auroral currents or storage of energy in the ring current during magnetic substorms or storms. The association of the PC index with the direct coupling of the solar wind energy into the magnetosphere is based upon analysis of the relationship of PC with parameters in the solar wind, on the one hand, and correlation between the time series of PC and the AL index (substorm development), on the other hand. This paper (the first of a series) provides the results of statistical investigations that demonstrate a strong correlation between the behavior of PC and the development of magnetic substorms. Substorms are classified as isolated and expanded. We found that (1) substorms are preceded by growth in the RS index, (2) sudden substorm expansion onsets are related to "leap" or "reverse" signatures in the PC index which are indicative of a sharp increase in the PC growth rate, (3) substorms start to develop when PC exceeds a threshold level 1.5 ± 0.5 mV/m irrespective of the length of the substorm growth phase, and (4) there is a linear relation between the intensity of substorms and PC for all substorm events.

  10. Current understanding of magnetic storms: Storm-substorm relationships

    International Nuclear Information System (INIS)

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-01-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the Dst variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of the

  11. Dynamics of night-side auroral oval associated with substorm activity during magnetic storms

    International Nuclear Information System (INIS)

    Tverskaya, L.V.; Tel'tsov, M.V.; Shkol'nikova, S.I.; AN SSSR, Moscow

    1989-01-01

    Data of measurements of precipitated electrons with E=1 keV and longitudinal currents, conducted on INTERCOSMOS-BOLGARIYA-1300 satellite, were used to analyze variations of latitude sizes of the night section of auroral oval during heavy magnetic storm on 1-4.3 1982. Rapid (during ∼ 0.5 h) oval expansion on the night side both to the pole and to the equator at the moment of suddent shift of the west polar electrojet to the equator was revealed. It is shown that the width of the night region of auroral electron precipitation in the process of world magnetic storm development increases during certain substorms

  12. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  13. A statistical relationship between the geosynchronous magnetic field and substorm electrojet magnitude

    International Nuclear Information System (INIS)

    Lopez, R.E.; Rosenvinge, T. von

    1993-01-01

    In this paper the authors examine the relationship between geosynchronous magnetic field variations during substorms measured by GOES 5 and the auroral electrojet as measured by AE and Poste de la Baleine. As in previous studies, the authors find that the more taillike the field prior to the local onset, the greater the dipolarization of the field during the substorm. They also find that the greater the deviation of the field from a dipolar configuration, the larger the change in AE during the event. This implies that stronger cross-tail currents prior to the substorm are associated with larger substorm-associated westward electrojets and thus more intense substorms. Previous work has shown that in order to produce the observed taillike fields at geosynchronous altitude, the intense cross-tail current that builds up during the growth phase must be localized in the near-Earth (≤ 10 R E ) region. Since the westward electrojet is the ionospheric leg of the substorm current wedge, this result implies that the substorm-associated westward electrojet is drawn from the near-Earth region. In fact, the authors find that most of the current diversion occurs in the near-Earth magnetotail. Furthermore, they estimate that a diversion about half of the near-Earth cross-tail current can account for the current in the northern and southern westward electrojets associated with the substorm current wedge. 25 refs., 9 figs

  14. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  15. The effect of magnetic substorms on near-ground atmospheric current

    Directory of Open Access Journals (Sweden)

    E. Belova

    2000-12-01

    Full Text Available Ionosphere-magnetosphere disturbances at high latitudes, e.g. magnetic substorms, are accompanied by energetic particle precipitation and strong variations of the ionospheric electric fields and currents. These might reasonably be expected to modify the local atmospheric electric circuit. We have analysed air-earth vertical currents (AECs measured by a long wire antenna at Esrange, northern Sweden during 35 geomagnetic substorms. Using superposed epoch analysis we compare the air-earth current variations during the 3 h before and after the time of the magnetic X-component minimum with those for corresponding local times on 35 days without substorms. After elimination of the average daily variation we can conclude that the effect of substorms on AEC is small but distinguishable. It is speculated that the AEC increases observed during about 2 h prior to the geomagnetic X-component minimum, are due to enhancement of the ionospheric electric field. During the subsequent 2 h of the substorm recovery phase, the difference between "substorm" and "quiet" atmospheric currents decreases. The amplitude of this "substorm" variation of AEC is estimated to be less than 50% of the amplitude of the diurnal variation in AEC during the same time interval. The statistical significance of this result was confirmed using the Van der Waerden X-test. This method was further used to show that the average air-earth current and its fluctuations increase during late expansion and early recovery phases of substorms.Key words: Ionosphere (electric fields and currents · Magnetospheric physics (storms and substorms · Meteorology and atmospheric dynamics (atmospheric electricity

  16. Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1996-09-01

    Full Text Available The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF, has been calculated during two intervals when the IMF had an approximately constant southward component (1100–2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990. The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday\\'s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday\\'s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between ~35RE and ~75RE downstream in the tail.

  17. Streaming energetic electrons in earth's magnetotail - Evidence for substorm-associated magnetic reconnection

    Science.gov (United States)

    Bieber, J. W.; Stone, E. C.

    1980-01-01

    This letter reports the results of a systematic study of streaming greater than 200 keV electrons observed in the magnetotail with the Caltech Electron/Isotope Spectrometers aboard IMP-7 and IMP-8. A clear statistical association of streaming events with southward magnetic fields, often of steep inclination, and with substorms as evidenced by the AE index is demonstrated. These results support the interpretation that streaming energetic electrons are indicative of substorm-associated magnetic reconnection in the near-earth plasma sheet.

  18. Simultaneous observation of auroral substorm onset in Polar satellite global images and ground-based all-sky images

    Science.gov (United States)

    Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu

    2018-05-01

    Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.

  19. Magnetospheric substorm

    International Nuclear Information System (INIS)

    Ondoh, Tadanori

    1974-01-01

    The results of observation of electric field, magnetic field, high energy particles, plasma and aurora on the ground and with artificial satellites during magnetospheric substorm are reviewed, and the problems are mentioned. A new image of magnetospheric substorm is described. The whole description is divided into eight parts. The first part describes the ionospheric electric current and plasma convection accompanying magnetospheric substorm. The variation of geomagnetism during the magnetospheric substorm, the ionospheric equivalent current during the growth and expansion period of substorm, and the relationship between the high energy proton flux of equatorial zone current and peripheral plasma density are illustrated. The second part describes auroral storm. The time variation of aurora observed with a whole sky camera is illustrated. The third part describes the structure of magnetosphere tail. The variation of electron spectrum parameters when the inner edge of plasma sheet passes is illustrated. The fourth part describes the auroral zone of the plasma sheet. The fifth part describes the magnetospheric substorm in magnetosphere tail. The sixth part describes the electric connection of magnetosphere with high latitudinal ionosphere. The seventh part describes interplanet magnetic field and magnetospheric substorm. The eighth part is summary. The ''SC- triggered bay'' accompanied by rapid decrease of X- or H-component occurred frequently immediately after SC in the night side of auroral zone when the rapidstart type magnetic storm at mid- and low-latitudes occurred. The correlation between the Dsub(st) at low latitude and the DS at high latitude during magnetic storm should be reexamined. (Iwakiri, K.)

  20. Effects of interplanetary magnetic field and magnetospheric substorm variations on the dayside aurora

    Science.gov (United States)

    Sandholt, P. E.; Egeland, A.; Lybekk, B.; Deehr, C. S.; Sivjee, G. G.; Romick, G. J.

    1983-11-01

    Photometric auroral observations and geomagnetic measurements obtained simultaneously on the dayside in Norway and the nightside in the USSR, Alaska, and Canada are combined with ISEE-1 and 3 data on the interplanetary magnetic field (IMF) to study the relative importance of substorm perturbations and IMF in determining dayside auroral (DA) motion. Ten events from December, 1978, and January and December, 1979, are characterized, the data are presented in tables, illustrated with charts and graphs, and summarized. The equatorward and poleward motion of the DA is correlated with the growth and decay of DP2-mode geomagnetic disturbances and changes in the north-south component of the IMF. Discrete DA forms appear in a region of sunward-convecting field lines. A detailed model of DA motion is developed which explains these phenomena as the result of a direct global response of the magnetospheric electromagnetic state to the solar-wind magnetic field. Using the model, the potential drop, Pedersen current, and Joule heat-dissipation rate of the polar-cap ionosphere are estimated as 125 kV, 800,000 A, and 100 GW, respectively.

  1. On the threshold for triggering substorms

    International Nuclear Information System (INIS)

    Kivelson, M.G.; California Univ., Los Angeles, CA; Hughes, W.J.

    1990-01-01

    Many features of substorms are satisfactorily described by a phenomenological model in which the substorm onset is related to the formation of a neutral line within the plasma sheet close to the Earth. However, the model does not account for the fact that the amount of tail stress released in different substorms is highly variable and that the intensity of global substorm-related signatures can differ greatly. Here we propose that the level of stress at which the substorm expansion starts is controlled by the tail field geometry and remark that the field line curvature required for the formation of a near-Earth neutral line is already present when the dipole is tilted towards or away from the Sun. Assuming that substorms are most readily initiated when the tail field geometry is favourable, we develop a new interpretation of the aspects of the annual and diurnal variation of the level of geomagnetic activity that are independent of the polarity of the interplanetary magnetic field. We attribute the variations to the ''bent tail'' (BT) effect. We believe that the BT effect provides a more reasonable interpretation of the observed modulations than does the previously-proposed Kelvin-Helmholtz mechanism. The BT effect leads to predictions regarding annual and diurnal signatures of substorm occurrence frequency and magnitude that can be tested. (author)

  2. MESSENGER Observations of Extreme Magnetic Tail Loading and Unloading During its Third Flyby of Mercury: Substorms?

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Schriver, David; Solomon, Sean C.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury on September 29, 2009, a variable interplanetary magnetic field produced a series of several minute enhancements of the tail magnetic field hy factors of approx. 2 to 3.5. The magnetic field flaring during these intervals indicates that they result from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30% of the magnetic flux emanating from Mercury, and may have reached 100% for the largest event. In this case the dayside magnetic shielding is reduced and solar wind flux impacting the surface may be greatly enhanced. Despite the intensity of these events and their similarity to terrestrial substorm magnetic flux dynamics, no energetic charged particles with energies greater than 36 keV were observed.

  3. A statistical study of magnetic field magnitude changes during substorms in the near earth tail

    Science.gov (United States)

    Lopez, R. E.; Lui, A. T. Y.; Mcentire, R. W.; Potemra, T. A.; Krimigis, S. M.

    1990-01-01

    Using AMPTE/CCE data taken in 1985 and 1986 when the CCE apogee (8.8 earth radii) was within 4.5 hours of midnight, 167 injection events in the near-earth magnetotail have been cataloged. These events are exactly or nearly dispersionless on a 72-sec time scale from 25 keV to 285 keV. The changes in the field magnitude are found to be consistent with the expected effects of the diversion/disruption of the cross-tail current during a substorm, and the latitudinal position of the current sheet is highly variable within the orbit of CCE. The local time variation of the magnetic-field changes implies that the substorm current wedge is composed of longitudinally broad Birkeland currents.

  4. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    Science.gov (United States)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  5. Plasma behavior during energetic electron streaming events: Further evidence for substorm-associated magnetic reconnection

    International Nuclear Information System (INIS)

    Bieber, J.W.; Stone, E.C.; Hones, E.W. Jr.; Baker, D.N.; Bame, S.J.

    1982-01-01

    A recent study showed that streaming energetic (>200 keV) electrons in Earth's magnetotail are statistically associated with southward magnetic fields and with enhancements of the AE index. It is shown here that the streaming electrons characteristically are preceded by aapprox.15 minute period of tailward plasma flow and followed by a dropout of the plasma sheet, thus demonstrating a clear statistical association between substorms and the classical signatures of magnetic reconnection and plasmoid formation. Additionally, a brief upward surge of mean electron energy preceded plasma dropout in several of the events studied, providing direct evidence of localized, reconnection-associated heating processes

  6. Effect of the interplanetary magnetic field azimuthal component on dynamics of magnetospheric substorms

    International Nuclear Information System (INIS)

    Troshichev, O.A.; Kotikov, A.L.; Bolotinskaya, B.D.

    1987-01-01

    The effect of azimuthal component of interplanetary magnetic field (IMF) on the dynamics of magnetospheric substorms is considered. The turning of the azimuthal component of IMF from the positive direction to the negative one and, vice versa, negative and positive impulses in B y -component at B z z -component to the North, positive impulses in B z -component, are investigated. The importance of corresponding variations in magnetic activity level is evaluated. It is shown that turning of B y -component from the positive direction to the negative one increases magnetic activity, whereas the reverse transition affects but slightly the level of magnetic activity in the Northern auroral zone. The turning of B z -component to the North also results in the increase of magnetic activity but with a less intensity than in the case of the negative turning in B y -component

  7. Interplanetary magnetic field according to measurements on the Fobos-1,-2 space vehicles. 3. Heliospheric substorm of August 5-7, 1988

    International Nuclear Information System (INIS)

    Ivanov, K.G.

    1995-01-01

    Three-phase disturbance of the interplanetary magnetic field was observed by FOBOS-1 and Fobos-2 space vehicles being at 10 million km distance from the Earth and by IMP-8 near-the-Earth satellite. Disturbance configuration and structure demonstrate that passing of nonstandard bend of heliospheric current layer is the reason of it. Structure, intensity and origination of disturbance enable to classify it as belonging to a category of heliospheric substorms. All three phases of interplanetary disturbance were represented in special near-the-Earth geomagnetic variations of polar cap. 9 refs

  8. The concept of Magnetically Driven Magnetosphere: storm/substorm dynamics and organization of the magnetotail

    Science.gov (United States)

    Pavlov, Nikolai

    A set of novel ideas and approaches have been found in the long-lasting attempts to better understand how the magnetosphere operates. It is proposed a certain vision of the substorm/storm scenario, of the tail structure with moderate magnetic By-component, and with intrinsic turbulence. Particle acceleration and the place of the tail's current sheet(s) in the proposed vision are discussed as well. For the reasoning of the proposal, several key ideas on the purely magnetospheric topics are included in the presentation.

  9. Counterstreaming ions as evidence of magnetic reconnection in the recovery phase of substorms at the kinetic level

    International Nuclear Information System (INIS)

    Nagai, Tsugunobu; Nakamura, Masao; Shinohara, Iku; Fujimoto, Masaki; Saito, Yoshifumi; Mukai, Toshifumi

    2002-01-01

    Counterstreaming ions embedded in hot isotropic ions are found at the front of fast earthward plasma flows in the recovery phase of substorms in the Earth's magnetotail. The counterstreaming ions are present only when the northward component of the magnetic field increases in the equatorial plane. Hybrid simulations of magnetic reconnection have been carried out. It is found that counterstreaming ions form in the leading edge of jetting plasmas produced with magnetic reconnection, where the magnetic field lines pile up due to the pre-existing stationary plasmas. These counterstreaming ions originate from cold ions on the northern and southern tail lobe field lines, and earthward transport of the reconnected field lines makes these cold ions flow into the equatorial plane. The present observations provide strong evidence of magnetic reconnection in the recovery phase of substorms at the kinetic level

  10. Dynamics of the outer radiation belts and their links with the polar substorms and the injection of hot plasma at the geostationary orbit

    International Nuclear Information System (INIS)

    Sauvaud, J.A.; Winckler, J.R.

    1981-01-01

    The aim of this paper is to analyse the results obtained aboard geostationary satellites and on the ground, in the auroral zone, on the dynamic changes in the outer radiation belts and their link with the time development of auroral forms during magnetospheric substorms. The measurements of high-energy particles, plasma, and magnetic induction at 6.6 Rsub(E) in the local midnight sector indicate the existence of a pre-expansion phase in substorms during which the outer belts move toward the Earth under the effect of the modification in the topology of the local magnetic induction. The pre-expansion phase coincides with an increase in the AE index, suggesting a direct link between the electrojet and the currents flowing across the tail of the magnetosphere. It also coincides in the auroral zone with the intensification and movement of the quiet arc system toward the equator. The phase is invariably terminated at the beginning of the expansion of the substorm by the break-up of the auroral arcs and the injection of hot plasma at the geostationary orbit near local midnight under the action of the induced electric field associated with the collapse of the geomagnetic field force lines. The study of the data, event by event, shows the complexity of phenomena which may be involved during the pre-expansion phase particularly with the possible presence of pseudo-substorms or aborted (minor) substorms which do not modify the general evolution described above [fr

  11. Statistical study of high-latitude plasma flow during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    G. Provan

    2004-11-01

    Full Text Available We have utilised the near-global imaging capabilities of the Northern Hemisphere SuperDARN radars, to perform a statistical superposed epoch analysis of high-latitude plasma flows during magnetospheric substorms. The study involved 67 substorms, identified using the IMAGE FUV space-borne auroral imager. A substorm co-ordinate system was developed, centred on the magnetic local time and magnetic latitude of substorm onset determined from the auroral images. The plasma flow vectors from all 67 intervals were combined, creating global statistical plasma flow patterns and backscatter occurrence statistics during the substorm growth and expansion phases. The commencement of the substorm growth phase was clearly observed in the radar data 18-20min before substorm onset, with an increase in the anti-sunward component of the plasma velocity flowing across dawn sector of the polar cap and a peak in the dawn-to-dusk transpolar voltage. Nightside backscatter moved to lower latitudes as the growth phase progressed. At substorm onset a flow suppression region was observed on the nightside, with fast flows surrounding the suppressed flow region. The dawn-to-dusk transpolar voltage increased from ~40kV just before substorm onset to ~75kV 12min after onset. The low-latitude return flow started to increase at substorm onset and continued to increase until 8min after onset. The velocity flowing across the polar-cap peaked 12-14min after onset. This increase in the flux of the polar cap and the excitation of large-scale plasma flow occurred even though the IMF Bz component was increasing (becoming less negative during most of this time. This study is the first to statistically prove that nightside reconnection creates magnetic flux and excites high-latitude plasma flow in a similar way to dayside reconnection and that dayside and nightside reconnection, are two separate time-dependent processes.

  12. Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail During Substorms: Implications for Magnetic Field Models

    Science.gov (United States)

    Spence, Harlan E.

    1996-01-01

    This section outlines those tasks undertaken in the final year that contribute integrally to the overarching project goals. Fast, during the final year, it is important to note that the project benefited greatly with the addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate aim of this specific task was to assess critically the utility of such models for mapping low-altitude phenomena into the magnetotail (and vice-versa). The bulk of this effort centered around the finite-width- magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 98, 15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source particle populations as well as the magnetic and electric field configuration. During the reporting period, we modified this code such that it can be interfaced with the auroral particle precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic specification of the equatorial distribution of fields and plasma along with their low-altitude consequences. Specifically, we have built a simple, yet powerful tool which allows us to indirectly 'map' auroral precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere, to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the location of

  13. Relevance of southward magnetic fields in the neutral sheet to anisotropic distribution of energetic electrons and substorm activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Meng, C.

    1979-01-01

    The implications of southward magnetic fields at the magnetotail neutral sheet to the development of streaming anisotropy of energetic electrons and magnetospheric substorm activity are examined. Magnetic field and energetic particle measurements from the Imp 6 spacecraft, the AE index, and global auroral images from DMSP spacecraft are utilized in this study. Criteria are developed to identify events of southward magnetic fields at the neutral sheet which imply the presence of X-type magnetic neutral lines. Several features of the observations suggest that the southward magnetic fields and the implied X-type neutral lines are associated with magnetic bubbles in the neutral sheet region. It is found that the signatures of magnetic bubbles are sometimes detected in association with tailward streaming and flux enhancement of energetic electrons (47 keV< E<350keV). A cigar-shaped anisotropy in the energetic electron distribution is frequently but not always observed before the onset of tailward streaming of energetic electrons. The tailward streaming is magnetic field-aligned and occurs in the form of bursts, suggestic electrons. The tailward streaming is magnetic field-aligned and occurs in the form of bursts, suggesting that the generating process is activated somewhat quasi-periodically and is not in a steady state. Signatures of magnetic bubbles are also detected without any substantial enhancement or detectable tailward streaming of energetic electrons. By comparing Imp 6 observations with the AW index and global auroral images from DMSP spacecraft. It is found that signatures of magnetic bubbles in the neutral sheet are observed during substorms as well as during quiet geomagnetic conditions, indicating that magnetic bubbles are intrinsic features of the neutral sheet in the magnetotail regardless of substorm activity

  14. Seasonal and Temporal Variations of Field-Aligned Currents and Ground Magnetic Deflections During Substorms

    Science.gov (United States)

    Forsyth, C.; Shortt, M.; Coxon, J. C.; Rae, I. J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.; Milan, S. E.; Burrell, A. G.

    2018-04-01

    Field-aligned currents (FACs), also known as Birkeland currents, are the agents by which energy and momentum are transferred to the ionosphere from the magnetosphere and solar wind. This coupling is enhanced at substorm onset through the formation of the substorm current wedge. Using FAC data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet technique, we examine the Northern Hemisphere FACs in all local time sectors with respect to substorm onset and subdivided by season. Our results show that while there is a strong seasonal dependence on the underlying FACs, the increase in FACs following substorm onset only varies by 10% with season, with substorms increasing the hemispheric FACs by 420 kA on average. Over an hour prior to substorm onset, the dayside currents in the postnoon quadrant increase linearly, whereas the nightside currents show a linear increase starting 20-30 min before onset. After onset, the nightside Region 1, Region 2, and nonlocally closed currents and the SuperMAG AL (SML) index follow the Weimer (1994, https://doi.org/10.1029/93JA02721) model with the same time constants in each season. These results contrast earlier contradictory studies that indicate that substorms are either longer in the summer or decay faster in the summer. Our results imply that, on average, substorm FACs do not change with season but that their relative impact on the coupled magnetosphere-ionosphere system does due to the changes in the underlying currents.

  15. Plasma and magnetic field variations in the distant magnetotail associated with near-earth substorm effects

    Science.gov (United States)

    Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.

    1987-01-01

    Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.

  16. Pc5 waves generated by substorm injection: a case study

    Directory of Open Access Journals (Sweden)

    N. A. Zolotukhina

    2008-07-01

    Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.

  17. Magnetic islands in the near geomagnetic tail and its implications for the mechanism of 1054 UT CDAW 6 substorm

    Science.gov (United States)

    Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.

    1990-01-01

    During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.

  18. Where is the magnetic energy for the expansion phase of auroral substorms accumulated? 2. The main body, not the magnetotail

    Science.gov (United States)

    Akasofu, Syun-Ichi

    2017-08-01

    It is suggested that the magnetosphere tries to stabilize itself by quickly unloading the magnetic energy accumulated within its main body, when the accumulated magnetic energy exceeds a limited amount, which can be identified as the energy for the expansion phase. It is this process which manifests as the impulsive expansion phase, during which auroral arcs advance well beyond the presubstorm latitude in the midnight sector. It was shown in the previous paper that the magnetotail does not have enough magnetic energy for a medium substorm (energy 5 × 1015 J; AE = 1000 nT). In this paper, it is shown that (1) the reason of the short lifetime (1-1.5 h) of the expansion phase is due to the fact that a limited amount of magnetic energy accumulated during the growth phase is dissipated in a period similar to the duration of the growth phase (1-1.5 h); the accumulation rate is similar to the dissipation rate during the expansion phase: (2) when the main body of the magnetosphere accumulates the magnetic energy, it is inflated; β (= (nkT/B2/8π)) even at XGSM = -6 RE becomes close to 1.0 for magnetic energy (2.9 × 1014 J) which is less than the amount consumed by a medium intensity substorm. (3) As a result, the plasma sheet current and thus the magnetosphere are expected to become unstable, unloading the accumulated excess magnetic energy and resulting in current reduction and deflation. (4) The resulting deflation can cause an earthward electric field of 5-50 mV/m, which can generate Bostrom's current system, which is mainly responsible in producing various phenomena of the expansion phase. (5) The large range of substorm intensity (AE = 100-2000 nT) is likely to be due to the location where the energy is accumulated; the closer is the distance to the Earth (XGSM between -10 RE and -4 RE), the more intense the substorm intensity is.

  19. Substorm-associated large-scale magnetic field changes in the magnetotail: a prerequisite for "magnetotail deflation" events

    Directory of Open Access Journals (Sweden)

    H. Nakai

    Full Text Available An attempt is made to search for a critical condition in the lobe magnetic field to initiate large-scale magnetic field changes associated with substorm expansions. Using data from ISEE-1 for 1978, sudden decreases in the lobe magnetic field accompanied by magnetic field dipolarizations are identified. In this study, such events are designated as the magnetotail deflation. The magnetic field component parallel to the equatorial plane, BE , is normalized to a fixed geocentric distance, BEN , and is corrected for the compression effect of the solar wind dynamic pres-sure, BENC . It is shown that the BENC value just prior to a magnetotail deflation correlates well with the Dst index; BENC = 37.5 - 0.217 Dst0, where Dst0 denotes the Dst value corrected for the solar wind dynamic pressure. This regression function appears to delineate the upper limit of BENC values, when they are sorted by the Dst0 index. On the basis of this finding it is suggested that a prerequisite condition for magnetotail deflations must exist in the magnetosphere.

    Key words. Magnetospheric physics (magnetotail; current systems; storms and substorms

  20. An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets

    Science.gov (United States)

    Hsu, Tung-Shin; McPherron, R. L.

    2002-11-01

    An outstanding problem in magnetospheric physics is deciding whether substorms are always triggered by external changes in the interplanetary magnetic field (IMF) or solar wind plasma, or whether they sometimes occur spontaneously. Over the past decade, arguments have been made on both sides of this issue. In fact, there is considerable evidence that some substorms are triggered. However, equally persuasive examples of substorms with no obvious trigger have been found. Because of conflicting views on this subject, further work is required to determine whether there is a physical relation between IMF triggers and substorm onset. In the work reported here a list of substorm onsets was created using two independent substorm signatures: sudden changes in the slope of the AL index and the start of a Pi 2 pulsation burst. Possible IMF triggers were determined from ISEE-2 observations. With the ISEE spacecraft near local noon immediately upstream of the bow shock, there can be little question about propagation delay to the magnetopause or whether a particular IMF feature hits the subsolar magnetopause. Thus it eliminates the objections that the calculated arrival time is subject to a large error or that the solar wind monitor missed a potential trigger incident at the subsolar point. Using a less familiar technique, statistics of point process, we find that the time delay between substorm onsets and the propagated arrival time of IMF triggers are clustered around zero. We estimate for independent processes that the probability of this clustering by chance alone is about 10-11. If we take into account the requirement that the IMF must have been southward prior to the onset, then the probability of clustering is higher, ˜10-5, but still extremely unlikely. Thus it is not possible to ascribe the apparent relation between IMF northward turnings and substorm onset to coincidence.

  1. Substorms in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.

    1984-01-01

    Magnetospheres are plasma regions of large scale in space dominated by magnetic field effects. The earth, and many planets in our solar system, are known to have magnetospheric regions around them. Magnetospheric substorms represent the intense, rapid dissipation of energy that has been extracted from the solar wind and stored temporarily in the terrestrial magnetotail. In this paper a widely, but not universally, accepted model of substorms is described. The energy budgets, time scales, and conversion efficiencies for substorms are presented. The primary forms of substorm energy dissipation are given along with the average levels of the dissipation. Aspects of particle acceleration and precipitation, Joule heating mechanisms, ring current formation, and plasmoid escape are illustrated based on in situ observations taken from the large available data base. A brief description is given of possible analogues of substorm-like behavior in other astrophysical systems. 27 references, 12 figures

  2. Substorms during different storm phases

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2011-11-01

    Full Text Available After the deep solar minimum at the end of the solar cycle 23, a small magnetic storm occurred on 20–26 January 2010. The Dst (disturbance storm time index reached the minimum of −38 nT on 20 January and the prolonged recovery that followed the main phase that lasted for about 6 days. In this study, we concentrate on three substorms that took place (1 just prior to the storm, (2 during the main phase of the storm, and (3 at the end of the recovery of the storm. We analyse the solar wind conditions from the solar wind monitoring spacecraft, the duration and intensity of the substorm events as well as the behaviour of the electrojet currents from the ground magnetometer measurements. We compare the precipitation characteristics of the three substorms. The results show that the F-region electron density enhancements and dominant green and red auroral emission of the substorm activity during the storm recovery resembles average isolated substorm precipitation. However, the energy dissipated, even at the very end of a prolonged storm recovery, is very large compared to the typical energy content of isolated substorms. In the case studied here, the dissipation of the excess energy is observed over a 3-h long period of several consecutive substorm intensifications. Our findings suggest that the substorm energy dissipation varies between the storm phases.

  3. Relationship between substorms and storms

    International Nuclear Information System (INIS)

    Kamide, Y.

    1980-01-01

    In an attempt to deduce a plausible working model of the relationship between magnetospheric substorms and storms, recent relevant studies of various processes occurring during disturbed periods are integrated along with some theoretical suggestions. It has been shown that the main phase of geomagnetic storms is associated with the successive occurrence of intense substorms and with the sustained southward component of the interplanetary magnetic field (IMF). However, these relations are only qualitatively understood, and thus basic questions remain unanswered involving the hypothesis whether a magnetic storm is a non-linear (or linear) superposition of intense substorms, each of which constitutes an elementary storm, or the main phase of magnetic storms occurs as a result of the intense southward IMF which enhances magnetospheric convection and increases occurrence probability of substorms. (Auth.)

  4. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  5. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  6. Magnetic excitations and polarized neutrons

    International Nuclear Information System (INIS)

    Shirane, G.

    1985-01-01

    We review the historical development of polarized beam techniques for studies of condensed matter physics. In particular we describe, in some detail, the recent advance of the triple axis technique with polarization analysis. It is now possible to carry out quantitative characterization of magnetic cross sections S(Q,ω), in absolute units, for a wide range of energy and momentum transfers. We will discuss some examples of recent inelastic measurements on 3d ferromagnets and heavy Fermions. 35 refs., 11 figs., 2 tabs

  7. Toward a unified model of substorms

    Science.gov (United States)

    Machida, S.; Fukui, K.; Miyashita, Y.; Ieda, A.

    2017-12-01

    Numerous models of substorms have been proposed so far, and they are roughly divided into two categories, i.e., the outside-in category that is represented by the near-Earth neutral line (NENL) model and the inside-out category represented by the current disruption model or the ballooning instability model. Controversies have been raised for many years over the validity of those models. However, in recent years we have obtained important clues to solve this long-standing issue by analyzing THEMIS probe data for substorms and pseudo-substorms separately. [Fukui et al., 2017] The key is the plasma pressure in the equatorial region, and it was about 1.3 times higher in substorms, than the pseudo-substorm in the region between X -7 and -8 Re. However, no difference was found beyond X -10 Re. Therefore, the spatial gradient of the plasma pressure in the region of X -7.5 Re must be a necessary condition for the occurrence of substorm. Abrupt earthward flows originated from the catapult current sheet relaxation and subsequent magnetic reconnection at the NENL just prior to the onset is a common signature for both substorm and pseudo-substorm, which seems to be essentially a result of the tearing instability in the magnetotail. [Uchino and Machida, 2015] The subsequent earthward flows must initiate some instability, quite likely the ballooning instability around the flow braking region. Substorms do not occur only with the magnetic reconnection. If there is enough plasma pressure gradient, the system can develop into a substorm. Otherwise, it will end up with a pseudo-substorm. We emphasize that both NENL model and the ballooning instability model are partially correct but incomplete, and the true model of substorm can be constructed by synthesizing multiple models of substorm including at least these two models.

  8. Auroral kilometric radiation and magnetospheric substorm

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi

    1980-01-01

    The auroral kilometric radiation (AKR) and its relation to the development of the magnetospheric substorm have been studied based on the data obtained by JIKIKEN (EXOS-B) satellite. The occurrence of AKR is closely correlated to the intense UHR emission outside the plasmapause at the satellite position; the evidence clearly suggests that the development of the field aligned current system is associated with AKR generated at the upward current region and with the UHR emission at the downward current region. The drifting plasma due to the electric field that is generated in the magnetosphere at the moment of the magnetospheric substorm is derived from the frequency change of the plasma waves. The enhancement of the westward electric field in the duskside magnetosphere is detected simultaneously with the appearence of AKR. The altitude of the center of the AKR source region varies with intimate relation to the substorm activity suggesting that the generation of AKR is taking place in the region where the polar ionosphere and the magnetosphere are predominantly coupling through the precipitating or up going particles. From the fine structure of the dynamic spectra of AKR, it is suggested that the source of AKR might be closely related to the double layer type electric field along the magnetic field. (author)

  9. Global properties of the magnetosphere during a substorm growth phase: A case study

    International Nuclear Information System (INIS)

    Baker, D.N.; Hones, E.W. Jr.; Higbie, P.R.; Belian, R.D.; Stauning, P.

    1981-01-01

    At approximately 0100 UT on December 29, 1976, a large injection of energetic (>30 keV) particles was observed by Los Alamos instrumentation onboard spacecraft 1976--059 (35 0 W longitude) at geostationary orbit. This injection was closely associated with the onset of a major substorm (also at 0100 UT) identified by sharp negative bays in the H components of magnetic records at Leirvogur (22 0 W) and Narssarssuaq (45 0 W) and by the occurrence of a positive H component bay at 0100 UT in the mid-latitude magnetogram record at M'Bour (17 0 W). This substorm expansion onset (and concomitant particle injection) was preceded (between 2330 and 0100 UT) by a pronounced 'stretching' of the magnetic field at synchronous orbit into a taillike configuration and by a development of highly cigarlike (field-aligned) electron distributions at geostationary orbit that we have in the past identified with the substorm growth phase. Of principal importance in this case are two other auxiliary data sets. The first is a well-timed set of DMSP auroral images taken during the course of the growth and expansion phases of the substorm. The images before and during the growth (cigar) phase, including one auroral zone crossing at approx.0050 UT, show quiet aurora with no observable substorm activity in the visible polar region. The second relevant data set is a broad set of riometer data from 13 separate stations in three general meridians (west coast Greenland, east coast Greenland, and northern Scandinavia) from magnetic latitudes of approx.65 0 to approx.90 0 . The riometer data also show clearly that there was no measurable substorm activity anywhere, either in longitude or latitude, as the magnetosphere developed its very stressed, growth-phase configuration prior to substorm expansion onset. These results support the concept of a storage of energy (growth phase) prior to its rapid release at substorm onset

  10. Substorms - Future of magnetospheric substorm-storm research

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1989-01-01

    Seven approaches and/or areas of magnetospheric substorm and storm science which should be emphasized in future research are briefly discussed. They are: the combining of groups of researchers who study magnetic storms and substorms in terms of magnetic reconnection with those that do not, the possible use of a magnetosphere-ionosphere coupling model to merge the groups, the development of improved input-output relationships, the complementing of satellite and ground-based observations, the need for global imaging of the magnetosphere, the complementing of observations with computer simulations, and the need to study the causes of changes in the north-south component of the IMF. 36 refs

  11. Implications of the 1100 UT March 22, 1979 CDAW 6 substorm event for the role of magnetic reconnection in the geomagnetic tail

    International Nuclear Information System (INIS)

    Fritz, T.A.; Baker, D.N.; McPherron, R.L.; Lennartsson, W.

    1983-01-01

    The event of March 22, 1979 has been the object of a concentrated study effort as a part of the Coordinated Data Analysis Workshop activity designated CDAW-6. Energetic electron and magnetic field measurements from a set of four satellites aligned from 6.6 to 13 R/sub E/ at the 0200 LT meridian at the time of the magnetospheric substorm event of 1100 UT are presented. These data are used to show that a magnetic X-line formed spontaneously in the vicinity of 7 R/sub E/ in response to a steady build-up of magnetic stress in the geomagnetic tail

  12. Superconducting polarizing magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for the JINR (Dubna) movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T in the centre with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet contains a main solenoidal winding 558 mm long and 206/144 mm in diameters, and compensating and correcting winding placed at its ends. The windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat. The diameter of the 'warm' aperture of the magnet cryostat is 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements, using a NMR-magnetometer are given. A similar magnet constructed at DAPNIA, CEA/Saclay (France), represented a model for the present development. The MPT array is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the synchrophasotron of the Laboratory of High Energies (LHE), JINR (Dubna)

  13. Magnetic field drift shell splitting: Cause of unusual dayside particle pitch angle distributions during storms and substorms

    International Nuclear Information System (INIS)

    Sibeck, D.G.; McEntire, R.W.; Lui, A.T.Y.; Lopez, R.E.; Krimigis, S.M.

    1987-01-01

    We present a magnetic field drift shell--splitting model for the unusual butterfly and head-and-shoulder energetic (E>25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from Earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles from on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of CCE/MEPA observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model. copyright American Geophysical Union 1987

  14. The relationship between auroral hiss at high altitudes over the polar caps and the substorm dynamics of aurora

    Czech Academy of Sciences Publication Activity Database

    Titova, E. E.; Yahnin, A. G.; Santolík, Ondřej; Gurnett, D. A.; Jiříček, František; Rauch, J. L.; Lefeuvre, F.; Frank, L. A.; Sigwarth, J. B.; Mogilevsky, M. M.

    2005-01-01

    Roč. 23, - (2005), s. 2117-2128 ISSN 0992-7689 R&D Projects: GA AV ČR IAA3042201; GA ČR GA205/03/0953; GA MŠk ME 650; GA ČR GA202/03/0832; GA MŠk 1P05ME811 Grant - others:ESA PECS(XE) 98025; INTAS(RU) 03-51-4132; NATO(XE) PST.GLG980041; NASA (US) NAG5-7943 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric physics (Auroral phenomena, Plasma waves and instabilities, Storms and substorms) Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.450, year: 2005

  15. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  16. Plasma sheet behavior during substorms

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1983-01-01

    Auroral or magnetic substorms are periods of enhanced auroral and geomagnetic activity lasting one to a few hours that signify increased dissipation of energy from the magnetosphere to the earth. Data acquired during the past decade from satellites in the near-earth sector of the magnetotail have suggested that during a substorm part of the plasma sheet is severed from earth by magnetic reconnection, forming a plasmoid, i.e., a body of plasma and closed magnetic loops, that flows out of the tail into the solar wind, thus returning plasma and energy that have earlier been accumulated from the solar wind. Very recently this picture has been dramatically confirmed by observations, with the ISEE 3 spacecraft in the magnetotail 220 R/sub E/ from earth, of plasmoids passing that location in clear delayed response to substorms. It now appears that plasmoid release is a fundamental process whereby the magnetosphere gives up excess stored energy and plasma, much like comets are seen to do, and that the phenomena of the substorm seen at earth are a by-product of that fundamental process

  17. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  18. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  19. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.

    1987-10-01

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF B z is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  20. Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events

    Science.gov (United States)

    Boroyev, R. N.; Vasiliev, M. S.

    2018-01-01

    In this work, the relation of high-latitude indices of geomagnetic activity (AE, Kp) with the rate of storm development and a solar wind electric field during the main phase of magnetic storm induced by the CIR and ICME events is investigated. 72 magnetic storms induced by CIR and ICME events have been selected. It is shown that for the CIR and ICME events the increase of average value of the Kp index (Kpaver) is observed with the growth of rate of storm development. The value of Kpaver index correlates with the magnitude of minimum value of Dst index (|Dstmin|) only for the ICME events. The analysis of average values of AE and Kp indices during the main phase of magnetic storm depending on the SW electric field has shown that for the CIR events, unlike the ICME events, the value of AEaver increases with the growth of average value of the electric field (Eswaver). The value of Kpaver correlates with the Eswaver only for the ICME events. The relation between geomagnetic indices and the maximum value of SW electric field (Eswmax) is weak. However, for the ICME events Kpaver correlates with Eswmax.

  1. Multipoint observations of a small substorm

    International Nuclear Information System (INIS)

    Lopez, R.E.; Luehr, H.; Anderson, B.J.; Newell, P.T.; McEntire, R.W.

    1990-01-01

    In this paper the authors present multipoint observations of a small substorm which occurred just after 0110 UT on April 25, 1985. The observations were made by spacecraft (AMPTE CCE, AMPTE IRM, DMSP F6, and DMSP F7), ground auroral stations (EISCAT magnetometer cross, Syowa, Narssarssuaq, Great Whale River, and Fort Churchill), and mid-latitude stations (Furstenfeldbruck, Toledo, and Argentine Island). These data provide them with a broad range of observations, including the latitudinal extent of the polar cap, visual identification of substorm aurorae and the magnetic perturbations produced directly beneath them, in situ magnetic field and energetic particle observations of the disruption of the cross-tail current sheet, and observations concerning the spatial expansion of the current disruption region from two radially aligned spacecraft. The DMSP data indicate that the event took place during a period when the polar cap was relatively contracted, yet the disruption of the current sheet was observed by CCE at 8.56 R E . They have been able to infer a considerable amount of detail concerning the structure and westward expansion of the auroral features associated with the event, and they show that those auroral surges were located more than 10 degree equatorward of the boundary between open and closed field lines. Moreover, they present evidence that the current sheet disruption observed by CCE in the neutral sheet was located on field lines which mapped to the westward traveling surge observed directly overhead of the ground station at Syowa. Furthermore, the observations strongly imply that disruption of the cross-tail current began in the near-Earth region and that it had a component of expansion which was radially antisunward

  2. Magnetic materials research with polarized neutrons

    International Nuclear Information System (INIS)

    Hammer, J.; Rauch, H.; Badurek, G.

    1980-01-01

    In order to study the mechanisms of time dependent effects in magnetic materials with superparamagnetic or spinglass behaviour as well as in ferromagnetic materials a 'dynamic neutron depolarization' system has been developed as a beam hole experiment at the TRIGA Mark II Reactor in Vienna. In the course of this experiment an increasing or decreasing polarization can be observed as a consequence of the interaction between spins of the polarized neutron beam and the magnetic structure if the magnetic clusters in the sample are stimulated by a short magnetic pulse, lasting up to a few seconds. In accordance with numerical calculations and theoretical considerations we can draw conclusions from dynamics in the range of 10 ms to 1 h within magnetic materials which give us additional information that cannot be obtained from experiments used so far

  3. Recent advances in magnetospheric substorm research

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1990-01-01

    More than two decades of magnetospheric exploration have led to a reasonably clear morphological picture of geomagnetic substorms, which is often summarized in terms of the near-Earth neutral line (NENL) model of substorms. Although this qualitative theory is quite comprehensive and explains a great many observations, it is hard pressed to explain both recent observations of consistently earthward flow within 19 R E and also the prompt onset of magnetic turbulence at 8 R E at the time of substorm onset. Other theories have recently been proposed which tend to be more quantitative, but which explain a more limited number of substorm observations. The challenge seems to be to understand the essential physics of these various quantitative theories and integrate them into a large structure such as is provided by the near-Earth neutral line model. (author)

  4. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H; Schreyer, A [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  5. Magnetic elliptical polarization of Schumann resonances

    International Nuclear Information System (INIS)

    Sentman, D.D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references

  6. What is the Relationship between the Solar Wind and Storms/Substorms?

    Science.gov (United States)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  7. Polarized radiation in magnetic white dwarfs

    International Nuclear Information System (INIS)

    Rosi, L.A.; Zimmerman, R.L.; Kemp, J.C.

    1976-01-01

    A model for magnetic white dwarfs is proposed which attributes the partially polarized light to synchrotron radiation. The source of the radiation is relativistic electrons trapped in the magnetosphere of a white dwarf. The white dwarf's magnetic field is assumed to be dipolar. The Stokes parameters for the synchrotron radiation are tabulated as a function of frequency, observer's orientation, and energy and spatial distribution of the relativistic electrons. The results of the synchrotron calculations are applied to the polarization observations of Grw+70degree8247 and DQ Herculis. This model can account for the major features of the polarized radiation coming from these two magnetic white dwarfs. The calculations predict for Grw+70degree8247 that the surface magnetic field is B/sub s/approximately-less-than4 x 10 6 gauss, that the incident viewing angle is 45degreeapproximately-less-thantheta 0 approximately-less-than75degree, and that the electrons are trapped with nearly an isotropic distribution about the white dwarf. For DQ Herculis the surface magnetic field is B/sub s/approximately-less-than7 x 10 6 gauss and the trapped electrons are confined to a dislike region about the white dwarf. For both cases the density of electrons in the magnetosphere falls in the range of 10 5 approximately-less-thannapproximately-less-than10 7 cm -3 with energies of about 4--35 MeV

  8. Multiscale empirical modeling of the geomagnetic field: From storms to substorms

    Science.gov (United States)

    Stephens, G. K.; Sitnov, M. I.; Korth, H.; Gkioulidou, M.; Ukhorskiy, A. Y.; Merkin, V. G.

    2017-12-01

    An advanced version of the TS07D empirical geomagnetic field model, herein called SST17, is used to model the global picture of the geomagnetic field and its characteristic variations on both storm and substorm scales. The new SST17 model uses two regular expansions describing the equatorial currents with each having distinctly different scales, one corresponding to a thick and one to a thin current sheet relative to the thermal ion gyroradius. These expansions have an arbitrary distribution of currents in the equatorial plane that is constrained only by magnetometer data. This multi-scale description allows one to reproduce the current sheet thinning during the growth phase. Additionaly, the model uses a flexible description of field-aligned currents that reproduces their spiral structure at low altitudes and provides a continuous transition from region 1 to region 2 current systems. The empirical picture of substorms is obtained by combining magnetometer data from Geotail, THEMIS, Van Allen Probes, Cluster II, Polar, IMP-8, GOES 8, 9, 10 and 12 and then binning this data based on similar values of the auroral index AL, its time derivative and the integral of the solar wind electric field parameter (from ACE, Wind, and IMP-8) in time over substorm scales. The performance of the model is demonstrated for several events, including the 3 July 2012 substorm, which had multi-probe coverage and a series of substorms during the March 2008 storm. It is shown that the AL binning helps reproduce dipolarization signatures in the northward magnetic field Bz, while the solar wind electric field integral allows one to capture the current sheet thinning during the growth phase. The model allows one to trace the substorm dipolarization from the tail to the inner magnetosphere where the dipolarization of strongly stretched tail field lines causes a redistribution of the tail current resulting in an enhancement of the partial ring current in the premidnight sector.

  9. Particle and field signatures of substorms in the near magnetotail

    International Nuclear Information System (INIS)

    Baker, D.N.

    1983-01-01

    The near-earth magnetotail (10 less than or equal to r less than or equal to 20 R/sub E/) portion of the terrestrial magnetosphere is very likely the region in which magnetospheric substorms are initiated and it is in this location that substorm-related magnetic reconnection appears to occur. An observational advantage compared to other astrophysical regions is that the near magnetotail can be nearly continuously monitored by spacecraft that are relatively fixed in location. Observations of magnetic fields and plasma distribution functions in the neartail reveal a very regular and predictable sequence of variation in association with substorms. These data, considered in a global context, provide very strong evidence for the neutral line substorm model and, thus, for the regular occurrence of magnetic reconnection in the near-earth magnetotail during substorms

  10. A joint Cluster and ground-based instruments study of two magnetospheric substorm events on 1 September 2002

    Directory of Open Access Journals (Sweden)

    N. C. Draper

    2004-12-01

    Full Text Available We present a coordinated ground- and space-based multi-instrument study of two magnetospheric substorm events that occurred on 1 September 2002, during the interval from 18:00 UT to 24:00 UT. Data from the Cluster and Polar spacecraft are considered in combination with ground-based magnetometer and HF radar data. During the first substorm event the Cluster spacecraft, which were in the Northern Hemisphere lobe, are to the west of the main region affected by the expansion phase. Nevertheless, substorm signatures are seen by Cluster at 18:25 UT (just after the expansion phase onset as seen on the ground at 18:23 UT, despite the ~5 RE} distance of the spacecraft from the plasma sheet. The Cluster spacecraft then encounter an earthward-moving diamagnetic cavity at 19:10 UT, having just entered the plasma sheet boundary layer. The second substorm expansion phase is preceded by pseudobreakups at 22:40 and 22:56 UT, at which time thinning of the near-Earth, L=6.6, plasma sheet occurs. The expansion phase onset at 23:05 UT is seen simultaneously in the ground magnetic field, in the magnetotail and at Polar's near-Earth position. The response in the ionospheric flows occurs one minute later. The second substorm better fits the near-Earth neutral line model for substorm onset than the cross-field current instability model. Key words. Magnetospheric physics (Magnetosphereionosphere interactions; Magnetic reconnection; Auroral phenomenon

  11. Substorm onset location and dipole tilt angle

    Directory of Open Access Journals (Sweden)

    J. Wanliss

    2006-03-01

    Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.

  12. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    Science.gov (United States)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm-2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  13. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  14. Polarized neutron reflectometry on thin magnetic films

    International Nuclear Information System (INIS)

    Van Der Graaf, A.

    1997-01-01

    In order to be sensitive to magnetic scattering with X-rays very high intensities have to be used. This makes it necessary to use large installations like synchroton radiation sources providing high X-ray intensities. Polarized neutron experiments can be performed even at small reactors like the 2 MW reactor of IRI. In general polarized neutron reflectometry (PNR) is used to determine magnetization depth profiles, whereas X-ray reflectometry is used to study magnetic surfaces. Chapters 2 through 4 of this thesis are general chapters. The theory of neutron reflectometry is described in chapter 2, followed by a description of the ROG instrument (a time-of-flight reflectometer) in chapter 3, and chapter 4 deals with the data analysis. In the subsequent chapters PNR-experiments on different kinds of samples are discussed. First, experiments on a Co-Cr layer, a candidate to be used as perpendicular recording medium, are described in chapter 5. In chapter 6 it is shown that PNR can give information on metal evaporated videotapes, as presently available in every ordinary shop selling videotapes, and also on the writing process in these tapes. Chapter 7 deals with experiments on Fe/Si multilayers. The initial interest in such multilayers was to obtain information on magnetic coupling through a semiconductor. In chapter 8 PNR-experiments on spin-valve systems, that probably will be used as magnetic read head material, are described. Finally, chapter 9 gives some conclusions and recommendations for the future. 78 refs

  15. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  16. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2005-12-01

    Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.

  17. EISCAT observations of unusual flows in the morning sector associated with weak substorm activity

    Directory of Open Access Journals (Sweden)

    N. J. Fox

    1994-05-01

    Full Text Available A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at ~0415 MLT contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (~0515 MLT with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is "pinched off", and present two alternative explanations in terms of (1 viscous and lobe circulation cells and (2 polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked "viscous-like" momentum transfer across the magnetopause.

  18. EISCAT observations of unusual flows in the morning sector associated with weak substorm activity

    Directory of Open Access Journals (Sweden)

    N. J. Fox

    Full Text Available A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at ~0415 MLT contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (~0515 MLT with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is "pinched off", and present two alternative explanations in terms of (1 viscous and lobe circulation cells and (2 polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked "viscous-like" momentum transfer across the magnetopause.

  19. Dynamics of the 1054 UT March 22, 1979, substorm event: CDAW 6

    International Nuclear Information System (INIS)

    McPherron, R.L.; Manka, R.H.

    1985-01-01

    The physical processes involved in the transfer of energy from the solar wind to the magnetosphere, and release associated with substorms, have been examined in a sequence of Coordinated Data Analysis Workshops (CDAW 6). Magnetic storms of March 22 and 31, 1979, were chosen to study the problem, using a data base from 13 spacecraft and about 130 ground-based magnetometers. This paper describes the March 22 storm, in particular the large, isolated substorm at 1054 UT which followed an interval of magnetic calm. We summarize the observations in the solar wind, in various regions of the magnetosphre, and at the ground, synthesizing these observations into a description of the substorn development. We then give our interpretation of these observations and test their consistency with the reconnection model. The substorm appears to have been generated by a southward turning of the interplanetary magnetic field associated with a current sheet crossing. Models of ionospheric currents derived from ground data show the substorm had three phases of development. During the first phase, a two-celled convection current system developed in the polar cap as synchronous spacecraft on the nightside recorded an increasingly tailike field and the ISEE measurements show that the near-earth plasma sheet thinned. In the second phase, possibly triggered by sudden changes in the solar wind, a one-celled current system was added to the first, enhancing the westward electrojet. During this phase the synchronous orbit field became more dipolar, and the plasma sheet magnetic field turned strongly southward as rapid tailward flow developed soon after expansion onset, suggesting that a neutral line formed in the near-earth plasma sheet with subsequent plasmoid ejection

  20. Aspects of magnetosphere–ionosphere coupling in sawtooth substorms: a case study

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2014-10-01

    Full Text Available In a case study we report on repetitive substorm activity during storm time which was excited during Earth passage of an interplanetary coronal mass ejection (ICME on 18 August 2003. Applying a combination of magnetosphere and ground observations during a favourable multi-spacecraft configuration in the plasma sheet (GOES-10 at geostationary altitude and in the tail lobes (Geotail and Cluster-1, we monitor the temporal–spatial evolution of basic elements of the substorm current system. Emphasis is placed on activations of the large-scale substorm current wedge (SCW, spanning the 21:00–03:00 MLT sector of the near-Earth plasma sheet (GOES-10 data during the interval 06:00–12:00 UT, and magnetic perturbations in the tail lobes in relation to ground observations of auroral electrojets and convection in the polar cap ionosphere. The joint ground–satellite observations are interpreted in terms of sequential intensifications and expansions of the outer and inner current loops of the SCW and their respective associations with the westward electrojet centred near midnight (24:00 MLT and the eastward electrojet observed at 14:00–15:00 MLT. Combined magnetic field observations across the tail lobe from Cluster and Geotail allow us to make estimates of enhancements of the cross-polar-cap potential (CPCP amounting to ≈ 30–60 kV (lower limits, corresponding to monotonic increases of the PCN index by 1.5 to 3 mV m−1 from inductive electric field coupling in the magnetosphere–ionosphere (M–I system during the initial transient phase of the substorm expansion.

  1. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  2. Excitation of twin-vortex flow in the nightside high-latitude ionosphere during an isolated substorm

    Directory of Open Access Journals (Sweden)

    A. Grocott

    Full Text Available We present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999. These data clearly demonstrate the excitation of large-scale flow associated with the substorm expansion phase, with enhanced equatorward flows being observed in the pre-midnight local time sector of the expansion phase auroral bulge and westward electrojet, and enhanced return sunward flows being present at local times on either side, extending into the dayside sector. The flow pattern excited was thus of twin-vortex form, with foci located at either end of the substorm auroral bulge, as imaged by the Polar VIS UV imager. Estimated total transpolar voltages were ~40 kV prior to expansion phase onset, grew to ~80 kV over a ~15 min interval during the expansion phase, and then decayed to ~35 kV over ~10 min during recovery. The excitation of the large-scale flow pattern resulted in the development of magnetic disturbances which extended well outside of the region directly disturbed by the substorm, depending upon the change in the flow and the local ionospheric conductivity. It is estimated that the nightside reconnection rate averaged over the 24-min interval of the substorm was ~65– 75 kV, compared with continuing dayside reconnection rates of ~30–45 kV. The net closure of open flux during the sub-storm was thus ~0.4–0.6 × 108 Wb, representing ~15–20% of the open flux present at onset, and corresponding to an overall contraction of the open-closed field line boundary by ~1° latitude.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  3. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  4. Correlated observations of several auroral substorms on February 17, 1971

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Akasofu, S.; Wolcott, J.H.; Bame, S.J.; Fairfield, D.H.; Meng, C.

    1976-01-01

    The purpose of this study is to correlate in detail auroral activity with the corresponding disturbances in the magnetotail. The auroral data were recorded by optical instruments aboard an airplane flying over the Arctic Ocean along the Alaska meridian and by the Alaska meridian chain of all-sky cameras. The corresponding magnetotail observations were made by various instruments on Vela 6A and Imp 5; the interplanetary magnetic field was monitored concurrently by Explorer 35 (Imp E). Three successive substorms were observed on February 17, 1971. Each substorm was readily identified by the classical auroral and magnetic signatures which accompanied its onset. The observed variations of plasma and magnetic field in the magnetotail were consistent with the idea that a neutral line formed in the range approx.-12 R/subE/>X/subS//subM/>-18 R/subE/ at the onset of each substorm expansive phase and then moved tailward past X/subS//subM/=-18 R/subE/ some tens of minutes afterward. The Z component of the tail magnetic field decreased rather steadily for a period of 1--21/2 hours after each substorm and until the onset of the next expansive phase, reaching a minimum value just before each onset. This taillike development of the field is more appropriately regarded as the normal evolutionary pattern of variation between substorms than as a 'growth phase' preceding each substorm

  5. Substorm morphology of >100 keV protons

    International Nuclear Information System (INIS)

    Lundblad, J.Aa.; Soeraas, F.; Aarsnes, K.

    1978-06-01

    The latitudinal morphology of >100 keV protons at different local times has been studied as a function of substorm activity Acharacteristic pattern has been found: During quiet times there is an isotropic zone centered around 67 0 near midnight, but located on higher latitudes towards dusk and dawn. This zone moves slightly equatorward during the substorm growth phase. During the expansive phase the precipitation spreads poleward apparently to approximately 71 0 near midnight. The protons are precipitated over a large local time interval on the night side, but the most intense fluxes are found in the pre-midnight sector. A further poleward expansion, to more than 75 0 near midnight, seems to take place late in the substorm. Away from midnight the expansion reaches even higher latitudes. During the recovery phase the intensity of the expanded region decreases gradually; the poleward boundary is almost stationary if the interplanetary magnetic field has a northward component and no further substorm activity takes place. Mainly protons with energy below approximately 500 keV are precipitated in the expanded region. On the dayside no increase in the precipitation rates is found during substorm expansion, but late in the substorm an enhanced precipitation is found, covering several degrees of latitude. The low-latitude anisotropic precipitation zone is remarkably stable during substorms. A schematic model is presented and discussed in relation to earlier results. (Auth.)

  6. A comparison of the probability distribution of observed substorm magnitude with that predicted by a minimal substorm model

    Directory of Open Access Journals (Sweden)

    S. K. Morley

    2007-11-01

    Full Text Available We compare the probability distributions of substorm magnetic bay magnitudes from observations and a minimal substorm model. The observed distribution was derived previously and independently using the IL index from the IMAGE magnetometer network. The model distribution is derived from a synthetic AL index time series created using real solar wind data and a minimal substorm model, which was previously shown to reproduce observed substorm waiting times. There are two free parameters in the model which scale the contributions to AL from the directly-driven DP2 electrojet and loading-unloading DP1 electrojet, respectively. In a limited region of the 2-D parameter space of the model, the probability distribution of modelled substorm bay magnitudes is not significantly different to the observed distribution. The ranges of the two parameters giving acceptable (95% confidence level agreement are consistent with expectations using results from other studies. The approximately linear relationship between the two free parameters over these ranges implies that the substorm magnitude simply scales linearly with the solar wind power input at the time of substorm onset.

  7. Dual HF radar study of the subauroral polarization stream

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2008-01-01

    Full Text Available The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER system often observe localized high-velocity F-region plasma flows (≥1500 m/s in the midnight sector (20:00–02:00 MLT at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from −5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm

  8. M-I coupling across the auroral oval at dusk and midnight. Repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Sandholt, P.E. [Oslo Univ. (Norway). Dept. of Physics; Farrugia, C.J. [New Hampshire Univ., Durham (United Kingdom). Space Science Center; Denig, W.F. [NOAA, Boulder, CO (United States)

    2014-07-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostroem type I centered at midnight and Bostroem type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) 'snapshot' satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δB{sub z}/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the

  9. M–I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2014-04-01

    Full Text Available We study substorms from two perspectives, i.e., magnetosphere–ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii "snapshot" satellite (DMSP F13 observations of FAC/precipitation/ion drift profiles, and (iii observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt and the inferred large spatial scales (in radial and azimuthal dimensions of the dipolarization process in these strong substorm expansions may lead to 50–100 kV enhancements of the

  10. Electric polarization of magnetic textures: New horizons of micromagnetism

    International Nuclear Information System (INIS)

    Pyatakov, A.P.; Meshkov, G.A.; Zvezdin, A.K.

    2012-01-01

    A common scenario of magnetoelectric coupling in multiferroics is the electric polarization induced by spatially modulated spin structures. It is shown in this paper that the same mechanism works in magnetic dielectrics with inhomogeneous magnetization distribution: the domain walls and magnetic vortexes can be the sources of electric polarization. The electric field driven magnetic domain wall motion is observed in iron garnet films. The electric field induced nucleation of vortex state of magnetic nanodots is theoretically predicted and numerically simulated. From the practical point of view the electric field control of micromagnetic structures suggests a low-power approach for spintronics and magnonics.

  11. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  12. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  13. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  14. Solar Wind Features Responsible for Magnetic Storms and Substorms During the Declining Phase of the Solar Cycle: 197

    Science.gov (United States)

    Tsurutani, B.; Arballo, J.

    1994-01-01

    We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.

  15. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  16. SNR polarization and the direction of the magnetic field

    International Nuclear Information System (INIS)

    Milne, D.K.

    1988-01-01

    The authors are currently engaged in a program to map polarization in SNRs at 8.4 GHz. These results are compared with earlier Parkes 5 GHz maps to deduce the direction of magnetic field, Faraday rotation and depolarization

  17. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    2002-03-01

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  18. Continuous control of spin polarization using a magnetic field

    Science.gov (United States)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  19. Continuous control of spin polarization using a magnetic field

    International Nuclear Information System (INIS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-01-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  20. Continuous control of spin polarization using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y., E-mail: tingyong.chen@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-05-23

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  1. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  2. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  3. Investigating the polar electrojet using Swarm satellite magnetic data

    DEFF Research Database (Denmark)

    Aakjær, Cecilie Drost; Olsen, Nils; Finlay, Chris

    The aim of this study is to investigate the magnetic perturbations caused by the polar electrojets, which are described by means of a model consisting of a series of infinite line currents placed at the height of the ionosphere along QD latitudes. The method is applied to Swarm magnetic scalar...... of the polar electrojets as well as their temporal evolution. In addition, applying the method to data taken by the Swarm satellites Alpha and Beta allows investigating longitudinal differences of the electrojets....

  4. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  5. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    International Nuclear Information System (INIS)

    Zabel, H; Theis-Broehl, K

    2003-01-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures

  6. Kinky heliospheric current sheet: Cause of CDAW-6 substorms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Russell, C.T.; King, J.H.; Zwickl, R.D.; Lin, R.P.

    1984-01-01

    Two magnetospheric substorms and the intensification of the second are caused by interplanetary magnetic field and ram pressure changes associated with a kinky heliospheric current sheet (KHCS). The responsible interplanetary features occur in a highly compressed region between a solar flare-associated shock wave and the cold driver gas. The possibity that the interplanetary structure is a ''magnetic cloud'' is ruled out

  7. A kinky heliospheric current sheet - Cause of CDAW-6 substorms

    Science.gov (United States)

    Tsurutani, B. T.; Russell, C. T.; King, J. H.; Zwickl, R. D.; Lin, R. P.

    1984-01-01

    Two magnetospheric substorms and the intensification of the second are caused by interplanetary magnetic field and ram pressure changes associated with a kinky heliospheric current sheet (KHCS). The responsible interplanetary features occur in a highly compressed region between a solar flare-associated shock wave and the cold driver gas. The possibility that the interplanetary structure is a 'magnetic cloud' is ruled out.

  8. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  9. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  10. Broad-band linear polarization and magnetic intensification in rotating magnetic stars

    International Nuclear Information System (INIS)

    Degl'Innocenti, M.L.; Calamai, G.; Degl'Innocenti, E.L.; Patriarchi, P.

    1981-01-01

    Magnetic intensification is proposed as a mechanism to explain the general features of the variable broad-band linear polarization emerging from rotating magnetic stars. This mechanism is studied in detail, and some efforts are made to investigate the wide variety of polarization diagrams that can result from it. Theoretical results are compared with direct observations of the variable magnetic star 53 Cam to determine its geometric and magnetic configuration

  11. Polar Magnetic Field Reversals of the Sun in Maunder Minimum

    Indian Academy of Sciences (India)

    tribpo

    The data on polar migration of solar magnetic fields were obtained on the basis of. Η alpha magnetic synoptic charts for 1880 1991 using Kodaikanal, Kislovodsk and Italian observations, and Atlas of Η alpha charts (Mclntosh 1979; Makarov &. Fatianov 1980; Makarov & Sivaraman 1989; Makarov 1994). The Wolf numbers ...

  12. Characterization of a magnetic trap by polarization dependent Zeeman spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Carsten Vandel; Lyngsøe, Jens Kristian; Thorseth, Anders

    2008-01-01

    This paper demonstrates a detailed experimental study of our cloverleaf magnetic trap for sodium atoms. By using polarization dependent Zeeman spectroscopy of our atomic beam, passing the magnetic trap region, we have determined important trap parameters such as gradients, their curvatures...

  13. IMF BY dependence of the extent of substorm westward electrojet

    Indian Academy of Sciences (India)

    Auroral ground magnetogram signatures near .... The bottom panel shows the. Sym-H ... coordinate system for the event depicted in figure 1(a). ... ring current build-up at the substorm onset sug- ... tem with the polarity of IMF BY was first shown.

  14. Statistical visualization of the Earth's magnetotail based on Geotail data and the implied substorm model

    Directory of Open Access Journals (Sweden)

    S. Machida

    2009-03-01

    Full Text Available We investigated the temporal and spatial development of the near-Earth magnetotail during substorms based on multi-dimensional superposed-epoch analysis of Geotail data. The start time of the auroral break-up (t=0 of each substorm was determined from auroral data obtained by the Polar and IMAGE spacecraft. The key parameters derived from the plasma, magnetic-field, and electric-field data from Geotail were sorted by their meridional X(GSM–Z(proxy coordinates.

    The results show that the Poynting flux toward the plasma-sheet center starts at least 10 min before the substorm onset, and is further enhanced at X~−12 RE (Earth radii around 4 min before the onset. Simultaneously, large-amplitude fluctuations occurred, and earthward flows in the central plasma sheet between X~−11 RE and X~−19 RE and a duskward flow around X=−10 RE were enhanced. The total pressure starts to decrease around X=−16 RE about 4 min before the onset of the substorm. After the substorm onset, a notable dipolarization is observed and tailward flows commence, characterised by southward magnetic fields in the form of a plasmoid.

    We confirm various observable-parameter variations based on or predicted by the relevant substorm models; however, none of these can explain our results perfectly. Therefore, we propose a catapult (slingshot current-sheet relaxation model, in which an earthward convective flow produced by catapult current-sheet relaxation and a converted duskward flow near the Earth are enhanced through flow braking around 4 min before the substorm onset. These flows induce a ballooning instability or other instabilities, causing the observed current disruption. The formation of the magnetic neutral line is a natural consequence of the present model, because the relaxation of a highly stretched

  15. Internal magnetic turbulence measurement in plasma by cross polarization scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X L; Colas, L; Paume, M; Chareau, J M; Laurent, L; Devynck, P; Gresillon, D

    1994-09-01

    For the first time, the internal magnetic turbulence is measured by a new cross polarization scattering diagnostic in Tore Supra tokamak. The principle of this experiment is presented. It is based on the polarization change or mode conversion of the e.m. wave scattering by magnetic fluctuations. The role of different physical processes on the signal formation are investigated. From the Observation, a rough estimate for the relative magnetic fluctuations of about 10{sup -4} is obtained. A strong correlation of the measured signal with additional heating is observed. (author). 14 refs., 4 figs.

  16. Main Ionospheric Trough and Equatorial Ionization Anomaly During Substorms With the Different UT Onset Moments

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    2007-05-01

    In the given work the numerical calculation results of ionospheric effects of four modeling substorms which have begun in 00, 06, 12 and 18 UT are presented. Calculations are executed on the basis of Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN, added by the new block of calculation of electric fields in the ionosphere of the Earth for vernal equinox conditions in the minimum of solar activity. In calculations we considered superposition of magnetospheric convection electric field (at set potential differences through polar caps and field aligned currents of the second zone with taking into account of particle precipitation) and dynamo field generated by thermospheric winds without taking into account the tides. It is shown, that in the given statement of problem the substorms cause strong positive disturbances in F-region of ionosphere in night sector. Negative disturbances are much less and arise, mainly, at night in the middle and low latitudes. During substorms longitudinal extent of main ionospheric trough increases. The substorm beginning in 18 UT, causes negative disturbances in high latitudes except for a southern polar cap. Besides there is "stratification" of the main ionospheric trough. As a result in southern hemisphere the additional high-latitude trough which is absent in quiet conditions is formed. "Stratification" of the main ionospheric trough occurs in northern hemisphere at 6 hours after the beginning of the substorm. These "stratifications" are consequence non-stationary magnetospheric convection. Distinction between these events consists that "stratification" in a southern hemisphere occurs in active phase of substorm, and in northern hemisphere in recovery phase. During a substorm beginning in 00 UT, foF2 increases in all northern polar cap. Positive disturbances of foF2 in the equatorial anomaly region cause all presented substorms, except for a substorm beginning in 18 UT

  17. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  18. Magnetospheric processes preceding the onset of an isolated substorm: A case study of the March 31, 1978, substorm

    International Nuclear Information System (INIS)

    Nishida, A.; Kamide, Y.

    1983-01-01

    We examined in detail the effect of a southward turning of the interplanetary magnetic field (IMF) on the state of the magnetosphere, taking advantage of the availability of the data from IMS magnetometer meridian chains and from several spacecraft. A clear onset substorm occurred on March 31, 1978, when the magnetometer stations were located in the midnight to morning sector and the spacecraft were near the equatorial plane of the nightside magnetosphere. The onset time of the substorm expansion phase could be determined unambiguously in terms of both ground-based magnetic and auroral signatures, and there was an interval lasting about 1 hour between the IMF southward turning and this onset. In this intervening interval the ionospheric current system of the DP 2 type developed. This enhancement of the ionospheric current was driven directly by the solar wind-magnetosphere coupling. The onset of the expansion phase was then associated with the decrease in the magnetic field energy density in the tail, providing evidence that the substorm energy was supplied by the release (unloading) of energy from the tail. It is most likely that substorm energy dissipated in the auroral ionosphere throughout this relatively isolated and simple event was supplied by two components, 'directly driven' and 'loading-unloading,' the relative importance of which varied depending on the different substorm phases

  19. A new polarized neutrons method for studying depth-inhomogeneously magnetized magnetic films

    International Nuclear Information System (INIS)

    Korneev, D.A.

    1990-01-01

    The main specific features of the process of polarized thermal neutrons specular reflection from the surface of depth-inhomogeneously magnetic films are considered theoretically. It is shown how using the method of specular reflection of polarized thermal neutrons from such a films surface, one may restore the depth distribution of the local magnetization vector M-vector(z). 9 refs

  20. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  1. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  2. Electron precipitation morphology and plasma sheet dynamics: ground and magnetotail studies of the magnetospheric substorm

    International Nuclear Information System (INIS)

    Pytte, T.

    1976-12-01

    The main results of some recent studies of the magnetospheric substorm are summarised and discussed in view of the fundamental role of magnetospheric convection. The substorm growth phase is described in terms of a temporary imbalance between the rates of magnetic field-line merging on the dayside, and reconnection on the nightside, of the magnetosphere following a southward turning of the interplanetary magnetic field. Some new understanding of the possible causal relationship between growth-phase and expansion-phase phenomena is provided through studies of multiple-onset substorms, during which substorm expansions are observed to occur at intervals of 10-15 min. Detailed observations have revealed new features of the radial and azimuthal dynamics of these substorms that are not consistent with recent models proposed by Akasofu and by Rostoker and his co-workers. It is shown that the behaviour of the near-earth plasma sheet early in a substorm cannot be inferred from measurements at larger distances (e.g., in the Vela satellite orbits), and that the triggering of a substorm expansion may well be directly related to pre-substorm thinning of the near-earth plasma sheet, even though the most significant thinning in the tailward region may occur at the onset, and therefore appears to be an effect rather than a cause of triggering. Initial results from studies of a new type of magnetospheric activity, characterised by strong auroral-zone bay activity but no other indications of substorm expansions, are shown to be consistent with current models of the growth and expansion phases of substorms and of substorm triggering. (JIW)

  3. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  4. Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents 1. Three-dimensional current flows associated with a substorm-intensified eastward electrojet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Untiedt, J.; Greenwald, R.A.

    1980-01-01

    Two-dimensional distributions of ground magnetic and ionospheric electric fields in the evening sector auroral oval have been simultaneously observed by the Scandinavian Magnetometer Array and the Scandinavian Twin Auroral Radar Experiment (Stare) radars, respectively, on February 15, 1977. They were associated with varying, substorm-intensified, eastward electrojet current systems of the western, middle, and eastern segment of the eastward electrojet. We conclude that the substorm-intensified eastward electroject was a nearly pure Hall current driven by northward electric fields. The observed eastward increase of the current in the western segment of the electrojet was due to a gradual enhancement of the Hall conductivity. Here, the electrojet was fed by a broad sheet of net downward field-aligned current. During one period, the eastern-terminating part of the eastward electrojet diverged up the field lines in a rather local area because of a strong longitudinal decrease in the northward-directed electric field. On another occasion, it diverged northward within the ionosphere and joined the westward-flowing current because of a rotation of the northward electric field with increasing latitude through west- to southward. These two observed mechanisms of current divergence in the region where eastward and westward electrojects coexist may shed some new light on the controversy over the existence of upward field-aligned current flow in the Harang discontinuity

  5. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    OpenAIRE

    Hoang, Thiem; Lazarian, A.

    2015-01-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background (CMB) B-mode signal. To obtain theoretical constraints on the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that, in realistic conditions of the interste...

  6. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  7. Circular polarization in a non-magnetic resonant tunneling device

    Directory of Open Access Journals (Sweden)

    Airey Robert

    2011-01-01

    Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  8. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  9. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  10. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  11. The effect of nonlinear ionospheric conductivity enhancement on magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    E. Spencer

    2013-06-01

    Full Text Available We introduce the effect of enhanced ionospheric conductivity into a low-order, physics-based nonlinear model of the nightside magnetosphere called WINDMI. The model uses solar wind and interplanetary magnetic field (IMF parameters from the ACE satellite located at the L1 point to predict substorm growth, onset, expansion and recovery measured by the AL index roughly 50–60 min in advance. The dynamics introduced by the conductivity enhancement into the model behavior is described, and illustrated through using synthetically constructed solar wind parameters as input. We use the new model to analyze two well-documented isolated substorms: one that occurred on 31 July 1997 from Aksnes et al. (2002, and another on 13 April 2000 from Huang et al. (2004. These two substorms have a common feature in that the solar wind driver sharply decreases in the early part of the recovery phase, and that neither of them are triggered by northward turning of the IMF Bz. By controlling the model parameters such that the onset time of the substorm is closely adhered to, the westward auroral electrojet peaks during substorm expansion are qualitatively reproduced. Furthermore, the electrojet recovers more slowly with enhanced conductivity playing a role, which explains the data more accurately.

  12. Reduction in plasmaspheric hiss wave amplitudes during a substorm

    Science.gov (United States)

    Li, H.; Yuan, Z.; Yu, X.; Deng, X.; Tang, R.; Chen, Z.; Zhou, M.; Huang, S.

    2017-12-01

    Plasmaspheric hiss is an important plasma wave in controlling the overall structure and dynamics of radiation belt electrons, so the distribution and generation mechanism of plasmaspheric hiss waves is worthy of study. Previous studies have found that the amplitude of plasmaspheric hiss waves tends to increase as substorm activity increases. In this study, through analysis of a hiss event observed by the Van Allen Radiation Belt Storm Probes (RBSP), it is found that the intensity of plasmaspheric hiss waves at magnetic local time (MLT) > 1300 (L≈5) is reduced or even disappears during a substorm. After calculating energetic electron trajectories, we suggest that this is because electrons are prevented from entering the plasmasphere at MLT > 1300 (L≈5) by the stronger convection electric field during the substorm. The calculations are consistent with direct observations from the RBSP satellites. The results highlight the significant and complex variability of plasmaspheric hiss waves. The amplitude of these waves on the dayside is not necessarily positively correlated with substorm activity, as negative correlations may be observed on the afternoon side during a substorm.

  13. Influence of the IMF azimuthal component on magnetospheric substorm dynamics

    International Nuclear Information System (INIS)

    Troshichev, O.A.; Kotikov, A.L.; Bolotinskaya, B.D.; Andrezen, V.G.

    1986-01-01

    The effect of the IMF azimuthal component on magnetospheric substorm dynamics has been studied on the basis of five-minute average values of the IMF B y and B z components and the AL index. The results obtained from case studies and from superposed epoch analysis show the dependence of substorm dynamics on the azimuthal component: the reversal of B y from positive to negative increases the activity with minimum delay time, while the opposite reversal either does not change or only slightly changes the activity level. This effect is more evident in winter. The reversal of the IMF vertical component from south to north after an interval of sustained southward IMF statistically gives rise to magnetic activity, too but this growth is less intense than that produced by the B y negative turning. The role of both vertical and azimuthal IMF components must be considered in future studies of substorm triggering mechanisms. (author)

  14. Pure spin polarized current through a full magnetic silicene junction

    Science.gov (United States)

    Lorestaniweiss, Zeinab; Rashidian, Zeinab

    2018-06-01

    Using the Landauer-Buttiker formula, we investigate electronic transport in silicene junction composed of ferromagnetic silicene. The direction of magnetization in the middle region may change in a plane perpendicular to the junction, whereas the magnetization direction keep fixed upward in silicene electrodes. We investigate how the various magnetization directions in the middle region affect the electronic transport. We demonstrate that conductance depends on the orientation of magnetizations in the middle region. It is found that by changing the direction of the magnetization in the middle region, a pure spin up current can be achieved. This achievement makes this full magnetic junction a good design for a full spin-up current polarizer.

  15. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  16. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  17. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  18. Radical polarization in double switching of external magnetic field

    International Nuclear Information System (INIS)

    Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.

    1999-01-01

    Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di; Clemens, D. P.; Krco, Marko

    2011-01-01

    We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A V ∼ 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 μG and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales (∼2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

  20. Polarization and magnetization of electronic matter

    International Nuclear Information System (INIS)

    Beck, G.

    1979-01-01

    The behaviour of a system of spin-electrons in a weak external electric or magnetic field is studied. Already in the case of a single free electron classical and quantum theory lead to different results concerning the Lorentz transformation of the magnetic moment (Thomas factor of spin-orbit coupling). The separation of the current into a convection and a spin part can be performed in a covariant way. While the convection current is responsible for the diamagnetism of a system, the spin current accounts for paramagnetic behaviour. After a Lorentz transformation of a diamagnetic system paraelectric components appear, while a paramagnetic system, after rransformation, exhibits dia-electric properties, epsilon 1) after a Lorentz transformation shows diamagnetic components, while a diaelectric system would acquire paramagnetic behaviour. Quantum electrodynamics leads to the result, that Dirac's electron vacuum behaves like a paramagnetic medium. It follows from this result, that the electron vacuum in a weak external electric field represents a diaelectric system. (Author) [pt

  1. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  2. Cosmic microwave background polarization signals from tangled magnetic fields.

    Science.gov (United States)

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500polarization, which could help in their detection.

  3. Spin polarization and magnetic effects in radical reactions

    International Nuclear Information System (INIS)

    Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.

    1984-01-01

    Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)

  4. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  5. Distribution of O+ ions in the plasma sheet and locations of substorm onsets

    Science.gov (United States)

    Ono, Y.; Christon, S. P.; Frey, H. U.; Lui, A. T. Y.

    2010-09-01

    We discuss the effect of O+ ions on substorm onsets by examining the relation between the substorm onset location and the distribution of the O+/H+ number density ratio before the onset in the various regions within the plasma sheet (-8 RE > XGSM > -32 RE). We use 9-212 keV/e ion flux data observed by Geotail/Energetic Particles and Ion Composition (EPIC)/Suprathermal Ion Composition Spectrometer (STICS) instrument and the IMAGE/Far Ultra-Violet (FUV) substorm onset list presented by Frey et al. [Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 109, A10304, doi:10.1029/2004JA010607]. The results are summarized as follows. Substorm onsets, which we identify by auroral initial brightenings, are likely to occur in the more dusk-(dawn-)ward region when the O+/H+ number density ratio is high in the dusk (dawn) side. This property is observed only in the near-Earth plasma sheet (at -8 RE > XGSM > -14 RE). The above-mentioned property holds in each of two groups: substorm events due to internal instability of the magnetosphere (i.e., internally triggered substorms) and events due to external changes in the solar wind or the interplanetary magnetic field (i.e., externally triggered substorms). Thus, we conclude that the substorm onset location depends on the density of O+ ions in the near-Earth plasma sheet prior to onset, whether the substorm is triggered internally or externally.

  6. Pseudobreakup and substorm growth phase in the ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Koskinin, H.E.J.; Pellinen, R.J.; Pulkkinen, T.I.; Lopez, R.E.; Baker, D.N.; Boesinger, T.

    1993-01-01

    The authors present space and ground based observations made during the growth phase and the onset of a substorm on August 31, 1986. Roughly 20 minutes after the var-epsilon parameter at the magnetopause had exceeded 10 11 W, the AMPTE Charge Composition Explorer spacecraft observed an increase in energetic particle fluxes consistent with magnetic field depolarization. The craft was close to magnetic midnight at a geocentric distance of 8.7R E . The event had the initial signature of a substorm onset, but it did not lead to a full-scale substorm expansion based on several ground based observations. There were no large particle injection events at geostationary orbit. After another 20 minutes the event did enter a normal substorm expansion phase. The authors interpret the initial activation as a open-quotes pseudobreakupclose quotes. They correlate observations made by spacecraft in the near-Earth plasma sheet, with ground based observations of the ionospheric development from magnetometer and electric field measurements from the STARE radar. The strength and the consequences are concluded to be the main differences of pseudobreakups and ordinary breakups

  7. Two types of magnetospheric ELF chorus and their substorm dependences

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Smith, E.J.

    1977-01-01

    Extremely low frequency (10--1500 Hz) magnetospheric chorus has been analyzed to investigate a possible dependence on substorms. Care was taken to separate effects from temporal effects by analyzing an entire year of data acquired by the Ogo 5 search coil magnetometer. A major finding of the study of spatial dependences is that chorus occurs principally in two magnetic latitude regions. Equatorial chorus is detected near the equator, and high-latitude chorus is found at magnetic latitudes above 15 0 . When chorus in these two regions is analyzed separately, substorm dependences become apparent. Comparisons with AE indicate that equatorial chorus occurs primarily during substorms. High-latitude chorus is not strongly dependent on AE and often occurs during intervals of prolonged quiet with AE 0 , a region where cyclotron resonance is most efficient. The L value of maximum chorus occurrence increases from 5--8 postmidnight to 7--11 postdawn, a dependence which is consistent with generation by electrons which have undergone drift shell splitting. Delay times between substorms and the onset of equatorial chorus are consistent with a gradient drift of approx.25-keV electrons. Equatorial postmidnight chorus and postdawn chorus have similar occurrence rates and wave intensities. The maximum chorus ocurrence rates are 54% postmidnight and 56% postdawn

  8. Two satellite study of substorm expansion near geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    Ø. Holter

    2004-12-01

    Full Text Available During several time intervals in 1979–1980 the satellites GEOS-2 and SCATHA were situated relatively close on the nightside of the Earth at geosynchronous distances. Several substorm events were identified during these periods. The event considered in this paper was recorded on 22 May 1979, when the satellites were separated by less than 30min in local time around 21:00 LT. The observed 45 to 60 s delay of magnetic signatures observed at the two s/c indicates a westward expansion of ~7.7°/min. At the two s/c, the magnetic signatures are, in particular for the azimuthal magnetic field components, quite different. At GEOS-2, being close to the magnetic equator, the dominant feature is a dipolarization with a weak field-aligned current signature corresponding to a symmetric current which cancels at the equator. On SCATHA, however, being close to the current sheet boundary, the azimuthal magnetic field indicates a strong field-aligned Birkeland current structure. On both s/c the first indication of an approaching substorm was an increase in the high energy ion flux followed by a reduction in the flux intensity of energetic electrons and a further tailward stretching of the magnetic field, starting ~2min before the onset of the magnetic field dipolarization. The tailward stretching, the observed variations of the magnetic field components, and the subsequent dipolarization are interpreted in terms of an azimuthally tilted field-aligned current system passing the s/c on the tailward side from east to west. The westward expansion and dipolarization observed at the two s/c are consistent with the propagation of a Rayleigh-Taylor type instability. The increased radial ion flux corresponds to the ExB-drift due to the substorm associated electric field.

    Key words. Magnetospheric physics (storms and substorms; plasma waves and instabilities; current systems

  9. Competing effects in the magnetic polarization of non-magnetic atoms

    International Nuclear Information System (INIS)

    Boada, R; Piquer, C; Chaboy, J; Laguna-Marco, M A

    2013-01-01

    The magnetic polarization of the Lu 5d states through the Ho 1-x Lu x (Fe 1-y Al y ) 2 series has been studied by means of x-ray magnetic circular dichroism. A combined study of the dichroic signals performed at the Fe K-, Ho L 2 - and Lu L 2,3 -edges gives a complete picture of the polarization scheme at the conduction band. The results show that in the presence of competing localized magnetic moments, μ Fe (3d) and μ Ho (4f), the dichroic signal at the Lu site is mainly due to the Fe atoms, the effect of the magnetic rare-earth being negligible. Estimation of the spin and orbital components of the Lu(5d) induced magnetic moment have been obtained by applying the magneto-optical sum rules derived for x-ray magnetic circular dichroism.

  10. A study of the inferred interplanetary magnetic field polarity periodicities

    International Nuclear Information System (INIS)

    Xanthakis, J.; Tritakis, V.P.; Zerefos, Ch.

    1981-01-01

    A detailed Power Spectrum Analysis applied on the daily polarities of the inferred interplanetary magnetic field, published by Svalgaard, has pointed out that the main periodicity apparent in these data is 27-28 days, which suggests a recurrency of a 2-sector structure. There is also a secondary periodicity of 13-14 days which mainly appears in the yers of the descending branch of the solar cycle and superimposes on the 2-sector structure, transforming it into a 4-sector structure. A strict statistical study of the correlation between the predominant polarity of the interplanetary magnetic field and the heliographic latitude of the Earth, also known as the Rosenberg-Coleman effect, pointed out that perhaps there is a faint correspondence between these two elements, but one cannot speak of a systematic effect. (Auth.)

  11. General relativistic razor-thin disks with magnetically polarized matter

    Science.gov (United States)

    Navarro-Noguera, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2018-06-01

    The origin of magnetic fields in the universe still remains unknown and constitutes one of the most intriguing questions in astronomy and astrophysics. Their significance is enormous since they have a strong influence on many astrophysical phenomena. In regards of this motivation, theoretical models of galactic disks with sources of magnetic field may contribute to understand the physics behind them. Inspired by this, we present a new family of analytical models for thin disks composed by magnetized material. The solutions are axially symmetric, conformastatic and are obtained by solving the Einstein-Maxwell Field Equations for continuum media without the test field approximation, and assuming that the sources are razor-thin disk of magnetically polarized matter. We find analytical expressions for the surface energy density, the pressure, the polarization vector, the electromagnetic fields, the mass and the rotational velocity for circular orbits, for two particular solutions. In each case, the energy-momentum tensor agrees with the energy conditions and also the convergence of the mass for all the solutions is proved. Since the solutions are well-behaved, they may be used to model astrophysical thin disks, and also may contribute as initial data in numerical simulations. In addition, the process to obtain the solutions is described in detail, which may be used as a guide to find solutions with magnetized material in General Relativity.

  12. Advances in magnetospheric storm and substorm research: 1989-1991

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1992-01-01

    Geomagnetic storms represent the magnetospheric response to fast solar wind and unusually large southward interplanetary magnetic fields that are caused by solar processes and resulting dynamics in the interplanetary medium. The solar wind/magnetosphere interaction is, however, more commonly studied via smaller, more common, magnetospheric substorms. Accumulating evidence suggests that two separate magnetospheric current systems are important during magnetospheric substorms. Currents directly driven by the solar wind/magnetosphere interaction produce magnetic field variations that make important contributions to the AE index but have little relation to the many effects traditionally associated with sudden substorm onsets. Currents driven by energy unloaded from the magnetotail form the nightside current wedge and are associated with onset effects such as auroral breakup, field dipolarization, and particle acceleration. Observations are gradually leading to a coherent picture of the interrelations among these various onset phenomena, but their cause remains a controversial question. The abrupt nature of substorm onsets suggests a magnetospheric instability, but doubt remains as to its nature and place of origin. Measurements increasingly suggest the region of 7-10 R E near midnight as the likely point of origin, but it is not clear that the long-popular tearing mode can go unstable this close to the Earth, where it may be stabilized by a small northward field component. Also the tailward flows that would be expected tailward of a near-Earth neutral line are seldom seen inside of 19 R E . The changing magnetic field configuration during substorms means that existing static models cannot be used to map phenomena between the magnetosphere and the ground at these interesting times

  13. Critical magnetic scattering of polarized neutrons on iron

    International Nuclear Information System (INIS)

    Hetzelt, M.

    1975-01-01

    A new spectrometer has been built and tested. The instrument was designed particularly for small angle scattering of polarized neutrons whereby the degree of polarisation of the scattered neutrons can be measured. The use of polarizing neutron pipes as polarizer and analyser allows the performence with a very broad wavelength spectrum (2 A 7 n/cm 2 sec) with good collimation (Δ theta approximately 0.2 0 ). The instrument is applied for the measurement of the critical magnetic scattering of polarized neutrons on an iron single crystal. For this purpose a special oven with an appropriate magnetic field configuration and a high precision in temperature has been constructed. The measured intensity distributions are in good agreement with other experiments. The critical exponent of the correlation range xi results in 0.65 +- 0.06. Angle and temperature dependence of the scattered neutron polarisation could be determined with good precision. The measurements are partly in extreme contradiction to the only hitherto existing experiment of this kind of Drabkin et al, and to assumptions in the theoretical evaluation. This contradiction is shown to be caused by the influence of multiple scattering. (orig./HPOE) [de

  14. Dynamic Nuclear Polarization and other magnetic ideas at EPFL.

    Science.gov (United States)

    Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey

    2012-01-01

    Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

  15. Magnetic field reversals, polar wander, and core-mantle coupling.

    Science.gov (United States)

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  16. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  17. Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    P. Ritter

    2010-06-01

    Full Text Available The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3–4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s by substorms.

  18. SABRE observations of structured ionospheric flows during substorm expansion phase onset

    Directory of Open Access Journals (Sweden)

    E. G. Bradshaw

    1994-08-01

    Full Text Available The irregularity velocity patterns observed by the SABRE coherent radar at substorm expansion phase onset, which is identified by magnetometer observations of Pi2 pulsations, are occasionally highly structured. In all the examples of structured velocity patterns examined, the SABRE viewing area is located at longitudes within the inferred substorm current wedge. Three types of structured velocity regime are apparent depending on the level of magnetic activity and the position of the radar viewing area relative to the substorm enhanced currents and the Pi2 pulsation generation region. Firstly, vortex-like velocity patterns are observed and these may be caused by the field-aligned currents associated with the substorm current wedge. Secondly, regions of equatorward velocity are also observed at times of substorm expansion phase onset moving longitudinally across the SABRE viewing area. The longitudinal movement is usually westward although an example of eastward motion has been observed. The phase velocity of these regions of equatorward flow is typically 1-3 km s-1. The observed equatorward velocities occur at the poleward edge or poleward of the background convection velocities observed by SABRE. These equatorward velocities may be related to the westward travelling surge and to the expansion (eastwards as well as westwards of the brightening arc region at substorm onset. Thirdly, the flow rotates equatorward within the field of view but does not then appear to move longitudinally. These equatorward velocities may relate to the earthward surge of plasma from the magnetotail at substorm onset.

  19. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  20. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    Science.gov (United States)

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  1. A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset

    Science.gov (United States)

    Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.

    2016-12-01

    Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.

  2. Conditions for substorm onset by the fast reconnection mechanism

    Directory of Open Access Journals (Sweden)

    M. Ugai

    2008-12-01

    Full Text Available The fast reconnection mechanism, involving slow shocks and Alfvénic fast plasma jets, is most responsible for the explosive conversion of magnetic energy associated with geomagnetic substorms and solar flares. In this paper, the spontaneous fast reconnection model is applied to well-known phenomena of substorms. When the east-west width of the tail current sheet becomes 3–4 times larger than its north-south thickness, the fast reconnection mechanism can fully be established, which may lead to substorm onset. The resulting Alfvénic jet can exactly explain, both qualitatively and quantitatively, the in-situ satellite observations of the traveling compression regions (TCRs associated with large-scale plasmoids propagating down the tail. Also, the earthward fast reconnection jet causes drastic magnetic field dipolarization, so that the sheet current ahead of the magnetic loop of closed field lines suddenly turns its direction toward the loop footpoint and a large-scale current wedge is formed according to the growth of field-aligned currents. It is demonstrated that an MHD generator arises ahead of the magnetic loop and drives the current wedge to distinctly enhance the current density in a pair of thin layers of the loop footpoint, giving rise to drastic heating in the form of two ribbons.

  3. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania.

    Science.gov (United States)

    Opdyke, Neil D; DiVenere, Victor J

    2004-09-14

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700 degrees C. Two components of magnetization were isolated: a synfolding "B" component and the prefolding "C" component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time.

  4. Electrical polarization and orbital magnetization: the modern theories

    International Nuclear Information System (INIS)

    Resta, Raffaele

    2010-01-01

    Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M-phenomenologically known as bulk properties-apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out

  5. Communications Magnetospheric Substorms.

    Science.gov (United States)

    1983-01-17

    DISRUPT NAUAL COMUNICATIONS ,GATIO) AND SURVEILLANCE SYSTEMS. THE OBJECTIVE OF THIS PROGRAM IS TO DEVELOP AN UNDERSTANDING OF THE TRIGGERING MECHANISM...of magnetic perturbations and ULF waves at synchronous orbit by ATS-1 and ATS-6, The Scientific Satellite Program During the International...observations of magnetic perturbations and ULF waves at synchronous orbit by ATS-1 and ATS-6, The Scientific Satellite Program During the International

  6. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  7. Force Balance and Substorm Effects in the Magnetotail

    Science.gov (United States)

    Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.

    1997-01-01

    A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.

  8. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  9. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  10. Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study

    Science.gov (United States)

    Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.

    2017-12-01

    A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere

  11. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  12. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  13. Evolution of the dispersionless injection boundary associated with substorms

    Directory of Open Access Journals (Sweden)

    T. Sarris

    2005-03-01

    Full Text Available One manifestation of energetic particle acceleration during magnetospheric substorms is the sudden appearance of particle injections into the inner magnetosphere, often observed near geosynchronous orbit. Injections that show simultaneous flux increases in all energy ranges of a detector are called dispersionless injections, and are most often observed in a narrow region around local midnight. In these events it is assumed that the satellite is located close to or inside the region where acceleration and/or transport processes are taking place, called the injection region. We present a study of the location, extent and temporal evolution of the injection region, based on simulation results of a model of the expansion of the electric and magnetic fields associated with a substorm. The model simulates the fields during a substorm onset with an electric field and consistent magnetic field pulse that propagates towards the Earth with a decreasing speed. Our simulation shows that the dispersionless injection boundary can be considered coincident with the leading edge of the pulse field, which transports particles toward the Earth across a certain range of local time. Under the same model field, the dispersionless injection boundary shifts eastward for electrons and westward for protons, consistent with the observation results deduced from statistical analysis of multiple spacecraft measurements.

  14. Magnetosphere energetics during substorm events IMP 8 and Geotail observations

    CERN Document Server

    Belehaki, A

    2001-01-01

    Magnetospheric energetics during substorm events is studied in this paper. Three events were selected, a weak substorm, a large isolated one and finally a prolonged period of substorm activity with multiple intensifications. It is assumed that the energy, that entered the magnetosphere due to electromagnetic coupling with the solar wind, is described by the epsilon parameter, proposed by Perreault and Akasofu (1978). High resolution, magnetic field and plasma data from the MGF and LEP experiments on board Geotail were analyzed to determine the timing of plasmoid release, its dimensions, its convection velocity and finally the energy carried by each plasmoid. Plasmoids were defined as structures with rotating magnetic fields and enhanced total pressure. Tailward plasmoid bulk speed in the distant tail varied from 350 to 750 km/s. Their dimensions in the X/sub GSM/ direction was found to be from 4.5 to 28 R/sub E/, and their duration did not exceed 5 min. The average energy carried by each plasmoid in the dista...

  15. A possible case of radially antisunward propagating substorm onset in the near-earth magnetotail

    International Nuclear Information System (INIS)

    Lopez, R.E.; McEntire, R.W.; Potemra, T.A.

    1990-01-01

    It is generally thought that the local effects associated with substorm onset in the near-Earth magnetotail (R '' E ) have a component of propagation which is radially earthward. This study presents a case during which it is possible that the local effects of substorm onset propagated radially antisunward. We examine energetic ion and magnetic field data and energetic particle data from the geosynchronous satellite 1982-019 during a period of weak substorm activity on 11 June 1985. Although the effects of this event on the ground were very weak, the substorm had a dramatic effect on at least one portion of the near-Earth magnetotail. During the period of interest the spacecraft were in an unusually close radial alignment. The data show that phenomena which we associate with the local effects of substorm onset began at or near geosynchronous before they were observed at the station (R = 8.8R E ). We believe that this event is best explained by a near-Earth disruption of the cross-tail current sheet and the consequent formation of a substorm current wedge, and that this process had a component of expansion antisunward down the tail. (author)

  16. Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Hui, Debrup; Chakrabarty, D.; Sekar, R.; Reeves, G. D.

    2017-01-01

    This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z ) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm is found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.

  17. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  18. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  19. Applications of circularly polarized photons at the ALS with a bend magnet source

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High T c Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements

  20. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  1. Instability of drift Alfven wave accompanying polar magnetic storm

    International Nuclear Information System (INIS)

    Higuchi, Yoshihiro

    1974-01-01

    As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)

  2. Polarity reversals and tilt of the Earth's magnetic dipole

    Science.gov (United States)

    Dolginov, A. Z.

    1993-01-01

    There is evidence that the terrestrial magnetic field is connected with the Earth's mantle: (1) there are magnetic anomalies that do not take part in the westward drift of the main field, but are fixed with respect to the mantle; (2) the geomagnetic pole position flips in a particular way by preferred meridional paths during a reversal; and (3) magnetic polarity reversals are correlated with the activations of geological processes. These facts may be explained if we take into account that a significant horizontal temperature gradient can exist in the top levels of the liquid core because of the different thermoconductivity of the different areas of the core-mantle boundary. These temperature inhomogeneities can penetrate the core because fluxes along the core boundary (the thermal wind) can be strongly suppressed by a small redistribution of the chemical composition in the top of the core. The nonparallel gradients of the temperature, density, and composition on the top of the core create a curled electric field that produces a current and a magnetic field. This seed-field can be amplified by motions in the core. The resulting field does not forget the seed-field distribution and in this way the field on the Earth surface (that can be created only in regions with high conductivity, i.e. in the core) is connected with the core-mantle boundary. Contrary to the usual approach to the dynamo problem, we will take into account that the seed field of thermoelectric origin is acting not only at some initial moment of time but permanently.

  3. Intermediate polars as low-field magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Wickramasinghe, D.T.; Kinwah Wu; Ferrario, Lilia

    1991-01-01

    We present the first detailed calculations of the polarization properties of extended accretion shocks on the surface of a magnetic white dwarf where allowance is made both for field spread and for the change in shock height as a function of specific accretion rate. These results are used to show conclusively that the null detection of circular polarization in most IPs imply fields of less than 5 MG. We suggest that the X-ray properties of MCVs depends critically on the fractional area of the white-dwarf surface over which accretion occurs, and on the type of accretion (smooth or clumpy). We argue that in the known IPs, accretion occurs via a disc. The accretion flow is smooth and a strong shock forms making them a powerful source of hard X-rays. We propose that there is a new class of MCV distinct from the IPs, where the white dwarf is asynchronous and accretes without a disc in which the accretion is clumpy and the radiation is mainly in the EUV region. (author)

  4. Spin polarization of a non-magnetic high g-factor semiconductor at low magnetic field

    International Nuclear Information System (INIS)

    Lee, J.; Back, J.; Kim, K.H.; Kim, S.U.; Joo, S.; Rhie, K.; Hong, J.; Shin, K.; Lee, B.C.; Kim, T.

    2007-01-01

    We have studied the spin polarization of HgCdTe by measuring Shubnikov-de Haas oscillations. The magnetic field have been applied in parallel and perpendicular to the current. Relatively long spin relaxation time was observed since only spin conserved transition is allowed by selection rules. The electronic spin is completely polarized when the applied magnetic field is larger than 0.5 Tesla, which can be easily generated by micromagnets deposited on the surface of the specimen. Thus, the spin-manipulation such as spin up/down junction can be realized with this semiconductor. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. A study of auroral activity in the nightside polar cap

    International Nuclear Information System (INIS)

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  6. Polarized light modulates light-dependent magnetic compass orientation in birds

    Science.gov (United States)

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  7. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  8. Observational study of generation conditions of substorm-associated low-frequency AKR emissions

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-11-01

    Full Text Available It has lately been shown that low-frequency bursts of auroral kilometric radiation (AKR are nearly exclusively associated with substorm expansion phases. Here we study low-frequency AKR using Polar PWI and Interball POLRAD instruments to constrain its possible generation mechanisms. We find that there are more low-frequency AKR emission events during wintertime and equinoxes than during summertime. The dot-AKR emission radial distance range coincides well with the region where the deepest density cavities are seen statistically during Kp>2. We suggest that the dot-AKR emissions originate in the deepest density cavities during substorm onsets. The mechanism for generating dot-AKR is possibly strong Alfvén waves entering the cavity from the magnetosphere and changing their character to more inertial, which causes the Alfvén wave associated parallel electric field to increase. This field may locally accelerate electrons inside the cavity enough to produce low-frequency AKR emission. We use Interball IESP low-frequency wave data to verify that in about half of the cases the dot-AKR is accompanied by low-frequency wave activity containing a magnetic component, i.e. probably inertial Alfvén waves. Because of the observational geometry, this result is consistent with the idea that inertial Alfvén waves might always be present in the source region when dot-AKR is generated. The paper illustrates once more the importance of radio emissions as a powerful remote diagnostic tool of auroral processes, which is not only relevant for the Earth's magnetosphere but may be relevant in the future in studying extrasolar planets.

  9. Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity.

    Science.gov (United States)

    Luo, X; Tseng, L T; Lee, W T; Tan, T T; Bao, N N; Liu, R; Ding, J; Li, S; Lauter, V; Yi, J B

    2017-07-24

    Room temperature ferromagnetism has been observed in the Cu doped ZnO films deposited under an oxygen partial pressure of 10 -3 and 10 -5 torr on Pt (200 nm)/Ti (45 nm)/Si (001) substrates using pulsed laser deposition. Due to the deposition at relatively high temperature (873 K), Cu and Ti atoms diffuse to the surface and interface, which significantly affects the magnetic properties. Depth sensitive polarized neutron reflectometry method provides the details of the composition and magnetization profiles and shows that an accumulation of Cu on the surface leads to an increase in the magnetization near the surface. Our results reveal that the presence of the copper at Zn sites induces ferromagnetism at room temperature, confirming intrinsic ferromagnetism.

  10. Radio polarization and magnetic field structure in M 101

    Science.gov (United States)

    Berkhuijsen, E. M.; Urbanik, M.; Beck, R.; Han, J. L.

    2016-04-01

    We observed total and polarized radio continuum emission from the spiral galaxy M 101 at λλ 6.2 cm and 11.1 cm with the Effelsberg telescope. The angular resolutions are 2.´ 5 (=5.4 kpc) and 4.´ 4 (=9.5 kpc), respectively. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R = 16 kpc (=7.´ 4), where it steepens to an exponential scale length of L ≃ 5 kpc, which is about 2.5 times smaller than at Rchange in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R = 16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 μG at R = 70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 μG at Rmechanism. We show that energetic events causing H I shells of mean diameter pitch angles that are about 8° larger than those of H I filaments. Based on observations with the 100 m telescope of the MPIfR at Effelsberg.FITS files of the images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A114

  11. Dispersion of linearly polarized electromagnetic wave in magnetized quantum plasma

    International Nuclear Information System (INIS)

    Singh, Abhisek Kumar; Kumar, Punit

    2015-01-01

    The generation of harmonic radiation is significant in terms of laser-plasma interaction and has brought interesting notice due to the diversity of its applications. The odd harmonics of laser frequency are generated in the majority of laser interactions with homogenous plasma. It has been remarked that second harmonic generation takes place in the presence of density gradient which gives rise to perturbation in the electron density at the laser frequency. The density perturbation coupled with the quiver motion of the electrons produces a source current at the second harmonic frequency. Second harmonic generation has also been related with filamentation. In the present paper, a study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first. (author)

  12. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  13. A simulation study of particle energization observed by THEMIS spacecraft during a substorm

    Science.gov (United States)

    Ashour-Abdalla, Maha; Bosqued, Jean-Michel; El-Alaoui, Mostafa; Peroomian, Vahe; Zhou, Meng; Richard, Robert; Walker, Raymond; Runov, Andrei; Angelopoulos, Vassilis

    2009-09-01

    Energetic ions with hundreds of keV energy are frequently observed in the near-Earth tail during magnetospheric substorms. We examined the sources and acceleration of ions during a magnetospheric substorm on 1 March 2008 by using Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Cluster observations and numerical simulations. Four of the THEMIS spacecraft were aligned at yGSM = 6 RE during a very large substorm (AE = 1200) while the Cluster spacecraft were located about 5 RE above the auroral ionosphere. For 2 h before the substorm, Cluster observed ionospheric oxygen flowing out into the magnetosphere. After substorm onset the THEMIS P3 and P4 spacecraft located in the near-Earth tail (xGSM = -9 RE and -8 RE, respectively) observed large fluxes of energetic ions up to 500 keV. We used calculations of millions of ions of solar wind and ionospheric origin in the time-dependent electric and magnetic fields from a global magnetohydrodynamic simulation of this event to study the source of these ions and their acceleration. The simulation did a good job of reproducing the particle observations. Both solar wind protons and ionospheric oxygen were accelerated by nonadiabatic motion across large (>˜5 mV/m) total electric fields (both potential and induced). The acceleration occurred in the "wall" region of the near-Earth tail where nonadiabatic motion dominates over convection and the particles move rapidly across the tail. The acceleration occurred mostly in regions with large electric fields and nonadiabatic motion. There was relatively little acceleration in regions with large electric fields and adiabatic motion or small electric fields and nonadiabatic motion. Prior to substorm onset, ionospheric ions were a significant contributor to the cross-tail current, but after onset, solar wind ions become more dominant.

  14. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    Science.gov (United States)

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  15. Magnetization-dependent viscosity in brute-force-polarized liquid 3He

    DEFF Research Database (Denmark)

    Vermeulen, G.A.; Schuhl, A.; Joffrin, J.

    1988-01-01

    A new method to measure the magnetization dependence of the viscosity in polarized liquid He3 is presented. The magnetization is obtained by "brute-force polarization" at 45 mK in magnetic fields up to 11 T; it is subsequently destroyed by saturation of the NMR signal. Our result, a relative...... increase of the viscosity of (31.5)×10-3 at 3.9% polarization and a pressure of 30 bars, disagrees with a prediction based on the "nearly metamagnetic" model....

  16. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  17. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    International Nuclear Information System (INIS)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-01-01

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  18. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  19. Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems

    Science.gov (United States)

    Belakhovsky, V. B.; Pilipenko, V. A.; Sakharov, Ya. A.; Selivanov, V. N.

    2018-01-01

    There are numerous models of geomagnetically induced currents in which the role of the main sources is allotted to the variations in the intensity of the auroral electrojet inducing the currents flowing along the latitude. Based on this it is believed that magnetic disturbances mainly threaten technological systems that are elongated in the longitudinal (W-E) direction. In this work, we make an attempt to employ new characteristics to describe the variability of the geomagnetic field during the geomagnetic storm of March 17, 2013. These characteristics, calculated from the data of the IMAGE magnetometer network stations, are compared to the records of the induced currents in the power lines on the Kola Peninsula and in Karelia. The vector technique revealed a considerably lower variability of the horizontal component of the geomagnetic field compared to its derivative. Quantitative estimates of the variability supported the fact that the variations of the field occur on a commensurate scale both in magnitude and direction. These results cannot be accounted for by the simple model of the extended ionospheric current and demonstrate the importance of allowing for small-scale current structures (with the spatial scales of a few hundred km) in the calculations of the geomagnetically induced currents. Our analysis shows that the geomagnetically induced currents are not only hazardous for the technological objects oriented in the longitudinal (W-E) direction but also for those elongated meridionally.

  20. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  1. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  2. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  3. Pressure changes in the plasma sheet during substorm injections

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebuis, E.; Baumjohann, W.; Paschmann, G.; Hamilton, D.C.

    1992-01-01

    The authors have determined the particle pressure and total pressure as a function of radial distance in the plasma sheet for periods before and after the onset of substorm-associated ion enhancements over the radial range 7-19 R E . They have chosen events occurring during times of increasing magnetospheric activity, as determined by an increasing AE index, in which a sudden increase, or injection, of energetic particle flux is observed. During these events the particle energy of maximum contribution to the pressure increases from about 12 to about 27 keV. In addition, the particle pressure increases, and the magnetic pressure decreases, with the total pressure only changing slightly. For radial distances of less than 10 R E the total pressure tends to increase with the injection, while outside 10 R E it tends to decrease or remain the same. Because the fraction of the pressure due to particles has increased and higher energies are contributing to the pressure, a radial gradient is evident in the postinjection, but not preinjection, flux measurements. These observations show that the simulations appearance of energetic particles and changes in the magnetic field results naturally from pressure balance and does not necessarily indicate that the local changing field is accelerating the particles. The changes in the total pressure outside 10 R E are consistent with previous measurements of pressure changes at substorm onset and can be understood in terms of the unloading of energy in the magnetotail and the resulting change in the magnetic field configuration

  4. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  5. Can Substorm Particle Acceleration Be Applied to Solar Flares?

    Energy Technology Data Exchange (ETDEWEB)

    Birn, J. [Space Science Institute, Boulder, CO 80301 (United States); Battaglia, M. [Institute of 4D Technologies, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland); Fletcher, L. [University of Glasgow, Scotland (United Kingdom); Hesse, M. [Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, NO-5007 Bergen (Norway); Neukirch, T., E-mail: jbirn@lanl.gov [University of St. Andrews, Scotland (United Kingdom)

    2017-10-20

    Using test particle studies in the electromagnetic fields of three-dimensional magnetohydrodynamic (MHD) simulations of magnetic reconnection, we study the energization of charged particles in the context of the standard two-ribbon flare picture in analogy to the standard magnetospheric substorm paradigm. In particular, we investigate the effects of the collapsing field (“collapsing magnetic trap”) below a reconnection site, which has been demonstrated to be the major acceleration mechanism that causes energetic particle acceleration and injections observed in Earth’s magnetotail associated with substorms and other impulsive events. We contrast an initially force-free, high-shear field (low beta) with low and moderate shear, finite-pressure (high-beta) arcade structures, where beta represents the ratio between gas (plasma) and magnetic pressure. We demonstrate that the energization affects large numbers of particles, but the acceleration is modest in the presence of a significant shear field. Without incorporating loss mechanisms, the effect on particles at different energies is similar, akin to adiabatic heating, and thus is not a likely mechanism to generate a power-law tail onto a (heated or not heated) Maxwellian velocity distribution.

  6. CLASSIFICATION FOR ANGLE-DEPENDENT POLARIZED PHOTOEMISSION SPECTRA USING MAGNETIC-MOMENTS ANALYSIS

    NARCIS (Netherlands)

    VANDERLAAN, G; THOLE, BT

    The angular distribution of photoelectrons from a core level or localized valence level excited with circularly or linearly polarized Xrays is shown to contain the complete one-electron information of the ground state of a magnetic polarized atom. We generalize the definition of the fundamental

  7. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  8. NMR at earth's magnetic field using para-hydrogen induced polarization

    NARCIS (Netherlands)

    Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M.

    2011-01-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal

  9. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  10. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  11. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev [Indian Institute of Astrophysics,Koramangala, Bengaluru 560034 (India); Karak, Bidya Binay [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Muñoz-Jaramillo, Andrés [Montana State University, Bozeman, MT 59717 (United States); Choudhuri, Arnab Rai, E-mail: mpriya@iiap.res.in, E-mail: dipu@iiap.res.in [Indian Institute of Science, Bangalore (India)

    2014-09-20

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  12. Magnetic-field fluctuations from 0 to 26 Hz observed from a polar-orbiting satellite

    International Nuclear Information System (INIS)

    Erlandson, R.E.; Zanetti, L.J.; Potemra, T.A.

    1989-01-01

    The polar orbit of the Viking satellite provides a unique opportunity to obtain observations of magnetic fluctuations at mid-altitudes on the dayside of the magnetosphere and in the polar-cusp region. One type of magnetic-field fluctuation, observed in the dayside magnetosphere, was Pc 1 waves. Pc 1 waves are in the electromagnetic ion-cyclotron mode and are generated by anisotropies in energetic ion distributions. The waves are thought to be generated near the equator and to propagate large distances along magnetic-field lines. Most observations of Pc 1 waves have been obtained near the equator using geosynchronous satellites and on the surface of the earth. The Viking observations provide an opportunity to observe Pc 1 waves at mid-latitudes above the ionosphere and to determine the spectral structure and polarization of the waves. ULF/ELF broadband noise represents a second type of magnetic fluctuation acquired by Viking. This type of magnetic fluctuation was observed at high latitudes near the polar cusp and may be useful in the identification of polar-cusp boundaries. Thirdly, electromagnetic ion-cyclotron waves have also been observed in the polar-cusp region. These waves occur only during an unusually high level of magnetic activity and appear to be generated locally

  13. A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-05-01

    Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).

  14. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  15. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  16. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  17. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  18. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  19. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    Science.gov (United States)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  20. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7

    DEFF Research Database (Denmark)

    Mook, H.A.; Yethiraj, M.; Aeppli, G.

    1993-01-01

    Polarization analysis has been used to identify the magnetic excitations in YBa2Cu3O7. The dominant feature in the spectra is a peak at the (pi,pi) reciprocal lattice position and centered at 41 meV. The behavior of the peak is shown to change dramatically at T(c), so that the magnetic excitations...

  1. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. I. Fe XII

    International Nuclear Information System (INIS)

    House, L.L.

    1977-01-01

    A general formulation for the polarization of coronal emission lines is presented, and the physics is illustrated through application of the formulation to the lines of Fe XIII at 10747 and 10798 A. The goal is to present a foundation for the determination of the orientation of coronal magnetic fields from emission-line polarization measurements. The physics of emission-line polarization is discussed using the statistical equilibrium equations for the magnetic sublevels of a coronal ion. The formulation of these equations, which describe the polarization of the radiation field in terms of Stokes parameters, is presented; and the various rate parameters: both radiative and collisional: are considered. The emission Stokes vector is constructed from the solution of the equilibrium equations for a point in the corona where the magnetic field has an arbitrary orientation. On the basis of a model, a computer code for the calculation of emission-line polarization is briefly described and illustrated with a number of sample calculations for Fe XIII. Calculations are carried out for three-dimensional models that demonstrate the physics of the formation of emission-line polarization and illustrate how the degree of polarization and angle of polarization and their variations over the corona are related to the density and magnetic field structure. The models considered range from simple cases in which the density distribution with height is spherically symmetric and the field is radial or dipole to a complex case in which both the density and magnetic field distributions are derived from realistic three-dimensional distributions for the 1973 eclipse on the basis of K-coronameter measurements for the density and potential-field extrapolation of surface magnetic fields in the corona

  2. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm.

    Science.gov (United States)

    Varsani, A; Nakamura, R; Sergeev, V A; Baumjohann, W; Owen, C J; Petrukovich, A A; Yao, Z; Nakamura, T K M; Kubyshkina, M V; Sotirelis, T; Burch, J L; Genestreti, K J; Vörös, Z; Andriopoulou, M; Gershman, D J; Avanov, L A; Magnes, W; Russell, C T; Plaschke, F; Khotyaintsev, Y V; Giles, B L; Coffey, V N; Dorelli, J C; Strangeway, R J; Torbert, R B; Lindqvist, P-A; Ergun, R

    2017-11-01

    During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R E .

  3. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  4. Extinction of polarized light in ferrofluids with different magnetic particle concentrations

    International Nuclear Information System (INIS)

    Socoliuc, V.; Popescu, L.B.

    2012-01-01

    The magnetic field intensity and nanoparticle concentration dependence of the polarized light extinction in a ferrofluid made of magnetite particles stabilized with technical grade oleic acid dispersed in transformer oil was experimentally investigated. The magnetically induced optical anisotropy, i.e. the dichroism divided by concentration, was found to decrease with increasing sample concentration from 2% to 8%. The magnetically induced change in the optical extinction of light polarized at 54.74 o with respect to the magnetic field direction was found to be positive for the less concentrated sample (2%) and negative for the samples with 4% and 8% magnetic nanoparticle concentrations, the more negative the higher the concentration and field intensity. Based on the theoretically proven fact that the particle orientation mechanism has no effect on the extinction of light polarized at 54.74 o with respect to the field direction, we analyzed the experimental findings in the frames of the agglomeration and long-range pair correlations theories for the magnetically induced optical anisotropy in ferrofluids. We developed a theoretical model in the approximation of single scattering for the optical extinction coefficient of a ferrofluid with magnetically induced particle agglomeration. The model predicts the existence of a polarization independent component of the optical extinction coefficient that is experimentally measurable at 54.74 o polarization angle. The change in the optical extinction of light polarized at 54.74 o is positive if only the formation of straight n-particle chains is considered and may become negative in the hypothesis that the longer chains degenerate to more isotropic structures (polymer-like coils, globules or bundles of chains). The model for the influence on the light absorption of the long-range pair correlations, published elsewhere, predicts that the change in the optical extinction of light polarized at 54.74 o is always negative, the more

  5. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  6. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  7. Dynamics of the polar ionosphere structure disturbance in the Svalgaard-Mansurov effect

    International Nuclear Information System (INIS)

    Osipov, N.K.; Mozhaev, A.M.; Larina, T.N.; Ponomarev, Yu.N.

    1988-01-01

    Nonstationary disturbance model of the ionsphere of polar caps caused by change of B y component sign of interplanetary magnetic field is considered. It is shown that nonstationary convection transfer of ionospheric plasma represents the main and the most fast mechanism regulating reconstruction of ionosphere structure in polar caps during magnetosphere substorms, caused by the change of B y sign. Calculations show that characteristic time of sufficient change of ionosphere structure at ∼1500 km distances is on the order of 10-25 min

  8. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  9. Study of a permanent-magnet dipole with variable field strength and polarity

    International Nuclear Information System (INIS)

    Honma, Toshihiro

    1996-01-01

    A proto-type dipole magnet employing permanent-magnet rods has been designed and constructed. The magnet is able to change the magnetic field strength continuously as well as the polarity of the field direction by rotating the rods. The magnet has a special advantage of high-field production within a small open space available. The magnet of this type will be used for beam steering at an extraction channel for a planned negative-ion acceleration in our cyclotron. The first important objective at the exit channel is to steer the beam extracted from the cyclotron by some dipole magnet onto the optical axis of a new beam line to be constructed. This is not a trivial task because available open space is too small to install a coil-type magnet. One of the selections is to use a permanent-magnet dipole because such a magnet is expected to provide a very high field in a small space when compared with a coil-type magnet. A proto-type permanent-magnet dipole (PMD) with variable field strength and polarity has been designed and constructed for such a purpose. (J.P.N.)

  10. Coulombian Model for 3D Analytical Calculation of the Torque Exerted on Cuboidal Permanent Magnets with Arbitrarly Oriented Polarizations

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul; Latreche , Mohamed E. H.; Bouchekara , Houssem

    2011-01-01

    International audience; The paper proposes improved analytical expressions of the torque on cuboidal permanent magnets. Expressions are valid for any relative magnet position and for any polarization direction. The analytical calculation is made by replacing polarizations by distributions of magnetic charges on the magnet poles (Coulombian approach). The torque exerted on the second magnet is calculated by Lorentz force formulas for any arbitrary position. The three components of the torque a...

  11. The effect of colloidal stabilization upon ferrimagnetic resonance in magnetic fluids in the presence of a polarizing magnetic field

    CERN Document Server

    Fannin, P C; Socoliuc, V; Istratuca, G M; Giannitsis, A T

    2003-01-01

    The complex magnetic susceptibility of two magnetic fluids, with different degrees of colloidal stabilization, has been measured over the frequency range 100 MHz to 6 GHz. The colloidal stabilization of the magnetic fluids has been investigated using magneto-optical measurements. Based on complex magnetic susceptibility measurements, chi(omega) chi'(omega)-i chi''(omega), the dependence of the maximum absorption frequency at resonance, f sub m sub a sub x , and of line width, DELTA f, on an external magnetic polarizing field, H, over the range 0-1.45 kOe, has been examined for both magnetic fluids. The experimental results have been interpreted in terms of magnetic interparticle interactions and particle agglomeration.

  12. Low altitude observations of the energetic electrons in the outer radiation belt during isolated substorms

    International Nuclear Information System (INIS)

    Varga, L.; Venkatesan, D.; Johns Hopkins Univ., Laurel, MD; Meng, C.I.

    1985-01-01

    The low energy (1-20 keV) detector registering particles onboard the polar-orbiting low altitude (approx. 850 km) DMSP-F2 and -F3 satellites also records high energy electrons penetrating the detector walls. Thus the dynamics of this electron population at L=3.5 can be studied during isolated periods of magnetospheric substorms identified by the indices of auroral electrojet (AE), geomagnetic (Ksub(p)) and ring current (Dsub(st)). Temporal changes in the electron flux during the substorms are observed to be an additional contribution riding over the top of the pre-storm (or geomagnetically quiet-time) electron population; the duration of the interval of intensity variations is observed to be about the same as that of the enhancement of the AE index. This indicates the temporal response of the outer radiation belt to the substorm activity, since the observation was made in the ''horns'' of the outer radiation belt. The observed enhanced radiation at low altitude may associate with the instantaneous increase and/or dumping of the outer radiation belt energetic electrons during each isolated substorm activity. (author)

  13. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  14. Substorms in the Inner Plasma Sheet

    Science.gov (United States)

    Le Contel, O.; Perraut, S.; Roux, A.; Pellat, R.; Korth, A.

    Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T∥ > T⊺) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (Ecurrents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropies are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop (~= few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to ``High Frequency'' (HF) waves. These ``HF'' waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so

  15. What Might We Learn About Magnetospheric Substorms at the Earth from the MESSENGER Measurements at Mercury?

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    Satellite observations at the Earth, supported by theory and modeling, have established a close connection between the episodes of intense magnetospheric convection termed substorms and the occurrence of magnetic reconnection. Magnetic reconnection at the dayside magnetopause results in strong energy input to the magnetosphere. This energy can either be stored or used immediately to power the magnetospheric convection that produces the phenomena that collectively define the 'substorm.' However, many aspects of magnetic reconnection and the dynamic response of the coupled solar wind - magnetosphere - ionosphere system at the Earth during substorms remain poorly understood. For example, the rate of magnetic reconnection is thought to be proportional to the local Alfven speed, but the limited range of changes in this solar wind parameter at 1 AU have made it difficult to detect its influence over energy input to the Earth's magnetosphere. In addition, the electrical conductance of the ionosphere and how it changes in response to auroral charged particle precipitation are hypothesized to play a critical role in the development of substorms, but the nature of this electrodynamic interaction remain difficult to deduce from Earth observations alone. The amount of energy the terrestrial magnetosphere can store in its tail, the duration of the storage, and the trigger(s) for its dissipation are all thought to be determined by not only the microphysics of the cross-tail current layer, but also the properties of the coupled magnetosphere - ionosphere system. Again, the separation of microphysics effects from system response has proved very difficult using measurements taken only at the Earth. If MESSENGER'S charged particle and magnetic field measurements confirm the occurrence of terrestrial-style substorms in Mercury's miniature magnetosphere, then it may be possible to determine how magnetospheric convection, field-aligned currents, charged particle acceleration

  16. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  17. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  18. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization

    Czech Academy of Sciences Publication Activity Database

    Kempa, Martin; Kamba, Stanislav; Savinov, Maxim; Maryško, Miroslav; Frait, Zdeněk; Vaněk, Přemysl; Tomczyk, M.; Vilarinho, P. M.

    2010-01-01

    Roč. 22, č. 44 (2010), 445902/1-445902/5 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : dielectric and magnetic properties * ceramics * polarization * phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.332, year: 2010

  19. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  20. Spontaneous electric polarization in the B-site magnetic spinel GeCu2O4

    Science.gov (United States)

    Yanda, Premakumar; Ghara, Somnath; Sundaresan, A.

    2018-04-01

    We report the observation of a spontaneous electric polarization at the antiferromagnetic ordering temperature (TN ∼ 33 K) of Cu2+ ions in the B-site magnetic spinel GeCu2O4, synthesized at high pressure and high temperature. This compound is known to crystallize in a tetragonal structure (space group I41/amd) due to Jahn-Teller distortion of Cu2+ ions and exhibit a collinear up-up-down-down (↑↑↓↓) antiferromagnetic spin configuration below TN. We found a clear dielectric anomaly at TN, where an electric polarization appears in the absence of applied magnetic field. The electric polarization is suppressed by applied magnetic fields, which demonstrates that the compound GeCu2O4 is a type-II multiferroic.

  1. Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3

    Science.gov (United States)

    Bordács, S.; Farkas, D. G.; White, J. S.; Cubitt, R.; DeBeer-Schmitt, L.; Ito, T.; Kézsmárki, I.

    2018-04-01

    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ˜5 T . In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization perpendicular to the rhombohedral axis.

  2. Magnetic polarity stratigraphy of the Siwalik sequence in Nurpur ...

    Indian Academy of Sciences (India)

    calculated from the acquired characteristic remanent magnetization (ChRM) directions. The observed ... researchers dated various stratigraphic and faunal events. ... J. Earth Syst. Sci. 124 .... from 575–625◦C was used to determine the ChRM.

  3. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    Science.gov (United States)

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  4. Refraction of polarized neutrons on the boundary in thick magnetic film FeAlSi

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V L; Kozhevnikov, S V; Nikitenko, Yu V [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Frank Lab. of Neutron Physics

    1999-07-01

    Complete text of publication follows. Refraction of polarized neutrons in multilayer structure FeAlSi(20 mkm)/Cr(0.05 mkm)/CaTiO{sub 3}(1000 mkm) has been investigated. An external magnetic field was applied under an angle to the sample surface. Refraction on themagnetic boundaries of two types has been investigated. First type is the boundary vacuum-magnetic film. Second type is magnetic film - non-magnetic substrate CaTiO{sub 3} (thin non-magnetic Cr layer doesn't refract the beam). On the boundary there are spin-flip and beam-splitting. Four spatial splitted beams were observed for different spin transitions on each type of the boundary: '+-', '++', '-+' and '--'. From the experimental values of the glancing angles of refracted beam the following parameters has been derives: the nuclear potentials of the magnetic film and the non-magnetic substrate, the magnitude and the direction of a magnetic induction in the magnetic film. It has been shown that the method of refractometry of polarized neutrons can be used for investigation of thick (about mkm) magnetic films. (author)

  5. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    Science.gov (United States)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  6. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  7. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  8. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  9. Space climate implications from substorm frequency

    Science.gov (United States)

    Newell, P. T.; Gjerloev, J. W.; Mitchell, E. J.

    2013-10-01

    solar wind impacting the Earth varies over a wide range of time scales, driving a corresponding range of geomagnetic activity. Past work has strongly indicated that the rate of merging on the frontside magnetosphere is the most important predictor for magnetospheric activity, especially over a few hours. However, the magnetosphere exhibits variations on other time scales, including UT, seasonal, and solar cycle variations. Much of this geomagnetic variation cannot be reasonably attributed to changes in the solar wind driving—that is, it is not created by the original Russell-McPherron effect or any generalization thereof. In this paper we examine the solar cycle, seasonal, and diurnal effects based upon the frequency of substorm onsets, using a data set of 53,000 substorm onsets. These were identified through the SuperMAG collaboration and span three decades with continuous coverage. Solar cycle variations include a profound minimum in 2009 (448 substorms) and peak in 2003 (3727). The magnitude of this variation (a factor of 8.3) is not explained through variations in estimators of the frontside merging rate (such as dΦMP/dt), even when the more detailed probability distribution functions are examined. Instead, v, or better, n1/2v2 seems to be implicated in the dramatic difference between active and quiet years, even beyond the role of velocity in modulating merging. Moreover, we find that although most substorms are preceded by flux loading (78.5% are above the mean and 83.8% above median solar wind driving), a high solar wind v is almost as important (68.3% above mean, 74.8% above median). This and other evidence suggest that either v or n1/2v2 (but probably not p) plays a strong secondary role in substorm onset. As for the seasonal and diurnal effects, the elliptical nature of the Earth's orbit, which is closest to the Sun in January, leads to a larger solar wind driving (measured by Bs, vBs, or dΦMP/dt) in November, as is confirmed by 22 years of solar wind

  10. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  11. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  12. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  13. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  14. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  15. Magnetization reversal of ferromagnetic nanoparticles induced by a stream of polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kozhushner, M.A.; Gatin, A.K.; Grishin, M.V.; Shub, B.R. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation); Kim, V.P.; Khomutov, G.B. [Faculty of Physics, Lomonosov Moscow State University, Lenin Gory 1-2, Moscow 119991 (Russian Federation); Ilegbusi, O.J. [University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450 (United States); Trakhtenberg, L.I. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation)

    2016-09-15

    The remagnetization of ferromagnetic Fe{sub 3}O{sub 4} nanoparticles of several thousand cubic nanometers by spin-polarized current is investigated. For this purpose, magnetite nanoparticles are synthesized and deposited on a conductive nonmagnetic substrate. The remagnetization is conducted in high-vacuum scanning tunneling microscope (STM). The STM tip from magnetized iron wire constitutes one electrode while the ferromagnetic nanoparticle on the graphite surface represents the second electrode. The measured threshold value of remagnetization current (I{sub thresh}=9 nA) is the lowest value of current at which remagnetization occurs. The change in nanoparticle magnetization is detected by the effect of giant magnetic resistance, specifically, the dependence of the weak polarized current (Imagnetization of the electrodes. The results indicate essential difference with available literature data on the influence of polarized current on magnetic moment of small ferromagnetic nanoclusters. The peculiarities of size dependence of the observed effects are explained. - Highlights: • Ferromagnetic nanoparticle in STM with ferromagnetic tip. • Change of the direction of nanoparticle magnetization by current I>I{sub cr}=9 nA. • GMR effect used to control change of magnetization.

  16. Irregular HF radio propagation on a subauroral path during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2006-08-01

    Full Text Available The impact of the main ionospheric trough, sporadic structures, gradients and inhomogeneities of the subpolar ionosphere during substorms on the signal amplitude, azimuthal angles of arrival, and propagation modes for the radio path Ottawa (Canada-St. Petersburg (Russia was considered. This subauroral path with the length of about 6600 km has approximately an east-west orientation. The main goals are to carry out numerical modeling of radio propagation for the path and to compare the model calculations with experimental results. Wave absorption and effects of focusing and divergence of rays were taken into consideration in the radio wave modeling process. The following basic results were obtained: The signal amplitude increases by 20–30 dB 1–1.5 h before the substorm expansion phase onset. At the same time the signal azimuth deviates towards north of the great circle arc for the propagation path. Compared with quiet periods there are effects due to irregularities and gradients in the area of the polar edge of the main ionospheric trough on the passing signals. Propagation mechanisms also change during substorms. The growth of signal amplitude before the substorm can be physically explained by both a decrease of the F2-layer ionization and a growth of the F2-layer height that leads to a decrease of the signal field divergence and to a drop of the collision frequency. Ionospheric gradients are also important. This increase of signal level prior to a substorm could be used for forecasting of space weather disturbed conditions.

  17. Search for an onset mechanism that operates for both CMEs and substorms

    Directory of Open Access Journals (Sweden)

    G. L. Siscoe

    2009-08-01

    Full Text Available Substorms and coronal mass ejections have been cited as the most accessible examples of the explosive energy conversion phenomenon that seems to characterize one of the behavior modes of cosmic plasmas. This paper addresses the question of whether these two examples – substorms and CMEs – support or otherwise the idea that explosive energy conversion is the result of a single process operating in different places and under different conditions. As a candidate mechanism that might be common to both substorms and CMEs we use the Forbes catastrophe model for CMEs because before testing it appears to have the potential, suitably modified, to operate also for substorms. The essence of the FCM is a sudden onset of an imbalance of the forces acting on an incipient CME. The imbalance of forces causes the CME to start to rise. Beneath the rising CME conditions develop that favor the onset of magnetic reconnection which then releases the CME and assists its expulsion. Thus the signature of the FCM is a temporally ordered sequence in which there is first the appearance of force imbalance which leads to upward (or outward motion of the CME which leads to magnetic reconnection under it which expedites rapid expulsion. We look for the FCM signature in the output of two global magnetospheric MHD simulations that produce substorm-like events. We find the ordered sequence of events as stated but with a significant difference: there is no plasmoid prior to the onset of rapid reconnection, that is, there is no counterpart to the incipient CME on which an imbalance of forces acts to initiate the action in the FCM. If this result – that rapid tailward motion precedes the rapid reconnection of substorm expansion – is ultimately verified by other studies, it suggests that a description of the cause of substorm expansion should identify the cause of the preceding rapid tailward motion, since this leads necessarily to rapid reconnection, whatever the

  18. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  19. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    Science.gov (United States)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  20. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  1. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  2. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  3. Inelastic magnetic scattering of polarized neutrons by a superconducting ring

    International Nuclear Information System (INIS)

    Agafonov, A. I.

    2011-01-01

    The inelastic scattering of cold neutrons by a ring leads to quantum jumps of a superconducting current which correspond to a decrease in the fluxoid quantum number by one or several units while the change in the ring energy is transferred to the kinetic energy of the scattered neutron. The scattering cross sections of transversely polarized neutrons have been calculated for a thin type-II superconductor ring, the thickness of which is smaller than the field penetration depth but larger than the electron mean free path.

  4. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  5. High-gradient quadrupole magnet for a polarized-beam facility

    International Nuclear Information System (INIS)

    Smith, R.P.; Hoffman, J.A.; Kim, S.H.; Mataya, K.F.; Niemann, R.C.; Turner, L.R.

    1980-01-01

    A prototype quadrupole magnet with 2.8 m effective length is under design and construction for use in a polarized beam transport system at Fermi National Accelerator Laboratory. The operating gradient required is 50 T/m and the higher multipole error fields must not exceed a few parts in one thousand over a 10 cm diameter bore. For cryogenic efficiency the magnet will operate at 1000 amperes and a cold iron yoke will provide complete field shielding

  6. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  7. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  8. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    tribpo

    solar dynamo mechanism that generates electric current and magnetic field by plasma flows ... rotating body in the Universe. We also mention a list ... verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, ...

  9. Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region

    International Nuclear Information System (INIS)

    Ohtani, S.; Kokubun, S.; Russell, C.T.

    1992-01-01

    The substorm onset region and the radial development of the tail current disruption are examined from a new viewpoint. The reconfiguration of the magnetotail field at substorm onset can be understood in terms of a sudden decrease (disruption) in tail current intensity. The north-south component (B Z ) is very sensitive to whether the spacecraft position is earthward or tailward of the disruption region, while the change in Sun-Earth component (B X ) is most sensitive to the change in tail current intensity near the spacecraft. If the current disruption starts in a localized range of radial distance and expands radially, a distinctive phase relationship between the changes in B X and B Z is expected to be observed. This phase relationship depends on whether the current disruption starts on the earthward side or the tailward side of the spacecraft. Thus it is possible to infer the direction of the radial expansion of the current disruption from magnetic field data of a single spacecraft. This method is applied to ISEE observations of a tail reconfiguration event that occurred on March 6, 1979. The phase relationship indicates that eh disruption region expanded tailward from the earthward side of the spacecraft during the event. This model prediction is consistent with the time lag of magnetic signatures observed by the two ISEE spacecraft. The expansion velocity is estimated at 2 R E /min (∼200 km/s) for this event. Furthermore, it is found that the observed magnetic signatures can be reproduced to a good approximation by a simple geometrical model of the current disruption. The method is used statistically for 13 events selected from the ISEE magnetometer data. It is found that the current disruption usually starts in the near-Earth magnetotail (|X| E ) and often within 15 R E of the Earth

  10. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang; Dong, Shuai; Xia, Zhengcai; Luo, Hui; Yan, Zhibo; Wang, Haowen; Tian, Zhaoming; Yuan, Songliu; Wu, Tao; Liu, Junming

    2013-01-01

    magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement

  11. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  12. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  13. Relationships between the solar wind and the polar cap magnetic activity

    International Nuclear Information System (INIS)

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  14. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    Science.gov (United States)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  15. Phases of a polar spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2007-01-01

    The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation

  16. Nonlinear interaction of s-polarized surface waves at the boundary of a semibounded magnetized plasma

    International Nuclear Information System (INIS)

    Amein, W.H.; El-Siragy, N.M.; Nagy, O.Z.; Sayed, Y.A.

    1981-01-01

    Nonlinear interaction of S-Polarized surface waves at the boundary of a semibounded magnetized plasma is investigated. The expressions of the amplitudes of the generated waves are found. It is shown that, the generated waves with combined frequencies are equally radiated from the transient layer into plasma and vacuum

  17. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  18. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  19. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  20. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  1. Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data

    Directory of Open Access Journals (Sweden)

    N. A. Tsyganenko

    2009-04-01

    Full Text Available A detailed statistical study of the magnetic structure of the dayside polar cusps is presented, based on multi-year sets of magnetometer data of Polar and Cluster spacecraft, taken in 1996–2006 and 2001–2007, respectively. Thanks to the dense data coverage in both Northern and Southern Hemispheres, the analysis spanned nearly the entire length of the cusps, from low altitudes to the cusp "throat" and the magnetosheath. Subsets of data falling inside the polar cusp "funnels" were selected with the help of TS05 and IGRF magnetic field models, taking into account the dipole tilt and the solar wind/IMF conditions. The selection funnels were shifted within ±10° of SM latitude around the model cusp location, and linear regression parameters were calculated for each sliding subset, further divided into 10 bins of distance in the range 2≤R≤12 RE, with the following results. (1 Diamagnetic depression, caused by the penetrated magnetosheath plasma, becomes first visible at R~4–5 RE, rapidly deepens with growing R, peaks at R~6–9 RE, and then partially subsides and widens in latitude at the cusp's outer end. (2 The depression peak is systematically shifted poleward (by ~2° of the footpoint latitude with respect to the model cusp field line, passing through the min{|B|} point at the magnetopause. (3 At all radial distances, clear and distinct peaks of the correlation between the local By and By(IMF and of the corresponding proportionality coefficient are observed. A remarkably regular variation of that coefficient with R quantitatively confirms the field-aligned geometry of the cusp currents associated with the IMF By, found in earlier observations.

  2. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization.

    Science.gov (United States)

    Kempa, M; Kamba, S; Savinov, M; Maryško, M; Frait, Z; Vaněk, P; Tomczyk, M; Vilarinho, P M

    2010-11-10

    We investigated ceramics samples of solid solutions of [PbFe(2/3)W(1/3)O(3)](x)-[PbZr(0.53)Ti(0.47)O(3)](1 - x) (PFW(x)-PZT(1 - x), x = 0.2 and 0.3) by means of broad-band dielectric spectroscopy, differential scanning calorimetry and SQUID magnetometry. We did not confirm the observations of Kumar et al (2009 J. Phys.: Condens. Matter 21 382204), who reported on reversible suppression of ferroelectric polarization in polycrystalline PFW(x)-PZT(1 - x) thin films for magnetic fields above 0.5 T. We did not observe any change of ferroelectric polarization with external magnetic fields up to 3.2 T. Pirc et al (2009 Phys. Rev. B 79 214114) developed a theory explaining the reported large magnetoelectric effect in PFW(x)-PZT(1 - x), taking into account relaxor magnetic and relaxor ferroelectric properties of the system. Our data revealed classical ferroelectric properties below 525 K and 485 K in samples with x = 0.2 and 0.3, respectively. Moreover, paramagnetic behavior was observed down to 4.5 K instead of previously reported relaxor magnetic behavior. It seems that the reported switching-off of ferroelectric polarization in PFW(x)-PZT(1 - x) thin films is not an intrinsic property, but probably an effect of electrodes, interlayers, grain boundaries or second phases presented in polycrystalline thin films.

  3. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  4. Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization

    CERN Document Server

    Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A

    2004-01-01

    We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).

  5. Magnetosphere-Ionosphere Coupling During a Geomagnetic Substorm on March 1, 2017

    Science.gov (United States)

    Coster, A. J.; Hampton, D. L.; Sazykin, S. Y.; Wolf, R.; Huba, J.; Varney, R. H.; Reimer, A.; Lynch, K. A.; Samara, M.; Michell, R.

    2017-12-01

    On March 1, 2017, at approximately 10 UT, magnetometers at Ft Yukon and Poker Flat in Alaska measured the classic signature of an auroral substorm: a rapid decrease in the northward component of the magnetic field. Nearby, a camera at Venetie Alaska captured intensive visual brightening of multiple auroral arcs at approximately the same time. Our data and model analysis focuses on this time period. We are taking advantage of the extensive instrumentation that was in place in Northern Alaska on this date due to the ISINGLASS rocket campaign. Although no rockets were flown on March 1, 2017, this substorm was monitored at Poker by the three-filter all-sky survey and at Venetie by three all-sky cameras running simultaneously with each filtered for a different wavelength. Our analysis includes co-incidental high precision GNSS receiver data providing total electron content (TEC) measurements during the overhead auroral arcs. The receiver at Venetie also monitored L-band scintillation. In addition, the Poker Flat Incoherent Scatter radar captured the rapid ionization enhancement in the 100-200 km region across multiple beams looking to the north of Poker. The timing of these events between the multiple sites is closely monitored, and inferences of the propagation of this event are described. The available SuperDARN data from this time period indicates this substorm happened at about the same time within the Harang discontinuity. This event presented an unprecedented opportunity to observe occurrence and development of a substorm with a combination of ground-based remote sensing instruments. To support our interpretation of the data, we present first simulations of the magnetosphere-ionosphere coupled system during a substorm with the self-consistently coupled SAMI/RCM code.

  6. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  7. Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field

    International Nuclear Information System (INIS)

    Maraghechi, B.; Willett, J.e.

    1979-01-01

    The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)

  8. Physics of Substorm Growth Phase, Onset, and Dipolarization

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng

    2003-10-22

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.

  9. Physics of Substorm Growth Phase, Onset, and Dipolarization

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    2003-01-01

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m 2 as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization

  10. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    Energy Technology Data Exchange (ETDEWEB)

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J. [Departement de Physique, Universite de Montreal and Centre de Recherche en Astrophysique du Quebec (CRAQ), C. P. 6128, succ. centre-ville, Montreal (Quebec) H3C 3J7 (Canada); Collaboration: MiMeS Collaboration

    2013-02-20

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  11. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    International Nuclear Information System (INIS)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.

    2013-01-01

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the ∼0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B ∼ 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  12. Electron dynamics during substorm dipolarization in Mercury's magnetosphere

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    2005-11-01

    Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.

  13. Photometry and Multipolar Magnetic Field Modeling of Polars: BY Camelopardalis and FL Ceti

    Directory of Open Access Journals (Sweden)

    P. A. Mason

    2015-02-01

    Full Text Available We present new broad band optical photometry of two magnetic cataclysmic variable stars, the asynchronous polar BY Camelopardalis and the short period polar FL Ceti. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald Observatory with 3s and 1s integration times respectively. In an attempt to understand the observed complex changes in accretion flow geometry observed in BY Cam, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures. We investigate fields with increasing complexity including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry at various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are broadly consistent with optical photometry. FL Ceti is observed to have two very small accretion regions at the foot-points of the white dwarf’s magnetic field. Both accretion regions are visible at the same time in the high state and are about 100 degrees apart. MHD modeling using a dipole plus quadrupole field structure yields quite similar accretion regions as those observed in FL Ceti. We conclude that accretion flows calculated from MHD modeling of multi-polar magnetic fields produce synthetic light curves consistent with photometry of these magnetic cataclysmic variables.

  14. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  15. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    Science.gov (United States)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  16. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Dirk, E-mail: sander@mpi-halle.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany); Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany)

    2013-08-15

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center.

  17. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Sander, Dirk; Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen

    2013-01-01

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center

  18. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  19. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  20. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  1. Magnetic shielding for a transversely polarized target in the longitudinal field of the PANDA solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold; Ahmed, Samer; Dbeyssi, Alaa; Mora Espi, Maria Carmen; Gerz, Kathrin; Lin, Dexu; Maas, Frank; Martinez, Ana Penuelas; Morales, Cristina; Wang, Yadi [Helmholtz Institut Mainz (Germany); Aguar Bartolome, Patricia [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A transversely polarized target in PANDA would allow for the first time access to the imaginary part of the time like electromagnetic proton form factors, namely the phase angle in the imaginary plane between electric and magnetic form factors. Moreover it would allow for a number of other target single spin asymmetries revealing nucleon structure observables connected with the transverse spin structure of the proton. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present experimental results on intense magnetic flux shielding using a BSCCO-2212 high temperature superconducting hollow cylinder at liquid helium temperature.

  2. NMR at earth's magnetic field using para-hydrogen induced polarization.

    Science.gov (United States)

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  4. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS

    Directory of Open Access Journals (Sweden)

    H. Wang

    2011-07-01

    Full Text Available We have investigated the seasonal and diurnal variation of SAPS (Subauroral Polarization Streams occurrence based on 3663 SAPS events identified in DMSP ion drift observations in the Northern Hemisphere during July 2001 and June 2003. Their relationships with high latitude convection electric field, substorm, and ionospheric conductivity have been addressed. SAPS occurrences show a clear seasonal and diurnal variation with the occurrence rates varying by a factor of 5. It is found that the convection electric field might play a dominant role in association with SAPS occurrence. Peak convection electric fields mark the occurrence maximum of SAPS. Substorm might play a secondary role related to SAPS occurrence. It account for the secondary maximum in SAPS occurrence rate during December solstice. Our work demonstrates that the substorm induced electric field can develop SAPS during relatively low global convection. Somewhat low fluxtube-integrated conductivity is favorable for SAPS to develop. Another topic is the temporal relationship between SAPS and substorm phases. SAPS can occur at substorm onset, substorm expansion and recovery phases. Most probably SAPS tend to occur 60 min/45 min after substorm onset during quiet/more disturbed geomagnetic activity, respectively. This indicates that enhanced global convection helps SAPS to develop quicker during substorms. The peak plasma velocity of SAPS is increased on average only by 5–10 % by the substorm process.

  5. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-03-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations, from radii of 50 to 1000 au. The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disk size in B335.

  6. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  7. Extension of the VITESS polarized neutron suite towards the use of imported magnetic field distributions

    International Nuclear Information System (INIS)

    Manoshin, S; Rubtsov, A; Bodnarchuk, V; Mattauch, S; Ioffe, A

    2014-01-01

    Latest developments of the polarized neutron suite in the VITESS simulation package allowed for simulations of time-dependent spin handling devices (e.g. radio-frequency (RF) flippers, adiabatic gradient RF-flippers) and the instrumentation built upon them (NRSE, SESANS, MIEZE, etc.). However, till now the magnetic field distribution in such devices have been considered as 'ideal' (sinusoidal, triangular or rectangular), when the main practical interest is in the use of arbitrary magnetic field distributions (either obtained by the field mapping or by FEM calculations) that may significantly influence the performance of real polarized neutron instruments and is the key issue in the practical use of the simulation packages. Here we describe modified VITESS modules opening the possibility to load the magnetic field 3-dimensional space map from an external source (file). Such a map can be either obtained by direct measurements or calculated by dedicated FEM programs (such as ANSYS, MagNet, Maxwell or similar). The successful use of these new modules is demonstrated by a very good agreement of neutron polarimetric experiments with performance of the spin turner with rotating magnetic field and an adiabatic gradient RF-flipper simulated by VITESS using calculated 3-dimensional field maps (using MagNet) and magnetic field mapping, respectively.

  8. Low-Frequency Waves in the Near-Earth Magnetotail before Substorm Expansion Onsets

    Science.gov (United States)

    Miyashita, Y.; Saito, M. H.; Hiraki, Y.; Machida, S.

    2013-12-01

    Magnetic reconnection and dipolarization, which occur in the near-Earth magnetotail just before substorm expansion onsets, are important processes for the substorm triggering. To understand the triggering of these processes, we have investigated low-frequency waves that were observed in the near-Earth magnetotail before onsets, by performing statistical analysis based on Geotail observations and case studies based on multi-point THEMIS and Geotail observations. Here we focused our examination on ~10 min interval before onsets. We find that small-amplitude Alfven and slow-mode magnetosonic waves with a period of ~1 to 2 min continuously exist for more than 10 min before onsets. Such waves are seen not only in the initial dipolarization region but also midway between the magnetic reconnection and initial dipolarization regions. It seems that the amplitudes of the waves are larger in the off-equator plasma sheet and the plasma sheet boundary layer than at the magnetic equator and in the lobe. After onsets the waves considerably amplify in the plasma sheet. These results may imply that instabilities already begin to grow gradually in a wide region during the substorm growth phase, while their explosive growth begins in localized regions just before onsets.

  9. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  10. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  11. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  12. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment.

    Science.gov (United States)

    Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M

    2016-06-10

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic.

  13. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment

    Science.gov (United States)

    Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations

    2016-06-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.

  14. Effect of the interplanetary magnetic field on the distribution of electric fields in the polar ionosphere

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1985-08-01

    Heppner (1972), in an analysis of satellite data, observed 12 types of electric-field distributions in the polar ionosphere along the morning-evening meridian. In the present paper it is shown that these distribution types can be described by the analytical model of Uvarov and Barashkov (1984). In this model the excitation of the electric fields is investigated by solving the set of continuity equations for current in three regions (the north and south polar caps and a region outside the caps) with allowance for the magnetic conjugacy of the ionosphere in the two hemispheres.

  15. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  16. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  17. Structures Of Magnetically-Supported Filaments And Their Appearance In The Linear Polarization

    Science.gov (United States)

    Tomisaka, Kohji

    2017-10-01

    Dust thermal emissions observed with Herschel have revealed that interstellar molecular clouds consist of many filaments. Polarization observation of interstellar extinctions in the optical and near IR wavelengths shows that the dense filaments are extending perpendicular to the interstellar magnetic field. Magnetohydrostatic structures of such filaments are studied. It is well known that a hydrostatic filament without magnetic field has a maximum line mass of ¥lambda_max=2c_s^2/G (c_s:the isothermal sound speed and G: the gravitational constant). On the other hand, the magnetically-supported maximum line mass increases in proportion to the magnetic flux per unit length threading the filament (¥phi), as ¥lambda_max 2c_s^2/G + ¥phi/(2¥pi G^1/2). Comparison is made with 3D clouds. Stability of these magnetized filaments is studied using time-dependent 3D MHD simulations to discuss star formation in the filaments. Polarization pattern expected for the magnetically subcritical filaments is calculated. The distribution function of the angle between B-field and the axis of the filament, which is obtained with Planck Satellite, is compared with this mock observation.

  18. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  19. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  20. Global Pattern of The Evolutions of the Sub-Auroral Polarization Streams

    Science.gov (United States)

    He, F.; Zhang, X.; Wang, W.; Wan, W.

    2017-12-01

    Due to the spatial and temporal limitations of the in-situ measurements from the low altitude polar orbiting satellites or the ionospheric scan by incoherent scatter radars, the global configuration and evolution of SAPS are still not very clear. Here, we present multi-satellite observations of the evolution of subauroral polarization streams (SAPS) during the main phase of a server geomagnetic storm occurred on 31 March 2001. DMSP F12 to F15 observations indicate that the SAPS were first generated in the dusk sector at the beginning of the main phase. Then the SAPS channel expanded towards the midnight and moved to lower latitudes as the main phase went on. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channels were highly dynamic during the storm main phase. The global evolution of the SAPS corresponds well with that of the region-2 field-aligned currents, which are mainly determined by the azimuthal pressure gradient of the ring current. Further studies on 37 storms and 30 isolated substorms indicate that the lifetime of the SAPS channel was proportional to the period of time for southward interplanetary magnetic field (IMF). The SAPS channel disappeared after northward turning of the IMF. During the recovery phase, if the IMF kept northward, no SAPS channel was generated, if the IMF turned to southward again, however, SAPS channel will be generated again with lifetime proportional to the duration of the southward IMF. During isolated substorms, the SAPS channel was also controlled by IMF. The SAPS channel was generated after substorm onset and the peak drift velocity of the SAPS channel achieved its maximum during the recovery phase of the substorm. It is suggested that, SAPS channel were mainly controlled by IMF, more works should be done with observations or simulations of investigate the global patterns of the SAPS and the magnetosphere-ionosphere couplings.

  1. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    International Nuclear Information System (INIS)

    Mrózek, M.; Rudnicki, D. S.; Gawlik, W.; Mlynarczyk, J.

    2015-01-01

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves

  2. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  3. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    2000-09-01

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  4. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  5. Electron spectra over discrete auroras as measured by the Substorm-GEOS rockets

    International Nuclear Information System (INIS)

    Sandahl, I.; Eliasson, L.; Lundin, R.

    1980-01-01

    Results from the first two Substorm-GEOS rockets are presented. These rockets, as well as the third one, were launched from ESRANGE on January 27, 1979 into different substorm phases. The first rocket went into an active pre-breakup evening arc and the second one into a breakup close to magnetic midnight. Electron spectra of downcoming particles measured by a narrow energy bandwidth detector show very narrow energy peaks as soon as the integral energy fluxes are high. These peaks always show populations of two different characteristic energies above the peak energy. One of the populations has properties similar to those found in the boundary layer plasma and the other one seems to be of plasma sheet origin. The plasma sheet like population is also seen where there are no signs of energy peaks, for example equatorward of the arc. The boundary layer plasma is exclusively connected with the signatures of acceleration. (Auth.)

  6. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  7. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  8. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  9. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  10. The Steens Mountain (Oregon) geomagnetic polarity transition: 1. Directional history, duration of episodes, and rock magnetism

    Science.gov (United States)

    Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.

    1985-01-01

    The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity

  11. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  12. AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION

    International Nuclear Information System (INIS)

    Soler, J. D.; Netterfield, C. B.; Fissel, L. M.; Hennebelle, P.; Martin, P. G.; Miville-Deschênes, M.-A.

    2013-01-01

    We describe a morphological imprint of magnetization found when considering the relative orientation of the magnetic field direction with respect to the density structures in simulated turbulent molecular clouds. This imprint was found using the Histogram of Relative Orientations (HRO), a new technique that utilizes the gradient to characterize the directionality of density and column density structures on multiple scales. We present results of the HRO analysis in three models of molecular clouds in which the initial magnetic field strength is varied, but an identical initial turbulent velocity field is introduced, which subsequently decays. The HRO analysis was applied to the simulated data cubes and mock-observations of the simulations produced by integrating the data cube along particular lines of sight. In the three-dimensional analysis we describe the relative orientation of the magnetic field B with respect to the density structures, showing that: (1) the magnetic field shows a preferential orientation parallel to most of the density structures in the three simulated cubes, (2) the relative orientation changes from parallel to perpendicular in regions with density over a critical density n T in the highest magnetization case, and (3) the change of relative orientation is largest for the highest magnetization and decreases in lower magnetization cases. This change in the relative orientation is also present in the projected maps. In conjunction with simulations, HROs can be used to establish a link between the observed morphology in polarization maps and the physics included in simulations of molecular clouds

  13. SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge

    Science.gov (United States)

    Mishin, E. V.

    2017-12-01

    We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  14. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  15. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  16. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  17. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  18. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  19. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  20. Heliospheric magnetic field polarity inversions driven by radial velocity field structures

    Czech Academy of Sciences Publication Activity Database

    Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 33, č. 14 (2006), L14101/1-L14101/5 ISSN 0094-8276 Grant - others:European Commission(XE) HRPN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * magnetic field polarity inversions * microstreams * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.602, year: 2006

  1. Energy Flow Exciting Field-Aligned Current at Substorm Expansion Onset

    Science.gov (United States)

    Ebihara, Y.; Tanaka, T.

    2017-12-01

    At substorm expansion onset, upward field-aligned currents (FACs) increase abruptly, and a large amount of electromagnetic energy starts to consume in the polar ionosphere. A question arises as to where the energy comes from. Based on the results obtained by the global magnetohydrodynamics simulation, we present energy flow and energy conversion associated with the upward FACs that manifest the onset. Our simulations show that the cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere when the interplanetary magnetic field is southward. Integral curve of the Poynting flux shows a spiral moving toward the ionosphere, probably suggesting the pathway of electromagnetic energy from the cusp/mantle dynamo to the ionosphere. The near-Earth reconnection initiates three-dimensional redistribution of the magnetosphere. Flow shear in the near-Earth region results in the generation of the near-Earth dynamo and the onset FACs. The onset FACs are responsible to transport the electromagnetic energy toward the Earth. In the near-Earth region, the electromagnetic energy coming from the cusp/mantle dynamo is converted to the kinetic energy (known as bursty bulk flow) and the thermal energy (associated with high-pressure region in the inner magnetosphere). Then, they are converted to the electromagnetic energy associated with the onset FACs. A part of electromagnetic energy is stored in the lobe region during the growth phase. The release of the stored energy, together with the continuously supplied energy from the cusp/mantle dynamo, contributes to the energy supply to the ionosphere during the expansion phase.

  2. Analysis of ULF Waves During Substorms Observed in the Ionosphere from the Dayside Ground Magnetometer and in the Solar Wind from the Satellite

    Science.gov (United States)

    Streltsov, A. V.; Alimaganbetov, M.

    2017-12-01

    Magnetospheric substorm is one of the most interesting and complicated phenomena of solar-terrestrial interactions. Despite numerous theoretical and experimental studies conducted during last 50 years, its several important phenomena are not completely understood yet. One of them are intense, ultra-low-frequency (from 0.5 mHz to 100 mHz), electromagnetic pulsations which are always observed during the substorms with the ground-based magnetometers and radars at high latitudes. These waves have the largest amplitudes in the power spectral densities during substorms. Hence, they are the most effective drivers of such mechanisms as high-latitude ionosphere energization, ion outflow production, formation of plasma density cavities, etc. In our study, we focus on the waves with frequencies 0.5-1.0 mHz, which is the lowest part of the frequency spectra observed during the substorm. The questions of what phenomena cause these oscillations and what are their spatiotemporal properties are among the most important ones about the physics of the substorm. To answer these questions, we analyzed disturbances of the magnetic field obtained from the two sources for the period from October 2015 to November 2016 during several substorms. One source is the fluxgate magnetometer in Poker Flat, Alaska. Another is the NASA Advanced Composite Explorer satellite in the Lagrangian L1 point that detects most of the solar wind from the Sun. The goal of our project is to find correlations between the disturbances observed from these sources, which will be a strong argument that the solar wind has a strong influence on the electromagnetic coupling between the ionosphere and magnetosphere of the Earth during the substorms. We observed 48 substorms during the abovementioned period. Our findings show that 1) the dominant frequency of the large-amplitude ULF waves observed during the substorms is 1 mHz or less; and 2) the same frequencies are frequently observed in the waves detected from the both

  3. Effects of substorms on the stormtime ring current index Dst

    Directory of Open Access Journals (Sweden)

    G. Rostoker

    2000-11-01

    Full Text Available There has been some discussion in recent times regarding whether or not substorm expansive phase activity plays any role of importance in the formation of the stormtime ring current. I explore this question using the Kp index as a proxy for substorm expansive phase activity and the Dst index as a proxy for symmetric ring current strength. I find that increases in Dst are mildly related to the strength of substorm expansive phase activity during the development of the storm main phase. More surprisingly, I find that the strength of Dst during the storm recovery phase is positively correlated with the strength of substorm expansive phase activity. This result has an important bearing on the question of how much the Dst index reflects activity other than that of the stormtime symmetric ring current strength for which it is supposed to be a proxy.Key words: Ionosphere (electric fields and currents - Magnetospheric physics (current systems; storms and substorms

  4. Effects of substorms on the stormtime ring current index Dst

    Directory of Open Access Journals (Sweden)

    G. Rostoker

    Full Text Available There has been some discussion in recent times regarding whether or not substorm expansive phase activity plays any role of importance in the formation of the stormtime ring current. I explore this question using the Kp index as a proxy for substorm expansive phase activity and the Dst index as a proxy for symmetric ring current strength. I find that increases in Dst are mildly related to the strength of substorm expansive phase activity during the development of the storm main phase. More surprisingly, I find that the strength of Dst during the storm recovery phase is positively correlated with the strength of substorm expansive phase activity. This result has an important bearing on the question of how much the Dst index reflects activity other than that of the stormtime symmetric ring current strength for which it is supposed to be a proxy.Key words: Ionosphere (electric fields and currents - Magnetospheric physics (current systems; storms and substorms

  5. Development of accurate techniques for controlling polarization of a long wavelength neutron beam in very low magnetic fields. I

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Tasaki, Seiji; Akiyoshi, Tsunekazu; Eguchi, Yoshiaki; Hino, Masahiro; Achiwa, Norio.

    1995-01-01

    The purpose of our study is to develop accurate techniques for controlling polarization of a long wavelength neutron beam and to make a thin-film dynamical spin-flip device operated in magnetizing fields less than 100 gauss and in a shorter switching time up to 20 kHz. The device would work as a chopper for a polarized neutron beam and as a magnetic switching device for a multilayer neutron interferometer. We have started to develop multilayer polarizing mirrors functioning under magnetizing fields less than 100 gauss. The multilayers of Permalloy-Ge and Fe-Ge have been produced using the evaporation method under magnetizing fields of about 100 gauss parallel to the Si-wafer substrate surface. The hysteresis loop for in-plane magnetization of the multilayers were measured to discuss their feasibilities for the polarizing device functioning under very low magnetizing fields. The polarizing efficiencies of Fe-Ge and Permalloy-Ge multilayers were 95 % and 91 % with reflectivities of 50 % and 66 % respectively under magnetizing fields of 80 gauss. The report also discusses problems in applying these multilayer polarizing mirrors to ultracold neutrons. (author)

  6. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  7. ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R.; Robbrecht, E.

    2009-01-01

    The Sun's polar fields are currently ∼40% weaker than they were during the previous three sunspot minima. This weakening has been accompanied by a corresponding decrease in the interplanetary magnetic field (IMF) strength, by a ∼20% shrinkage in the polar coronal-hole areas, and by a reduction in the solar-wind mass flux over the poles. It has also been reflected in coronal streamer structure and the heliospheric current sheet, which only showed the expected flattening into the equatorial plane after sunspot numbers fell to unusually low values in mid-2008. From latitude-time plots of the photospheric field, it has long been apparent that the polar fields are formed through the transport of trailing-polarity flux from the sunspot latitudes to the poles. To address the question of why the polar fields are now so weak, we simulate the evolution of the photospheric field and radial IMF strength from 1965 to the present, employing a surface transport model that includes the effects of active region emergence, differential rotation, supergranular convection, and a poleward bulk flow. We find that the observed evolution can be reproduced if the amplitude of the surface meridional flow is varied by as little as 15% (between 14.5 and 17 m s -1 ), with the higher average speeds being required during the long cycles 20 and 23.

  8. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  9. Further comments on the effects of vacuum birefringence on the polarization of X-rays emitted from magnetic neutron stars

    Science.gov (United States)

    Chanan, G. A.; Novick, R.; Silver, E. H.

    1979-01-01

    The birefringence of the vacuum in the presence of strong (of the order of 1 teragauss) magnetic fields will in general affect the polarization of X-rays propagating through these fields. Two of the four Stokes parameters will vary so rapidly with wavelength as to be 'washed out' and unobservable, but the remaining two parameters will be unaffected. These results show that one conclusion of an earlier work is incorrect: Polarized X-ray emission from the surface of a magnetic neutron star will not in general be completely depolarized by the effects of vacuum birefringence. In particular, this birefringence has no effect on the linear polarization of cyclotron emission from the poles of magnetic neutron stars, and a similar result holds for synchrotron emission. More general cases of the propagation of polarized X-rays in magnetic fields are also discussed.

  10. The reason for magnetospheric substorms and solar flares

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1983-01-01

    It has been proposed that magnetospheric substorms and solar flares are a result of the same mechanism. In our view this mechanism is connected with the escape, or attempted escape, of energized plasma from a region of closed magnetic field lines bounded by a magnetic bottle. In the case of the Earth, it must be plasma that is a able to maintain a discrete auroral arc, and we propose that the cross-tail current connected to the arc is filamentary in nature to provide the field-aligned current sheet above the arc. A localized meander of such an intense current filament could be caused by a tearing instability in the neutral sheet. Such a meander will cause an inductive electric field opposing the current change everywhere. In trying to reduce the component of the induction electric field parallel to the magnetic field lines, the plasma must enhance the transverse or cross-tail component; this action leads to eruptive behavior, in agreement with tearing theories. This enhanced induction electric field will cause a discharge along the magnetic neutral line at the apex of the magnetic arches, constituting an impulsive acceleration of all charged particles originally near the neutral line. The products of this phase then undergo betatron acceleration for a second phase. This discharge eventually reduces the electric field along the neutral line, and thereafter the enclosed magnetic flux through the neutral line remains nearly constant. The result is a plasmoid that has definite identity; its buoyancy leads to its escape. The auroral breakup (and solar flare) is the complex plasma response to the changing electromagnetic field. (orig.)

  11. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  12. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  13. Exact analytic expressions for the evolution of polarization for radiation propagating in a plasma with non uniformly sheared magnetic field

    International Nuclear Information System (INIS)

    Segre, S. E.

    2001-01-01

    The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space [it

  14. Multi-event study of high-latitude thermospheric wind variations at substorm onset with a Fabry-Perot interferometer at Tromsoe, Norway

    Science.gov (United States)

    Xu, H.; Shiokawa, K.; Oyama, S. I.; Otsuka, Y.

    2017-12-01

    We studied the high-latitude thermospheric wind variations near the onset time of isolated substorms. Substorm-related energy input from the magnetosphere to the polar ionosphere modifies the high-latitude ionosphere and thermosphere. For the first time, this study showed the characteristics of high-latitude thermospheric wind variations at the substorm onset. We also investigated the possibility of these wind variations as a potential trigger of substorm onset by modifying the ionospheric current system (Kan, 1993). A Fabry-Perot interferometer (FPI) at Tromsoe, Norway provided wind measurements estimated from Doppler shift of both red-line (630.0 nm for the F region) and green-line (557.7 nm for the E region) emissions of aurora and airglow. We used seven-year data sets obtained from 2009 to 2015 with a time resolution of 13 min. We first identified the onset times of local isolated substorms using ground-based magnetometer data obtained at the Tromsoe and Bear Island stations, which belongs to the IMAGE magnetometer chain. We obtained 4 red-line events and 5 green-line events taken place at different local times. For all these events, the peak locations of westward ionospheric currents identified by the ground-based magnetometer chain were located at the poleward side of Tromsoe. Then, we calculated two weighted averages of wind velocities for 30 min around the onset time and 30 min after the onset time of substorms. We evaluated differences between these two weighted averages to estimate the strength of wind changes. The observed wind changes at these substorm onsets were less than 49 m/s (26 m/s) for red-line (green-line) events, which are much smaller than the typical plasma convection speed. This indicates that the plasma motion caused by substorm-induced thermospheric winds through ion-neutral collisions is a minor effect as the driver of high-latitude plasma convection, as well as the triggering of substorm onset. We discuss possible causes of these

  15. Ultra-long magnetization needle induced by focusing azimuthally polarized beams with a spherical mirror.

    Science.gov (United States)

    Hang, Li; Luo, Kai; Fu, Jian; Chang, Yizhe; Wang, Ying; Chen, Peifeng

    2018-03-20

    Based on extended Richards-Wolf theory for axisymmetric surfaces and the inverse Faraday effect, we propose the generation of a purely longitudinal magnetization needle by focusing Gaussian annular azimuthally polarized beams with a spherical mirror. The needle obtained has a longitudinal length varying hundreds to thousands of wavelengths while keeping the lateral size under 0.4λ, and the corresponding aspect ratio can easily reach more than 2000. It may be the first time that a magnetization needle whose aspect ratio is over 500 has been achieved. The approximate analytical expressions of the magnetization needle are given, and the longitudinal length is tunable by changing the value of the angular thickness and the position of the annular beams.

  16. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  17. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  18. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Serpico, C.; d'Aquino, M.; Mayergoyz, I. D.; Bonin, R.

    2005-01-01

    Full text: Considerable interest has been generated in recent years by the discovery that a current of spin-polarized electrons can apply appreciable torques to a nanoscale ferromagnet. This mechanism was theoretically predicted and subsequently confirmed by a number of experiments which have shown that spin transfer can indeed induce switching or microwave oscillations of the magnetization. Significant efforts have been devoted to the explanation of these results, in view of the new physics involved and of the possible applications to new types of current-controlled memory cells or microwave sources and resonators . However, the precise nature of magnetization dynamics when spin-polarized currents and external magnetic fields are simultaneously present has not yet been fully understood. The spin-transfer-driven nanomagnet is a nonlinear open system that is forced far from equilibrium by the injection of the current. Thus, the appropriate framework for the study of the problem is nonlinear dynamical system theory and bifurcation theory. In this talk, it is shown that within this framework the complexity and subtlety of spin-torque effects are fully revealed and quantified, once it is recognized that both intrinsic damping and spin transfer can be treated as perturbations of the free precessional dynamics typical of ferromagnetic resonance. Complete stability diagrams are derived for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching; for the amplitude and frequency of magnetization self-oscillations; for the conditions leading to hysteretic transitions between self-oscillations and stationary states

  19. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  20. Origin of the magnetic-field controlled polarization reversal in multiferroic TbMn2 O 5

    Science.gov (United States)

    Leo, N.; Meier, D.; Pisarev, R. V.; Park, S.; Cheong, S.-W.; Fiebig, M.

    2011-03-01

    The interplay of multi-dimensional complex magnetic order parameters leads to interesting effects like magnetically induced ferroelectricity. A particular interesting example is TbMn 2 O5 because of the associated magnetic-field controllable electric polarization. By optical second harmonic generation we show that the gigantic magnetoelectric effect originates in three independent ferroelectric contributions. Two of these are manganese-generated. The third contribution is related to the magnetism of the Tb 3+ sublattice and has not been identified so far. It mediates the remarkable magnetic-field induced polarization reversal. This model is verified by experiments on the isostructural YMn 2 O5 where Y3+ ions are nonmagnetic and only two polarization contributions are present and no magnetoelectric coupling is observed. These results underline the importance of the 3 d - 4 f -interaction for the intricate magnetoelectric coupling in the class of isostructural RMn 2 O5 compounds. This work was supported by the DFG through SFB 608.

  1. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    Science.gov (United States)

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  2. The energetic ion substorm injection boundary

    International Nuclear Information System (INIS)

    Lopez, R.E.; Sibeck, D.G.; McEntire, R.W.; Krimigis, S.M.

    1990-01-01

    The substorm injection boundary model has enjoyed considerable success in explaining plasma signatures in the near-geosynchronous region. However, the injection boundary has remained primarily a phenomenological model. In this paper the authors examine 167 dispersionless energetic ion injections which were observed by AMPTE CCE. The radial and local time distribution of the events as a function of Kp is qualitatively similar to that envisioned in the injection boundary model of Mauk and McIlwain (1974). They argue that particles observed during dispersionless injections are locally energized during the disruption of the cross-tail current sheet. Therefore they identify the injection boundary, as derived from the spatial distribution of dispersionless injections, with the earthward edge of the region of the magnetotail which undergoes current sheet disruption during the substorm expansion phase. The authors show that this qualitative model for the generation of the injection boundary can provide an explanation for the dispersionless nature, the double spiral shape, and the Kp dependence of the boundary

  3. Magnetic braking in young late-type stars. The effect of polar spots

    Science.gov (United States)

    Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.

    2007-10-01

    Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.

  4. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  5. Nonadiabatic heating of the central plasma sheet at substorm onset

    International Nuclear Information System (INIS)

    Huang, C.Y.; Frank, L.A.; Rostoker, G.; Fennell, J.; Mitchell, D.G.

    1992-01-01

    Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 R E , the apogee of the ISEIE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 R E but may be adiabatic closer to Earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of substorm. The authors estimate lobe magnetic pressures during these events. Changes in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity

  6. MAGNETIC FIELD COMPONENTS ANALYSIS OF THE SCUPOL 850 μm POLARIZATION DATA CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [Department of Physics and Astronomy, University College London, Kathleen Lonsdale Building, Gower Place, London WC1E 6BT (United Kingdom); Falceta-Gonçalves, Diego [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Kowal, Grzegorz [Universidade de São Paulo, Escola de Artes, Ciências e Humanidades Rua Arlindo Béttio, No. 1000, Ermelino Matarazzo, São Paulo, SP 03828-000 (Brazil); De Gouveia Dal Pino, Elisabete; Magalhães, Antonio Mário, E-mail: poidevin@star.ucl.ac.uk, E-mail: dfalceta@usp.br, E-mail: kowal@astro.iag.usp.br, E-mail: dalpino@astro.iag.usp.br, E-mail: mario@astro.iag.usp.br [Universidade de São Paulo, Instituto de Astronomia, Geofísica e Cîenças Atmosféricas, Rua do Matão 1226, Butantã, São Paulo, SP 05508-900 (Brazil)

    2013-11-10

    We present an extensive analysis of the 850 μm polarization maps of the SCUBA Polarimeter Legacy (SCUPOL) Catalogue produced by Matthews et al., focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from two-dimensional synthetic maps of dust-emission polarization produced with three-dimensional magnetohydrodynamics (MHD) numerical simulations scaled to the S106, OMC-2/3, W49, and DR21 molecular cloud polarization maps. For these specific regions, the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfvén and Sonic Mach numbers, are consistent within a factor one to two with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher. Constraints on the values of the inclination angle α of the mean magnetic field with respect to the line of sight are also given. The values obtained from the comparison of the simulations with the SCUPOL data are consistent with the estimates made by using two observational methods provided by other authors. Our main conclusion is that simple, ideal, isothermal, and non-self-gravitating MHD simulations are sufficient in order to describe the large-scale observed physical properties of the envelopes of this set of regions.

  7. Case studies of the storm time variation of the polar cusp

    International Nuclear Information System (INIS)

    Meng, C.

    1983-01-01

    The latitudinal variations of the polar cusp region were examined during three intense geomagnetic storms. The variations were compared with the intensity of storm time ring current inferred from the Dst index, with the magnitude of the north-south component B/sub z/ of the interplanetary magnetic field and with substorm activity. The common feature is that the rapid equatorward shift occurred during the increase of the ring current growth and during the southward turning of the interplanetary magnetic field orientation. The equatorwardmost latitude of the cusp was reached before the peak of the ring current intensity, by a few to several hours, coinciding with the occurrence of the largest magnitude of the southward interplanetary magnetic field component. However, details of the polar cusp latitudinal movement differ from storm to storm. During the three storms studied, the poleward recovery commenced at the peak magnitude of the negative IMF B/sub z/ component, but the recovery proceeded without a clear relation to variations of the interplanetary B/sub z/ component, to the ring current intensity, or to the substorm activity. The lowest cusp latitude observed was at approx.61.7 0 , and the magnitude of this shift seems to be related to the magnitudes of -B/sub z/. It is further observed that the approximate rates of the cusp macroscopic equatorward and poleward movements are about 3 0 and 1.5 0 per hour, respectively

  8. Quantitative simulation of a magnetospheric substorm 3. Plasmaspheric electric fields and evolution of the plasmapause

    International Nuclear Information System (INIS)

    Spiro, R.W.; Harel, M.; Wolf, R.A.; Reiff, P.H.

    1981-01-01

    Results of the Rice University substorm simulation have been used to investigate the penetration of substorm-associated electric fields into the plasmasphere. Near 4 R/sub E/ in the equatorial plane, our time dependent electric field model is characterized by eastward components in the dusk-midnight local time sector and westward components after midnight. Except for a small region just before dusk, the model predicts eastward electric field components throughout the daytime sector. The characteristic radial component is directed inward at all local times except for a small region just after dawn. These results compare favorably with available whistler and incoherent-scatter radar measurements obtained during magnetically disturbed periods. By assuming an initial plasmapause shape and by followig the computed E> x B> drift trajectories of plasma flux tubes from that initial boundary we have examined the short term evolution of the plasmapause during the substorm-like event of September 19, 1976. We find that narrow filamentary tails can be drawn out from the plasmasphere near dusk within hours of substorm onset. These tail-like appendages to the plasmasphere subsequently drift rapidly from the dusk sector toward the daytime magnetopause. Investigation of the large-scale time dependent flow of plasma in the evening sector indicates that some mid-latitude plasma flux tubes that drift eastward past the dusk terminator reverse their motion between dusk and midnight and begin to drift westward toward dusk. Such time dependent changes in flow trajectories may be related to the formation of F region ionization troughs

  9. Special Issue the 12th International Conference on Substorms

    Science.gov (United States)

    Shiokawa, Kazuo; Fok, Mei-Ching; Fujimoto, Masaki

    2016-01-01

    The 12th International Conference on Substorms (ICS-12) was held at the Ise-Shima Royal Hotel in Shima, Japan, on November 10-14, 2014. There were 125 attendees including 68 from foreign countries. The ICS has been held every 2 years since 1992 to discuss substorms, which are fundamental global-scale disturbances in the Earth's magnetosphere. The year 2014 marked the 50th anniversary of the first publication about substorms (Akasofu 1964). The conference included three tutorial lecturers (Profs. S.-I. Akasofu, V. Angelopoulous, and D. Baker), as well as many international scientists, to discuss substorm processes in the tail, their Interactions with the inner magnetosphere and the ionosphere, substorm currents and their dynamics and energetics, the role of MagnetoHydroDynamics (MHD) and kinetic instabilities, storm-substorm relationships, ULFELFVLF waves, and non-Earth substorm-like features. Prof. Akasofu also gave an evening talk about the history of auroral research since the nineteenth century with photographs that inspired and intrigued the young scientists and students in attendance.

  10. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    International Nuclear Information System (INIS)

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  11. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  12. Physical processes for the onset of magnetospheric substorms

    International Nuclear Information System (INIS)

    Kan, J.R.; Akasofu, S-I.; Lee, L.C.

    1980-01-01

    There are at least three important advances in observational as well as theoretical understanding of substorm processes during the last several years; they are: (i) the 'V-shaped' potential structure for auroral acceleration, (ii) deflation as the cause of thinning of the distant plasma sheet, and (iii) interruption and subsequent diversion of the cross-tail current during the expansive phase of magnetospheric substorms. A possible chain of processes is suggested, including (i), (ii) and (iii) as vital parts, which leads to substorm onset. (Auth.)

  13. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    International Nuclear Information System (INIS)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  14. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  15. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  16. Lift, drag, and guidance forces on alternating polarity magnets, using loop guideways

    International Nuclear Information System (INIS)

    Lindenbaum, S.D.; Lee, M.S.

    1975-01-01

    Exact solutions of track current, lift force, and drag force, together with their velocity dependence, have been computed for a vehicle carrying a finite number of fixed current alternating polarity superconducting magnets, suspended at various heights over structured track guideways of the single- and double-loop (''null'') types. Results for the double-loop case are compared with those of a previously reported approximate analysis. The analytical method is then applied to a study of a low-drag guidance loop guideway which is integrable with lift loop guideways utilizing a common set of vehicle magnets. Solutions are obtained for guidance track restoring forces, lateral destabilization forces, and lift force degradation as functions of lateral displacement from symmetry. The dependence of lift, drag, and lift-to-drag on track loop parameters is studied and the linear dependence of lift-to-drag on loop time constant confirmed. The contribution to the forces made by successive addition of alternating polarity magnets is calculated and the marked reduction in lift force pulsation noted

  17. Nanomagnetic behavior of fullerene thin films in Earth magnetic field in dark and under polarization light influences.

    Science.gov (United States)

    Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija

    2005-10-01

    In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.

  18. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  19. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-03-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  20. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    Science.gov (United States)

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by

  1. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  2. Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment

    CERN Document Server

    Blum, T.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.

    2016-01-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \\times 96$ physical-pion-mass lattice generated by the RBC and UKQCD collaborations. We find $a_\\mu^{\\rm HVP~(LO)~DISC} = -9.6(3.3)(2.3)\\times 10^{-10}$, where the first error is statistical and the second systematic.

  3. The inference of vector magnetic fields from polarization measurements with limited spectral resolution

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1985-01-01

    A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.

  4. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops

    International Nuclear Information System (INIS)

    Baikov, P.

    2013-07-01

    The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.

  5. Correlation between magnetocapacitance effect and polarization flop direction in a slanted magnetic field in multiferroic helimagnets

    International Nuclear Information System (INIS)

    Abe, Nobuyuki; Sagayama, Hajime; Arima, Taka-hisa; Taniguchi, Kouji

    2011-01-01

    The relationship between the magnetocapacitance effect and rotation direction of electric polarization (P) in a canted magnetic field has been investigated for multiferroic RMnO 3 (R = Tb 1-x Dy x and Eu 0.6 Y 0.4 ). We observed a clear correlation between the enhancement of the magnetocapacitance effect and the rotation direction of P in a P-flop transition. These results indicate that the mobility and the stability of the 90 deg. domain wall in a P-flop transition are dominated by its thickness.

  6. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P. [Moscow State Univ. (Russian Federation). D.V. Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen, Garching (Germany). Physics Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-07-15

    The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.

  7. The polar cusp: Particle-, optical- and geomagnetic manifistations of solar wind - magnetosphere interaction

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.

    1985-08-01

    In this study observations of particle precipitation, optical emissions and geomagnetic disturbances associated with the low-altitude polar cusp are presented. The main observational basis is photometer data from two stations on Svalbard (Spitsbergen), Norway. These data have been used to map the location and dynamics of polar cusp auroras. One event with coordinated observations of low-energy precipitation from satellite HILAT and optical observations from the ground is discussed. Simultaneous photometer observations of the midday (Svalbard) and midnight (Alaska) sectors of the auroral oval are also presented. Thus, dynamical auroral phenomena with different temporal and spatial scales are investigated in relation to the interplanetary magnetic field and magnetospheric substorms. Certain large- and small-scale dynamics of the aurora and the geomagnetic field are shown to be consistent with the quasi steady-state/large-scale and impulsive/small-scale modes of magnetic reconnection at the frontside magnetopause

  8. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach

    Science.gov (United States)

    Akasofu, Syun-Ichi

    2017-10-01

    Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions. (1) The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above 10^{18} erg/s (10^{11} w). (2) The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy. (3) When the power reaches 3-5× 10^{18} erg/s (3-5× 10^{11} w) for about one hour and the stored magnetic energy reaches 3-5×10^{22} ergs (10^{15} J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density {≈}3× 10^{-12} A/cm2 and the total current {≈}106 A at 6 Re). As a result, the plasma sheet current is reduced. (4) The magnetosphere is thus deflated. The current reduction causes partial B/partial t > 0 in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both

  9. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  10. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacker, Jan G.

    2012-07-01

    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  11. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    International Nuclear Information System (INIS)

    Krummenacker, Jan G.

    2012-01-01

    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  12. Magnetic trapping of spin-polarized neutral atoms at its limits

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1995-01-01

    We investigated the limits of magnetic methods of trapping neutral atoms in a spot of small size and small polarization misalignment. The analysis covers various methods of trapping with static and rotating magnetic field. In particular, new rotating field methods having advantages are proposed. They differ from the recently invented 'top' type by employing a slow rotating field, resonant to the orbiting atoms, rather than much faster rotation. Also a theory of the top trap is developed. It elucidates important features of trapping lying beyond the time-averaged potential concept. General criteria on the trapping temperature as a function of size and misalignment parameters are established for various methods. (author). 8 refs., 2 figs

  13. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  14. Zero-field spin transfer oscillators based on magnetic tunnel junction having perpendicular polarizer and planar free layer

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2016-12-01

    Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.

  15. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Devolder, T. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France)]. E-mail: thibaut.devolder@ief.u-psud.fr; Tulapurkar, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Yagami, K. [SSNC, Semiconductor Technology Development Group, SONY Corporation, Atsugi, Kanagawa 243-0014 (Japan); Crozat, P. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Chappert, C. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Fukushima, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Y. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

    2005-02-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I{sub c} trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications.

  16. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    International Nuclear Information System (INIS)

    Devolder, T.; Tulapurkar, A.; Yagami, K.; Crozat, P.; Chappert, C.; Fukushima, A.; Suzuki, Y.

    2005-01-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I c trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications

  17. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    International Nuclear Information System (INIS)

    Rabinowitz, M.; Meliopoulous, A.P.S.; Glytsis, E.N.

    1992-01-01

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E approx-lt 10 - 1 V/m and lasts approx-lt 10 2 sec, whereas for solar storms E approx-gt 10 - 2 V/m and lasts approx-gt 10 3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects

  18. Distribution in magnetotail of O+ ions from Cusp/Cleft ionosphere: A possible substorm trigger

    International Nuclear Information System (INIS)

    Cladis, J.B.; Francis, W.E.

    1992-01-01

    The transport of O + ions from the cusp/cleft ionosphere to the magnetotail during highly disturbed times was determined by computing the guiding-center trajectories of the ions to a distance of 6 R E from the ionosphere and the full-motion trajectories at later times. Case histories were tallied in six planes perpendicular to the X GSM axis, three planes perpendicular to the Y GSM axis, and in the center plane of the tail. At various times relatives to the enhancement of the convection electric field, the following ion properties were constructed from the case histories; number density, mean energy, energy and pitch angle distributions of the flux, and ion pressure components parallel and perpendicular to the magnetic field. It was found that after about 1.7 hours the ion flux in the near-Earth magnetotail increased dramatically and the spectrum hardened, much as observed during periods just preceding substorms. This increase is attributed to (1) the increase in the O + outflux from the ionosphere, (2) the increased energization of the ions by the convection electric field, and (3) ion trapping, which generally occurs because the ion magnetic generally increase after the ions first cross the geomagnetotail center plane. Moreover, the parallel pressure of the ions exceeds the energy density of the magnetic field at X GSM E . On the basis of the expected alterations of the magnetic and electric fields in response to this O + pressure, a substorm trigger mechanism is suggested

  19. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A. [University of California-Los Angeles, P.O. Box 957099, Los Angeles, California 90095 (United States)

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  20. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  1. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  2. Energy transfer by magnetopause reconnection and the substorm parameter epsilon

    International Nuclear Information System (INIS)

    Gonzalez-Alarcon, W.D.; Gonzalez, A.L.C. de.

    1983-01-01

    An expression for the magnetopause reconnection power based on the dawn-dusk component of the reconnection electric field, that reduces to the substorm parameter epsilon for the limit that involves equal geomagnetic (B sub(G)) and magnetosheath (B sub(M)) magnetic field amplitudes at the magnetopause, is contrasted with the expression based on the whole reconnection electric field vector obtained by Gonzalez. The correlation examples of this report show that this (more general) expression for the reconnection power seems to correlate with the empirical dissipation parameter U sub(T) from Akasofu, with slightly better correlation coefficients than those obtained from similar correlations between the parameter epsilon and U sub(T). Thus, these (better) correlations show up for the more familiar values of the ratio B sub(G) / B sub(M) > 1. Nevertheless, the (expected) relatively small difference that seems to exist between these correlation coefficients suggests that, for practical purposes, the parameter epsilon could be used as well (instead of the more general expression) in similar correlation studies due to its impler format. On the other hand, studies that refer mainly to the difference in the magnitudes of epsilon and of the more general expression are expected to give results with less negligible differences. (Author) [pt

  3. Nonlinear waves in viscoelastic magnetized complex astroplasmas with polarized dust-charge variations

    Directory of Open Access Journals (Sweden)

    Papari Das

    2018-01-01

    Full Text Available A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed astro-structure formation, such as stellesimals, planetsimals, etc.

  4. Nonlinear waves in viscoelastic magnetized complex astroplasmas with polarized dust-charge variations

    Science.gov (United States)

    Das, Papari; Karmakar, Pralay Kumar

    2018-01-01

    A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV) equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed) astro-structure formation, such as stellesimals, planetsimals, etc.

  5. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  6. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  7. Particle Events as a Possible Source of Large Ozone Loss during Magnetic Polarity Transitions

    Science.gov (United States)

    vonKoenig, M.; Burrows, J. P.; Chipperfield, M. P.; Jackman, C. H.; Kallenrode, M.-B.; Kuenzi, K. F.; Quack, M.

    2002-01-01

    The energy deposition in the mesosphere and stratosphere during large extraterrestrial charged particle precipitation events has been known for some time to contribute to ozone losses due to the formation of potential ozone destroying species like NO(sub x), and HO(sub x). These impacts have been measured and can be reproduced with chemistry models fairly well. In the recent past, however, even the impact of the largest solar proton events on the total amount of ozone has been small compared to the dynamical variability of ozone, and to the anthropogenic induced impacts like the Antarctic 'ozone hole'. This is due to the shielding effect of the magnetic field. However, there is evidence that the earth's magnetic field may approach a reversal. This could lead to a decrease of magnetic field strength to less than 25% of its usual value over a period of several centuries . We show that with realistic estimates of very large solar proton events, scenarios similar to the Antarctic ozone hole of the 1990s may occur during a magnetic polarity transition.

  8. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields

    Science.gov (United States)

    Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-05-01

    We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite

  9. Ionic magnetic fluids in polar solvents with tuned counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Filomeno, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil); Kouyaté, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Cousin, F. [Lab. Léon Brillouin – CE-Saclay, Gif-sur-Yvette (France); Demouchy, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Dpt de physique, Univ. de Cergy Pontoise, Cergy-Pontoise (France); Dubois, E.; Michot, L.; Mériguet, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Perzynski, R., E-mail: regine.perzynski@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Peyre, V.; Sirieix-Plénet, J. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Tourinho, F.A. [Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil)

    2017-06-01

    The aim of the present study is to propose a new reproducible method for preparing colloidal dispersions of electrostatically charged nanoparticles (NPs) in polar solvents with different kinds of counter-ions. Maghemite NPs are here dispersed in solvents of different dielectric constant, namely water, dimethylsulfoxide (DMSO) and an ionic liquid, ethylammonium nitrate (EAN). If the existence of a NP superficial charge happens to be necessary for the colloidal stability of the dispersions in these three solvents, the standard DLVO theory cannot be used any more to describe the colloidal stability in EAN. The structure of the dispersions and the strength of the interparticle repulsion are investigated by small angle X-ray scattering measurements, in association with Ludwig–Soret coefficient determinations. Specificities, associated to the nature of the counter-ions are identified in this work on the colloidal stability, on the interparticle repulsion and on the Ludwig–Soret coefficient. - Highlights: • A controlled synthesis of ionic magnetic fluids in three polar solvents is proposed. • Colloidal repulsion in the magnetic fluids depends on the counter-ion nature. • Soret coefficient of citrate-coated maghemite nanoparticles is probed in water-pH7. • Thermophilicity of nanoparticles depends on the nature of their counter-ions. • Nanoparticles dressed with same counter-ions have solvent-dependent thermoproperties.

  10. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  11. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  12. Storm/substorm signatures in the outer belt

    International Nuclear Information System (INIS)

    Korth, A.; Friedel, R.H.W.; Mouikis, C.; Fennell, J.F.

    1998-01-01

    The response of the ring current region is compared for periods of storm and substorm activity, with an attempt to isolate the contributions of both processes. The authors investigate CRRES particle data in an overview format that allows the display of long-term variations of the outer radiation belt. They compare the evolution of the ring current population to indicators of storm (Dst) and substorm (AE) activity and examine compositional changes. Substorm activity leads to the intensification of the ring current at higher L (L ∼ 6) and lower ring current energies compared to storms (L ∼ 4). The O + /H + ratio during substorms remains low, near 10%, but is much enhanced during storms (can exceed 100%). They conclude that repeated substorms with an AE ∼ 900 nT lead to a ΔDst of ∼ 30 nT, but do not contribute to Dst during storm main phase as substorm injections do not form a symmetric ring current during such disturbed times

  13. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  14. An Analysis of Conjugate Ground-based and Space-based Measurements of Energetic Electrons during Substorms

    Science.gov (United States)

    Sivadas, N.; Semeter, J. L.

    2015-12-01

    Substorms within the Earth's magnetosphere release energy in the form of energetic charged particles and several kinds of waves within the plasma. Depending on their strength, satellite-based navigation and communication systems are adversely affected by the energetic charged particles. Like many other natural phenomena, substorms can have a severe economic impact on a technology-driven society such as ours. Though energization of charged particles is known to occur in the magnetosphere during substorms, the source of this population and its relation to traditional acceleration region dynamics, are not completely understood. Combining measurements of energetic charged particles within the plasmasheet and that of charged particles precipitated in to the ionosphere will provide a better understanding of the role of processes that accelerate these charged particles. In the current work, we present energetic electron flux measured indirectly using data from ground-based Incoherent Scatter Radar and that measured directly at the plasmasheet by the THEMIS spacecraft. Instances of low-altitude-precipitation observed from ground suggest electrons of energy greater than 300 keV, possibly arising from particle injection events during substorms at the magnetically conjugate locations in the plasmasheet. The differences and similarities in the measurements at the plasmasheet and the ionosphere indicate the role different processes play in influencing the journey of these energetic particles form the magnetosphere to the ionosphere. Our observations suggest that there is a lot more to be understood of the link between magnetotail dynamics and energetic electron precipitation during substorms. Understanding this may open up novel and potentially invaluable ways of diagnosing the magnetosphere from the ground.

  15. A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)

    Science.gov (United States)

    Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

    2014-05-01

    Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores

  16. Multipoint Observations of Energetic Particle Injections and Substorm Activity During a Conjunction Between Magnetospheric Multiscale (MMS) and Van Allen Probes

    Science.gov (United States)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Claudepierre, S. G.; Clemmons, J. H.; Jaynes, A. N.; Leonard, T.; Baker, D. N.; Cohen, I. J.; Gkioulidou, M.; Ukhorskiy, A. Y.; Mauk, B. H.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R. J.; Kletzing, C. A.; Le Contel, O.; Spence, H. E.; Torbert, R. B.; Burch, J. L.; Reeves, G. D.

    2017-11-01

    This study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE energy wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.

  17. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  18. Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current

    Science.gov (United States)

    Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.

    2018-06-01

    With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.

  19. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  20. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  1. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  2. Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA

    Science.gov (United States)

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Yen, Hsi-Wei; Su, Yu-Nung; Takakuwa, Shigehisa

    2018-03-01

    We present the first ALMA dust polarization observations toward the high-mass star-forming regions W51 e2, e8, and W51 North in Band 6 (230 GHz) with a resolution of about 0\\buildrel{\\prime\\prime}\\over{.} 26 (∼5 mpc). Polarized emission in all three sources is clearly detected and resolved. Measured relative polarization levels are between 0.1% and 10%. While the absolute polarization shows complicated structures, the relative polarization displays the typical anticorrelation with Stokes I, although with a large scatter. Inferred magnetic (B) field morphologies are organized and connected. Detailed substructures are resolved, revealing new features such as comet-shaped B-field morphologies in satellite cores, symmetrically converging B-field zones, and possibly streamlined morphologies. The local B-field dispersion shows some anticorrelation with the relative polarization. Moreover, the lowest polarization percentages together with largest dispersions coincide with B-field convergence zones. We put forward \\sin ω , where ω is the measurable angle between a local B-field orientation and local gravity, as a measure of how effectively the B field can oppose gravity. Maps of \\sin ω for all three sources show organized structures that suggest a locally varying role of the B field, with some regions where gravity can largely act unaffectedly, possibly in a network of narrow magnetic channels, and other regions where the B field can work maximally against gravity.

  3. A polarized neutron study of the magnetization distribution in Co2FeSi

    International Nuclear Information System (INIS)

    Brown, P J; Kainuma, R; Kanomata, T; Okubo, A; Neumann, K-U; Umetsu, R Y; Ziebeck, K R A

    2013-01-01

    The magnetization distribution in Co 2 FeSi which has the largest moment per formula unit ∼6 μ B of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L1 2 structure giving μ Fe = 3.10(3) μ B and μ Co = 1.43(2) μ B , results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with e g symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co 2 FeSi is not a perfect half-metallic ferromagnet. (paper)

  4. Magnetic properties of polar ZnO surfaces from ab-initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Guntram; Adeagbo, Waheed; Hergert, Wolfram [University Halle, Halle (Germany); Ernst, Arthur [Max-Planck-Institute of Microstructure Physics, Halle (Germany); Sanchez, Nadia; Mu noz, Carmen [Instituto de Ciencia de Materiales de Madrid, Madrid (Spain); Szotek, Zdzislawa; Temmerman, Walter [Daresbury Laboratory, Warrington (United Kingdom)

    2011-07-01

    We have investigated a magnetic moment formation of three oxygen-terminated polar ZnO surfaces. Specifically, these are the (000-1) surface, the (0001) surface with an oxygen atom on top of the Zn atom [(0001)-t], and the (0001) surface with an oxygen atom in a threefold hollow site [(0001)-h]. In this study we have used a multi-code approach allowing us to relax the surface structure and calculate the Heisenberg exchange parameters via a magnetic force theorem. Also, the influence of applying self-interaction corrections (SIC) to the oxygen p orbitals has been investigated. Our calculations show that all three surfaces are magnetic. In addition, we find that applying SIC is necessary to correctly describe the top oxygen atom of the (0001)-h and (0001)-t surfaces, for both of which we find Curie temperatures to be larger than room temperature. The latter have been derived from Monte Carlo simulations based on the calculated exchange parameters.

  5. A polarized neutron study of the magnetization distribution in Co₂FeSi.

    Science.gov (United States)

    Brown, P J; Kainuma, R; Kanomata, T; Neumann, K-U; Okubo, A; Umetsu, R Y; Ziebeck, K R A

    2013-05-22

    The magnetization distribution in Co2FeSi which has the largest moment per formula unit ∼6 μB of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L12 structure giving μ Fe = 3.10(3) μB and μ Co = 1.43(2) μB, results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with eg symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co2FeSi is not a perfect half-metallic ferromagnet.

  6. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    Science.gov (United States)

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  7. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  8. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    Science.gov (United States)

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  9. Magnetic field calculation of variably polarizing undulator (APPLE-type) for SX beamline in the SPring-8

    International Nuclear Information System (INIS)

    Kobayashi, Hideki; Sasaki, Shigemi; Shimada, Taihei; Takao, Masaru; Yokoya, Akinori; Miyahara, Yoshikazu

    1996-03-01

    This paper describes the design of a variably polarizing undulator (APPLE-type) to be installed in soft X-ray beamline in the SPring-8 facility. The magnetic field distribution and radiation spectrum expected from this undulator were calculated. The magnetic field strength is varied by changing the gap distance of upper and lower jaws, so it changes the photon energy in soft X-ray range. By moving the relative position of pairs of magnet rows (phase shift), the polarization of radiation is varied circularly, elliptically and linearly in the horizontal and vertical direction. We expect that right and left handed circular polarizations are obtained alternately at a rate of 1 Hz by high speed phase shifting. The repulsive and attractive magnetic force working on the magnet rows were calculated which interfere in phase shifting at high speed. The magnetic force changes with gap distance and phase shift position, and the magnetic force working on a row in the direction of phase shift becomes up to 500 kgf. The construction of this undulator is started in 1996, that will be inserted in the storage ring in 1997. (author)

  10. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  11. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  12. Three-dimensional polarization characteristics of magnetic variations in the Pc 5 frequency range at conjugate areas near L=4

    International Nuclear Information System (INIS)

    Fukunishi, H.; Lanzerotti, L.J.; MaClennan, C.G.

    1975-01-01

    By using magnetic data measured at a network of stations extending from L approx. 3.2 to L approx. 4.4 and at a station in the conjugate area, ellipticities in the three orthogonal planes (H-D, H-Z, and D-Z) for the frequency range 2-5 mHz were computed continuously by the cross-spectral matrix method over 10 days with various levels of magnetic activity. The ellipticity diagrams in the H-D plane show that, except for the time interval during the main phase of a major magnetic storm, the sense of polarization reverses every day across local noon, with a left-hand polarization observed during local morning hours and a right-hand polarization observed during local evening hours, regardless of the level of magnetic activity. The second reversal of the sense of polarization occurs generally around approx. 2000 LT. The ellipticity diagrams in the H-Z plane show a predominantly clockwise polarization throughout the day, while the diurnal variation of the ellipticity in the D-Z plane tends to be confused. As to the latitude dependence of the wave phase, it is found that the D component oscillations are almost in phase at all latitudes, while the H component oscillations have advanced phase shifts at the lower-latitude stations. As to the conjugate dependence of wave phase, it is found that the D component oscillations are almost out of phase, while the H component oscillations are almost in phase atthe conjugate pair stations. These polarization characteristics are discussed in terms of external driving sources coupling to the shear Alfven waves of the local resonant field lines. Possible energy sources of Pc 5 waves are also discussed on the basis of the local time dependence of the sense of polarization

  13. Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave

    International Nuclear Information System (INIS)

    Bellan, P. M.

    2013-01-01

    The interaction between a circularly polarized wave and an energetic gyrating particle is described using a relativistic pseudo-potential that is a function of the frequency mismatch. Analysis of the pseudo-potential provides a means for interpreting numerical results. The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves show that the energetic electron pitch angle can be deflected 5°towards the loss cone when transiting a 10 ms long coherent wave packet having realistic parameters.

  14. Change of cobalt magnetic anisotropy and spin polarization with alkanethiolates self-assembled monolayers

    International Nuclear Information System (INIS)

    Campiglio, Paolo; Breitwieser, Romain; Repain, Vincent; Guitteny, Solène; Chacon, Cyril; Bellec, Amandine; Lagoute, Jérôme; Girard, Yann; Rousset, Sylvie; Sassella, Adele; Imam, Mighfar; Narasimhan, Shobhana

    2015-01-01

    We demonstrate that the deposition of a self-assembled monolayer of alkanethiolates on a 1 nm thick cobalt ultrathin film grown on Au(111) induces a spin reorientation transition from in-plane to out-of-plane magnetization. Using ab initio calculations, we show that a methanethiolate layer changes slightly both the magnetocrystalline and shape anisotropy, both effects almost cancelling each other out for a 1 nm Co film. Finally, the change in hysteresis cycles upon alkanethiolate adsorption could be assigned to a molecular-induced roughening of the Co layer, as shown by STM. In addition, we calculate how a methanethiolate layer modifies the spin density of states of the Co layer and we show that the spin polarization at the Fermi level through the organic layer is reversed as compared to the uncovered Co. These results give new theoretical and experimental insights for the use of thiol-based self-assembled monolayers in spintronic devices. (paper)

  15. Field-induced magnetic phases and electric polarization in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one...... is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total...

  16. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard; Pemmaraju, C. D.; Sanvito, Stefano; Ruiz, Eliseo

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green's function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  17. Polarization study of non-resonant X-ray magnetic scattering from spin-density-wave modulation in chromium

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Takata, Masaki

    2007-01-01

    We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal

  18. Origin and enhancement of spin polarized current in diluted magnetic oxides by oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw; Yang, Kung-Shang; Tsao, Yao-Chung; Dwivedi, G. D.; Lin, Cheng-Pang [Department of Physics, National Sun Yat-Sen University, 70, Lienhai Road, Gushan District, Kaohsiung 804, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, 700, Gaoxiongdaxue Rd., Nanzi District, Kaohsiung 811, Taiwan (China); Lin, L. K.; Lee, S. F. [Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan (China)

    2016-04-04

    Spin polarized current (SPC) is a crucial characteristic of diluted magnetic oxides due to the potential application of oxides in spintronic devices. However, most research has been focused on ferromagnetic properties rather than polarization of electric current, because direct measurements are difficult and the origin of SPC has yet to be fully understood. The method to increase the SPC percentage is beyond practical consideration at present. To address this problem, we focus on the role of oxygen vacancies (V{sub O}) on SPC, which are controlled by growing the Co-doped ZnO thin-films at room temperature in a reducing atmosphere [Ar + (1%–30%)H{sub 2}]. We found that the conductivity increases with an increase of V{sub O} via two independent channels: the variable range hopping (VRH) within localized states and the itinerant transport in the conduction band. The point contact Andreev reflection measurements at 4.2 K, where the electric conduction is governed only by the VRH mechanism, prove that the current flowing in the VRH hopping channel is SPC. The percentage of SPC increases with the introduction of V{sub O} and increase in its concentration. The transport measurement shows that by manipulating V{sub O}, one can control the percentage of VRH hopping conduction such that it can even dominate room temperature conduction. The highest achieved SPC ratio at room temperature was 80%.

  19. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  20. A physical mechanism producing suprathermal populations and initiating substorms in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2008-06-01

    Full Text Available We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS the stretched (tail-like magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≈7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≈10 RE selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now

  1. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  2. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  3. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  4. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    International Nuclear Information System (INIS)

    Lester, M.; Freeman, M.P.; Southwood, D.J.; Waldock, J.A.; Singer, H.J.

    1990-01-01

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at ∼ 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thence to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s -1 . the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s -1

  5. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  6. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DEFF Research Database (Denmark)

    Aghanim, N.; Alves, M. I R; Arzoumanian, D.

    2016-01-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the...

  7. Laser polarization dependent and magnetically control of group velocity in a dielectric medium doped with nanodiamond nitrogen vacancy centers

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir

    2014-03-01

    In this paper, group velocity control of Gaussian beam in a dielectric medium doped with nanodiamond nitrogen vacancy (NV) centers under optical excitation is discussed. The shape of transmitted and reflected pulses from dielectric can be tuned by changing the intensity of magnetic field and polarization of the control beam. The effect of intensity of control beam on group velocity is also investigated.

  8. Potentiodynamic polarization assays on magnetic materials for new medical micro-devices

    Energy Technology Data Exchange (ETDEWEB)

    Pouponneau, P. [Ecole Polytechnique de Montreal, PQ (Canada). Nanorobotics Lab; Ecole Polytechnique de Montreal, PQ (Canada). Biomedical Engineering Inst., Laboratory for the Innovation and Analysis of Bioperformance; Savadogo, O.; Napporn, T. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Yahia, L' H. [Ecole Polytechnique de Montreal, PQ (Canada). Biomedical Engineering Inst., Laboratory for the Innovation and Analysis of Bioperformance; Martel, S. [Ecole Polytechnique de Montreal, PQ (Canada). Nanorobotics Lab

    2008-07-01

    This study investigated the corrosion behaviour of a terbium (Tb0.27Dy0.73Fe1.95) alloy and single crystal nickel (Ni-Mn-Ga) alloy smart magnetic materials (SMM), and Vacoflux 17 and Permendur iron-cobalt alloys. Previous studies have shown that the materials demonstrate a high potential for use in wireless medical microdevices controlled by magnetic fields. However, the Tb0.27Dy0.73Fe1.95 alloy has poor corrosion properties due to its high corrosion potential and corrosion current. Corrosion behaviour was investigated using potentiodynamic polarization measurements and scanning electron microscopy. The study showed that the surface of the alloy was impaired by cracks and holes. The single crystal Ni-Mn Ga alloy demonstrated higher corrosion resistance. The SMM were then embedded into a bio-compatible matrix to form composite with the Vacoflux 17 and Permendur alloys. The study showed that while the Vacoflux 17 surface was degraded by cracks and pits, the Permendur surface was uniformly corroded without pitting. The uniform corrosion was attributed to the formation of a stable passive layer. 4 refs., 3 figs.

  9. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.

    Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  10. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2002-09-01

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  11. The Origin of the Near-Earth Plasma Population During a Substorm on November 24, 1996

    Science.gov (United States)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had already entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft. Distribution functions computed at the ion sources indicate that ionospheric ions reaching Geotail during the expansion phase were significantly heated. Plasma mantle source distributions indicated the presence of a high-latitude reconnection region that allowed ion entry into the magnetosphere when the IMF was northward. These ions reached Geotail during the expansion phase. Ions from the traditional plasma mantle had access to the spacecraft throughout the substorm.

  12. Neutron multimonochromator-bipolarizer based on magnetic multilayer Fe/Co and new scheme for the total neutron polarization analysis

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Zaw Lin, Kyaw

    2017-01-01

    In this paper, we present a new neutron-optical element, Neutron Multimonochromator-Bipolarizer (NMB). It consists of a multimultilayer structure made of 12 periodic multilayer Fe/Co magnetic nanostructures whose period increases with distance from the substrate. Results are presented of calculations of the reflection coefficients from the NMB. We propose a new scheme of the total neutron polarization analysis for the time-of-flight method in the reflectometry. In this scheme, double NMB is used as a polarizer and there is no spin-flipper before the sample. NMB can be used in polarized neutron reflectometry, in SESANS, and for research of low-angle and inelastic scattering of polarized neutrons. (paper)

  13. Direct observations of blob deformation during a substorm

    Directory of Open Access Journals (Sweden)

    T. Ishida

    2015-05-01

    Full Text Available Ionospheric blobs are localized plasma density enhancements, which are mainly produced by the transportation process of plasma. To understand the deformation process of a blob, observations of plasma parameters with good spatial–temporal resolution are desirable. Thus, we conducted the European Incoherent Scatter radar observations with high-speed meridional scans (60–80 s during October and December 2013, and observed the temporal evolution of a blob during a substorm on 4 December 2013. This paper is the first report of direct observations of blob deformation during a substorm. The blob deformation arose from an enhanced plasma flow shear during the substorm expansion phase, and then the blob split into two smaller-scale blobs, whose scale sizes were more than ~100 km in latitude. Our analysis indicates that the Kelvin–Helmholtz instability and dissociative recombination could have deformed the blob structure.

  14. Simulation of the interchange instability in a magnetospheric substorm site

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2006-07-01

    Full Text Available We perform modeling of the interchange instability driven by longitudinal pressure asymmetry in the region of the pressure buildup that forms in the inner magnetosphere at the substorm growth phase. The simulation refers to the dawnward side of the Harang discontinuity and times after Bz IMF turning northward. The solution for the equilibrium state indicates tailward flows associated with vortices, which is in agreement with a previous finding of Ashour-Abdalla et al. (1999, 2002. We show that in the regions of equilibrium field-aligned currents (FACs, small initial perturbations in pVγ (p is the isotropic plasma pressure, V is the unit magnetic flux tube volume, γ=5/3 the adiabatic exponent, set up as ripples inclined to azimuth, grow in time. For the background FAC of ~10-6 A/m2, the linear growth rate of the instability is ~6 min. Starting from the 12th min of evolution, the perturbations exhibit nonlinear deformations, develop undulations and front steepening. An interesting peculiarity in the distribution of the associated small-scale FACs is that they become asymmetric with time. Specifically, the downward currents are more localised, reaching densities up to 15×10-6 A/m2 at the nonlinear stage. The upward FACs are more dispersed. When large enough, these currents are likely to produce the aurora. We also run our simulation for the initial perturbations of large transverse scales in order to demonstrate that the interchange instability can be responsible for pressure and cross-tail current spatial variations of great extent.

  15. Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer

    International Nuclear Information System (INIS)

    Paschmann, G.; Haerendel, G.; Sckopke, N.; Rosenbauer, H.; Hedgecock, P.C.

    1976-01-01

    Heos 2 plasma and magnetic field measurements in the distant polar cusp region reveal the existence of a plasma layer on day side field lines just inside the magnetopause. Density and temperature in this layer are nearly the same as they are in the adjacent magnetosheath, but the flow lacks the order existing both in the magnetosheath and in the plasma mantle. Flow directions toward and away from the sun but, in general, parallel to the field lines have been found. The magnetopause (as defined by a sudden rotation of the magnetic field vector) mostly coincides with the transition to ordered magnetosheath flow. The inner boundary of the layer is located just within the outer boundary of the hot ring current plasma. In the region of overlap the hot electrons have the signature of trapped particles, though often at reduced intensity. The magnetic field is strongly fluctuating in magnitude, while its orientation is more stable, consistent with a connection to the earth, but is systematically distorted out of the meridian plane. The layer is thought to be a consequence of the entry of magnetosheath plasma, which does not appear to be unobstructed, as has been claimed in the concept of a magnetospheric cleft. The magnetopause has a cusplike indentation which is elongated in local time. The existence of field-aligned currents (total strength approx. =10 6 A) and their location of flow in the inner part of the entry layer (into the ionosphere before noon and out of it after noon) are inferred from the systematic bending of field lines. It is proposed that the dynamo of the related current system is provided by the transfer of perpendicular momentum resulting from the plasma entry into the layer. The essential features of the entry layer might be compatible with the model of plasma flow through the magnetopause of Levy et al. (1964) if a 'dam' effect caused by the cusp geometry were added

  16. High-resolution energetic particle measurements at 6.6R/sub E/ 3. Low-energy electron anisotropies and short-term substorm predictions

    International Nuclear Information System (INIS)

    Baker, D.N.; Higbie, P.R.; Hones, E.W. Jr.; Belian, R.D.

    1978-01-01

    Multiple detectors giving nearly complete 4π coverage of particle pitch angle distributions have provided high resolution measurements (in energy and time) of 30- to 300-keV electrons. Data from a spacecraft (1976-059A) in geostationary orbit show a remarkably consistent sequence of variations of the electron anisotropy before and during magnetospheric substorms. For periods typically 1--2 hours prior to the onset of substorms, electron distributions, peaked along the direction of the local magnetic field, are observed in the premidnight sector. These cigarlike anisotropies are accompanied by a local taillike magnetic field which may develop further during the event. At substorm onset an abrupt transition usually occurs from the cigar-shaped distributions to pancake-shaped distributions. This anisotropy sequence may be due to the buildup and subsequent release of stresses in the magnetotail; the cigar phase may also be due to associated processes at the dayside magnetopause causing a loss of 90 0 pitch angle particles. The present observations, based on approx.100 events, appear to provide a predictive tool for assessing the probability of occurrence of a substorm

  17. Plasma polarization spectroscopy on the ECR helium plasma in a cusp magnetic field

    International Nuclear Information System (INIS)

    Sato, T.; Iwamae, A.; Fujimoto, T.; Uchida, M.; Maekawa, T.

    2004-01-01

    Helium emission lines have been observed on the ECR plasma in a cusp field with the polarized components resolved. The polarization map is constructed for the 501.6 nm (2 1 S-3 1 P) line emission. Lines from n 1 P and n 1 D levels are strongly polarized and those from n 3 D levels are weakly polarized. As the helium pressure increases the polarization degree decreases. (author)

  18. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  19. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang

    2013-12-02

    The mutual controls of ferroelectricity and magnetism are stepping towards practical applications proposed for quite a few promising devices in which multiferroic thin films are involved. Although ferroelectricity stemming from specific spiral spin ordering has been reported in highly distorted bulk perovskite manganites, the existence of magnetically induced ferroelectricity in the corresponding thin films remains an unresolved issue, which unfortunately halts this step. In this work, we report magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement, the ferroelectric coercivity corresponding to the magnetic chirality switching field is significantly increased. A picture based on coupled multicomponent magnetic structures is proposed to understand these features. Moreover, different magnetic anisotropy related to strain-suppressed GdFeO 3-type distortion and Jahn-Teller effect is identified in the films.

  20. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Fabbian, D. [Max-Planck-Institut für Sonnensytemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rezaei, R. [Instituto de Astrofísica de Canarias, C/Vía Láctea S/N, E-38205 La Laguna, Tenerife (Spain); Puschmann, K. G., E-mail: cbeck@nso.edu [Alzenau (Germany)

    2017-06-10

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.

  1. Spin polarization and magnetization of conduction-band dilute-magnetic-semiconductor quantum wells with non-step-like density of states

    International Nuclear Information System (INIS)

    Simserides, Constantinos

    2005-01-01

    We study the magnetization, M, and the spin polarization, ζ, of n-doped non-magnetic-semiconductor (NMS)/narrow to wide dilute-magnetic-semiconductor (DMS)/n-doped NMS quantum wells, as a function of the temperature, T, and the in-plane magnetic field, B. Under such conditions the density of states (DOS) deviates from the occasionally stereotypic step-like form, both quantitatively and qualitatively. The DOS modification causes an impressive fluctuation of M in cases of vigorous competition between spatial and magnetic confinement. At low T, the enhanced electron spin-splitting, U oσ , acquires its bigger value. At higher T, U oσ decreases, augmenting the influence of the spin-up electrons. Increasing B, U oσ increases and accordingly electrons populate spin-down subbands while they abandon spin-up subbands. Furthermore, due to the DOS modification, all energetically higher subbands become gradually depopulated

  2. Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kunal [Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); De, Debashis, E-mail: dr.debashis.de@ieee.org [Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); Bandyopadhyay, Jaya [Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); Dutta, Nabanita; Rana, Subhasis; Sen, Pintu [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata, 700 064 (India); Bandyopadhyay, Sujit Kumar, E-mail: drsujitkumar@gmail.com [Meghnad Saha Institute of Technology, Nazirabad Rd, Uchhepota, Kolkata, West Bengal, 700150 (India); Chakraborty, P.K. [Department of Physics, Burdwan University, Burdwan, 713104 (India)

    2017-07-01

    The present work reports on the physical and biophysical characterization of bismuth ferrite (BFO) nanorods fabricated on porous anodized alumina (AAO) templates. The diameter of the nanorods was quite large, which vary in the range of 20–100 nm. The BFO nanorods exhibited enhanced polarization and significant magnetic susceptibility. Moreover, an enhanced magnetoelectric coupling was evident from magnetocapacitance measurements, which exhibited a power law. Upon analyzing through optical, petri-plate and electron microscopy imaging, we observed that, the asymmetric structure of the nanorods gave rise to augmented antibacterial response against the chosen bacteria (Staphylococcus aureus). The x-ray photoelectron spectra (XPS) data have exhibited significant peak shifts upon interaction with bacterial cells owing to a change of Bi oxidation state from one to another. Thus potential redox reaction, which might take place at the material-bio interface, is ascertained for bacterial death. Apart from physical insights, understanding the interaction between the bacteria and the nanorods of BFO could pave the way in exploring the antibacterial potentiality of such anisotropic nanoscale systems. - Highlights: • AAO supported BiFeO3 (BFO) nanorods have been investigated. • The polarization of BFO nanorods was observed to be remarkably high (∼0.04 μC/cm{sup 2}). • Strong antibacterial activity of nanorods was witnessed against Staphylococcus aureus. • The deskinned area on cytoskeletal parts as revealed through TEM imaging, suggest strong cidal activity of the nanorods. • XPS data justifies shifting of the peak due to biophysical interaction at the interface releasing reactive oxygen species.

  3. Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods

    International Nuclear Information System (INIS)

    Biswas, Kunal; De, Debashis; Bandyopadhyay, Jaya; Dutta, Nabanita; Rana, Subhasis; Sen, Pintu; Bandyopadhyay, Sujit Kumar; Chakraborty, P.K.

    2017-01-01

    The present work reports on the physical and biophysical characterization of bismuth ferrite (BFO) nanorods fabricated on porous anodized alumina (AAO) templates. The diameter of the nanorods was quite large, which vary in the range of 20–100 nm. The BFO nanorods exhibited enhanced polarization and significant magnetic susceptibility. Moreover, an enhanced magnetoelectric coupling was evident from magnetocapacitance measurements, which exhibited a power law. Upon analyzing through optical, petri-plate and electron microscopy imaging, we observed that, the asymmetric structure of the nanorods gave rise to augmented antibacterial response against the chosen bacteria (Staphylococcus aureus). The x-ray photoelectron spectra (XPS) data have exhibited significant peak shifts upon interaction with bacterial cells owing to a change of Bi oxidation state from one to another. Thus potential redox reaction, which might take place at the material-bio interface, is ascertained for bacterial death. Apart from physical insights, understanding the interaction between the bacteria and the nanorods of BFO could pave the way in exploring the antibacterial potentiality of such anisotropic nanoscale systems. - Highlights: • AAO supported BiFeO3 (BFO) nanorods have been investigated. • The polarization of BFO nanorods was observed to be remarkably high (∼0.04 μC/cm 2 ). • Strong antibacterial activity of nanorods was witnessed against Staphylococcus aureus. • The deskinned area on cytoskeletal parts as revealed through TEM imaging, suggest strong cidal activity of the nanorods. • XPS data justifies shifting of the peak due to biophysical interaction at the interface releasing reactive oxygen species.

  4. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  5. Revised magnetic polarity time scale for the Paleocene and early Eocene and implications for Pacific plate motion

    International Nuclear Information System (INIS)

    Butler, R.F.; Coney, P.J.

    1981-01-01

    Magnetostratiographic studies of a continental sedimentary sequence in the Clark's Fork Basin, Wyoming and a marine sedimentary sequence at Gubbio, Italy indicate that the Paleocene--Eocene boundary occurs just stratigraphically above normal polarity zones correlative with magnetic anomaly 25 chron. These data indicate that the older boundary of anomaly 24 chron is 52.5 Ma. This age is younger than the late Paleocene age assigned by LaBrecque et al. [1977] and also younger than the basal Eocene age assigned by Ness et al. [1980]. A revised magnetic polarity time scale for the Paleocene and early Eocene is presented in this paper. Several changes in the relative motion system between the Pacific plate and neighboring plates occurred in the interval between anomaly 24 and anomaly 21. A major change in absolute motion of the Pacific plate is indicated by the bend in the Hawaiian--Emperor Seamount chain at approx.43 Ma. The revised magnetic polarity time scale indicates that the absolute motion change lags the relative motion changes by only approx.3--5 m.y. rather than by >10 m.y. as indicated by previous polarity time scales

  6. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  7. Substorm observations in the early morning sector with Equator-S and Geotail

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    1999-12-01

    Full Text Available Data from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03–04 MLT at a radial distance of 10–11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20–04 MLT, on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2–5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; plasma sheet; storms and substorms

  8. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    Science.gov (United States)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  9. On flares, substorms and the theory of impulsive flux transfer events

    International Nuclear Information System (INIS)

    Bratenahl, A.; Baum, P.J.

    1976-01-01

    Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of 'neutral sheet' theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE. (Auth.)

  10. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement

    Science.gov (United States)

    Rosen, Matthew Scot

    2001-07-01

    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  11. Magnetic field-dependent polarization of (111)-oriented PZT–Co ferrite nanobilayer: Effect of Co ferrite composition

    Energy Technology Data Exchange (ETDEWEB)

    Khodaei, M. [Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Seyyed Ebrahimi, S.A., E-mail: saseyyed@ut.ac.ir [Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jun Park, Yong [Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Son, Junwoo; Baik, Sunggi [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2015-05-15

    The perfect (111)-oriented PZT/CFO (CFO=CoFe{sub 2}O{sub 4}, Co{sub 0.8}Fe{sub 2.2}O{sub 4} and Co{sub 0.6}Mn{sub 0.2}Fe{sub 2.2}O{sub 4}) bilayer multiferroic thin films were grown on Pt(111)/Si substrate at 600 °C using pulsed laser deposition technique. The precision X-ray diffraction analysis (avoiding the shift of peak due to the sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and deposition of PZT top layer led to more increase in the out-of-plane contraction, i.e. increase in the residual stresses. The PZT and CFO layers have significant effects on magnetic and ferroelectric properties of PZT/CFO bilayer films, respectively, leading to an enhanced in-plane magnetic anisotropy as well as increased and asymmetric polarization. The effect of composition of CFO layer on magnetic field-dependent polarization of PZT/CFO bilayer films was investigated by applying the magnetic field during P-E measurement. The polarization of PZT films were increased by applying the magnetic field as a result of strain transferred from magnetostrictive CFO underlayer. This increase in polarization for PZT/Co{sub 0.6}Mn{sub 0.2}Fe{sub 2.2}O{sub 4} was higher than that for PZT/Co{sub 0.8}Fe{sub 2.2}O{sub 4} and both of them were significantly higher than that for PZT/CoFe{sub 2}O{sub 4} bilayer film, which was discussed based on their magnetostriction properties. - Highlights: • The effect of composition of CFO on P–E characteristics of PZT/CFO films was investigated. • The polarization of PZT films were increased by applying the magnetic field. • The increasing polarization was a result of strain from magnetostrictive CFO underlayer.

  12. Height-integrated conductivity in auroral substorms. 1. Data

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2000-01-01

    to select substorms which display a typical bulge-type auroral emission pattern and to organize the position of individual DE 2 passes with respect to key features in the emission pattern. The Hall and Pedersen conductances are calculated from electron precipitation data obtained by the low altitude plasma...

  13. Ionospheric effects of magnetospheric substorms during SUNDIAL and their modelling

    International Nuclear Information System (INIS)

    Goncharova, E.E.; Kishcha, P.V.; Shashun'kina, V.M.; Telegin, V.A.

    1993-01-01

    Ionospheric effects of substorms are considered using the networks of the vertical probing stations during SUNDIAL periods. Calculations of electron concentration distribution and comparison of calculation results with experimental data are conducted on the basis of the developed technique of simulation of large-scale internal gravitational wave effects

  14. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    Energy Technology Data Exchange (ETDEWEB)

    Dechent, Jan Falk Frederik

    2012-12-17

    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for {sup 1}H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high {sup 1}H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus {sup 1}H for e.g. metabolic imaging in the future.

  15. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    International Nuclear Information System (INIS)

    Dechent, Jan Falk Frederik

    2012-01-01

    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1 H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high 1 H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus 1 H for e.g. metabolic imaging in the future.

  16. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Woch, J.; Lundin, R.

    1992-01-01

    Magnetosheath particle precipitation in the polar cusp region is studied based on Viking hot plasma data obtained on meridional cusp crossings. Two distinctively different regions are commonly encountered on a typical pass. One region is characterized by high-density particle precipitation, with an ion population characterized by a convecting Maxwellian distribution. Typical magnetosheath parameters are inferred for the spectrum of the source population. The spectral shape of the ion population encountered in the second region suggests that here the magnetosheath ions have been energized by about 1 keV, corresponding to an ion velocity gain of about twice the magnetosheath Alfven velocity. The location of the region containing the accelerated plasma is dependent on the IMF B z component. For southward IMF the acceleration region is bounded by the ring current population on the equatorward side and by the unaccelerated magnetosheath plasma precipitation on the poleward side. For northward IMF the region is located at the poleward edge of the region with unaccelerated precipitation. The accelerated ion population is obviously transported duskward (dawnward) for a dawnward (duskward) directed IMF. These observations are interpreted as evidence for plasma acceleration due to magnetopause current sheet disruptions/merging of magnetospheric and interplanetary magnetic flux tubes

  17. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  18. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  19. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)], E-mail: manuel.inarrea@unirioja.es

    2009-05-30

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  20. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    International Nuclear Information System (INIS)

    Inarrea, Manuel

    2009-01-01

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  1. Study of the in-plane magnetic structure of a layered system using polarized neutron scattering under grazing incidence geometry

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, R., E-mail: ryuji.maruyama@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Bigault, T.; Wildes, A.R.; Dewhurst, C.D. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France); Soyama, K. [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Courtois, P. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France)

    2016-05-21

    The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.

  2. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  3. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet.

    Science.gov (United States)

    Regnault, L-P; Boullier, C; Lorenzo, J E

    2018-01-01

    The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  4. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO42 frustrated honeycomb-lattice magnet

    Directory of Open Access Journals (Sweden)

    L.-P. Regnault

    2018-01-01

    Full Text Available The magnetic properties of the cobaltite BaCo2(AsO42, a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q, we have been able to determine the low-temperature magnetic structure of BaCo2(AsO42 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector k1=(kx,0,kz, with kx=0.270±0.005 and kz≈−1.31 appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component ≈0.25μB/Co2+, representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements Pyz and Pzy of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors Q=(0.27,0,3.1 and Q=(0.73,0,0.8 (energy transfer ΔE≈2.3 meV, no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic Pyz and Pzy matrix elements can be understood by assuming that the magnetic excitations in BaCo2(AsO42 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  5. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  6. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet.

    Science.gov (United States)

    Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E

    2015-04-01

    We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl