WorldWideScience

Sample records for polar lander mission

  1. Mercury Lander Mission Concept Study Summary

    Science.gov (United States)

    Eng, D. A.

    2018-05-01

    Provides a summary of the Mercury Lander Mission Concept Study performed as part of the last Planetary Decadal Survey. The presentation will focus on engineering trades and the challenges of developing a Mercury lander mission.

  2. The Philae lander mission and science overview.

    Science.gov (United States)

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian

    2017-07-13

    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  3. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  4. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  5. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  6. Asteroid Redirection Mission Evaluation Using Multiple Landers

    Science.gov (United States)

    Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-01-01

    In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.

  7. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    Science.gov (United States)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  8. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  9. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    Science.gov (United States)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  10. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    Science.gov (United States)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; hide

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  11. Viking Lander imaging investigation: Picture catalog of primary mission experiment data record

    Science.gov (United States)

    Tucker, R. B.

    1978-01-01

    All the images returned by the two Viking Landers during the primary phase of the Viking Mission are presented. Listings of supplemental information which described the conditions under which the images were acquired are included together with skyline drawings which show where the images are positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. The mission and the camera system are briefly described.

  12. Lander Technologies

    Science.gov (United States)

    Chavers, Greg

    2015-01-01

    Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.

  13. The Inferred Distribution of Liquid Water in Europa's Ice Shell: Implications for the Europa Lander Mission

    Science.gov (United States)

    Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.

    2017-12-01

    A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a

  14. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    Science.gov (United States)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  15. Preface: The Chang'e-3 lander and rover mission to the Moon

    International Nuclear Information System (INIS)

    Ip Wing-Huen; Yan Jun; Li Chun-Lai; Ouyang Zi-Yuan

    2014-01-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions

  16. Preface: The Chang'e-3 lander and rover mission to the Moon

    Science.gov (United States)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  17. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    Science.gov (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  18. Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission.

    Science.gov (United States)

    Barger, Laura K; Sullivan, Jason P; Vincent, Andrea S; Fiedler, Edna R; McKenna, Laurence M; Flynn-Evans, Erin E; Gilliland, Kirby; Sipes, Walter E; Smith, Peter H; Brainard, George C; Lockley, Steven W

    2012-10-01

    To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Operational field study. PML Science Operations Center. Scientific and technical personnel supporting PML mission. Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions.

  19. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    Science.gov (United States)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing

  20. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-09-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  1. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  2. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    Science.gov (United States)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  3. The Polarized Radiation Imaging and Spectroscopy Mission

    CERN Document Server

    André, Philippe; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoȋt, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J.A.P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford; Cabrera, Nicolas

    2014-01-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM

  4. Rationale for a Mars Pathfinder mission to Chryse Planitia and the Viking 1 lander

    Science.gov (United States)

    Craddock, Robert A.

    1994-01-01

    Presently the landing site for Mars Pathfinder will be constrained to latitudes between 0 deg and 30 deg N to facilitate communication with earth and to allow the lander and rover solar arrays to generate the maximum possible power. The reference elevation of the site must also be below 0 km so that the descent parachute, a Viking derivative, has sufficient time to open and slow the lander to the correct terminal velocity. Although Mars has as much land surface area as the continental crust of the earth, such engineering constraints immediately limit the number of possible landing sites to only three broad areas: Amazonis, Chryse, and Isidis Planitia. Of these, both Chryse and Isidis Planitia stand out as the sites offering the most information to address several broad scientific topics.

  5. MASCOT2, a Lander to Characterize the Target of an Asteroid Kinetic Impactor Deflection Test (AIM) Mission

    Science.gov (United States)

    Biele, J.; Ulamec, S.; Krause, C.; Cozzoni, B.; Lange, C.; Grundmann, J. T.; Grimm, C.; Ho, T.-M.; Herique, A.; Plettemeier, D.; Grott, M.; Auster, H.-U.; Hercik, D.; Carnelli, I.; Galvez, A.; Philippe, C.; Küppers, M.; Grieger, B.; Gil Fernandez, J.; Grygorczuk, J.

    2017-09-01

    In the course of the AIDA/AIM mission studies [1,2] a lander, MASCOT2, has been studied to be deployed on the moon of the binary Near-Earth Asteroid system, (65803) Didymos. The AIDA technology demonstration mission, composed of a kinetic impactor, DART, and an observing spacecraft, AIM, has been designed to deliver vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. This will enable derivation of the impact response of the object as a function of its physical properties, a crucial quantitative point besides the qualitative proof that the asteroid has been deflected at all. A landed asset on the target asteroid greatly supports analyzing its dynamical state, mass, geophysical properties, surface and subsurface structure. The lander's main instrument is a bistatic, low frequency radar (LFR) [3a,b] to sound the interior structure of the asteroid. It is supported by a camera (MasCAM) [4], a radiometer (MARA)[5], an accelerometer (DACC [9]), and, optionally regarding the science case, also a magnetometer (MasMAG)[6].

  6. The initial exploration of Mars - Rationale for a return mission to Chryse Planitia and the Viking 1 Lander

    Science.gov (United States)

    Craddock, Robert A.

    1992-01-01

    A discussion of the concepts behind planning a landing site on Mars is presented. On the basis of the engineering constraints and the scientific objectives which are likely to be imposed on the first few missions to the surface, reasons for supporting a return to Chryse Planitia and the Viking 1 landing site are given. Samples from the Hesperian ridged plains would be useful in establishing an absolute age for the present crater chronology, and samples of soils from the vicinity of the Viking 1 lander would be useful in determining the significance of the results from the Viking biological experiments. Soil samples would provide consistency between unmanned and manned missions, may contain fossil microorganisms, and could be useful in determining the mechanism responsible for outflow channel formation.

  7. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  8. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    Science.gov (United States)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  9. Viking Lander Model

    Science.gov (United States)

    2007-01-01

    NASA's Viking Project found a place in history when it became the first mission to land a spacecraft successfully on the surface of another planet and return both imaging and non-imaging data over an extended time period. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet's surface. The Viking 1 Lander touched down on the western slope of Chryse Planitia (the Plains of Gold) on July 20, 1976, while the Viking 2 lander settled down at Utopia Planitia on September 3, 1976. Besides taking photographs and collecting other science data on the Martian surface, the two landers conducted three biology experiments designed to look for possible signs of life. These experiments discovered unexpected and enigmatic chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms in soil near the landing sites. According to scientists, Mars is self-sterilizing. They believe the combination of solar ultraviolet radiation that saturates the surface, the extreme dryness of the soil and the oxidizing nature of the soil chemistry prevent the formation of living organisms in the Martian soil. The Viking mission was planned to continue for 90 days after landing. Each orbiter and lander operated far beyond its design lifetime. Viking Orbiter 1 functioned until July 25, 1978, while Viking Orbiter 2 continued for four years and 1,489 orbits of Mars, concluding its mission August 7, 1980. Because of the variations in available sunlight, both landers were powered by radioisotope thermoelectric generators -- devices that create electricity from heat given off by the natural decay of plutonium. That power source allowed long-term science investigations that otherwise would not have been possible. The last data from Viking Lander 2 arrived at Earth on April 11, 1980. Viking Lander 1 made its final

  10. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.

    1999-01-01

    by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter. (C) 1999 COSPAR. Published by Elsevier Science Ltd.......The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first......, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars...

  11. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  12. Digibaro pressure instrument onboard the Phoenix Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  13. The scientific objectives of the International Solar Polar Mission

    International Nuclear Information System (INIS)

    Wenzel, K.-P.

    1980-01-01

    The International Solar Polar Mission (I.S.P.M.), originally known as the Out-of-Ecliptic Mission, will be the first spacecraft mission to explore the third dimension of the heliosphere within a few astronomical units of the Sun and to view the Sun over the full range of heliographic latitudes. Its main objectives are to investigate, as a function of solar latitude, the properties of the interplanetary medium and the solar corona. The I.S.P.M. is a two spacecraft venture jointly conducted by E.S.A. and N.A.S.A. The two spacecraft will be injected into elliptical heliocentric orbits approximately at right angles to the ecliptic plane, by using the Jupiter gravity assist method, one northwards and the other southwards. After passing nearly above the poles of the Sun, each spacecraft crosses the ecliptic plane and passes over the other solar pole. The complete mission time from launch, foreseen for February 1983, to the second polar passage is approximately 42/3 years. This paper summarizes the main scientific objectives of the instruments to be carried on this exploratory mission. It concludes with an outline of the payload, the spacecraft, the trajectory and the mission schedule. (author)

  14. The Telemachus mission: dynamics of the polar sun and heliosphere

    Science.gov (United States)

    Roelof, E.

    Telemachus in Greek mythology was the faithful son of Ulysses. The Telemachus mission is envisioned as the next logical step in the exploration of the polar regions of the Sun and heliosphere so excitingly initiated by the ESA/NASA Ulysses mission. Telemachus is a polar solar-heliospheric mission described in the current NASA Sun-Earth Connections Roadmap (2003-2028) that has successfully undergone two Team X studies by NASA/JPL. The pioneering observations from Ulysses transformed our perception of the structure and dynamics of these polar regions through which flow the solar wind, magnetic fields and energetic particles that eventually populate most of the volume of the heliosphere. Ulysses carried only fields and particles detectors. Telemachus, in addition to modern versions of such essential in situ instruments, will carry imagers that will give solar astronomers a new viewpoint on coronal mass ejections and solar flares, as well as their first purely polar views of the photospheric magnetic field, thereby providing new helioseismology to probe the interior of the Sun. Unlike the RTG-powered Ulysses, the power for Telemachus will come simply from solar panels. Gravity assist encounters with Venus and Earth (twice) will yield ˜5 years of continuous in-ecliptic cruise science between 0.7 AU and 3.3 AU that will powerfully complement other contemporary solar-heliospheric missions. The Jupiter gravity assist, followed by a perihelion burn ˜8 years after launch, will place Telemachus in a permanent ˜0.2 AU by 2.5 AU heliographic polar orbit (inclination >80 deg) whose period will be 1.5 years. Telemachus will then pass over the solar poles at ˜0.4 AU (compared to 1.4 AU for Ulysses) and spend ˜2 weeks above 60 deg on each polar pass (alternating perihelions between east and west limbs as viewed from Earth). In 14 polar passes during a 10.5 year solar cycle, Telemachus would accumulate over half a year of polar science data. During the remainder of the time, it

  15. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    Science.gov (United States)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  16. The Phoenix Mars Lander Robotic Arm

    Science.gov (United States)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  17. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  18. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    Science.gov (United States)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  19. Power System Overview for the Small RPS Centaur Flyby and the Mars Polar Hard Lander NASA COMPASS Studies

    Science.gov (United States)

    Cataldo, Robert L.

    2014-01-01

    The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.

  20. Viking Lander 2 Anniversary

    Science.gov (United States)

    2002-01-01

    [figure removed for brevity, see original site] This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be

  1. Robotic Lunar Lander Development Status

    Science.gov (United States)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  2. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    NARCIS (Netherlands)

    André, Philippe; Baccigalupi, Carlo; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoît, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J. A. P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford

    2014-01-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations

  3. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  4. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    CERN Document Server

    Baumann, Daniel; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel Jun Hun; Colombo, Loris; Cooray, Asantha R.; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark P.; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William H.; Komatsu, Eiichiro; Krauss, Lawrence M.; Lesgourgues, Julien; Liddle, Andrew R.; Liguori, Michele; Lim, Eugene A.; Linde, Andrei D.; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya V.; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah E.; Silverstein, Eva; Smith, Tristan; Vaudrevange, Pascal M.; Verde, Licia; Wandelt, Ben; Wands, David; Watson, Scott; Wyman, Mark; Yadav, Amit; Valkenburg, Wessel; Zaldarriaga, Matias

    2009-01-01

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  5. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  6. ROSETTA lander Philae: Touch-down reconstruction

    Science.gov (United States)

    Roll, Reinhard; Witte, Lars

    2016-06-01

    The landing of the ROSETTA-mission lander Philae on November 12th 2014 on Comet 67 P/Churyumov-Gerasimenko was planned as a descent with passive landing and anchoring by harpoons at touch-down. Actually the lander was not fixed at touch-down to the ground due to failing harpoons. The lander internal damper was actuated at touch-down for 42.6 mm with a speed of 0.08 m/s while the lander touch-down speed was 1 m/s. The kinetic energy before touch-down was 50 J, 45 J were dissipated by the lander internal damper and by ground penetration at touch-down, and 5 J kinetic energy are left after touch-down (0.325 m/s speed). Most kinetic energy was dissipated by ground penetration (41 J) while only 4 J are dissipated by the lander internal damper. Based on these data, a value for a constant compressive soil-strength of between 1.55 kPa and 1.8 kPa is calculated. This paper focuses on the reconstruction of the touch-down at Agilkia over a period of around 20 s from first ground contact to lift-off again. After rebound Philae left a strange pattern on ground documented by the OSIRIS Narrow Angle Camera (NAC). The analysis shows, that the touch-down was not just a simple damped reflection on the surface. Instead the lander had repeated contacts with the surface over a period of about 20 s±10 s. This paper discusses scenarios for the reconstruction of the landing sequence based on the data available and on computer simulations. Simulations are performed with a dedicated mechanical multi-body model of the lander, which was validated previously in numerous ground tests. The SIMPACK simulation software was used, including the option to set forces at the feet to the ground. The outgoing velocity vector is mostly influenced by the timing of the ground contact of the different feet. It turns out that ground friction during damping has strong impact on the lander outgoing velocity, on its rotation, and on its nutation. After the end of damping, the attitude of the lander can be

  7. NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Science.gov (United States)

    Trinh, Huu P.

    2015-01-01

    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta

  8. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    Science.gov (United States)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  9. Lasers, penguins, and polar bears: Novel outreach and education approaches for NASA's ICESat-2 mission

    Science.gov (United States)

    Casasanto, Valerie A.; Campbell, Brian; Manrique, Adriana; Ramsayer, Kate; Markus, Thorsten; Neumann, Thomas

    2018-07-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, will provide an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas that have experienced significant change in recent years. It is key to communicate why we are measuring these areas and their importance. ICESat-2 science data will provide much-needed answers to climate change questions such as, "Is the ice really melting in the polar regions?" and "What does studying Earth's frozen regions tell us about our changing climate?" In this paper, lessons-learned and novel techniques for engaging and educating all audiences in the mission will be discussed, such as including results of a unique collaboration with art design school the Savannah College of Art Design (SCAD) to create fun and exciting products such as animated characters and interactive stories. Future collaborations with wildlife researchers, a new citizen science program in collaboration with GLOBE, and evidence from other STEAM (Science, Technology, Engineering, Arts, Math) education approaches will also be detailed in this paper.

  10. Photogrammetry of the Viking Lander imagery

    Science.gov (United States)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  11. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    Science.gov (United States)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  12. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  13. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  14. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  15. Packaging a successful NASA mission to reach a large audience within a small budget. Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission

    Science.gov (United States)

    Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.

    2004-12-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  16. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    Energy Technology Data Exchange (ETDEWEB)

    André, Philippe [Laboratoire d' Astrophysique de Paris-Saclay, Gif-sur-Yvette Cedex (France); Baccigalupi, Carlo; Bielewicz, Pawel [SISSA, Via Bonomea 265, 34136, Trieste (Italy); Banday, Anthony [Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4 (France); Barbosa, Domingos [Grupo de Radio Astronomia Basic Sciences and Enabling Technologies Instituto de Telecomunicações, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Barreiro, Belen [Instituto de Fìsica de Cantabria (CSIC-Universidad de Cantabria) Avda. de los Castros s/n, 39005 Santander (Spain); Bartlett, James [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris, Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Bartolo, Nicola [Dipartimento di Fisica e Astronomia ' ' G. Galilei" , Università degli studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Battistelli, Elia [Dipartimento di Fisica, Università di Roma La Sapienza, P.le A. Moro 2, 00185 Roma (Italy); Battye, Richard; Bonaldi, Anna [Jordell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bendo, George [U.K. ALMA Regional Centre Node, Jordell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Benoȋt, Alain [Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Bersanelli, Marco [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano (Italy); Béthermin, Matthieu, E-mail: naselsky@nbi.dk [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching (Germany); and others

    2014-02-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 10{sup 6} clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during

  17. The Chang'e 3 Mission Overview

    Science.gov (United States)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  18. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  19. The EUMETSAT Polar System - Second Generation (EPS-SG) micro-wave imaging (MWI) mission

    Science.gov (United States)

    Bojkov, B. R.; Accadia, C.; Klaes, D.; Canestri, A.; Cohen, M.

    2017-12-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system called EPS-SG. This new family of missions will contribute to the Joint Polar System being jointly set up with NOAA in the timeframe 2020-2040. These satellites will fly, like Metop (EPS), in a sun synchronous, low earth orbit at 830 km altitude and 09:30 local time descending node, providing observations over the full globe with revisit times of 12 hours. EPS-SG consists of two different satellites configurations, the EPS-SGa series dedicated to IR and MW sounding, and the EPS-SGb series dedicated to microwave imaging and scatterometry. The EPS-SG family will consist of three successive launches of each satellite-type. The Microwave Imager (MWI) will be hosted on Metop-SGb series of satellites, with the primary objective of supporting Numerical Weather Prediction (NWP) at regional and global scales. Other applications will be observation of surface parameters such as sea ice concentration and hydrology applications. The 18 MWI instrument frequencies range from 18.7 GHz to 183 GHz. All MWI channels up to 89 GHz will measure V- and H polarizations. The MWI was also designed to provide continuity of measurements for select heritage microwave imager channels (e.g. SSM/I, AMSR-E). The additional sounding channels such as the 50-55 and 118 GHz bands will provide additional cloud and precipitation information over sea and land. This combination of channels was successfully tested on the NPOESS Aircraft Sounder Testbed - Microwave Sounder (NAST-M) airborne radiometer, and it is the first time that will be implemented in a conical scanning configuration in a single instrument. An overview of the EPS-SG programme and the MWI instrument will be presented.

  20. The Polar Stratosphere in a Changing Climate (POLSTRACC): Mission overview and first results

    Science.gov (United States)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Bönisch, Harald

    2016-04-01

    The POLSTRACC mission aims at providing new scientific knowledge on the Arctic lowermost stratosphere and upper troposphere under the present load of halogens and state of climate variables. POLSTRACC employs the German High Altitude and LOng Range Research Aircraft (HALO) and is the only HALO mission dedicated to study the UTLS at high latitudes several years after the last intensive Arctic campaigns. The scientific scope of POLSTRACC is broadened by its combination with the SALSA (Seasonality of Air mass transport and origin in the Lowermost Stratosphere using the HALO Aircraft) and GW-LCYCLE (Gravity Wave Life Cycle Experiment, a BMBF/ROMIC project) missions, which address complementary scientific goals sharing the same HALO payload. POLSTRACC, SALSA and GW-LCYCLE offer the unique opportunity to study the bottom of the polar vortex and the high-latitude UTLS along with their impact on lower latitudes throughout an entire winter/spring cycle. The payload for the combined POLSTRACC, SALSA and GW-LCYCLE campaigns comprises an innovative combination of remote sensing techniques providing 2- and 3-D distributions of temperature and a large number of substances, and precise in-situ instruments measuring T, O3, H2O, tracers of different lifetimes and chemically active species at the aircraft level with high time-resolution. Drop sondes will add information about temperature, humidity and wind in the atmosphere underneath the aircraft. The POLSTRACC consortium includes national (KIT, Forschungszentrum Jülich, DLR, Universities of Frankfurt, Heidelberg, Mainz and Wuppertal; PTB) and international partners (e.g. NASA). The field campaign is divided into three phases for addressing (i) the early polar vortex and its wide-scale vicinity in December 2015 (from Oberpfaffenhofen, Germany), (ii) the mid-winter vortex from January to March 2016 (from Kiruna, Sweden), and (iii) the late dissipating vortex and its wide-scale vicinity in March 2016 (from Kiruna and

  1. Rock Moved by Mars Lander Arm

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Lunar lander stage requirements based on the Civil Needs Data Base

    Science.gov (United States)

    Mulqueen, John A.

    1992-01-01

    This paper examines the lunar lander stages that will be necessary for the future exploration and development of the Moon. Lunar lander stage sizing is discussed based on the projected lunar payloads listed in the Civil Needs Data Base. Factors that will influence the lander stage design are identified and discussed. Some of these factors are (1) lunar orbiting and lunar surface lander bases; (2) implications of direct landing trajectories and landing from a parking orbit; (3) implications of landing site and parking orbit; (4) implications of landing site and parking orbit selection; (5) the use of expendable and reusable lander stages; and (6) the descent/ascent trajectories. Data relating the lunar lander stage design requirements to each of the above factors and others are presented in parametric form. These data will provide useful design data that will be applicable to future mission model modifications and design studies.

  3. Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit

    Science.gov (United States)

    Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang

    2017-08-01

    Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.

  4. Chandrayaan-2: India's First Soft-landing Mission to Moon

    Science.gov (United States)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    . Mission Elements:, On board segment of Chandrayaan-2 mission consists of a lunar Orbiter and a lunar Lander-Rover. The orbiter for Chandrayaan-2 mission is similar to that of Chandrayaan-1 from structural and propulsion aspects. Based on a study of various mission management and trajectory options, such as, separation of the Lander-Rover module in Earth Parking Orbit (EPO) or in lunar transfer trajectory (LTT) or in lunar polar orbit (LPO), the option of separating of this module at LTT, after required midcourse corrections, was selected as this offers an optimum mass and overall mission management advantage. The orbiter propulsion system will be used to transfer Orbiter-Lander-Rover composite from EPO to LTT. On reaching LTT, the Lander-Rover module will be separated from the orbiter module. The Lander-Rover and Orbiter modules are configured with individual propulsion and housekeeping systems. The indigenously developed Geostationary Satellite Launch Vehicle GSLV (Mk-II) will be used for this mission. The most critical aspect of its feasibility was an accurate evaluation of the scope for taking a 3200kg lift off mass into EPO. A Lander-Rover mass of 1270kg (including the propellant for soft landing) will provide sufficient margin for such a lift off within the capability of flight proven GSLV (Mk-II) for the EPO. Mission Scenario: ,GSLV (Mk-II) will launch the Lunar Orbiter coupled to the Lunar Lander-Rover into EPO (170 x 16980 km) following which the Orbiter will boost the orbit from EPO to LTT where the two modules will be separated. Both of them will make their independent journey towards moon and reach lunar polar orbit independently. The orbiter module will be initially placed in a circular polar orbit (200km) and the Lander-Rover module descends towards the lunar surface. After landing, a motorized rover with robotic arm and scientific instruments would be released on to the lunar surface. Although the exact landing location is yet to be finalized, a high

  5. A Focus on Cryogenic Engineering for the Primordial Inflation Polarization Explorer (PIPER) Mission

    Science.gov (United States)

    Rosas, Rogelio; Weston, Amy

    2011-01-01

    Cryogenic engineering involves design and modification of equipment that is used under boiling point of nitrogen which is 77 K. The focus of this paper will be on the design of hardware for cryogenic use and a retrofit that was done to the main laboratory cryostat used to test flight components for the Primordial Inflation Polarization Explorer balloon-borne mission. Data from prior tests showed that there was a superfluid helium leak and a total disassemble of the cryostat was conducted in order to localize and fix the leak. To improve efficiency new fill tubes and clamps with modifications were added to the helium tank. Upon removal of the tank, corrosion was found on the flange face that connects to the helium cold plate and therefore had to be fully replaced and copper plated to prevent future corrosion. Indium seals were also replaced for the four fill tubes, a helium level sensor, and the nitrogen and helium tanks. Four additional shielded twisted pairs of cryogenic wire and a wire harness for the Superconducting Quantum Interference Devices (SQUIDs) were added. Finally, there was also design work done for multiple pieces that went inside the cryostat and a separate probe used to test the SQUIDs. Upon successful completion of the cryostat upgrade, tests were run to check the effectiveness and stability of the upgrades. The post-retrofit tests showed minor leaks were still present and due to this, superfluidity has still not been attained. As such there could still be a possibility of a superfluid leak appearing in the future. Regardless, the copper plating on the helium tank has elongated the need to service it by three to five years.

  6. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    Science.gov (United States)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  7. Low Cost Precision Lander for Lunar Exploration

    Science.gov (United States)

    Head, J. N.; Gardner, T. G.; Hoppa, G. V.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Vision articulated in January 2004. Establishing and resupplying a long term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In the DOD world, such technologies are used routinely and reliably. Hence, it is timely to generate a point design for a precise planetary lander useful for lunar exploration. In this design science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design flies the lander in an inert configuration to the moon, relying on a cruise stage for navigation and TCMs. The lander activates about a minute before impact. A solid booster reduces the vehicle speed to 300-450 m/s. The lander is now about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability, allowing for about 10 km of vehicle divert during terminal descent. This concept of operations is chosen because it closely mimics missile operational timelines used for decades: the vehicle remains inert in a challenging environment, then must execute its mission flawlessly on a moment's notice. The vehicle design consists of a re-plumbed propulsion system, using propellant tanks and thrusters from exoatmospheric programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC

  8. Identification of the Beagle 2 lander on Mars

    Science.gov (United States)

    Bridges, J. C.; Clemmet, J.; Croon, M.; Sims, M. R.; Pullan, D.; Muller, J.-P.; Tao, Y.; Xiong, S.; Putri, A. R.; Parker, T.; Turner, S. M. R.; Pillinger, J. M.

    2017-10-01

    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  9. Identification of the Beagle 2 lander on Mars.

    Science.gov (United States)

    Bridges, J C; Clemmet, J; Croon, M; Sims, M R; Pullan, D; Muller, J-P; Tao, Y; Xiong, S; Putri, A R; Parker, T; Turner, S M R; Pillinger, J M

    2017-10-01

    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  10. Wind reconstruction algorithm for Viking Lander 1

    Science.gov (United States)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  11. Wind reconstruction algorithm for Viking Lander 1

    Directory of Open Access Journals (Sweden)

    T. Kynkäänniemi

    2017-06-01

    Full Text Available The wind measurement sensors of Viking Lander 1 (VL1 were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  12. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    Science.gov (United States)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  13. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  14. CryoSat Mission over Polar Region: Data quality status and product evolutions

    Science.gov (United States)

    Bouffard, J.; Parrinello, T.; Féménias, P.; Fornari, M.; Scagliola, M.; Baker, S.; Brockley, D.; Mannan, R.; Hall, A.; Webb, E.; Garcia-Mondéjar, A.; Roca, M.; Mantovani, P. L.

    2015-12-01

    Over the past 20 years, satellite radar altimetry has shown its ability to revolutionize our understanding of the ocean and climate. These advances were mainly limited to ice-free regions, leaving aside large portions of Polar Regions. Launched in 2010, the polar-orbiting CryoSat Satellite was designed to measure the changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. To reach this goal, the CryoSat products have to meet the highest performance, through constant improvements of the associated Instrument Processing Facility. Since April 2015, the CryoSat ice products are generated with the Baseline C; which represents a major processor upgrade. Several improvements have been implemented belong this new Baseline, such as SAR retracker optimized for Freeboard retrieval and a coarse slant correction, which is applied directly on the stack data in conjunction with the window delay alignment. The resulting waveforms show more power and the trailing edge is modified, leading to improved L2 geophysical parameters. This paper provides an overview of the CryoSat data characteristics, assessment and exploitation over Polar Regions. In this respect, new science-oriented diagnostics have been implemented to thoroughly understand the signatures within the altimeter signals over sea-ice and land ice areas, to validate the data and therefore propose potential way of improvements for next CryoSat processing Baselines.

  15. Non-Cooled Power System for Venus Lander

    Science.gov (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  16. Review of a relativity and geodesy mission with counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.

    1977-01-01

    A new test of general relativity, capable of measuring the Lense-Thirring precession on a satellite orbit was proposed in 1974. We have recently realized that the remarkable geophysical output of this experiment can be enriched by allowing the point of encounter between the two satellites to progress from the poles to the equator during the course of the mission. There is reason to believe that by performing the experiment in this mode, all tesseral harmonics up to about 60th order could be separated and determined to accuracies up to three orders of magnitude better than current knowledge, and still obtain a 1% Lense-Thirring measurement. (orig.) [de

  17. On the Thermal Protection Systems of Landers for Venus Exploration

    Science.gov (United States)

    Ekonomov, A. P.; Ksanfomality, L. V.

    2018-01-01

    The landers of the Soviet Venera series—from Venera-9 to Venera-14—designed at the Lavochkin Association are a man-made monument to spectacular achievements of Soviet space research. For more than 40 years, they have remained the uneclipsed Soviet results in space studies of the Solar System. Within the last almost half a century, the experiments carried out by the Venera-9 to Venera-14 probes for studying the surface of the planet have not been repeated by any space agency in the world, mainly due to quite substantial technical problems. Since that time, no Russian missions with landers have been sent to Venus either. On Venus, there is an anoxic carbon dioxide atmosphere, where the pressure is 9.2 MPa and the temperature is 735 K near the surface. A long-lived lander should experience these conditions for an appreciable length of time. What technical solutions could provide a longer operation time for a new probe investigating the surface of Venus, if its thermal scheme is constructed similar to that of the Venera series? Onboard new landers, there should be a sealed module, where the physical conditions required for operating scientific instruments are maintained for a long period. At the same time, new high-temperature electronic equipment that remains functional under the above-mentioned conditions have appeared. In this paper, we consider and discuss different variants of the system for a long-lived sealed lander, in particular, the absorption of the penetrating heat due to water evaporation and the thermal protection construction for the instruments with intermediate characteristics.

  18. Dynamics of Venus' Southern hemisphere and South Polar Vortex from VIRTIS data obtained during the Venus Expres Mission

    Science.gov (United States)

    Hueso, R.; Garate-Lopez, I.; Sanchez-Lavega, A.

    2011-12-01

    The VIRTIS instrument onboard Venus Express observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. The images have been used to trace the motions of the atmosphere at different layers of clouds [1-3]. We review the VIRTIS cloud image data and wind results obtained by different groups [1-3] and we present new results concerning the morphology and evolution of the South Polar Vortex at the upper and lower cloud levels with data covering the first 900 days of the mission. We present wind measurements of the South hemisphere obtained by cloud tracking individual cloud features and higher-resolution wind results of the polar region covering the evolution of the South polar vortex. The later were obtained by an image correlation algorithm run under human supervision to validate the data. We present day-side data of the upper clouds obtained at 380 and 980 nm sensitive to altitudes of 66-70 km, night-side data in the near infrared at 1.74 microns of the lower cloud (45-50 km) and day and night-side data obtained in the thermal infrared (wavelengths of 3.8 and 5.1 microns) which covers the dynamical evolution of Venus South Polar vortex at the cloud tops (66-70 km). We explore the different dynamics associated to the varying morphology of the vortex, its dynamical structure at different altitudes, the variability of the global wind data of the southern hemisphere and the interrelation of the polar vortex dynamics with the wind dynamics at subpolar and mid-latitudes. Acknowledgements: Work funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. References [1] A. Sánchez-Lavega et al., Geophys. Res. Lett. 35, L13204, (2008). [2] D. Luz et al., Science, 332, 577-580 (2011). [3] R. Hueso, et al., Icarus doi:10.1016/j.icarus.2011.04.020 (2011)

  19. The use of gravimetric data from GRACE mission in the understanding of polar motion variations

    Science.gov (United States)

    Seoane, L.; Nastula, J.; Bizouard, C.; Gambis, D.

    2009-08-01

    Tesseral coefficients C21 and S21 derived from Gravity Recovery and Climate Experiment (GRACE) observations allow to compute the mass term of the polar-motion excitation function. This independent estimation can improve the geophysical models and, in addition, determine the unmodelled phenomena. In this paper, we intend to validate the polar motion excitation derived from GRACE's last release (GRACE Release 4) computed by different institutes: GeoForschungsZentrum (GFZ), Postdam, Germany; Center for Space Research (CSR), Austin, USA; Jet Propulsion Laboratory (JPL), Pasadena, USA, and the Groupe de Recherche en Géodésie Spatiale (GRGS), Toulouse, France. For this purpose, we compare these excitations functions first to the mass term obtained from observed Earth's rotation variations free of the motion term and, second, to the mass term estimated from geophysical fluids models. We confirm the large improvement of the CSR solution, and we show that the GRGS estimate is also well correlated with the geodetic observations. Significant discrepancies exist between the solutions of each centre. The source of these differences is probably related to the data processing strategy. We also consider residuals computed after removing the geophysical models or the gravimetric solutions from the geodetic mass term. We show that the residual excitation based on models is smoother than the gravimetric data, which are still noisy. Still, they are comparable for the χ2 component. It appears that χ2 residual signals using GFZ and JPL data have less variability. Finally, for assessing the impact of the geophysical fluids models choice on our results, we checked two different oceanic excitation series. We show the significant differences in the residuals correlations, especially for the χ1 more sensitive to the oceanic signals.

  20. VEGA Space Mission

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2000-11-01

    VEGA (mission) is a combined spacecraft mission to VENUS and COMET HALLEY. It was launched in the USSR at the end of 1984. The mission consisted of two identical spacecraft VEGA 1 and VEGA 2. VEGA is an acronym built from the words `Venus' and `Halley' (`Galley' in Russian spelling). The basic design of the spacecraft was the same as has been used many times to deliver Soviet landers and orbiter...

  1. Rock Moved by Mars Lander Arm, Stereo View

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This left-eye and right-eye images for this stereo view were taken at about 12:30 p.m., local solar time on Mars. The scene appears three-dimensional when seen through blue-red glasses.The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    Science.gov (United States)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  3. MetNet Network Mission for Martian Atmospheric Investigations

    Science.gov (United States)

    Harri, A.-M.; Alexashkin, S.; Arrugeo, I.; Schmidt, W.; Vazquez, L.; Genzer, M.; Haukka, H.

    2014-07-01

    A new kind of planetary exploration mission for Mars called MetNet is being developed for martian atmospheric investigations. The eventual scope of the MetNet Mission is to deploy tens of small landers on the martian surface.

  4. SNAP 19 Viking RTG mission performance

    International Nuclear Information System (INIS)

    Brittain, W.M.

    1976-01-01

    The Viking-75 mission utilized the August/September 1975 opportunity to launch two spacecrafts to Mars for arrival in 1976 after about a one-year transit period. On arrival, each spacecraft, consisting of an orbiter and lander, will be placed in Mars orbit, with each lander subsequently descending from orbit to a soft-landing on the Martian surface. Two SNAP 19 RTG's (radioisotope thermoelectric generators) provide the primary source of electrical power and means of thermal control for each Viking lander. The RTG's will be switched on-load just prior to separation of the lander from the orbiter for checkout of the lander, and will remain on-load during entry and the remainder of the 90-day minimum surface mission

  5. One Mars year: viking lander imaging observations.

    Science.gov (United States)

    Jones, K L; Arvidson, R E; Guinness, E A; Bragg, S L; Wall, S D; Carlston, C E; Pidek, D G

    1979-05-25

    Throughout the complete Mars year during which they have been on the planet, the imaging systems aboard the two Viking landers have documented a variety of surface changes. Surface condensates, consisting of both solid H(2)O and CO(2), formed at the Viking 2 lander site during the winter. Additional observations suggest that surface erosion rates due to dust redistribution may be substantially less than those predicted on the basis of pre-Viking observations. The Viking 1 lander will continue to acquire and transmit a predetermined sequence of imaging and meteorology data as long as it is operative.

  6. Network of Nano-Landers for In-Situ Characterization of Asteroid Impact Studies

    OpenAIRE

    Kalita, Himangshu; Asphaug, Erik; Schwartz, Stephen; Thangavelautham, Jekanthan

    2017-01-01

    Exploration of asteroids and comets can give insight into the origins of the solar system and can be instrumental in planetary defence and in-situ resource utilization (ISRU). Asteroids, due to their low gravity are a challenging target for surface exploration. Current missions envision performing touch-and-go operations over an asteroid surface. In this work, we analyse the feasibility of sending scores of nano-landers, each 1 kg in mass and volume of 1U, or 1000 cm3. These landers would hop...

  7. The environs of viking 2 lander.

    Science.gov (United States)

    Shorthill, R W; Moore, H J; Hutton, R E; Scott, R F; Spitzer, C R

    1976-12-11

    Forty-six days after Viking 1 landed, Viking 2 landed in Utopia Planitia, about 6500 kilometers away from the landing site of Viking 1. Images show that in the immediate vicinity of the Viking 2 landing site the surface is covered with rocks, some of which are partially buried, and fine-grained materials. The surface sampler, the lander cameras, engineering sensors, and some data from the other lander experiments were used to investigate the properties of the surface. Lander 2 has a more homogeneous surface, more coarse-grained material, an extensive crust, small rocks or clods which seem to be difficult to collect, and more extensive erosion by the retro-engine exhaust gases than lander 1. A report on the physical properties of the martian surface based on data obtained through sol 58 on Viking 2 and a brief description of activities on Viking 1 after sol 36 are given.

  8. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  9. A Novel, Low-Cost Conformable Lander

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary focus of this activity will be to outline a preliminary mechanical design for this conforming lander. Salient issues to be worked include (1) determining...

  10. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter

    to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...... scientific payload in the frame of the ESA ExoMars mission. Experience from previous missions constitutes the background for the MSMO Magnetometer Protection strategy. DC and AC lander generated magnetic perturbations are discussed, with particular attention to those related to solar generators. Emphasis...... and very resource consuming....

  11. Novel Architecture for a Long-Life, Lightweight Venus Lander

    International Nuclear Information System (INIS)

    Bugby, D.; Seghi, S.; Kroliczek, E.; Pauken, M.

    2009-01-01

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO 2 Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  12. Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander

    Science.gov (United States)

    Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph

    2017-10-01

    We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.

  13. Linear Covariance Analysis for a Lunar Lander

    Science.gov (United States)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  14. Integral design method for simple and small Mars lander system using membrane aeroshell

    Science.gov (United States)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi

    2018-03-01

    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  15. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool

    Science.gov (United States)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.

    2009-01-01

    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  16. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  17. Frost at the Viking Lander 2 Site

    Science.gov (United States)

    1977-01-01

    Photo from Viking Lander 2 shows late-winter frost on the ground on Mars around the lander. The view is southeast over the top of Lander 2, and shows patches of frost around dark rocks. The surface is reddish-brown; the dark rocks vary in size from 10 centimeters (four inches) to 76 centimeters (30 inches) in diameter. This picture was obtained Sept. 25, 1977. The frost deposits were detected for the first time 12 Martian days (sols) earlier in a black-and-white image. Color differences between the white frost and the reddish soil confirm that we are observing frost. The Lander Imaging Team is trying to determine if frost deposits routinely form due to cold night temperatures, then disappear during the warmer daytime. Preliminary analysis, however, indicates the frost was on the ground for some time and is disappearing over many days. That suggests to scientists that the frost is not frozen carbon dioxide (dry ice) but is more likely a carbon dioxide clathrate (six parts water to one part carbon dioxide). Detailed studies of the frost formation and disappearance, in conjunction with temperature measurements from the lander's meteorology experiment, should be able to confirm or deny that hypothesis, scientists say.

  18. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    Science.gov (United States)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  19. Landing on small bodies: From the Rosetta Lander to MASCOT and beyond

    Science.gov (United States)

    Ulamec, Stephan; Biele, Jens; Bousquet, Pierre-W.; Gaudon, Philippe; Geurts, Koen; Ho, Tra-Mi; Krause, Christian; Lange, Caroline; Willnecker, Rainer; Witte, Lars; The Philae; Mascot Teams

    2014-01-01

    Recent planning for science and exploration missions has emphasized the high interest in the close investigation of small bodies in the Solar System. In particular in-situ observations of asteroids and comets play an important role in this field and will contribute substantially to our understanding of the formation and history of the Solar System. The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov-Gerasimenko. Rosetta was launched in 2004. After more than 7 years of cruise (including three Earth and one Mars swing-by as well as two asteroid flybys) the spacecraft has gone into a deep space hibernation in June 2011. When approaching the target comet in early 2014, Rosetta will be re-activated. The cometary nucleus will be characterized remotely to prepare for Lander delivery, currently foreseen for November 2014. The Rosetta Lander was developed and manufactured, similar to a scientific instrument, by a consortium consisting of international partners. Project management is located at DLR in Cologne/Germany, with co-project managers at CNES (France) and ASI (Italy). The scientific lead is at the Max Planck Institute for Solar System Science (Lindau, Germany) and the Institut d'Astrophysique Spatiale (Paris). Mainly scientific institutes provided the subsystems, instruments and the complete, qualified lander system. Operations are performed in two dedicated centers, the Lander Control Center (LCC) at DLR-MUSC and the Science Operations and Navigation Center (SONC) at CNES. This concept was adopted to reduce overall cost of the project and is foreseen also to be applied for development and operations of future small bodies landers. A mission profiting from experience gained during Philae development and operations is MASCOT, a surface package for the Japanese Hayabusa 2 mission. MASCOT is a small (˜10 kg) mobile device, delivered to the surface of asteroid 1999JU3. There it will operate for about 16 h. During this

  20. NOAA's Joint Polar Satellite System's (JPSS) Proving Ground and Risk Reduction (PGRR) Program - Bringing JPSS Science into Support of Key NOAA Missions!

    Science.gov (United States)

    Sjoberg, W.; McWilliams, G.

    2017-12-01

    This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.

  1. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration

    Science.gov (United States)

    Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.

  2. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    Science.gov (United States)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  3. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    Science.gov (United States)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  4. Mars' rotational state and tidal deformations from radio interferometry of a network of landers.

    Science.gov (United States)

    Iess, L.; Giuliani, S.; Dehant, V.

    2012-04-01

    The precise determination of the rotational state of solar system bodies is one of the main tools to investigate their interior structure. Unfortunately the accuracies required for geophysical interpretations are very stringent, and generally unattainable from orbit using optical or radar tracking of surface landmarks. Radio tracking of a lander from ground or from a spacecraft orbiting the planet offers substantial improvements, especially if the lander lifetime is adequately long. The optimal configuration is however attained when two or more landers can be simultaneously tracked from a ground antenna in an interferometric mode. ESA has been considering a network of landers on Mars since many years, and recently this concept has been revived by the study of the Mars Network Science Mission (MNSM). The scientific rationale of MNSM is the investigation of the Mars' interior and atmosphere by means of a network of two or three landers, making it especially suitable for interferometric observations. In order to synthesize an interferometer, the MNSN landers must be tracked simultaneously from a single ground antenna in a coherent two-way mode. The uplink radio signal (at X- or Ka-band) is received by the landers' transponders and retransmitted to ground in the same frequency band. The signals received at ground station are then recorded (typically at few tens of kHz) and beaten against each other to form the output of the interferometer, a complex phasor. The differential phase retain information on Mars' rotational parameters and tidal deformations. A crucial aspect of the interferometric configuration is the rejection of common noise and error sources. Errors in the station location, Earth orientation parameters and ephemerides, path delays due to the Earth troposphere and ionosphere, and, to a good extent, interplanetary plasma are cancelled out. The main residual errors are due to differential path delays from Mars' atmosphere and differential drifts of the

  5. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  6. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  7. Concurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Final Report: Advanced Long-Life Lander Investigating the Venus Environment (ALIVE)

    Science.gov (United States)

    Oleson, Steven R.

    2018-01-01

    The COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive (power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission.

  8. Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report

    Science.gov (United States)

    Hand, Kevin P.; Murray, Alison; Garvin, James; and the Europa Lander Science Definition Team, Project Science Team, and Project Engineering Team.

    2017-10-01

    In June of 2016 NASA convened a 21-person team of scientists to establish the science goals, objectives, investigations, measurement requirements, and model payload of a Europa lander mission concept. The NASA HQ Charter goals, in priority order, are as follows:1) Search for evidence of life on Europa, 2) Assess the habitability of Europa via in situ techniques uniquely available to a lander mission, 3) Characterize surface and subsurface properties at the scale of the lander to support future exploration of Europa.Within Goal 1, four Objectives were developed for seeking signs of life. These include the need to: a) detect and characterize any organic indicators of past or present life, b) identify and characterize morphological, textural, and other indicators of life, c) detect and characterize any inorganic indicators of past or present life, and d) determine the provenance of Lander-sampled material. Goal 2 focuses on Europa’s habitability and ensures that even in the absence of the detection of any potential biosignatures, significant ocean world science is still achieved. Goal 3 ensures that the landing site region is quantitatively characterized in the context needed for Goals 1 and 2, and that key measurements about Europa’s ice shell are made to enable future exploration.Critically, scientific success cannot be, and should never be, contingent on finding signs of life - such criteria would be levying requirements on how the universe works. Rather, scientific success is defined here as achieving a suite of measurements such that if convincing signs of life are present on Europa’s surface they could be detected at levels comparable to those found in benchmark environments on Earth, and, further, that even if no potential biosignatures are detected, the science return of the mission will significantly advance our fundamental understanding of Europa’s chemistry, geology, geophysics, and habitability.

  9. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  10. Viking lander tracking contributions to Mars mapping

    International Nuclear Information System (INIS)

    Michael, W.H. Jr.

    1979-01-01

    The major recent advances in planetary mapping have been accomplished through use of photography from orbiting satellites, as is the case for Mars with Mariner and Viking photographs. The requirement for greater precision demands that inputs to the photogrammatic process be more precisely defined. This paper describes how analyses of Doppler and ranging data from the Viking landers are contributing to more precise mapping of Mars in several specific areas. (Auth.)

  11. Assessing Habitability: Lessons from the Phoenix Mission

    Science.gov (United States)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of

  12. SIIOS in Alaska - Testing an `In-Vault' Option for a Europa Lander Seismometer.

    Science.gov (United States)

    Bray, V. J.; Weber, R. C.; DellaGiustina, D. N.; Bailey, H.; Schmerr, N. C.; Pettit, E. C.; Dahl, P.; Albert, D.; Avenson, B.; Byrne, S.; Siegler, M.; Bland, M. T.; Patterson, G. W.; Selznick, S.

    2017-12-01

    The surface environment of Europa within the radiation-heavy jovian system, poses extreme technical challenges for potential landed missions. The need for radiation shielding and protection from the cold requires instruments to be housed within a thermally insulated and radiation protected `vault'. Unfortunately, this is non-ideal for seismometers as instrument-to-surface coupling is an important factor in the quality of returned data. Delivering a seismic package to an icy world would therefore benefit from the development of a cold-tolerant, radiation-hardened sensor that can survive outside of a protective vault. If such an instrument package were not technologically mature enough, or if lander safety considerations prevent deployment on lander legs, an in-vault location is still a viable option. For such a case, a better understanding of the transmission of seismic signals received through the lander legs is necessary for interpretation of the received signals. The performance, mass, and volume of the `Seismometer to investigate ice and ocean structure' (SIIOS) already meet or exceed flight requirements identified in lander studies for the icy moon Europa. We are testing this flight-candidate in several configurations around and within a lander mock-up, assuming a 1x1 meter vault with extended legs. We compare the received signals from a SIIOS device on the ice with those received by an identical sensor directly above it in the `vault'. We also compare the data from these single-point receivers to that received by two short base-line arrays - A 4-point "in-vault" array and another 4-point array arranged at the ice surface at the base of the lander legs. Our field-testing is performed at Gulkana Glacier, Alaska. The summer melt season provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing seismic contrasts analogous to the ice-water layers and possible sub-surface lakes expected at Europa. We demonstrate the

  13. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    Science.gov (United States)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  14. The Mercury Thermal Environment As A Design Driver and A Scientific Objective of The Bepicolombo Mission

    Science.gov (United States)

    Perotto, V.; Malosti, T.; Martino, R.; Briccarello, M.; Anselmi, A.

    The thermal environment of Mercury is extremely severe and a strong design driver for any mission to the planet. The main factors are the large amount of energy both di- rectly received from the sun and reflected/re-emitted from the planet, and the variation of such energy with time. The total thermal flux received by an object in orbit or on the surface of Mercury is a combination of the above-mentioned contributions, weighted according to the orbit characteristics, or the morphology of the surface. For a lander mission, the problems are compounded by the uncertainty in the a-priori knowledge of the surface properties and morphology. The thermal design of the orbiting and land- ing elements of the BepiColombo mission has a major role in the Definition Study being carried out under ESA contract by a team led by Alenia Spazio. The project en- compasses a spacecraft in low, near-circular, polar orbit (Mercury Planetary Orbiter, MPO), a spacecraft in high-eccentricity, polar orbit (Mercury Magnetospheric Orbiter, MMO, provided by ISAS, Japan) and a lander (Mercury Surface Element, MSE). The approach to a feasible mission design must rely on several provisions. For the orbiting elements, the orientation of the orbit plane with respect to the line of apsides of the or- bit of Mercury is found to have a major effect on the achievable orbiter temperatures. The spacecraft configuration, and its attitude with respect to the planet and the sun, drive the accommodation of the scientific instruments. Once the optimal orientation, attitude and configuration are determined, specific thermal control solutions must be elaborated, to maintain all components including the instruments in the required tem- perature range. The objective is maximizing the scientific return under constraints such as the available on-board resources and the project budget. A major outcome of the study so far has been the specification of requirements for improved thermal con- trol technologies, which are

  15. Photogrammetry of the Viking-Lander imagery.

    Science.gov (United States)

    Wu, S.S.C.; Schafer, F.J.

    1982-01-01

    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  16. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived From Lunar Polar Ice (LPI) Deposits

    Science.gov (United States)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry

  17. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    Science.gov (United States)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  18. Analysis of landing site attributes for future missions targeting the rim of the lunar South Pole Aitken basin

    Science.gov (United States)

    Koebel, David; Bonerba, Michele; Behrenwaldt, Daniel; Wieser, Matthias; Borowy, Carsten

    2012-11-01

    For the South polar lunar region between -85 and -90° Latitude an updated analyses of the solar illumination and ground station visibility conditions has been performed in the frame of a feasibility study for an ESA Lunar Lander mission. The analyses are based on the refined lunar digital elevation model provided by the Japanese Kaguya/Selene mission, originating from its LASER altimeter instrument. For the South polar region maps of integral solar illumination are presented for a mission epoch in 2016. The analysis modelling was validated with the help of a Kaguya High Definition video. The solar illumination is driving for the power subsystems of any robotic lander craft or manned lunar outpost, in case they rely on conventional photovoltaic power generation with battery buffering of shadowed periods. In addition the visibility of the terrain from a terrestrial ESA ground station was analysed. The results are presented as an integral ground contact duration map, being crucial for the operations of any lunar outpost. Considering these two quality criteria, several possible landing sites for a future lunar mission have been pre-selected. For these sites a detailed analysis of quasi-continuous illumination conditions is presented. This includes magnified maps of the pre-selected areas, showing any location's longest illumination intervals that are allowed to be interrupted by shadows with limited duration only. As a final quality criterion, the terrain topology has been analysed for its impact on the landing trajectory. From a trade-off between the three quality criteria the connecting ridge between the Shackleton and the de Gerlache was determined to provide the most favourable landing site quality. This site is located at 89°28' South, 136°40' West, and 1947 m altitude, and features and integral illumination of 85.7%. With battery energy to sustain shadows of 120 h, total mission duration of 9.37 sidereal months can be guaranteed.

  19. Design and Analysis of Morpheus Lander Flight Control System

    Science.gov (United States)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  20. MetBaro - Pressure Instrument for Mars MetNet Lander

    Science.gov (United States)

    Polkko, J.; Haukka, H.; Harri, A.-M.; Schmidt, W.; Leinonen, J.; Mäkinen, T.

    2009-04-01

    THE METNET MISSION FOCUSED ON THE Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure instrument of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitic type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 6 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  1. MetBaro - Pressure Device for Mars MetNet Lander

    Science.gov (United States)

    Haukka, Harri; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Genzer, Maria; Mäkinen, Teemu

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure sensor of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitive type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 4 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  2. BILLIARDS: Baseline Instrumented Lithology Lander, Inspector and Asteroid Redirection Demonstration System

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent

    2015-01-01

    BILLIARDS Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System Proposed demonstration mission for Billiard-Ball concept Select asteroid pair with natural close approach to minimize cost and complexity Primary Objectives Rendezvous with a small (10m), near Earth (alpha) asteroid Maneuver the alpha asteroid to a collision with a 100m (beta) asteroid Produce a detectable deflection or disruption of the beta asteroid Secondary objectives Contribute knowledge of asteroid composition and characteristics Contribute knowledge of small-body formation Opportunity for international collaboration

  3. Six-Axis Force-Torque Transducer for Mars 2018 Mission, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical...

  4. Sensor systems for the Altair Lunar Lander:

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, R

    2009-12-22

    The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider the toxic gas, CO. Both N{sub 2} and CO have parent peaks of m/z = 28, and CO{sub 2} has a fragment peak at m/z = 28 [and at 16 and 12], so the N{sub 2} and CO{sub 2} m/z=28 signals could mask low, but potentially-dangerous levels of CO. However there are numerous surface-sensitive CO detectors, as well as tunable-diode-laser-based CO sensors that could provide independent monitoring of CO. Also, by appending a gas chromatograph ['GC'] as the front-end sample processer, prior to the inlet of the MS, one can rely upon the GC to separate CO from N{sub 2} and CO{sub 2}, providing the crew with another CO monitor. If the Altair Lunar Lander is able to include a Raman-based MCA for N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2}, then each type of MCA would have cross-references, providing more confidence in the ongoing performance of each technique, and decreasing the risk that one instrument might fail to perform properly, without being noticed. See, also Dr. Pete Snyder's work, which states 'An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.' Another recommendation: Use data fusion for event detection to decrease uncertainty: tie together the

  5. Atlantic Deep-Water Canyons (Benthic Landers) 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each benthic lander contains a programmable sediment trap which can take 12 monthly samples, plus instruments to record temperature, salinity, dissolved oxygen,...

  6. MetHumi - Humidity Device for Mars MetNet Lander

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Mäkinen, Teemu; Haukka, Harri

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetHumi is the humidity sensor of MetNet Lander designed to work on Martian surface. It is based on Humicap® technology developed by Vaisala, Inc. MetHumi is a capacitive type of sensing device where an active polymer film changes capacitance as function of relative humidity. One MetHumi device package consists of one humidity transducer including three Humicap® sensor heads, an accurate temperature sensor head (Thermocap® by Vaisala, Inc.) and constant reference channels. MetHumi is very small, lightweighed and has low power consumption. It weighs only about 15 g without wires, and consumes 15 mW of power. MetHumi can make meaningful relative humidity measurements in range of 0 - 100%RH down to -70°C ambient temperature, but it survives even -135°C ambient temperature.

  7. Active Collision Avoidance for Planetary Landers

    Data.gov (United States)

    National Aeronautics and Space Administration — Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be...

  8. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  9. Laboratory polarization and permittivity measurements to interpret dust polarimetric observations and in-situ radar studies. Significance for Rosetta mission at 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Brouet, Yann; Hadamcik, Edith; Heggy, Essam; Hines, Dean; Lasue, Jérémie; Renard, Jean-Baptiste

    2015-08-01

    Polarimetric astronomical observations on dust clouds and regolithic surfaces require laboratory simulations on samples to provide information on properties (size distribution, porosity, refractive index) of the scattering media. Similarly, in-situ radar investigations in the solar system require laboratory studies on samples to infer physical properties (e.g. porosity, ice/dust ratio) of sub-surfaces and interiors. Recent developments are illustrated with present studies related to the Rosetta mission, which begun its rendezvous with comet 67P/Churyumov-Gerasimeko (C-G) and landed the Philae module on its nucleus in 2014.We will summarize laboratory simulations with the PROGRA2 suite of instruments that study (in the visible to near IR domain) the polarimetric properties of dust samples in microgravity conditions or on surfaces [1], with emphasis on the interpretation of polarimetric observations of C-G, during its previous perihelion passages from Earth observatories, and currently from HST [2,3]. The presence of large dust particles in the pre-perihelion coma previously inferred from remote observations agrees with Rosetta ground truth [4]. We will also present measurements on the permittivity (in the millimeter to meter domain) of various dust samples, with emphasis on porous samples [5,6]. Results provide constraints on the properties of the subsurface and interior of C-G, as explored by MIRO on Rosetta and CONSERT on Philae.Such studies are relevant for the interpretation of polarimetric observations of other dust clouds (e.g. debris disks, interplanetary dust cloud, clouds in planetary atmospheres) and surfaces (e.g. planets, moons), as well as for those of other radar characterization studies (e.g. Mars, moons, asteroids).[1] Levasseur-Regourd et al. In Polarization of stars and planetary systems, Cambridge UP, in press 2015.[2] Hadamcik et al. A&A 517 2010.[3] Hines and Levasseur-Regourd, PSS submitted 2015.[4] Schulz et al. Nature 518 2015.[5] Heggy et al

  10. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  11. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  12. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    International Nuclear Information System (INIS)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II; Scott, R.E.; Spitzer, C.R.

    1976-01-01

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface

  13. KOREAN LUNAR LANDER – CONCEPT STUDY FOR LANDING-SITE SELECTION FOR LUNAR RESOURCE EXPLORATION

    Directory of Open Access Journals (Sweden)

    K. J. Kim

    2016-06-01

    Full Text Available As part of the national space promotion plan and presidential national agendas South Korea’s institutes and agencies under the auspices of the Ministry of Science, Information and Communication Technology and Future Planning (MSIP are currently developing a lunar mission package expected to reach Moon in 2020. While the officially approved Korean Pathfinder Lunar Orbiter (KPLO is aimed at demonstrating technologies and monitoring the lunar environment from orbit, a lander – currently in pre-phase A – is being designed to explore the local geology with a particular focus on the detection and characterization of mineral resources. In addition to scientific and potential resource potentials, the selection of the landing-site will be partly constrained by engineering constraints imposed by payload and spacecraft layout. Given today’s accumulated volume and quality of available data returned from the Moon’s surface and from orbital observations, an identification of landing sites of potential interest and assessment of potential hazards can be more readily accomplished by generating synoptic snapshots through data integration. In order to achieve such a view on potential landing sites, higher level processing and derivation of data are required, which integrates their spatial context, with detailed topographic and geologic characterizations. We are currently assessing the possibility of using fuzzy c-means clustering algorithms as a way to perform (semi- automated terrain characterizations of interest. This paper provides information and background on the national lunar lander program, reviews existing approaches – including methods and tools – for landing site analysis and hazard assessment, and discusses concepts to detect and investigate elemental abundances from orbit and the surface. This is achieved by making use of manual, semi-automated as well as fully-automated remote-sensing methods to demonstrate the applicability of

  14. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  15. Radio Telescopes to Keep Sharp Eye on Mars Lander

    Science.gov (United States)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  16. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  17. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  18. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    Science.gov (United States)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2017-07-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations

  19. Archiving InSight Lander Science Data Using PDS4 Standards

    Science.gov (United States)

    Stein, T.; Guinness, E. A.; Slavney, S.

    2017-12-01

    The InSight Mars Lander is scheduled for launch in 2018, and science data from the mission will be archived in the NASA Planetary Data System (PDS) using the new PDS4 standards. InSight is a geophysical lander with a science payload that includes a seismometer, a probe to measure subsurface temperatures and heat flow, a suite of meteorology instruments, a magnetometer, an experiment using radio tracking, and a robotic arm that will provide soil physical property information based on interactions with the surface. InSight is not the first science mission to archive its data using PDS4. However, PDS4 archives do not currently contain examples of the kinds of data that several of the InSight instruments will produce. Whereas the existing common PDS4 standards were sufficient for most of archiving requirements of InSight, the data generated by a few instruments required development of several extensions to the PDS4 information model. For example, the seismometer will deliver a version of its data in SEED format, which is standard for the terrestrial seismology community. This format required the design of a new product type in the PDS4 information model. A local data dictionary has also been developed for InSight that contains attributes that are not part of the common PDS4 dictionary. The local dictionary provides metadata relevant to all InSight data sets, and attributes specific to several of the instruments. Additional classes and attributes were designed for the existing PDS4 geometry dictionary that will capture metadata for the lander position and orientation, along with camera models for stereo image processing. Much of the InSight archive planning and design work has been done by a Data Archiving Working Group (DAWG), which has members from the InSight project and the PDS. The group coordinates archive design, schedules and peer review of the archive documentation and test products. The InSight DAWG archiving effort for PDS is being led by the PDS Geosciences

  20. Observations of Martian surface winds at the Viking Lander 1 site

    International Nuclear Information System (INIS)

    Murphy, J.R.; Leovy, C.B.; Tillman, J.E.

    1990-01-01

    Partial failure of the wind instrumentation on the Viking Lander 1 (VL1) in the Martian subtropics (22.5 degree N) has limited previous analyses of meteorological data for this site. The authors describe a method for reconstructing surface winds using data from the partially failed sensor and present and analyze a time series of wind, pressure, and temperature at the site covering 350 Mars days (sols). At the beginning of the mission during early summer, winds were controlled by regional topography, but they soon underwent a transition to a regime controlled by the Hadley circulation. Diurnal and semidiurnal wind oscillations and synoptic variations have been analyzed and compared with the corresponding variations at the Viking Lander 2 middle latitude site (48 degree N). Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites, at least following the first 1977 great dust storm, but discordant inferred zonal wave numbers and phase speeds at the two sites cast doubt on the zonal wave numbers deduced from analyses of combined wind and pressure data, particularly at the VL1 site where the signal to noise ratio of the dominant synoptic waves is relatively small

  1. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    Science.gov (United States)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  2. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility

    2017-01-01

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route and in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.

  3. Accuracy Analysis of Lunar Lander Terminal Guidance Algorithm

    Directory of Open Access Journals (Sweden)

    E. K. Li

    2017-01-01

    Full Text Available This article studies a proposed analytical algorithm of the terminal guidance for the lunar lander. The analytical solution, which forms the basis of the algorithm, was obtained for a constant acceleration trajectory and thrust vector orientation programs that are essentially linear with time. The main feature of the proposed algorithm is a completely analytical solution to provide the lander terminal guidance to the desired spot in 3D space when landing on the atmosphereless body with no numerical procedures. To reach 6 terminal conditions (components of position and velocity vectors at the final time are used 6 guidance law parameters, namely time-to-go, desired value of braking deceleration, initial values of pitch and yaw angles and rates of their change. In accordance with the principle of flexible trajectories, this algorithm assumes the implementation of a regularly updated control program that ensures reaching terminal conditions from the current state that corresponds to the control program update time. The guidance law parameters, which ensure that terminal conditions are reached, are generated as a function of the current phase coordinates of a lander. The article examines an accuracy and reliability of the proposed analytical algorithm that provides the terminal guidance of the lander in 3D space through mathematical modeling of the lander guidance from the circumlunar pre-landing orbit to the desired spot near the lunar surface. A desired terminal position of the lunar lander is specified by the selenographic latitude, longitude and altitude above the lunar surface. The impact of variations in orbital parameters on the terminal guidance accuracy has been studied. By varying the five initial orbit parameters (obliquity, ascending node longitude, argument of periapsis, periapsis height, apoapsis height when the terminal spot is fixed the statistic characteristics of the terminal guidance algorithm error according to the terminal

  4. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  5. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  6. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    Science.gov (United States)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  7. X-ray proportional counter for the Viking Lander

    International Nuclear Information System (INIS)

    Glesius, F.L.; Kroon, J.C.; Castro, A.J.; Clark, B.C.

    1978-01-01

    A set of four sealed proportional counters with optimized energy response is employed in the X-ray fluorescence spectrometer units aboard the two Viking Landers. The instruments have provided quantitative elemental analyses of soil samples taken from the Martian surface. This paper discusses the design and development of these miniature proportional counters, and describes their performance on Mars

  8. Telltale wind indicator for the Mars Phoenix lander

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Honstein-Rathlou, C.; Merrison, J.P.

    2008-01-01

    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale...

  9. NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Science.gov (United States)

    Trinh, Huu P.; Williams, Hunter; Burnside, Chris

    2015-01-01

    The trade study has led to the selection of propulsion concept with the lowest cost and net lowest risk -Government-owned, flight qualified components -Meet mission requirements although the configuration is not optimized. Risk reduction activities have provided an opportunity -Implement design improvements while development with the early-test approach. -Gain knowledge on the operation and identify operation limit -Data to anchor analytical models for future flight designs; The propulsion system cold flow tests series have provided valuable data for future design. -The pressure surge from the system priming and waterhammer within component operation limits. -Enable to optimize the ullage volume to reduce the propellant tank mass; RS-34 hot fire tests have successfully demonstrated of using the engines for the RP mission -No degradation of performance due to extended storage life of the hardware. -Enable to operate the engine for RP flight mission scenarios, outside of the qualification regime. -Provide extended data for the thermal and GNC designs. Significant progress has been made on NASA propulsion concept design and risk reductions for Resource Prospector lander.

  10. The Martian surface as imaged, sampled, and analyzed by the Viking landers

    International Nuclear Information System (INIS)

    Arvidson, R.E.; Gooding, J.L.; Moore, H.J.

    1989-01-01

    Data collected by two Viking landers are analyzed. Attention is given to the characteristics of the surface inferred from Lander imaging and meteorology data, physical and magnetic properties experiments, and both inorganic and organic analyses of Martian samples. Viking Lander 1 touched down on Chryse Planitia on July 20, 1976 and continued to operate for 2252 sols, until November 20, 1982. Lander 2 touched down about 6500 km away from Lander 1, on Utopia Planitia on September 3, 1976. The chemical compositions of sediments at the two landing sites are similar, suggesting an aeolian origin. The compositions suggest an iron-rich rock an are matched by various clays and salts. 89 refs

  11. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  12. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  13. Sample Return Mission to the South Pole Aitken Basin

    Science.gov (United States)

    Duke, M. B.; Clark, B. C.; Gamber, T.; Lucey, P. G.; Ryder, G.; Taylor, G. J.

    1999-01-01

    affected all of the planets of the inner solar system, and in particular, could have been critical to the history of life on Earth. If the SPA is significantly older, a more orderly cratering history may be inferred. Secondly, melt-rock compositions and clasts in melt rocks or breccias may yield evidence of the composition of the lunar mantle, which could have been penetrated by the impact or exposed by the rebound process that occurred after the impact. Thirdly, study of mare and cryptomare basalts could yield further constraints on the age of SPA and the thermal history of the crust and mantle in that region. The integration of these data may allow inferences to be made on the nature of the impacting body. Secondary science objectives in samples from the SPA could include analysis of the regolith for the latitudinal effects of solar wind irradiation, which should be reduced from its equatorial values; possible remnant magnetization of very old basalts; and evidence for Imbrium Basin ejecta and KREEP materials. If a sampling site is chosen close enough to the poles, it is possible that indirect evidence of polar-ice deposits may be found in the form of oxidized or hydrated regolith constituents. A sample return mission to the Moon may be possible within the constraints of NASA's Discovery Program. Recent progress in the development of sample return canisters for Genesis, Stardust, and Mars Sample Return missions suggests that a small capsule can be returned directly to the ground without a parachute, thus reducing its mass and complexity. Return of a 1-kg sample from the lunar surface would appear to be compatible with a Delta 11 class launch from Earth, or possibly with a piggyback opportunity on a commercial launch to GEO. A total mission price tag on the order of 100 million would be a goal. Target date would be late 2002. Samples would be returned to the curatorial facility at the Johnson Space Center for description and allocation for investigations. Concentration of

  14. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    Science.gov (United States)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  15. New analysis software for Viking Lander meteorological data

    Directory of Open Access Journals (Sweden)

    O. Kemppinen

    2013-02-01

    Full Text Available We have developed a set of tools that enable us to process Viking Lander meteorological data beyond what has been previously publicly available. Besides providing data for new periods of time, the existing data periods have been augmented by enhancing the data resolution significantly. This was accomplished by first transferring the original Prime computer version of the data analysis software to a standard Linux platform, and then by modifying the software to be able to process the data despite irregularities in the original raw data and reverse engineering various parameter files. In addition to this, the processing pipeline has been streamlined, making processing the data faster and easier. As a case example of new data, freshly processed Viking Lander 1 and 2 temperature records are described and briefly analyzed in ways that have not been previously possible due to the lack of data.

  16. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    Science.gov (United States)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  17. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  18. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    Science.gov (United States)

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets

  19. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  20. Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission

    Science.gov (United States)

    Smith, Alan; Crawford, I. A.; Gowen, Robert Anthony; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, N.; Bowles, N.; Braithwaite, C.; Brown, P.; Chela-Flores, J.; Cholinser, T.; Church, P.; Coates, A. J.; Colaprete, T.; Collins, G.; Collinson, G.; Cook, T.; Elphic, R.; Fraser, G.; Gao, Y.; Gibson, E.; Glotch, T.; Grande, M.; Griffiths, A.; Grygorczuk, J.; Gudipati, M.; Hagermann, A.; Heldmann, J.; Hood, L. L.; Jones, A. P.; Joy, K. H.; Khavroshkin, O. B.; Klingelhoefer, G.; Knapmeyer, M.; Kramer, G.; Lawrence, D.; Marczewski, W.; McKenna-Lawlor, S.; Miljkovic, K.; Narendranath, S.; Palomba, E.; Phipps, A.; Pike, W. T.; Pullan, D.; Rask, J.; Richard, D. T.; Seweryn, K.; Sheridan, S.; Sims, M.; Sweeting, M.; Swindle, T.; Talboys, D.; Taylor, L.; Teanby, N.; Tong, V.; Ulamec, S.; Wawrzaszek, R.; Wieczorek, M.; Wilson, L.; Wright, I.

    2012-04-01

    Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).

  1. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  2. Investigating the possibility of the CONSERT instrument operating as a bi-static RADAR sounder during the seperation, descent and landing phase of the ROSETTA mission

    Science.gov (United States)

    Statz, C.; Hegler, S.; Plettemeier, D.; Berquin, Y. P.; Herique, A.; Kofman, W. W.

    2012-12-01

    The main scientific objective of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) is to determine the dielectric properties of comet 67P/Chuyurmov-Gerasimenko's nucleus. This will be achieved by performing a sounding of the comet's core between the lander "Philae" launched on the comet's surface and the orbiter "Rosetta". For the sounding the lander will receive, process and retransmit the radio signal emitted by the CONSERT instrument aboard the orbiter. With data measured during the first science phase, a three-dimensional model of the material distribution with regard to the complex dielectric permittivity of the comet's nucleus is to be reconstructed. In order to increase the scientific outcome of the experiment and to collect data beneficial for the main scientific objective, it may be considered to operate the CONSERT instrument as a bi-static RADAR sounder during the non mission-critical parts of the separation, descent and landing (SDL) phase, i.e. when the lander is launched onto the comet's surface, of the ROSETTA mission. The data measured during this phase will be mainly echoes from the comet's surface and first meters of subsurface. Based on this data, we intent to create an initial dielectric permittivity mapping of the comet's surface at and around the landing site In order to estimate the performance of the instrument in this special operational mode, simulations of a sounding in SDL configuration were performed. The simulations are based on a hybrid method-of-moments physical-optics (EFIE-DPO) approach for large dielectric bodies with consideration of the behavior of the instrument's antennas and coupling with the spacecraft as well as polarization effects. The simulated results are furthermore processed in a system-level-instrument-simulator to include effects such as a realistic sounding signal, pulse-compression and analog digital conversion in the estimation of the sounding capabilities. The main objective of the

  3. The Ulysses mission: An introduction

    International Nuclear Information System (INIS)

    Marsden, R.G.

    1996-01-01

    On 30 September 1995, Ulysses completed its initial, highly successful, survey of the polar regions of the heliosphere in both southern and northern hemispheres, thereby fulfilling its prime mission. The results obtained to date are leading to a revision of many earlier ideas concerning the solar wind and the heliosphere. Now embarking on the second phase of the mission, Ulysses will continue along its out-of-ecliptic flight path for another complete orbit of the Sun. In contrast to the high-latitude phase of the prime mission, which occurred near solar minimum, the next polar passes (in 2000 and 2001) will take place when the Sun is at its most active

  4. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Siikonen, T.; Palin, M.

    2017-09-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  5. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  6. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  7. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    Science.gov (United States)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  8. Preliminary meteorological results on Mars from the Viking 1 lander

    International Nuclear Information System (INIS)

    Hess, S.L.; Henry, R.M.; Leovy, C.B.

    1976-01-01

    The results from the meteorology instruments on the Viking 1 lander are presented for the first 4 sols of operation. The instruments are working satisfactorily. Temperatures fluctuated from a low of 188 0 K to an estimated maximum of 244 0 K. The mean pressure is 7.65 millibars with a diurnal variation of amplitude 0.1 millibar. Wind speeds averaged over several minutes have ranged from essentially calm to 9 meters per second. Wind directions have exhibited a remarkable regularity which may be associated with nocturnal downslope winds and gravitational oscillations, or to tidal effects of the diurnal pressure wave, or to both

  9. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  10. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  11. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Science.gov (United States)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  12. The Development and first Cruise Activity of the MASCOT Lander onboard the Hayabuse 2 mission

    OpenAIRE

    Ho, T.-M.; Lange, C.; Ziach, Ch.; Baturkin, V.; Grimm, Ch.; Grundmann, J. T.; Auster, H-U.; Bibring, J.P.; Biele, J.; Borgs, B.; Deleuze, M.; Grott, M.; Jaumann, R.; Lange, M.; Lichtenheldt, R.

    2015-01-01

    Since December 2014 the Japanese spacecraft Hayabusa-II is on its journey to asteroid 1999 JU3. Like its famous predecessor it is foreseen to study and return samples from its target body. This time, the mother spacecraft has several small passengers. One of them is a compact landing package called MASCOT (Mobile Asteroid surface SCOuT), which has been developed by the German Aerospace Centre (DLR) and the Centre National d'Etudes Spatiales (CNES). Once having been released from its mothe...

  13. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  14. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  15. Feasibility of retrieving dust properties and total column water vapor from solar spectra measured using a lander camera on Mars

    Science.gov (United States)

    Manago, Naohiro; Noguchi, Katsuyuki; Hashimoto, George L.; Senshu, Hiroki; Otobe, Naohito; Suzuki, Makoto; Kuze, Hiroaki

    2017-12-01

    Dust and water vapor are important constituents in the Martian atmosphere, exerting significant influence on the heat balance of the atmosphere and surface. We have developed a method to retrieve optical and physical properties of Martian dust from spectral intensities of direct and scattered solar radiation to be measured using a multi-wavelength environmental camera onboard a Mars lander. Martian dust is assumed to be composed of silicate-like substrate and hematite-like inclusion, having spheroidal shape with a monomodal gamma size distribution. Error analysis based on simulated data reveals that appropriate combinations of three bands centered at 450, 550, and 675 nm wavelengths and 4 scattering angles of 3°, 10°, 50°, and 120° lead to good retrieval of four dust parameters, namely, aerosol optical depth, effective radius and variance of size distribution, and volume mixing ratio of hematite. Retrieval error increases when some of the observational parameters such as color ratio or aureole are omitted from the retrieval. Also, the capability of retrieving total column water vapor is examined through observations of direct and scattered solar radiation intensities at 925, 935, and 972 nm. The simulation and error analysis presented here will be useful for designing an environmental camera that can elucidate the dust and water vapor properties in a future Mars lander mission.

  16. Lunar lander and return propulsion system trade study

    Science.gov (United States)

    Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John

    1993-01-01

    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.

  17. Mars MetNet Mission Pressure and Humidity Devices

    Science.gov (United States)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  18. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  19. Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander

    Science.gov (United States)

    Nikkanen, T.; Schmidt, W.; Harri, A.-M.; Genzer, M.; Hieta, M.; Haukka, H.; Kemppinen, O.

    2015-10-01

    Finnish Meteorological Institute (FMI) has developed a novel kind of pressure and humidity instrument for the Schiaparelli Mars lander, which is a part of the ExoMars 2016 mission of the European Space Agency (ESA) [1]. The DREAMS-P pressure instrument and DREAMS-H humidity instrument are part of the DREAMS science package on board the lander. DREAMS-P (seen in Fig. 1 and DREAMS-H were evolved from earlier planetary pressure and humidity instrument designs by FMI with a completely redesigned control and data unit. Instead of using the conventional approach of utilizing a space grade processor component, a commercial off the shelf microcontroller was selected for handling the pressure and humidity measurements. The new controller is based on the Freescale MC9S12XEP100 16-bit automotive microcontroller. Coordinated by FMI, a batch of these microcontroller units (MCUs) went through a custom qualification process in order to accept the component for spaceflight on board a Mars lander.

  20. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  1. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  2. A HW-SW Co-Designed System for the Lunar Lander Hazard Detection and Avoidance Breadboarding

    Science.gov (United States)

    Palomo, Pedro; Latorre, Antonio; Valle, Carlos; Gomez de Aguero, Sergio; Hagenfeldt, Miguel; Parreira, Baltazar; Lindoso, Almudena; Portela, Marta; Garcia, Mario; San Millan, Enrique; Zharikov, Yuri; Entrena, Luis

    2014-08-01

    This paper presents the HW-SW co-design approach followed to tackle the design of the Hazard Detection and Avoidance (HDA) system breadboarding for the Lunar Lander ESA mission, undertaken given the fact that novel GNC technologies used to promote autonomous systems demand processing capabilities that current (and forthcoming) space processors are not able to satisfy. The paper shows how the current system design has been performed in a process in which the original HDA functionally validated design has been partitioned between SW (deemed for execution in a microprocessor) and HW algorithms (to be executed in an FPGA), considering the performance requirements and resorting to a deep analysis of the algorithms in view of their adequacy to HW or SW implementation.

  3. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  4. Understanding NASA surface missions with the PDS Analyst's Notebook

    Science.gov (United States)

    Stein, T.

    2011-10-01

    Planetary data archives of surface missions contain data from numerous hosted instruments. Because of the nondeterministic nature of surface missions, it is not possible to assess the data without understanding the context in which they were collected. The PDS Analyst's Notebook (http://an.rsl.wustl.edu) provides access to Mars Exploration Rover (MER) [1] and Mars Phoenix Lander [2] data archives by integrating sequence information, engineering and science data, observation planning and targeting, and documentation into web-accessible pages to facilitate "mission replay." In addition, Lunar Apollo surface mission data archives and LCROSS mission data are available in the Analyst's Notebook concept, and a Notebook is planned for Mars Science Laboratory (MSL) mission.

  5. Surface of Mars: the view from the Viking 1 lander

    International Nuclear Information System (INIS)

    Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Liebes, S. Jr.; Morris, E.C.; Patterson, W.R.; Pollack, J.B.; Sagan, C.; Taylor, G.R.

    1976-01-01

    The first photographs ever returned from the surface of Mars were obtained by two facsimile cameras aboard the Viking 1 lander, including black-and-white and color, 0.12 0 and 0.04 0 resolution, and monoscopic and stereoscopic images. The surface, on the western slopes of Chryse Planitia, is a boulder-strewn deeply reddish desert, with distant eminences--some of which may be the rims of impact craters--surmounted by a pink sky. Both impact and aeolian processes are evident. After dissipation of a small dust cloud stirred by the landing maneuvers, no subsequent signs of movement were detected on the landscape, and nothing has been observed that is indicative of macroscopic biology at this time and place

  6. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  7. Study of Plume Impingement Effects in the Lunar Lander Environment

    Science.gov (United States)

    Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.

  8. New space vehicle archetypes for human planetary missions

    Science.gov (United States)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  9. [Myanmar mission].

    Science.gov (United States)

    Alfandari, B; Persichetti, P; Pelissier, P; Martin, D; Baudet, J

    2004-06-01

    The authors report the accomplishment of humanitarian missions in plastic surgery performed by a small team in town practice in Yangon, about their 3 years experience in Myanmar with 300 consultations and 120 surgery cases. They underline the interest of this type of mission and provide us their reflexion about team training, the type of relation with the country where the mission is conducted and the type of right team.

  10. Farside explorer : Unique science from a mission to the farside of the moon

    NARCIS (Netherlands)

    Mimoun, D.; Wieczorek, M.A.; Gurvits, L.

    2012-01-01

    Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of theMoon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the

  11. The surface of Mars: the view from the viking 2 lander.

    Science.gov (United States)

    Mutch, T A; Grenander, S U; Jones, K L; Patterson, W; Arvidson, R E; Guinness, E A; Avrin, P; Carlston, C E; Binder, A B; Sagan, C; Dunham, E W; Fox, P L; Pieri, D C; Huck, F O; Rowland, C W; Taylor, G R; Wall, S D; Kahn, R; Levinthal, E C; Liebes, S; Tucker, R B; Morris, E C; Pollack, J B; Saunders, R S; Wolf, M R

    1976-12-11

    Viking 2 lander began imaging the surface of Mars at Utopia Planitia on 3 September 1976. The surface is a boulder-strewn reddish desert cut by troughs that probably form a polygonal network. A plateau can be seen to the east of the spacecraft, which for the most probable lander location is approximately the direction of a tongue of ejecta from the crater Mie. Boulders at the lander 2 site are generally more vesicular than those near lander i. Fines at both lander sites appear to be very fine-grained and to be bound in a duricrust. The pinkish color of the sky, similar to that observed at the lander I site, indicates suspension of surface material. However, the atmospheric optical depth is less than that at the lander I site. After dissipation of a cloud of dust stirred during landing, no changes other than those stemming from sampling activities have been detected in the landscape. No signs of large organisms are apparent at either landing site.

  12. The surface of Mars - The view from the Viking 2 lander

    Science.gov (United States)

    Mutch, T. A.; Grenander, S. U.; Jones, K. L.; Patterson, W.; Arvidson, R. E.; Guinness, E. A.; Avrin, P.; Carlston, C. E.; Binder, A. B.; Sagan, C.

    1976-01-01

    Viking 2 lander began imaging the surface of Mars at Utopia Planitia on September 3, 1976. The surface is a boulder-strewn reddish desert cut by troughs that probably form a polygonal network. A plateau can be seen to the east of the spacecraft, which for the most probable lander location is approximately the dirction of a tongue of ejecta from the crater Mie. Boulders at the lander 2 site are generally more vesicular than those near lander 1. Fines at both lander sites appear to be very fine-grained and to be bound in a duricrust. The pinkish color of the sky, similar to that observed at the lander 1 site, indicates suspension of surface material. However, the atmospheric optical depth is less than that at the lander 1 site. After dissipation of a cloud of dust stirred during landing, no changes other than those stemming from sampling activities have been detected in the landscape. No signs of large organisms are apparent at either landing site.

  13. CE-4 Mission and Future Journey to Lunar

    Science.gov (United States)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  14. Modelling of EISS GPR's electrical and magnetic antennas for ExoMars mission

    Science.gov (United States)

    Biancheri-Astier, M.; Ciarletti, V.; Reineix, A.; Corbel, C.; Dolon, F.; Simon, Y.; Caudoux, C.; Lapauw, L.; Berthelier, Jj.; Ney, R.

    2009-04-01

    magnetic sensor accommodated on the Rover. As a consequence, since the direction that the rover will follow after its egress will not be know until the Lander is on Mars, it is essential to chose a configuration that will result in a radiation pattern compatible with bi-static measurements whatever the direction of the rover is (within a distance of 1 kilometer). Studies based on electromagnetic simulations have been performed to check the impact of the angle between the two monopoles on the radiation pattern. Study of EISS performances is ongoing using numerical modeling and experimental verifications. We use numerical simulation (FDTD code), analytical models and data processing algorithms to determine the performances of each operating mode and to prepare data interpretation. The subsurface survey requires knowledge of the permittivity of the studied sub-surface layers to convert the measured propagation delay into distance. Access to electrical characteristics of ground without return samples and in situ analysis is unusual in space missions and aroused great interest. Results will be presented about different ways EISS can provide estimation of the electrical properties of the shallow subsurface. Simulations that highlight the impact of the chosen resistive profile and of the angle between the two deployed monopoles will be shown. The presentation will mainly be focused on the bi-static mode that greatly improves the 3D representation of subsurface structure and on the associated instrumental requirements such as the perfect synchronization of the two part of the instrument. A method to retrieve the direction of arrival for each detected echo will be presented that allows a more accurate sub-surface mapping. Only the three magnetic field components are required to implement it, which makes the EISS configuration particularly interesting. This method is based on the orthogonality between the propagation vector and the polarization plane.

  15. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  16. Mars Atmosphere and Regolith COllector/PrOcessor for Lander Ops (MARCO POLO) Atmospheric Processing Module

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a...

  17. Affordable, Lightweight, Compactly Stowable, High Strength / Stiffness Lander Solar Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA's future Lander and sample return...

  18. Affordable, Lightweight, Compactly Stowable, High Strength / Stiffness Lander Solar Array, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA's future Lander and sample return...

  19. Titan Aerial Daughtercraft (TAD) for Surface Studies from a Lander or Balloon

    Science.gov (United States)

    Matthies, L.; Tokumaru, P.; Sherrit, S.; Beauchamp, P.

    2014-06-01

    Recent rapid progress on autonomous navigation of micro air vehicles for terrestrial applications opens new possibilities for a small aerial vehicle that could deploy from a Titan lander or balloon to acquire samples for analysis on the mothership.

  20. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    Science.gov (United States)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  1. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    International Nuclear Information System (INIS)

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also

  2. The inducible CAM plants in putative lunar lander experiments

    Science.gov (United States)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  3. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Frant, M.; Hecht, M. H.; Kounaves, S. P.; Manatt, K.; Meloy, T. P.; Pike, W. T.; Schubert, W.; West, S.; Wen, X.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry laboratory (WCL). The WCL consists of four identical cells, each of which will evaluate a sample of Martian soil in water to determine conductivity, pH, redox potential, dissolved C02 and 02 levels, and concentrations of many soluble ions including sodium, potassium, magnesium, calcium and the halides. In addition, cyclic voltammetry will be used to evaluate reversible and irreversible oxidants present in the water/soil solution. Anodic stripping voltammetry will be used to measure concentrations of trace metals including lead, copper, and cadmium at ppb levels. Voltammetry is a general electrochemical technique that involves controlling the potential of an electrode while simultaneously measuring the current flowing at that electrode. The WCL experiments will provide information on the corrosivity and reactivity of the Martian soil, as well as on soluble components of the soil which might be toxic to human explorers. They will also guide HEDS scientists in the development of high fidelity Martian soil simulants. In the process of acquiring information relevant to HEDS, the WCL will assess the chemical composition and properties of the salts present in the Martian soil.

  4. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  5. The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life

    Science.gov (United States)

    Mckay, Christopher P.; Stoker, Carol R.; Glass, Brian J.; Dave, Arwen I.; Davila, Alfonso F.; Heldmann, Jennifer L.; Marinova, Margarita M.; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A.; hide

    2012-01-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample

  6. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

    Science.gov (United States)

    McKay, Christopher P; Stoker, Carol R; Glass, Brian J; Davé, Arwen I; Davila, Alfonso F; Heldmann, Jennifer L; Marinova, Margarita M; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A; Paulsen, Gale; Smith, Peter H; Parro, Victor; Andersen, Dale T; Hecht, Michael H; Lacelle, Denis; Pollard, Wayne H

    2013-04-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by

  7. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites

    International Nuclear Information System (INIS)

    Sutton, J.L.; Leovy, C.B.; Tillman, J.E.

    1978-01-01

    Wind speed, ambient and surface temperatures from both Viking Landers have been used to compute bulk Richardson numbers and Monin-Obukhov lengths during the earliest phase of the Mars missions. These parameters are used to estimate drag and heat transfer coefficients, friction velocities and surface heat fluxes at the two sites. The principal uncertainty is in the specification of the roughness length. Maximum heat fluxes occur near local noon at both sites, and are estimated to be in the range 15--20 W m -2 at the Viking 1 site and 10--15 W m -2 at the Viking 2 site. Maximum values of friction velocity occur in late morning at Viking 1 and are estimated to be 0.4--0.6 m s -1 . They occur shortly after drawn at the Viking 2 site where peak values are estimated to be in the range 0.25--0.35 m s -1 . Extension of these calculations to later times during the mission will require allowance for dust opacity effects in the estimation of surface temperature and in the correction of radiation errors of the Viking 2 temperature sensor

  8. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  9. Understanding NEOs: The Role of Characterization Missions

    Science.gov (United States)

    Morrison, David

    2007-10-01

    NEOs are important from multiple perspectives, including science, hazard mitigation, space resources, and as targets for human missions. Much can be learned from ground-based studies, especially with radar, but the unique value of in situ investigation has been shown by missions such as NEAR-Shoemaker and Hayabusa to asteroids Eros and Itokawa, and Deep Impact and Stardust to comets. The next mission targets are likely to be NEAs in the subkilometer size range. Because these smaller objects are much more numerous, they are the objects we most need to understand from a defense perspective, and they are also the most likely targets for early human missions. However, there are unique challenges in sending spacecraft to investigate sub-km asteroids. Reconnaissance flybys are of little use, orbiting requires active control, and landing on such a low-gravity surface is perhaps better described as docking. Yet we need to operate close to the target, and probably to land, to obtain crucial information about interior structure. This paper deals primarily with small landers like the Near Earth Asteroid Trailblazer Mission (NEAT) studied at Ames Research Center. The NEAT objectives are to provide global reconnaissance (shape, mass, density, dynamical state), in situ surface characterization, and long-term precision tracking. Alternative approaches use deep-penetrating radar and electromagnetic sounding to probe interior structure. A third class of missions is ballistic impactors such as the ESA Don Quijote, which test one of the technologies for deflecting small asteroids. If the targets are selected for their accessibility, such missions could be implemented with low-cost launchers such as Pegasus, Falcon, or Minotaur. Such missions will have high science return. But from the perspective of defense, we have not yet developed a consensus strategy for the role of such characterization missions.

  10. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  11. Viking Lander image analysis of Martian atmospheric dust

    Science.gov (United States)

    Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.

    1995-01-01

    We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977,1979) by deriving more accurate brightnesses closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius (r(sub eff)) is found to be 1.85 +/- 0.3 microns at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 microns at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance (nu(eff)) of the size distribution is equal to 0.5 +/- 0.2 microns. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollack et al. (1977,1979) estimates.

  12. MOURA magnetometer for Mars MetNet Precursor Mission. Its potential for an in situ magnetic environment and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Michelena, M.; Sanz, R.; Fernandez, A.B.; Manuel, V. de; Cerdan, M.F.; Apestigue, V.; Arruego, I.; Azcue, J.; Dominguez, J.A.; Gonzalez, M.; Guerrero, H.; Sabau, M.; Kilian, R.; Baeza, O.; Ros, F.; Vazquez, M.; Tordesillas, J.M.; Covisa, P.; Aguado, J.

    2016-07-01

    MOURA magnetometer and gradiometer is part of the scientific instrumentation for Mars MetNet Precursor mission. This work describes the objective of the investigation, summarizes the work done in the design and development of the sensor as well as its calibration, and shows the demonstration campaigns to show the potential of such instrument for planetary landers and rovers. (Author)

  13. The Zeus Mission Study — An application of automated collaborative design

    Science.gov (United States)

    Doyotte, Romain; Love, Stanley G.; Peterson, Craig E.

    1999-11-01

    The purpose of the Zeus Mission Study was threefold. As an element of a graduate course in spacecraft system engineering, its purpose was primarily educational — to allow the students to apply their knowledge in a real mission study. The second purpose was to investigate the feasibility of applying advanced technology (the power antenna and solar electric propulsion concepts) to a challenging mission. Finally, the study allowed evaluation of the benefits of using quality-oriented techniques (Quality Function Deployment (QFD) and Taguchi Methods) for a mission study. To encourage innovation, several constraints were placed on the study from the onset. While the primary goal was to place at least one lander on Europa, the additional constraint of no nuclear power sources posed an additional challenge, particularly when coupled with the mass constraints imposed by using a Delta II class launch vehicle. In spite of these limitations, the team was able to develop a mission and spacecraft design capable of carrying three simple, lightweight, yet capable landers. The science return will more than adequately meet the science goals established QFD was used to determine the optimal choice of instrumentation. The lander design was selected from several competing lander concepts, including rovers. The carrier design was largely dictated by the needs of the propulsion system required to support the mission, although the development of a Project Trades Model (PTM) in software allowed for rapid recalculation of key system parameters as changes were made. Finally, Taguchi Methods (Design of Experiments) were used in conjunction with the PTM allowing for some limited optimization of design features.

  14. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  15. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  16. Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander

    Science.gov (United States)

    Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf

    2018-02-01

    In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions

  17. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Science.gov (United States)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  18. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    Science.gov (United States)

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  19. The Rosetta Mission - Where no Spacecraft has gone before

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This Talk will provide an overview on the Scientific Highlights of the Rosetta Mission. After travelling through the Solar System for nearly 10 years Rosetta arrived at its main target, Comet 67/P Churyumov-Gerasimenko, in August 2014. Following an initial characterisation of the Comet, the lander unit Philae touched down on the partly active Nucleus on November 12 of the same year. The data acquired from the numerous instruments onboard the Spacecraft provides a unique insight into the properties of the Comets. While most of the measurements and processing of the data are still ongoing, the results from the Mission provide continuous surprises to the scientific community. While the Lander has been reactivated with some difficulties after a few months of inactivity due to low insolation levels, the Orbiter is pursuing its main mission objectives until the end of its extended Mission in Autumn 2016. During the long journey, the Spacecraft had encountered Earth, Mars and two Asteroids ( 2867 Šteins and 21 Lu...

  20. Advanced Russian Mission Laplace-P to Study the Planetary System of Jupiter: Scientific Goals, Objectives, Special Features and Mission Profile

    Science.gov (United States)

    Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.

    2017-12-01

    The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.

  1. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  2. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  3. Relativistic time transfer for a Mars lander: from Areocentric Coordinate Time to Barycentric Coordinate Time

    Science.gov (United States)

    Yang, Wen-Zheng; Xu, De-Wang; Yu, Qing-Shan; Liu, Jie; Xie, Yi

    2017-08-01

    As the second step of relativistic time transfer for a Mars lander, we investigate the transformation between Areocentric Coordinate Time (TCA) and Barycentric Coordinate Time (TCB) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous to the Geocentric Coordinate Time (TCG) for Earth. This transformation has two parts: contributions associated with gravitational bodies and those depending on the position of the lander. After setting the instability of an onboard clock to 10-13 and considering that the uncertainty in time is about 3.2 microseconds after one Earth year, we find that the contributions of the Sun, Mars, Jupiter and Saturn in the leading term associated with these bodies can reach a level exceeding the threshold and must be taken into account. Other terms can be safely ignored in this transformation for a Mars lander.

  4. Rover deployment system for lunar landing mission

    Science.gov (United States)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  5. Mission Design Considerations for Mars Cargo of the Human Spaceflight Architecture Team's Evolvable Mars Campaign

    Science.gov (United States)

    Sjauw, Waldy K.; McGuire, Melissa L.; Freeh, Joshua E.

    2016-01-01

    Recent NASA interest in human missions to Mars has led to an Evolvable Mars Campaign by the agency's Human Architecture Team. Delivering the crew return propulsion stages and Mars surface landers, SEP based systems are employed because of their high specific impulse characteristics enabling missions requiring less propellant although with longer transfer times. The Earth departure trajectories start from an SLS launch vehicle delivery orbit and are spiral shaped because of the low SEP thrust. Previous studies have led to interest in assessing the divide in trip time between the Earth departure and interplanetary legs of the mission for a representative SEP cargo vehicle.

  6. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  7. Best Practices for In-Situ Sediment-Water Incubations with Benthic Landers

    Science.gov (United States)

    Tengberg, Anders; Kononets, Mikhail; Hall, Per; Nilsson, Madeleine; Ekeroth, Nils

    2017-04-01

    Biological, chemical, physical and geological processes that take place at the seafloor are crucial in influencing and regulating many aquatic environments. One method to estimate exchange rates, fluxes, between the sediment and the overlying water is in-situ sediment-water incubations using autonomous chamber landers. As for all field sampling and measurements best practices methods are needed to obtain high quality data. With experiences form many years usage of the Gothenburg autonomous bottom lander systems this presentation will describe some of the experimental work that has been done with focus on quality control and data evaluation methods.

  8. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  9. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  10. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  11. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  12. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  13. Model of the fine-grain component of martian soil based on Viking lander data

    International Nuclear Information System (INIS)

    Nussinov, M.D.; Chernyak, Y.B.; Ettinger, J.L.

    1978-01-01

    A model of the fine-grain component of the Martian soil is proposed. The model is based on well-known physical phenomena, and enables an explanation of the evolution of the gases released in the GEX (gas exchange experiments) and GCMS (gas chromatography-mass spectrometer experiments) of the Viking landers. (author)

  14. Are the Viking Lander sites representative of the surface of Mars?

    Science.gov (United States)

    Jakosky, B. M.; Christensen, P. R.

    1986-01-01

    Global remote sensing data of the Martian surface, collected by earth- and satellite-based instruments, are compared with data from the two Viking Landers to determine if the Lander data are representative of the Martian surface. The landing sites are boulder-strewn and feature abundant fine material and evidence of strong eolian forces. One site (VL-1) is in a plains-covered basin which is associated with volcanic activity; the VL-2 site is in the northern plains. Thermal IR, broadband albedo, color imaging and radar remote sensing has been carried out of the global Martian surface. The VL-1 data do not fit a general correlation observed between increases in 70-cm radar cross-sections and thermal inertia. A better fit is found with 12.5-cm cross sections, implying the presence of a thinner or discontinuous duricrust at the VL-1 site, compared to other higher-inertia regions. A thin dust layer is also present at the VL-2 site, based on the Lander reflectance data. The Lander sites are concluded to be among the three observed regions of anomalous reflectivity, which can be expected in low regions selected for the landings. Recommendations are furnished for landing sites of future surface probes in order to choose sites more typical of the global Martian surface.

  15. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  16. The weather on Mars on the basis of the measurements carried out by the Vikings mission

    International Nuclear Information System (INIS)

    Macris, C.J.; Petropoulos, B.Ch.

    1982-01-01

    The authors summarize some new results concerning the Mars atmosphere obtained after the Vikings mission. On the basis of the results of the measurements made by the Viking 2 lander and Viking orbiter, the values of pressure and density corresponding to the altitudes from 28 to 100 km and different molecular weights have been computed. The computed values have been compared with the ones measured by Viking 2. (Auth.)

  17. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  18. Micro-Pressure Sensors for Future Mars Missions

    Science.gov (United States)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  19. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  20. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  1. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations

    NARCIS (Netherlands)

    Flahaut, J.; Blanchette-Guertin, J.F.; Jilly, C.; Sharma, P.; Souchon, A.; van Westrenen, W.; Kring, D.A.

    2012-01-01

    Despite more than 52 years of lunar exploration, a wide range of first-order scientific questions remain about the Moon's formation, temporal evolution, and current surface and interior properties. Addressing many of these questions requires obtaining new in situ analyses or return of lunar surface

  2. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    Science.gov (United States)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  3. The development of sine vibration test requirements for Viking lander capsule components

    Science.gov (United States)

    Barrett, S.

    1974-01-01

    In connection with the Viking project for exploring the planet Mars, two identical spacecraft, each consisting of an orbiter and a lander, will be launched in the third quarter of 1975. Upon arrival at the planet, the Viking lander will separate from the Viking orbiter and descend to a soft landing at a selected site on the Mars surface. It was decided to perform a sine vibration test on the Viking spacecraft, in its launch configuration, to qualify it for the booster-induced transient-dynamic environment. It is shown that component-level testing is a cost- and schedule-effective prerequisite to the system-level, sine-vibration test sequences.

  4. How Do You Answer the Life on Mars Question? Use Multiple Small Landers Like Beagle 2

    Science.gov (United States)

    Gibson, Everett K.; Pillinger, C. T.; Wright, I. P.; Hurst, S. J.; Richter, L.; Sims, M. R.

    2012-01-01

    To address one of the most important questions in planetary science Is there life on Mars? The scientific community must turn to less costly means of exploring the surface of the Red Planet. The United Kingdom's Beagle 2 Mars lander concept was a small meter-size lander with a scientific payload constituting a large proportion of the flown mass designed to supply answers to the question about life on Mars. A possible reason why Beagle 2 did not send any data was that it was a one-off attempt to land. As Steve Squyres said at the time: "It's difficult to land on Mars - if you want to succeed you have to send two of everything".

  5. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    Science.gov (United States)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  6. Progress Towards the Development of a Long-Lived Venus Lander Duplex System

    Science.gov (United States)

    Dyson, Rodger, W.; Bruder, Geoffrey A.

    2011-01-01

    NASA has begun the development of a combined Stirling cycle power and cooling system (duplex) to enable the long-lived surface exploration of Venus and other harsh environments in the solar system. The duplex system will operate from the heat provided by decaying radioisotope plutonium-238 or its substitute. Since the surface of Venus has a thick, hot, and corrosive atmosphere, it is a challenging proposition to maintain sensitive lander electronics under survivable conditions. This development effort requires the integration of: a radioisotope or fission heat source; heat pipes; high-temperature, corrosion-resistant material; multistage cooling; a novel free-displacer Stirling convertor for the lander; and a minimal vibration thermoacoustic Stirling convertor for the seismometer. The first year effort includes conceptual system design and control studies, materials development, and prototype hardware testing. A summary of these findings and test results is presented in this report.

  7. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near Earth Asteroid Disruption

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent W.

    2015-01-01

    Currently, no planetary defense demonstration mission has ever been flown. While Nuclear Explosive Devices (NEDs) have significantly more energy than a kinetic impactor launched directly from Earth, they present safety and political complications, and therefore may only be used when absolutely necessary. The Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System (BILLIARDS) is a demonstration mission for planetary defense, which is capable of delivering comparable energy to the lower range of NED capabilities in the form of a safer kinetic impactor. A small asteroid (disrupt the larger asteroid. To reduce the cost and complexity, an asteroid pair which has a natural close approach is selected.

  8. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  9. Planning and Implementation of Pressure and Humidity Measurements on ExoMars 2016 Schiaparelli Lander

    Science.gov (United States)

    Nikkanen, T.; Schmidt, W.; Genzer, M.; Komu, M.; Kemppinen, O.; Haukka, H.; Harri, A.-M.

    2014-04-01

    The ExoMars 2016 Schiaparelli lander offers a platform for meteorological and electric field observations ranging from timescales of seconds to Martian days, or sols. In the Finnish Meteorological Institute (FMI), this opportunity has been used to develop a new type of instrument controller unit for the already flight-proven FMI pressure and humidity instruments. The new controller allows for more flexible and autonomous data acquisition processes and planning than the previous FMI designs.

  10. Structural design of liquid oxygen/liquid methane robotic lander JANUS

    Science.gov (United States)

    Chaidez, Mariana

    As the attempt to send humans to Mars has gained momentum in the last decade, the need to find alternative propellants that are safer, less toxic, and yields a better performance has become apparent [1]. Liquid methane and oxygen have emerged as a suitable alternative. In addition, the incorporation of liquid methane/liquid oxygen into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the propulsion system. In an attempt to further understand the technologies that are possible to develop using liquid oxygen (LO 2) and liquid methane (LCH4), a preliminary design of a robotic lander JANUS is being completed by the Center for Space Exploration and Technology Research (cSTER). The structural design of the vehicle is important because it acts as the skeleton of the vehicle and dictates the maneuverability of the robotic lander. To develop the structure of the robotic lander, six different design vehicle concepts with varying tank configurations were considered. Finite Element Analysis (FEA) was completed on each model to optimize each vehicle. Trade studies were completed to choose the best design for JANUS. Upon completion of the trade studies the design for the first prototype of JANUS was initiated in which the tank and thrust modules were designed. This thesis will describe the design process for the structural design of the JANUS.

  11. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration

    Science.gov (United States)

    Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo

    2018-05-01

    This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.

  12. First-order optical analysis of a quasi-microscope for planetary landers

    Science.gov (United States)

    Huck, F. O.; Sinclair, A. R.; Burcher, E. E.

    1973-01-01

    A first-order geometrical optics analysis of a facsimile camera augmented with an auxiliary lens as magnifier is presented. This concept, called quasi-microscope, bridges the gap between surface resolutions of the order of 1 to 10 mm which can be obtained directly with planetary lander cameras and resolutions of the order of 0.2 to 10 microns which can be obtained only with relatively complex microscopes. A facsimile camera was considered in the analysis; however, the analytical results can also be applied to television and film cameras. It was found that quasi-microscope resolutions in the range from 10 to 100 microns are obtainable with current state-of-the-art lander facsimile cameras. For the Viking lander camera having an angular resolution of 0.04 deg, which was considered as a specific example, the best achievable resolution would be about 20 microns. The preferred approach to increase the resolution of the quasi-microscope would be, if possible, through an increase in angular resolution of the camera. A twofold to threefold improvement in resolution could also be achieved with a special camera focus position, but this approach tends to require larger and heavier auxiliary optics.

  13. An Application of the "Virtual Spacecraft" Concept in Evaluation of the Mars Pathfinder Lander Low Gain Antenna

    Science.gov (United States)

    Pogorzelski, R. J.; Beckon, R. J.

    1997-01-01

    The virtual spacecraft concept is embodied in a set of subsystems, either in the form of hardware or computational models, which together represent all, or a portion of, a spacecraft. For example, the telecommunications transponder may be a hardware prototype while the propulsion system may exist only as a simulation. As the various subsystems are realized in hardware, the spacecraft becomes progressively less virtual. This concept is enabled by JPL's Mission System Testbed which is a set of networked workstations running a message passing operating system called "TRAMEL" which stands for Task Remote Asynchronous Message Exchange Layer. Each simulation on the workstations, which may in fact be hardware controlled by the workstation, "publishes" its operating parameters on TRAMEL and other simulations requiring those parameters as input may "subscribe" to them. In this manner, the whole simulation operates as a single virtual system. This paper describes a simulation designed to evaluate a communications link between the earth and the Mars Pathfinder Lander module as it descends under a parachute through the Martian atmosphere toward the planet's surface. This link includes a transmitter and a low gain antenna on the spacecraft and a receiving antenna and receiver on the earth as well as a simulation of the dynamics of the spacecraft. The transmitter, the ground station antenna, the receiver and the dynamics are all simulated computationally while the spacecraft antenna is implemented in hardware on a very simple spacecraft mockup. The dynamics simulation is a record of one output of the ensemble of outputs of a Monte Carlo simulation of the descent. Additionally, the antenna/spacecraft mock-up system was simulated using APATCH, a shooting and bouncing ray code developed by Demaco, Inc. The antenna simulation, the antenna hardware, and the link simulation are all physically located in different facilities at JPL separated by several hundred meters and are linked via

  14. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    Science.gov (United States)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  15. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  16. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  17. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  18. Mission,System Design and Payload Aspects of ESA's Mercury Cornerstone Mission

    Science.gov (United States)

    Ferri, A.; Anselmi, A.; Scoon, G. E. N.

    1999-09-01

    Aim of this paper is to summarise the 1-year study performed by Alenia Aerospazio in close co-operation with the European Space Agency, on the Mercury Cornerstone System and Technology Study, as a part of Horizon 2000+ Scientific Programme plan. ESA's definition study towards a mission to Mercury conceives the launch of a S/C in 2009, on a two to three years journey, plus a one-year scientific observations and data take. The mission's primary objectives are manyfolded, aiming at approaching basic scientific questions on the origin and evolution of Mercury: identify and map the chemical and mineral composition of the surface, measure the topography of surface landforms, define the gravitational field, investigate particles and magnetic fields. The mission is also intended to resolve the librational state of the planet, in a system experiment requiring high accuracy inertial attitude (arcsecond level) and orbit (m-level) reconstitution. This experiment will allow to infer whether Mercury has a molten core, which is crucial to theories of magnetic field generation, and theories of the thermal history of terrestrial type planets. A hard-lander is planned to perform in-situ surface geochemical analysis. The mission is expected to provide scientists with a global portrait of Mercury returning about 1200 Gbits of scientific data, during a 1-year observation phase. The crucial aspects of the spacecraft design have to do with the high-temperature and high-radiation environment. Thermal control is achieved by a combination of orbit selection, attitude law, and special design provisions for IR shielding and HT insulation. Ad-hoc design provisions are envisaged for power and antenna mechanisms. Though the conceptual objectives of this industrial study focused on system architectures and enabling technologies for a "Cornerstone" class mission, in this paper emphasis is given on the scientific payload aspects.

  19. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  20. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  1. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  2. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  3. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    C. P. Escoubet

    2001-09-01

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  4. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  5. Experimental test of the variability of G using Viking lander ranging data

    International Nuclear Information System (INIS)

    Hellings, R.W.; Adams, P.J.; Anderson, J.D.; Keesey, M.S.; Lau, E.L.; Standish, E.M.; Canuto, V.M.; Goldman, I.

    1983-01-01

    Results are presented from the analysis of solar system astrometric data, notably the range data to the Viking landers on Mars. A least-squares fit of the parameters of the solar system model to these data limits a simple time variation in the effective Newtonian gravitational constant to (0.2 +- 0.4) x 10 -11 yr -1 and a rate of drift of atomic clocks relative to the implicit clock of relativistic dynamics to (0.1 +- 0.8) x 10 -11 yr -1 . The error limits quoted are the result of uncertainties in the masses of the asteroids

  6. Scientific Objectives of China Chang E 4 CE-4 Lunar Far-side Exploration Mission

    Science.gov (United States)

    Zhang, Hongbo; Zeng, Xingguo; Chen, Wangli

    2017-10-01

    China has achieved great success in the recently CE-1~CE-3 lunar missions, and in the year of 2018, China Lunar Exploration Program (CLEP) is going to launch the CE-4 mission. CE-4 satellite is the backup satellite of CE-3, so that it also consists of a Lander and a Rover. However, CE-4 is the first mission designed to detect the far side of the Moon in human lunar exploration history. So the biggest difference between CE-4 and CE-3 is that it will be equipped with a relay satellite in Earth-Moon-L2 Point for Earth-Moon Communication. And the scientific payloads carried on the Lander and Rover will also be different. It has been announced by the Chinese government that CE-4 mission will be equipped with some new international cooperated scientific payloads, such as the Low Frequency Radio Detector from Holland, Lunar Neutron and Radiation Dose Detector from Germany, Neutral Atom Detector from Sweden, and Lunar Miniature Optical Imaging Sounder from Saudi Arabia. The main scientific objective of CE-4 is to provide scientific data for lunar far side research, including: 1)general spatial environmental study of lunar far side;2)general research on the surface, shallow layer and deep layer of lunar far side;3)detection of low frequency radio on lunar far side using Low Frequency Radio Detector, which would be the first time of using such frequency band in lunar exploration history .

  7. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  8. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    Science.gov (United States)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar

  9. Research on Impact Process of Lander Footpad against Simulant Lunar Soils

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2015-01-01

    Full Text Available The safe landing of a Moon lander and the performance of the precise instruments it carries may be affected by too heavy impact on touchdown. Accordingly, landing characteristics have become an important research focus. Described in this paper are model tests carried out using simulated lunar soils of different relative densities (called “simulant” lunar soils below, with a scale reduction factor of 1/6 to consider the relative gravities of the Earth and Moon. In the model tests, the lander was simplified as an impact column with a saucer-shaped footpad with various impact landing masses and velocities. Based on the test results, the relationships between the footpad peak feature responses and impact kinetic energy have been analyzed. Numerical simulation analyses were also conducted to simulate the vertical impact process. A 3D dynamic finite element model was built for which the material parameters were obtained from laboratory test data. When compared with the model tests, the numerical model proved able to effectively simulate the dynamic characteristics of the axial forces, accelerations, and penetration depths of the impact column during landing. This numerical model can be further used as required for simulating oblique landing impacts.

  10. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    Science.gov (United States)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  11. Galileo and Ulysses missions safety analysis and launch readiness status

    International Nuclear Information System (INIS)

    Cork, M.J.; Turi, J.A.

    1989-01-01

    The Galileo spacecraft will explore the Jupiter system and Ulysses will fly by Jupiter en route to a polar orbit of the sun. Both spacecraft are powered by general purpose heat source radioisotope thermoelectric generators (RTGs). As a result of the Challenger accident and subsequent mission reprogramming, the Galileo and Ulysses missions' safety analysis had to be repeated. In addition to presenting an overview of the safety analysis status for the missions, this paper presents a brief review of the missions' objectives and design approaches, RTG design characteristics and development history, and a description of the safety analysis process. (author)

  12. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  13. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  14. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  15. Dukovany ASSET mission preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kouklik, I [NPP Dukovany (Czech Republic)

    1997-12-31

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future.

  16. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    Kouklik, I.

    1996-01-01

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  17. Trajectory Design for the Europa Clipper Mission Concept

    Science.gov (United States)

    Buffington, Brent

    2014-01-01

    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si).

  18. FIREX mission requirements document for renewable resources

    Science.gov (United States)

    Carsey, F.; Dixon, T.

    1982-01-01

    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.

  19. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  20. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    Science.gov (United States)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission

  1. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  2. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  3. The Primordial Inflation Explorer (PIXIE) Mission

    Science.gov (United States)

    Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer

  4. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  5. Scientific Packages on Small Bodies, a Deployment Strategy for New Missions

    Science.gov (United States)

    Tardivel, Simon; Scheeres, D. J.; Michel, P.

    2013-10-01

    The exploration of asteroids is currently a topic of high priority for the space agencies. JAXA will launch its second asteroid explorer, aimed at 1999 JU3, in the second half of 2014. NASA has selected OSIRIS-REx to go to asteroid Bennu, and it will launch in 2016. ESA is currently performing the assessment study of the MarcoPolo-R space mission, in the framework of the M3 (medium) competition of its Cosmic Vision Program, whose objective is now 2008 EV5. In the continuity of these missions, landing for an extended period of time on the ground to perform measurements seems a logical next step to asteroid exploration. Yet, the surface behavior of an asteroid is not well known and landing the whole spacecraft on it could be hazardous, and pose other mission operations problems such as ensuring communication with Earth. Hence, we propose a new approach to asteroid surface exploration. Using a mothership spacecraft, we will present how multiple landers could be deployed to the surface of an asteroid using ballistic trajectories. Combining a detailed simulation of the bouncing and contact dynamics on the surface with numerical and mathematical analysis of the flight dynamics near an asteroid, we show how landing pods could be distributed at the surface of a body. The strategy has the advantages that the mothership always maintains a safe distance from the surface and the landers do not need any GNC (guidance, navigation and control system) or landing apparatus. Thus, it allows for simple operations and for the design of lightweight landers with minimum platform overhead and maximum payload. These pods could then be used as a single measurement apparatus (e.g. seismometers) or as independent and different instruments, using their widespread distribution to gain both global and local knowledge on the asteroid.

  6. Interplanetary laser ranging - an emerging technology for planetary science missions

    Science.gov (United States)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  7. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  8. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  9. A versatile silver oxide-zinc battery for synchronous orbit and planetary missions

    Science.gov (United States)

    Schwartz, H. J.; Soltis, D. G.

    1973-01-01

    A new kind of silver-zinc cell has been developed and tested under NASA support which can withstand severe heat sterilization requirements and does not display the traditional life limiting aspect of zinc electrodes - i.e., shape change. These cells could be used on a planetary lander mission which requires wet-stand periods of over a year, a modest number of cycles (400 to 500) and may require dry heat sterilization. The weight advantage of these cells over the traditional nickel-cadmium batteries makes them also an attractive alternative for synchronous orbit service where 400 to 500 cycles would be required over a five-year period.

  10. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  11. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  12. Optical analysis of a compound quasi-microscope for planetary landers

    Science.gov (United States)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  13. Optimization of a Lunar Pallet Lander Reinforcement Structure Using a Genetic Algorithm

    Science.gov (United States)

    Burt, Adam O.; Hull, Patrick V.

    2014-01-01

    This paper presents a design automation process using optimization via a genetic algorithm to design the conceptual structure of a Lunar Pallet Lander. The goal is to determine a design that will have the primary natural frequencies at or above a target value as well as minimize the total mass. Several iterations of the process are presented. First, a concept optimization is performed to determine what class of structure would produce suitable candidate designs. From this a stiffened sheet metal approach was selected leading to optimization of beam placement through generating a two-dimensional mesh and varying the physical location of reinforcing beams. Finally, the design space is reformulated as a binary problem using 1-dimensional beam elements to truncate the design space to allow faster convergence and additional mechanical failure criteria to be included in the optimization responses. Results are presented for each design space configuration. The final flight design was derived from these results.

  14. Size, Albedo, and Taxonomy of the Don Quijote Space Mission Target

    Science.gov (United States)

    Harris, Alan; Mueller, Michael; Fitzsimmons, Alan

    2006-03-01

    Rendezvous and lander missions are a very effective but very expensive way of investigating Solar-System bodies. The planning, optimization and success of space missions depends crucially on prior remotely-sensed knowledge of target bodies. Near-Earth asteroids (NEAs), which are mainly fragments of main-belt asteroids, are seen as important goals for investigation by space missions, mainly due to the role their forebears played in planet formation and the evolution of the Solar System, but also for the pragmatic reason that these objects can collide with the Earth with potentially devastating consequences. The European Space Agency is currently planning the Don Quijote mission to a NEA, which includes a rendezvous (and perhaps a lander) spacecraft and an impactor vehicle. The aim is to study the physical properties of the target asteroid and the effects of the impact on its dynamical state, as a first step in considering realistic mitigation measures against an eventual hazardous NEA. Two potential targets have been selected for the mission, the preferred one being (10302) 1989 ML, which is energetically easier to reach and is possibly a scientifically interesting primitive asteroid. However, due to the ambiguity of available spectral data, it is currently not possible to confidently determine the taxonomic type and mineralogy of this object. Crucially, the albedo is uncertain by a factor of 10, which leads to large uncertainties in the size and mass and hence the planned near-surface operations of Don Quijote. Thermal-infrared observations are urgently required for accurate size and albedo determination. These observations, which can only be carried out by Spitzer and would require only a modest amount of observing time, would enable an accurate diameter to be derived for the first time and the resulting albedo would remove the taxonomic ambiguity. The proposed Spitzer observations are critical for effective mission planning and would greatly increase our

  15. What Polar Bears Can Teach Us about Mission Creep

    Science.gov (United States)

    2015-04-16

    directors in November 1917.8 Czech legionnaires, who needed to secure an evacuation route, quickly 6 Margaret McMillian, Paris 1919 – Six months...sign Treaty of Brest -Litovsk with Germans 26 March Bolsheviks agree to permit Czechs to return to Europe via Vladivostok 30 March Reports on German... Paris 1919 – Six months that changed the world. New York: Random House, 2003. Moroney, Jennifer D.P., Beth Grill, Joe Hagler, Lianne Kennedy

  16. MoonNEXT: A European Mission to the Moon

    Science.gov (United States)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    preparation and technology demonstration for future exploration activities MoonNEXT will advance our understanding of the origin, structure and evolution of the Moon. These advances in understanding will come about through a range of geophysical and geochemical investigations. MoonNEXT will also assess the value of the lunar surface as a future site for performing science from the Moon, using radio astronomy as an example. The scientific objectives are: • To study the geophysics of the Moon, in particular the origin, differentiation, internal structure and early geological evolution of the Moon. • To obtain in-situ geochemical data from, within the Aitken Basin, where material from the lower crust and possibly the upper mantle may be found. • To investigate the nature of volatiles implanted into the lunar regolith at the South Pole and identify their species. • To study the environment at the lunar South pole, in particular to measure the radiation environment, the dust flux due to impact ejecta and micrometeoroids, and a possibly the magnetic field. • To study the effect of the lunar environment on biological systems. • To further our understanding of the ULF/VLF background radiation of the universe. • Investigate the electromagnetic environment of the moon at radio wavelengths with the potential to perform astronomical radio observations. Various mission scenarios are currently under study, incorporating options for a lander-only configuration or a lander with the possible addition of a rover. The working experimental payload includes cameras, broad band and short period seismometers, a radiation monitor, instruments to measure dust transport and micrometeoroid fluxes, instruments to provide elemental and mineralogical analyses of surface rocks, a mole for subsurface heat flow and regolith properties measurements, a radio antenna and a package containing a self sustaining biological system to observe the effects of the lunar environment. The addition of a

  17. The Cassini-Huygens mission

    CERN Document Server

    The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system’s most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. Thi...

  18. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  19. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  20. A comparison of propulsion systems for potential space mission applications

    International Nuclear Information System (INIS)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  1. Advanced Nuclear Power Concepts for Human Exploration Missions

    International Nuclear Information System (INIS)

    Robert L. Cataldo; Lee S. Mason

    2000-01-01

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over ∼2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters

  2. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  3. Mission of Mercy.

    Science.gov (United States)

    Humenik, Mark

    2014-01-01

    Some dentists prefer solo charity work, but there is much to be said for collaboration within the profession in reaching out to those who are dentally underserved. Mission of Mercy (MOM) programs are regularly organized across the country for this purpose. This article describes the structure, reach, and personal satisfaction to be gained from such missions.

  4. Results of the first Seismometer to Investigate Ice and Ocean Structure (SIIOS) Analogue Mission

    Science.gov (United States)

    Della-Giustina, Daniella; Bray, Veronica; "Hop" Bailey, Samuel; Pettit, Erin; Schmerr, Nicholas; Dahl, Peter; Avenson, Brad; Byrne, Shane; SIIOS Team

    2017-10-01

    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich interiors, likely providing the ingredients needed for life as we know it. The possibility of life forming in the ocean or in melt pockets, relies on the presence of a source of energy and chemistry for biological molecule formation. A thick, stagnant ice crust would likely prevent transfer of oxidants from the surface to the water, halting the development of life. The ice thickness and structure is therefore one of the most important and controversial topics in astrobiology.The best way to access an icy moon’s interior structure is with a lander-based seismometer. Our team has identified a commercial-off-the-shelf device as a flight-candidate for operation in the extreme environment of the icy moons. Based on estimates of Europan seismicity, the flight candidate device is sensitive enough to detect the ice-water boundary and pockets of liquid within the ice. Its low mass and low power enables deployment of multiple seismometers in a short-baseline array on a lander. The performance, mass, and volume of this device meet or exceed flight requirements identified in lander studies making a field test of these seismometers highly representative of a flight unit developed for an Ocean Worlds mission.We report the results of the first field campaign for the SIIOS Analogue Mission Program (AMP), which has evaluates the performance of the flight candidate seismometer in Ocean World terrestrial analogue environments. In particular, the first SIIOS AMP field exercise is performed at Gulkana Glacier, Alaska. During the summer melt season Gulkana provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing areas with the desired analogue seismic contrasts. During this first mission, we have demonstrated device sensitivity to the detection of seismicity from high frequency (> 50 Hz) active and passive sources, the depth of ice

  5. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  6. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  7. Joint Europa Mission (JEM) : A multi-scale study of Europa to characterize its habitability and search for life.

    Science.gov (United States)

    Blanc, Michel; Prieto Ballesteros, Olga; Andre, Nicolas; Cooper, John F.

    2017-04-01

    Europa is the closest and probably the most promising target to perform a comprehensive characterization of habitability and search for extant life. We propose that NASA and ESA join forces to design an ambitious planetary mission we call JEM (for Joint Europa Mission) to reach this objective. JEM will be assigned the following overarching goal: Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life in its surface, sub-surface and exosphere. Our observation strategy to address these goals will combine three scientific measurement sequences: measurements on a high-latitude, low-latitude Europan orbit providing a continuous and global mapping of planetary fields (magnetic and gravity) and of the neutral and charged environment during a period of three months; in-situ measurements at the surface, using a soft lander operating during 35 days, to search for bio-signatures at the surface and sub-surface and operate a geophysical station; measurements of the chemical composition of the very low exosphere and plumes in search for biomolecules. The implementation of these three observation sequences will rest on the combination of two science platforms equipped with the most advanced instrumentation: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and a carrier/relay/orbiter to perform the orbital survey and descent sequences. In this concept, the orbiter will perform science operations during the relay phase on a carefully optimized halo orbit of the Europa-Jupiter system before moving to its final Europan orbit. The design of both orbiter and lander instruments will have to accommodate the very challenging radiation mitigation and Planetary Protection issues. The proposed lander science platform is composed of a geophysical station and of two complementary astrobiology facilities dedicated to bio

  8. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  9. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  10. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  11. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  12. Calculation of polarization effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  13. NASA CYGNSS Tropical Cyclone Mission

    Science.gov (United States)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  14. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    Science.gov (United States)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  15. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    Science.gov (United States)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (∼8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  16. EUCLID mission design

    Science.gov (United States)

    Wallner, Oswald; Ergenzinger, Klaus; Tuttle, Sean; Vaillon, L.; Johann, Ulrich

    2017-11-01

    EUCLID, a medium-class mission candidate of ESA's Cosmic Vision 2015-2025 Program, currently in Definition Phase (Phase A/B1), shall map the geometry of the Dark Universe by investigating dark matter distributions, the distance-redshift relationship, and the evolution of cosmic structures. EUCLID consists of a 1.2 m telescope and two scientific instruments for ellipticity and redshift measurements in the visible and nearinfrared wavelength regime. We present a design concept of the EUCLID mission which is fully compliant with the mission requirements. Preliminary concepts of the spacecraft and of the payload including the scientific instruments are discussed.

  17. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  18. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  19. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  20. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    Science.gov (United States)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  1. Martian soil stratigraphy and rock coatings observed in color-enhanced Viking Lander images

    Science.gov (United States)

    Strickland, E. L., III

    1979-01-01

    Subtle color variations of martian surface materials were enhanced in eight Viking Lander (VL) color images. Well-defined soil units recognized at each site (six at VL-1 and four at VL-2), are identified on the basis of color, texture, morphology, and contact relations. The soil units at the Viking 2 site form a well-defined stratigraphic sequence, whereas the sequence at the Viking 1 site is only partially defined. The same relative soil colors occur at the two sites, suggesting that similar soil units are widespread on Mars. Several types of rock surface materials can be recognized at the two sites; dark, relatively 'blue' rock surfaces are probably minimally weathered igneous rock, whereas bright rock surfaces, with a green/(blue + red) ratio higher than that of any other surface material, are interpreted as a weathering product formed in situ on the rock. These rock surface types are common at both sites. Soil adhering to rocks is common at VL-2, but rare at VL-1. The mechanism that produces the weathering coating on rocks probably operates planet-wide.

  2. Sustaining Human Presence on Mars Using ISRU and a Reusable Lander

    Science.gov (United States)

    Arney, Dale C.; Jones, Christopher A.; Klovstad, Jordan J.; Komar, D.R.; Earle, Kevin; Moses, Robert; Shyface, Hilary R.

    2015-01-01

    This paper presents an analysis of the impact of ISRU (In-Site Resource Utilization), reusability, and automation on sustaining a human presence on Mars, requiring a transition from Earth dependence to Earth independence. The study analyzes the surface and transportation architectures and compared campaigns that revealed the importance of ISRU and reusability. A reusable Mars lander, Hercules, eliminates the need to deliver a new descent and ascent stage with each cargo and crew delivery to Mars, reducing the mass delivered from Earth. As part of an evolvable transportation architecture, this investment is key to enabling continuous human presence on Mars. The extensive use of ISRU reduces the logistics supply chain from Earth in order to support population growth at Mars. Reliable and autonomous systems, in conjunction with robotics, are required to enable ISRU architectures as systems must operate and maintain themselves while the crew is not present. A comparison of Mars campaigns is presented to show the impact of adding these investments and their ability to contribute to sustaining a human presence on Mars.

  3. An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers

    Science.gov (United States)

    Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al

    2010-01-01

    In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.

  4. Fun with Mission Control: Learning Science and Technology by Sitting in the Driver's Seat

    Science.gov (United States)

    Fitzpatrick, A. J.; Fisher, D. K.; Leon, N.; Novati, A.; Chmielewski, A. B.; Karlson, D. K.

    2012-12-01

    We will demonstrate and discuss iOS games we have developed that simulate real space mission scenarios in simplified form. These games are designed to appeal to multiple generations, while educating and informing the player about the mission science and technology. Such interactive games for mobile devices can reach an audience that might otherwise be inaccessible. However, developing in this medium comes with its own set of challenges. Touch screen input demands a different type of interface and defines new rules for user interaction. Communicating informative messages to an audience on the go also poses unique challenges. The organization and delivery of the content needs to consider that the users are often distracted by their environments or have only short blocks of time in which to become involved with the activity. The first game, "Comet Quest," simulates the Rosetta mission. Rosetta, sponsored by the European Space Agency, with important contributions from NASA, is on its way to Comet 67P/Churyumov-Gerasimenko. It will orbit the comet and drop a lander on the nucleus. It will continue to orbit for two years as the comet approaches the Sun. Both orbiter and lander will make measurements and observations and transmit the data to Earth, in the first close study of a comet's evolution as it journeys to the inner solar system. In "Comet Quest," the player controls the release of the lander and records and transmits all the science data. The game is fun and challenging, no matter the player's skill level. Comet Quest includes a "Learn more" feature, with questions and simple, concise answers about comets and the Rosetta mission. "Rescue 406!" is another simulation game, this one enacting the process of rescuing individuals in distress using the Search And Rescue Satellite-Aided Tracking system, SARSAT. Development of this game was sponsored by NOAA's Geostationary Operational Environmental Satellite, R-series, program (GOES-R). This game incorporates the major

  5. Anchoring a lander on an asteroid using foam stabilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has proposed several missions to land a craft on an asteroid and potentially to return samples from it. While large asteroids in the asteroid belt can exhibit a...

  6. PLA Missions Beyond Taiwan

    National Research Council Canada - National Science Library

    Miller, Marc

    2008-01-01

    KEY INSIGHTS: *The PLA is being assigned and training for an increasing variety of missions, including nontraditional battlefields such as outer space and cyber space, as well as nontraditional functions...

  7. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only

    Science.gov (United States)

    Lindstrom, M. M.

    1994-01-01

    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  8. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  9. Human exploration mission studies

    Science.gov (United States)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  10. Missions to Venus

    Science.gov (United States)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  11. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  12. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  13. Human Behaviour in Long-Term Missions

    Science.gov (United States)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  14. Nonverbal behavior observation : collaborative gaming method for prediction of conflicts during long-term missions

    NARCIS (Netherlands)

    Voynarovskaya, N.; Gorbunov, R.D.; Barakova, E.I.; Ahn, R.M.C.; Rauterberg, G.W.M.; Yang, H.S.; et al., xx

    2010-01-01

    This paper presents a method for monitoring mental state of small isolated crews during long-term missions (such as space mission, polar expeditions, submarine crews, meteorological stations, and etc). It combines the records of negotiation game with monitoring of the nonverbal behavior of the

  15. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  16. The HAMMER: High altitude multiple mission environmental researcher

    Science.gov (United States)

    Hayashi, Darren; Zylla, Cara; Amaro, Ernesto; Colin, Phil; Klause, Thomas; Lopez, Bernardo; Williamson, Danna

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number is maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  17. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  18. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  19. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  20. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  1. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  2. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  3. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  4. Country programming mission. Namibia

    International Nuclear Information System (INIS)

    1991-01-01

    In response to a request from the Government of Namibia conveyed in a letter dated 29 November 1990 IAEA provided a multi-disciplinary Programming Mission which visited Namibia from 15 - 19 July 1991. The terms of reference of the Mission were: 1. To assess the possibilities and benefits of nuclear energy applications in Namibia's development; 2. To advise on the infrastructure required for nuclear energy projects; 3. To assist in the formulation of project proposals which could be submitted for Agency assistance. This report is based on the findings of the Mission and falls into 3 sections with 8 appendices. The first section is a country profile providing background information, the second section deals with sectorial needs and institutional review of the sectors of agriculture including animal production, life sciences (nuclear medicine and radiotherapy) and radiation protection. The third section includes possible future technical co-operation activities

  5. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    Science.gov (United States)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  6. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions.......Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....

  7. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  8. The OICETS mission

    Science.gov (United States)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  9. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  10. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  11. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  12. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  13. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    DEFF Research Database (Denmark)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.

    2016-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter,radiation ...

  14. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  15. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  16. Approximation of attainable landing area of a moon lander by reachability analysis

    OpenAIRE

    Arslantas, Yunus; Oehlschlägel, Thimo; Sagliano, Marco; Theil, Stephan; Braxmaier, Claus

    2014-01-01

    Developments in space technology have paved the way for more challenging missions which require advanced guidance and control algorithms for safely and autonomously landing on celestial bodies. Instant determination of hazards, automatic guidance during landing maneuvers and likelihood maximization of safe landing are of paramount importance

  17. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  18. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  19. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  20. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  1. The Lobster Mission

    Science.gov (United States)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  2. Towards A Shared Mission

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen; Orth Gaarn-Larsen, Carsten

    A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome of the univer......A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome...... on a shared mission aiming at value creation (in the broadest interpretation). One important aspect of choosing value as the cornerstone of the mission of universities is to stress that the outcome is measured by external stakeholders and by their standards. Most of the paper is devoted to discussing value...... it possible to lead through processes that engage and excite while creating transparency and accountability. The paper will be illustrated with examples from Denmark and the Helios initiative taken by the Danish Academy of Technical Sciences (ATV) under the headline “The value creating university – courage...

  3. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  4. The LISA Pathfinder Mission

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper (paper)

  5. The Gaia mission

    NARCIS (Netherlands)

    Collaboration, Gaia; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by

  6. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  7. Lean Mission Operations Systems Design - Using Agile and Lean Development Principles for Mission Operations Design and Development

    Science.gov (United States)

    Trimble, Jay Phillip

    2014-01-01

    The Resource Prospector Mission seeks to rove the lunar surface with an in-situ resource utilization payload in search of volatiles at a polar region. The mission operations system (MOS) will need to perform the short-duration mission while taking advantage of the near real time control that the short one-way light time to the Moon provides. To maximize our use of limited resources for the design and development of the MOS we are utilizing agile and lean methods derived from our previous experience with applying these methods to software. By using methods such as "say it then sim it" we will spend less time in meetings and more time focused on the one outcome that counts - the effective utilization of our assets on the Moon to meet mission objectives.

  8. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  9. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  10. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  11. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  12. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  13. MITEE-B: A compact ultra lightweight bi-modal nuclear propulsion engine for robotic planetary science missions

    International Nuclear Information System (INIS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources

  14. The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.

  15. The ultraviolet spectrometer and polarimeter on the solar maximum mission

    International Nuclear Information System (INIS)

    Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)

  16. Cryosat: Mission Status, Achievements and Data Access

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos Ortega, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Wingham, D.; CryoSat Mission Team

    2011-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  17. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  18. B plant mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  19. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  20. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    Science.gov (United States)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  1. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  2. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  3. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    Science.gov (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  4. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  5. Spacelab 3 mission

    Science.gov (United States)

    Dalton, Bonnie P.

    1990-01-01

    Spacelab-3 (SL-3) was the first microgravity mission of extended duration involving crew interaction with animal experiments. This interaction involved sharing the Spacelab environmental system, changing animal food, and changing animal waste trays by the crew. Extensive microbial testing was conducted on the animal specimens and crew and on their ground and flight facilities during all phases of the mission to determine the potential for cross contamination. Macroparticulate sampling was attempted but was unsuccessful due to the unforseen particulate contamination occurring during the flight. Particulate debris of varying size (250 micron to several inches) and composition was recovered post flight from the Spacelab floor, end cones, overhead areas, avionics fan filter, cabin fan filters, tunnel adaptor, and from the crew module. These data are discussed along with solutions, which were implemented, for particulate and microbial containment for future flight facilities.

  6. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  7. Advances in Architectural Elements For Future Missions to Titan

    Science.gov (United States)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and

  8. Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application

    Science.gov (United States)

    Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

    2011-01-01

    This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

  9. The Beagle 2 Effect - public response to the UK Mars lander

    Science.gov (United States)

    Pillinger, J. M.; Pillinger, C. T.

    As a prerequisite for understanding science, the target audience must first be aware of an issue and then continue to maintain interest. We discuss the impact of the Beagle 2 mission to Mars on raising awareness amongst the general public as the first step to increasing understanding of the scientific and technological challenges and solutions such a mission addresses. The massive amount of public interest created is now being ttributed to the so-called "Beagle 2 Effect". We consider the reasons why the public, particularly, but not exclusively, in the UK took Beagle 2 to heart. Initially our strategy, as part of the PR plan for Beagle 2, was to collate media coverage for various stages and discrete campaigns in particular to use press cuttings to determine the level of recognition of Beagle 2 as a brand. At the start of the project this information was to support sponsorship bids, latterly the intrinsic value of media, and hence public, awareness was recognised by the major partners in the project. Much of the subsequent public awareness resulted from the comprehensive coverage in all branches of the media. A second opportunity to evaluate the response to the mission was presented to us as it became increasingly clear that Beagle 2 was able to engage an audience much wider than that typically interested in space, or science in general. We highlighted how far mention of Beagle 2 has spread. Additionally numerous unsolicited letters have been received from the public and these have been collated to indicate the factors which appear to have contributed to the widespread interest in Beagle 2. It is not clear whether the "Beagle 2 Effect" can, or will, be transferred to subsequent space missions.

  10. Cyber Network Mission Dependencies

    Science.gov (United States)

    2015-09-18

    leak paths”) and determine if firewalls and router access control lists are violating network policy. Visualization tools are provided to help analysts...with which a supply agent may not be familiar. In this environment, errors in requisition are easy to make, and they are costly : an incomplete cyber...establishing an email network and recommend a firewall and additional laptops. YMAL would also match mission details like the deployment location with

  11. A Somalia mission experience.

    Science.gov (United States)

    Mahomed, Zeyn; Moolla, Muhammad; Motara, Feroza; Laher, Abdullah

    2012-06-28

    Reports about The Horn of Africa Famine Crisis in 2011 flooded our news bulletins and newspapers. Yet the nations of the world failed to respond and alleviate the unfolding disaster. In August 2011, the Gift of the Givers Foundation mobilised what was to become the largest humanitarian mission ever conducted by an African organisation. Almost a year later, the effort continues, changing the face of disaster medicine as we know it.

  12. The money mission matrix

    OpenAIRE

    Cuperus, Mirthe

    2017-01-01

    Social entrepreneurship is popular in current academics and other media. This thesis adds to this literature by discovering what the drivers are for sustainable social entrepreneurship. Several stakeholders were identified, creating profiles of the key players in social entrepreneurship. These stakeholders uncovered key factors that represent the drivers for sustainable social entrepreneurship. Key factors were then aligned along the two dimensions: Money and Mission. This crea...

  13. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  14. The Gaia mission

    OpenAIRE

    Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia wa...

  15. Opportunity's Surroundings on Sol 1818 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  16. Nanosatellite missions - the future

    Science.gov (United States)

    Koudelka, O.; Kuschnig, R.; Wenger, M.; Romano, P.

    2017-09-01

    In the beginning, nanosatellite projects were focused on educational aspects. In the meantime, the technology matured and now allows to test, demonstrate and validate new systems, operational procedures and services in space at low cost and within much shorter timescales than traditional space endeavors. The number of spacecraft developed and launched has been increasing exponentially in the last years. The constellation of BRITE nanosatellites is demonstrating impressively that demanding scientific requirements can be met with small, low-cost satellites. Industry and space agencies are now embracing small satellite technology. Particularly in the USA, companies have been established to provide commercial services based on CubeSats. The approach is in general different from traditional space projects with their strict product/quality assurance and documentation requirements. The paper gives an overview of nanosatellite missions in different areas of application. Based on lessons learnt from the BRITE mission and recent developments at TU Graz (in particular the implementation of the OPS-SAT nanosatellite for ESA), enhanced technical possibilities for a future astronomy mission after BRITE will be discussed. Powerful on-board computers will allow on-board data pre-processing. A state-of-the-art telemetry system with high data rates would facilitate interference-free operations and increase science data return.

  17. Dawn Mission Update

    Science.gov (United States)

    Sykes, M. V.; Russell, C. T.; Coradini, A.; Christensen, U.; de Sanctis, M. C.; Feldman, W. C.; Jaumann, R.; Keller, U.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.; Neukum, G.; Pieters, C. M.; Prettyman, T. H.; Raymond, C. A.; Smith, D. E.; Williams, B. G.; Wise, J.; Zuber, M. T.

    2004-11-01

    Dawn, the ninth Discovery mission, will be the first spacecraft to rendezvous with two solar system bodies, the main belt asteroids Vesta and Ceres. This is made possible by utilizing ion propulsion to reach its targets and to maneuver into (and depart) orbits about these bodies. Vesta and Ceres are two terrestrial protoplanets that have survived since the earliest epoch of the solar system and will provide important insights into planet building processes and their evolution under very different circumstances, with and without water. Dawn carries a double framing camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. At Vesta our studies will include the volcanic emplacement of basalts, its differentiation, the possible exposure of its interior near the south pole. At Ceres our studies will include the role of water in its evolution, hydration processes on its surface, and the possible existence of a subsurface ocean. The mission has passed its critical design review and is scheduled to be launched in June 2006 with arrival at Vesta in 2011 and Ceres in 2015. Operation strategies will be presented. Groundbased observations of Vesta, Ceres, and Vesta family members over broad wavelengths, periods and phases will play an important role in detailed mission planning.

  18. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  19. The Spartan 1 mission

    Science.gov (United States)

    Cruddace, Raymond G.; Fritz, G. G.; Shrewsberry, D. J.; Brandenstein, D. J.; Creighton, D. C.; Gutschewski, G.; Lucid, S. W.; Nagel, J. M.; Fabian, J. M.; Zimmerman, D.

    1989-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  20. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Directory of Open Access Journals (Sweden)

    Katarzyna Nowomiejska

    2015-01-01

    Full Text Available Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV and penetrating keratoplasty (PKP using a wide-field Landers intraoperative temporary keratoprosthesis (TKP in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure were assessed during the follow-up (mean 16 months. Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor.

  1. Chasing Sources and Transports of Methane Plumes in the Northern Gulf of Mexico Using In Situ Sensors on Untethered Landers

    Science.gov (United States)

    Martens, C. S.; Mendlovitz, H.; Seim, H.; Lapham, L.; Magen, C.; Joye, S. B.; MacDonald, I. R.; Asper, V. L.; Diercks, A. R.

    2016-02-01

    In situ time-series measurements of light hydrocarbons, oxygen, temperature and bottom currents from landers and elevators in the benthic boundary layer (BBL) at multiple sites in the northern Gulf of Mexico reveal spatial and temporal variability in methane concentrations controlled by horizontal advection of methane-rich plumes originating from nearby natural oil and gas seeps. Multi-sensor systems deployed for several weeks within 1m of the seafloor at depths from 882 to 1622m revealed methane concentrations ranging from near atmospheric saturation (gas chromatography. Continuous laser sensor methane measurements from mini-landers deployed in September 2015 at our Horn Dome and Bush Hill sites featuring numerous gas seeps revealed methane concentrations ranging from data within the BBL and friction layer from untethered platforms provides important new opportunities for monitoring the impacts of natural seeps and accidental hydrocarbon releases. The instrumented approaches we have developed to simultaneously monitor methane sources and physical processes controlling plume development and transport will enable more effective responses to further accidental hydrocarbon releases.

  2. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): Data from three baited lander systems

    Science.gov (United States)

    Linley, T. D.; Lavaleye, M.; Maiorano, P.; Bergman, M.; Capezzuto, F.; Cousins, N. J.; D'Onghia, G.; Duineveld, G.; Shields, M. A.; Sion, L.; Tursi, A.; Priede, I. G.

    2017-11-01

    Autonomous photographic landers are a low-impact survey method for the assessment of mobile fauna in situations where methods such as trawling are not feasible or ethical. Three institutions collaborated through the CoralFISH project, each using differing lander systems, to assess the effects of cold-water corals on fish diversity and density. The Biogenic Reef Ichthyofauna Lander (BRIL, Oceanlab), Autonomous Lander for Biological Experiments (ALBEX, NIOZ) and the Marine Environment MOnitoring system (MEMO, CoNISMa) were deployed in four CoralFISH European study regions covering the Arctic, NE Atlantic and Mediterranean, namely Northern Norway (275-310 m depth), Belgica Mound Province (686-1025 m depth), the Bay of Biscay (623-936 m depth), and Santa Maria di Leuca (547-670 m depth). A total of 33 deployments were carried out in the different regions. Both the time of first arrival (Tarr) and the maximum observed number of fish (MaxN) were standardised between the different lander systems and compared between coral and reference stations as indicators of local fish density. Fish reached significantly higher MaxN at the coral stations than at the reference stations. Fish were also found to have significantly lower Tarr in the coral areas in data obtained from the BRIL and MEMO landers. All data indicated that fish abundance is higher within the coral areas. Fish species diversity was higher within the coral areas of Atlantic Ocean while in Northern Norway and Santa Maria di Leuca coral areas, diversity was similar at coral and reference stations but a single dominant species (Brosme brosme and Conger conger respectively) showed much higher density within the coral areas. Indicating that, while cold-water coral reefs have a positive effect on fish diversity and/or abundance, this effect varies across Europe's reefs.

  3. Interferometric polarization control

    International Nuclear Information System (INIS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles

    2006-01-01

    We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results

  4. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  5. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  6. SPICE for ESA Planetary Missions

    Science.gov (United States)

    Costa, M.

    2018-04-01

    The ESA SPICE Service leads the SPICE operations for ESA missions and is responsible for the generation of the SPICE Kernel Dataset for ESA missions. This contribution will describe the status of these datasets and outline the future developments.

  7. Mission Critical Occupation (MCO) Charts

    Data.gov (United States)

    Office of Personnel Management — Agencies report resource data and targets for government-wide mission critical occupations and agency specific mission critical and/or high risk occupations. These...

  8. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  9. No More Polarization, Please!

    OpenAIRE

    Reinholt, Mia

    2006-01-01

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...

  10. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  11. Planned Products of the Mars Structure Service for the InSight Mission to Mars

    Science.gov (United States)

    Panning, Mark P.; Lognonné, Philippe; Bruce Banerdt, W.; Garcia, Raphaël; Golombek, Matthew; Kedar, Sharon; Knapmeyer-Endrun, Brigitte; Mocquet, Antoine; Teanby, Nick A.; Tromp, Jeroen; Weber, Renee; Beucler, Eric; Blanchette-Guertin, Jean-Francois; Bozdağ, Ebru; Drilleau, Mélanie; Gudkova, Tamara; Hempel, Stefanie; Khan, Amir; Lekić, Vedran; Murdoch, Naomi; Plesa, Ana-Catalina; Rivoldini, Atillio; Schmerr, Nicholas; Ruan, Youyi; Verhoeven, Olivier; Gao, Chao; Christensen, Ulrich; Clinton, John; Dehant, Veronique; Giardini, Domenico; Mimoun, David; Thomas Pike, W.; Smrekar, Sue; Wieczorek, Mark; Knapmeyer, Martin; Wookey, James

    2017-10-01

    The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.

  12. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  13. The Polarization of Achernar

    Science.gov (United States)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  14. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  15. Mars Express - ESA sets ambitious goals for the first European mission to Mars

    Science.gov (United States)

    2003-05-01

    Mars has always fascinated human beings. No other planet has been visited so many times by spacecraft. And still, it has not been easy to unveil its secrets. Martian mysteries seem to have increased in quantity and complexity with every mission. When the first spacecraft were sent - the Mariner series in 1960s - the public was expecting an Earth ‘twin’, a green, inhabited planet full of oceans. Mariner shattered this dream by showing a barren surface. This was followed by the Viking probes which searched for life unsuccessfully in 1976. Mars appeared dry, cold and uninhabited: the Earth’s opposite. Now, two decades later, modern spacecraft have changed that view, but they have also returned more questions. Current data show that Mars was probably much warmer in the past. Scientists now think that Mars had oceans, so it could have been a suitable place for life in the past. “We do not know what happened to the planet in the past. Which process turned Mars into the dry, cold world we see today?” says Agustin Chicarro, ESA’s Mars Express project scientist. “With Mars Express, we will find out. Above all, we aim to obtain a complete global view of the planet - its history, its geology, how it has evolved. Real planetology!” Mars Express will reach the Red Planet by the end of December 2003, after a trip of just over six months. Six days before injection into its final orbit, Mars Express will eject the lander, Beagle 2, named after the ship on which Charles Darwin found inspiration to formulate his theory of evolution. The Mars Express orbiter will observe the planet and its atmosphere from a near-polar orbit, and will remain in operation for at least a whole Martian year (687 Earth days). Beagle 2 will land in an equatorial region that was probably flooded in the past, and where traces of life may have been preserved. The Mars Express orbiter carries seven advanced experiments, in addition to the Beagle 2 lander. The orbiter’s instruments have been

  16. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  17. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  18. The Delta low-inclination satellite concept, an opportunity to enhance the science return of the Swarm mission

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Leger, Jean-Michel; Olsen, Nils

    ESA’s Swarm mission aims at studying all sources of Earth’s magnetic field. It consists of two satellites (Alpha and Charlie), which fly side-by-side on near polar orbits at an altitude of slightly less than 500 km, and of a third satellite (Bravo) on a similar but slightly more polar and higher ...

  19. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  20. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  1. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  2. The ARTEMIS mission

    CERN Document Server

    Angelopoulos, Vassilis

    2014-01-01

    The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon’s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011.

  3. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  4. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  5. Automatic mental heath assistant : monitoring and measuring nonverbal behavior of the crew during long-term missions

    NARCIS (Netherlands)

    Voynarovskaya, N.; Gorbunov, R.D.; Barakova, E.I.; Rauterberg, G.W.M.; Barakova, E.I.; Ruyter, B.; Spink, A.

    2010-01-01

    This paper presents a method for monitoring the mental state of small isolated crews during long-term missions (such as space mission, polar expeditions, submarine crews, meteorological stations, and etc.) The research is done as a part of Automatic Mental Health Assistant (AMHA) project which aims

  6. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  7. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  8. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  9. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  10. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    Science.gov (United States)

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right

  11. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  12. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  13. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  14. Miniature GC: Minicell ion mobility spectrometer (IMS) for astrobiology planetary missions

    Science.gov (United States)

    Kojiro, Daniel R.; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or longer mission life for stationary landers/laboratories. We describe here the development of a miniature GC - Minicell Ion Mobility Spectrometer (IMS) under development through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA's Small Business Innovative Research (SBIR) Program.

  15. Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III

    2014-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  16. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  17. The Euclid mission design

    Science.gov (United States)

    Racca, Giuseppe D.; Laureijs, René; Stagnaro, Luca; Salvignol, Jean-Christophe; Lorenzo Alvarez, José; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis; Short, Alex; Strada, Paolo; Bönke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jérôme; Berthé, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha

    2016-07-01

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.

  18. EU Universities’ Mission Statements

    Directory of Open Access Journals (Sweden)

    Liudmila Arcimaviciene

    2015-04-01

    Full Text Available In the last 10 years, a highly productive space of metaphor analysis has been established in the discourse studies of media, politics, business, and education. In the theoretical framework of Conceptual Metaphor Theory and Critical Discourse Analysis, the restored metaphorical patterns are especially valued for their implied ideological value as realized both conceptually and linguistically. By using the analytical framework of Critical Metaphor Analysis and procedurally employing Pragglejaz Group’s Metaphor Identification Procedure, this study aims at analyzing the implied value of the evoked metaphors in the mission statements of the first 20 European Universities, according to the Webometrics ranking. In this article, it is proposed that Universities’ mission statements are based on the positive evaluation of the COMMERCE metaphor, which does not fully correlate with the ideological framework of sustainability education but is rather oriented toward consumerism in both education and society. Despite this overall trend, there are some traceable features of the conceptualization reflecting the sustainability approach to higher education, as related to freedom of speech, tolerance, and environmental concerns. Nonetheless, these are suppressed by the metaphoric usages evoking traditional dogmas of the conservative ideology grounded in the concepts of the transactional approach to relationship, competitiveness for superiority, the importance of self-interest and strength, and quantifiable quality.

  19. OMV mission simulator

    Science.gov (United States)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  20. STS-78 Mission Insignia

    Science.gov (United States)

    1996-01-01

    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  1. A novel x-ray circularly polarized ranging method

    International Nuclear Information System (INIS)

    Song Shi-Bin; Xu Lu-Ping; Zhang Hua; Shen Yang-He; Gao Na

    2015-01-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. (paper)

  2. SMART-1 technology, scientific results and heritage for future space missions

    Science.gov (United States)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    observations have been used to support the goals of ILEWG. SMART-1 has been useful to prepare for Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, future lunar landers and upcoming missions, and to contribute towards objectives of the Moon Village and future exploration.

  3. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  4. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  5. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  6. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  7. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  8. Federalism and Lander Autonomy: The Higher Education Policy Network in the Federal Republic of Germany. Studies in Higher Education Dissertation Series.

    Science.gov (United States)

    Onestini, Cesare

    This study traces the development of the German higher education system, examining the development of higher education policies from the postwar years to the postunification period. It focuses on federalism and the relative positions of"Lander" (German states) and the government of the Federal Republic (FRG) as revealed in higher…

  9. Microbial biodiversity assessment of the European Space Agency's ExoMars 2016 mission.

    Science.gov (United States)

    Koskinen, Kaisa; Rettberg, Petra; Pukall, Rüdiger; Auerbach, Anna; Wink, Lisa; Barczyk, Simon; Perras, Alexandra; Mahnert, Alexander; Margheritis, Diana; Kminek, Gerhard; Moissl-Eichinger, Christine

    2017-10-25

    The ExoMars 2016 mission, consisting of the Trace Gas Orbiter and the Schiaparelli lander, was launched on March 14 2016 from Baikonur, Kazakhstan and reached its destination in October 2016. The Schiaparelli lander was subject to strict requirements for microbial cleanliness according to the obligatory planetary protection policy. To reach the required cleanliness, the ExoMars 2016 flight hardware was assembled in a newly built, biocontrolled cleanroom complex at Thales Alenia Space in Turin, Italy. In this study, we performed microbiological surveys of the cleanroom facilities and the spacecraft hardware before and during the assembly, integration and testing (AIT) activities. Besides the European Space Agency (ESA) standard bioburden assay, that served as a proxy for the microbiological contamination in general, we performed various alternative cultivation assays and utilised molecular techniques, including quantitative PCR and next generation sequencing, to assess the absolute and relative abundance and broadest diversity of microorganisms and their signatures in the cleanroom and on the spacecraft hardware. Our results show that the bioburden, detected microbial contamination and microbial diversity decreased continuously after the cleanroom was decontaminated with more effective cleaning agents and during the ongoing AIT. The studied cleanrooms and change room were occupied by very distinct microbial communities: Overall, the change room harboured a higher number and diversity of microorganisms, including Propionibacterium, which was found to be significantly increased in the change room. In particular, the so called alternative cultivation assays proved important in detecting a broader cultivable diversity than covered by the standard bioburden assay and thus completed the picture on the cleanroom microbiota. During the whole project, the bioburden stayed at acceptable level and did not raise any concern for the ExoMars 2016 mission. The cleanroom complex at

  10. Some Preliminary Scientific Results of Chang'E-3 Mission

    Science.gov (United States)

    Zou, Y.; Li, W.; Zheng, Y.; Li, H.

    2015-12-01

    Chang'E-3 mission is the main task of Phase two of China Lunar Exploration Program (CLEP), and also is Chinese first probe of landing, working and roving on the moon. Chang'E-3 craft composed of a lander and a rover, and each of them carry four scientific payloads respectively. The landing site of Chang'E-3 was located at 44.12 degrees north latitude and 19.51 degrees west longitude, where is in the northern part of Imbrium Which the distance in its west direction from the landing site of former Soviet probe Luna-17 is about 400 km, and about 780km far from the landing site of Appolo-17 in its southeast direction. Unfortunately, after a series of scientific tests and exploration on the surface of the moon, the motor controller communication of the rover emerged a breakdown on January 16, 2014, which leaded the four payloads onboard the rover can't obtain data anymore. However, we have received some interesting scientific data which have been studied by Chinese scientists. During the landing process of Chang'E-3, the Landing camera got total 4673 images with the Resolution in millimeters to meters, and the lander and rover took pictures for each other at different point with Topography camera and Panoramic camera. We can find characteristic changes in celestial brightness with time by analyzing image data from Lunar-based Ultraviolet Telescope (LUT) and an unprecedented constraint on water content in the sunlit lunar exosphere seen by LUT). The figure observed by EUV camera (EUVC) shows that there is a transient weak area of the Earth's plasma sphere; This event took place about three hours. The scientists think that it might be related to the change of the particle density of mid-latitude ionosphere. The preliminary spectral and mineralogical results from the landing site are derived according to the data of Visible and Near-infrared Imaging Spectrometer (VNIS). Seven major elements including Mg, Al, Si, K, Ca, Ti and Fe have been identified by the Active Particle

  11. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  12. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  13. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  14. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  15. Polarization splitter and polarization rotator designs based on transformation optics.

    Science.gov (United States)

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  16. IMP - INTEGRATED MISSION PROGRAM

    Science.gov (United States)

    Dauro, V. A.

    1994-01-01

    IMP is a simulation language that is used to model missions around the Earth, Moon, Mars, or other planets. It has been used to model missions for the Saturn Program, Apollo Program, Space Transportation System, Space Exploration Initiative, and Space Station Freedom. IMP allows a user to control the mission being simulated through a large event/maneuver menu. Up to three spacecraft may be used: a main, a target and an observer. The simulation may begin at liftoff, suborbital, or orbital. IMP incorporates a Fehlberg seventh order, thirteen evaluation Runge-Kutta integrator with error and step-size control to numerically integrate the equations of motion. The user may choose oblate or spherical gravity for the central body (Earth, Mars, Moon or other) while a spherical model is used for the gravity of an additional perturbing body. Sun gravity and pressure and Moon gravity effects are user-selectable. Earth/Mars atmospheric effects can be included. The optimum thrust guidance parameters are calculated automatically. Events/maneuvers may involve many velocity changes, and these velocity changes may be impulsive or of finite duration. Aerobraking to orbit is also an option. Other simulation options include line-of-sight communication guidelines, a choice of propulsion systems, a soft landing on the Earth or Mars, and rendezvous with a target vehicle. The input/output is in metric units, with the exception of thrust and weight which are in English units. Input is read from the user's input file to minimize real-time keyboard input. Output includes vehicle state, orbital and guide parameters, event and total velocity changes, and propellant usage. The main output is to the user defined print file, but during execution, part of the input/output is also displayed on the screen. An included FORTRAN program, TEKPLOT, will display plots on the VDT as well as generating a graphic file suitable for output on most laser printers. The code is double precision. IMP is written in

  17. Development and Integration of the Janus Robotic Lander: A Liquid Oxygen-Liquid Methane Propulsion System Testbed

    Science.gov (United States)

    Ponce, Raul

    Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants. The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary to exploit this advantage. At the University of Texas at El Paso (UTEP) MIRO Center for Space Exploration Technology Research (cSETR) such a vehicle is being developed. Janus is a robotic lander vehicle with the capability of vertical take-off and landing (VTOL) which integrates several LO2-LCH 4 systems that are being devised in-house. The vehicle will serve as a testbed for the parallel operation of these propulsion systems while being fed from common propellant tanks. The following work describes the efforts done at the cSETR to develop the first prototype of the vehicle as well as the plan to move forward in the design of the subsequent prototypes that will lead to a flight vehicle. In order to ensure an eventual smooth integration of the different subsystems that will form part of Janus, requirements were defined for each individual subsystem as well as the vehicle as a whole. Preliminary testing procedures and layouts have also been developed and will be discussed to detail in this text. Furthermore, the current endeavors in the design of each subsystem and the way that they interact with one another within the lander will be explained.

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. The Waste Negotiator's mission

    International Nuclear Information System (INIS)

    Bataille, Christian

    1993-01-01

    The mission of the Waste Negotiator is to seek out sites for deep underground laboratories to study their potential for disposal of high level radioactive waste. Although appointed by the government, he acts independently. In 1990, faced by severe public criticism at the way that the waste disposal was being handled, and under increasing pressure to find an acceptable solution, the government stopped the work being carried out by ANDRA (Agence nationale pour la gestion des dechets radioactifs) and initiated a full review of the issues involved. At the same time, parliament also started its own extensive investigation to find a way forward. These efforts finally led to the provision of a detailed framework for the management of long lived radioactive waste, including the construction of two laboratories to investigate possible repository sites. The Waste Negotiator was appointed to carry out a full consultative process in the communities which are considering accepting an underground laboratory. (Author)

  20. Transient stresses al Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: implications for the time-dependence of fault friction

    Directory of Open Access Journals (Sweden)

    J. B. Fletcher

    1994-06-01

    Full Text Available he M 7.4 Landers earthquake triggered widespread seismicity in the Western U.S. Because the transient dynamic stresses induced at regional distances by the Landers surface waves are much larger than the expected static stresses, the magnitude and the characteristics of the dynamic stresses may bear upon the earthquake triggering mechanism. The Landers earthquake was recorded on the UPSAR array, a group of 14 triaxial accelerometers located within a 1-square-km region 10 km southwest of the town of Parkfield, California, 412 km northwest of the Landers epicenter. We used a standard geodetic inversion procedure to determine the surface strain and stress tensors as functions of time from the observed dynamic displacements. Peak dynamic strains and stresses at the Earth's surface are about 7 microstrain and 0.035 MPa, respectively, and they have a flat amplitude spectrum between 2 s and 15 s period. These stresses agree well with stresses predicted from a simple rule of thumb based upon the ground velocity spectrum observed at a single station. Peak stresses ranged from about 0.035 MPa at the surface to about 0.12 MPa between 2 and 14 km depth, with the sharp increase of stress away from the surface resulting from the rapid increase of rigidity with depth and from the influence of surface wave mode shapes. Comparison of Landers-induced static and dynamic stresses at the hypocenter of the Big Bear aftershock provides a clear example that faults are stronger on time scales of tens of seconds than on time scales of hours or longer.

  1. Rosetta Orbiter and Lander: Our Evolving Understanding of Comet Churyumov-Gerasimenko

    Science.gov (United States)

    Alexander, Claudia

    2015-08-01

    Rosetta is the third cornerstone mission of the European Space Agency's (ESA) comprehensive Horizon 2000 Programme. It was designed to find, and examine, some of the original material of the solar system; to help us understand how the comet works as a machine to absorb and re-radiate energy from the sun; to characterize the thermophysical properties and structure of the body, and to complete an inventory of its dusty, organic, and isotopic composition. At the time of the conference, Rosetta will be at perihelion, portions of the surface that were initially in sunlight will be in complete darkness, and portions initially only partially exposed to the sun will be experiencing summer. At the time of the conference, a planned pass into a comet plume may have yielded important measurements. Up-to-date logistics of Rosetta exploration will be discussed.Rosetta has already provided a rich mother-lode of data on this intriguing object, from the early measurements of D/H ratio, to the first-time measurement of N2 in a small body, to the unique ‘dragon-egg’ morphology seen in selected places on the surface. In this talk, I'll review some of the principle results so far of the Rosetta mission, including what we know of comet activity, the showers of grains, and developing magnetic field induced cometospheric boundaries and coma environment. I'll review the landing and walk through the 60 hours of time the probe spent on the comet's surface. Finally I'll discuss some of the intriguing questions that might be answered with the perihelion pass, such as does the observed increase in this comet’s rotation period indicate a sign of comet inflation or disruption?

  2. STS-40 Mission Insignia

    Science.gov (United States)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  3. NASA CYGNSS Mission Overview

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.

  4. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  5. Polarized coincidence electroproduction

    International Nuclear Information System (INIS)

    Heimann, R.L.

    1975-03-01

    A study is made of the inclusive electroproduction of single hadrons off a polarized target. Bjorken scaling laws and the hadron azimuthal distribution are derived from the quark parton model. The polarization asymmetries scale when the target spin is along the direction of the virtual photon, and (apart from significant exception) vanish for transverse spin. These results have a simple explanation; emphasis is given both to the general mathematical formalism and to intuitive physical reasoning. Through this framework other cases are considered: quarks with anomalous magnetic moment; renormalization group effects and asymptotic freedom; production of vector mesons (whose spin state is analysed by their decay); relation to large transverse momentum hadron production; and a covariant parton model calculation. Spin 0 partons and Regge singularities are also considered. All of these cases (apart from the last two) modify the pattern of conclusions. Vector meson production shows polarization enhancements in the density matrix element rhosub(0+); the renormalization group approach does not lead to any significant suppressions. They are also less severe in parton models for large Psub(T) hadrons, and are not supported by the covariantly formulated calculation. The origins of these differences are isolated and used to exemplify the sensitivity polarized hadron electroproduction has to delicate detail that is otherwise concealed. (author)

  6. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  7. Optical neutron polarizers

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs

  8. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  9. The polarized EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  10. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    Ozarski, R.G.; Prior, J.

    1980-01-01

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  11. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  12. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  13. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...

  14. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  15. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  16. DESY: HERA polarization

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-03-15

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization.

  17. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  18. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  19. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  20. IRIS Mission Operations Director's Colloquium

    Science.gov (United States)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  1. IXPE: The Imaging X-ray Polarimetry Explorer, Implementing a Dedicated Polarimetry Mission

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    Only a few experiments have conducted x-ray polarimetry of cosmic sources since Weisskopf et al confirmed the 19% polarization of the Crab Nebula with the Orbiting Solar Observatory (OSO-8) in the 70's center dot The challenge is to measure a faint polarized component against a background of non-polarized signal (as well as the other, typical background components) center dot Typically, for a few % minimum detectable polarization, 106 photons are required. center dot So, a dedicated mission is vital with instruments that are designed specifically to measure polarization (with minimal systematic effects) Over the proposed mission life (2- 3 years), IXPE will first survey representative samples of several categories of targets: magnetars, isolated pulsars, pulsar wind nebula and supernova remnants, microquasars, active galaxies etc. The survey results will guide detailed follow-up observations. Precise calibration of IXPE is vital to ensuring sensitivity goals are met. The detectors will be characterized in Italy, and then a full calibration of the complete instrument will be performed at MSFC's stray light facility. Polarized flux at different energies Heritage: X-ray Optics at MSFC polarimetry mission.

  2. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  3. Development of an Indexing Media Filtration System for Long Duration Space Missions

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  4. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  5. Bomber Deterrence Missions: Criteria To Evaluate Mission Effectiveness

    Science.gov (United States)

    2016-02-16

    international security, the practice of general deterrence usually occurs when nations feel insecure , suspicious or even hostility towards them but...both a deterrence and assurance mission even though it was not planned or advertised as such. Since the intent of this mission was partly perceived

  6. Space Solar Power Technology for Lunar Polar Applications

    Science.gov (United States)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  7. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  8. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  9. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  10. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  11. The Impact of Mission Duration on a Mars Orbital Mission

    Science.gov (United States)

    Arney, Dale; Earle, Kevin; Cirillo, Bill; Jones, Christopher; Klovstad, Jordan; Grande, Melanie; Stromgren, Chel

    2017-01-01

    Performance alone is insufficient to assess the total impact of changing mission parameters on a space mission concept, architecture, or campaign; the benefit, cost, and risk must also be understood. This paper examines the impact to benefit, cost, and risk of changing the total mission duration of a human Mars orbital mission. The changes in the sizing of the crew habitat, including consumables and spares, was assessed as a function of duration, including trades of different life support strategies; this was used to assess the impact on transportation system requirements. The impact to benefit is minimal, while the impact on cost is dominated by the increases in transportation costs to achieve shorter total durations. The risk is expected to be reduced by decreasing total mission duration; however, large uncertainty exists around the magnitude of that reduction.

  12. Hipparcos: mission accomplished

    Science.gov (United States)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  13. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  14. Linearly polarized photons at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Holger [Physikalisches Institut, Universitaet Bonn (Germany)

    2009-07-01

    To investigate the nucleon resonance regime in meson photoproduction, double polarization experiments are currently performed at the electron accelerator ELSA in Bonn. The experiments make use of a polarized target and circularly or linearly polarized photon beams. Linearly polarized photons are produced by coherent bremsstrahlung from an accurately aligned diamond crystal. The orientation of the crystal with respect to the electron beam is measured using the Stonehenge-Technique. Both, the energy of maximum polarization and the plane of polarization, can be deliberately chosen for the experiment. The linearly polarized beam provides the basis for the measurement of azimuthal beam asymmetries, such as {sigma} (unpolarized target) and G (polarized target). These observables are extracted in various single and multiple meson photoproduction channels.

  15. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Science.gov (United States)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  16. SAMPEX mission overview

    International Nuclear Information System (INIS)

    Mason, G.M.; Baker, D.N.; Blake, J.B.; Callis, L.B.; Hamilton, D.C.; Hovestadt, D.; Klecker, B.; Mewaldt, R.A.; Scholer, M.; Stone, E.C.; von Rosenvinge, T.T.

    1990-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer, SAMPEX, will carry out energetic particle studies of outstanding scientific questions in the fields of space plasma physics, solar physics, magnetospheric and middle atmospheric physics, and cosmic ray physics. SAMPEX will measure the electron and ion composition of energetic particle populations from ∼0.4 MeV/nucleon to hundreds of MeV/nucleon from a zenith-pointing small satellite in near-polar orbit, using a coordinate set of detectors with excellent charge and mass resolution, and with higher sensitivity than previously flown instruments. While over the magnetic poles, the instruments will study the composition of anomalous cosmic rays, solar energetic particles, and galactic cosmic rays. At lower magnetic latitudes, geomagnetic cutoff effects will allow determination of the ionization state of these particles at energies much higher than can be studied from interplanetary spacecraft. At subauroral latitudes, SAMPEX will also observe precipitating relativistic magnetospheric electrons, which undergo important interactions within the middle atmosphere

  17. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  18. Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander

    Science.gov (United States)

    Lopez, Israel

    Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.

  19. The AGILE Mission

    CERN Document Server

    Tavani, M.; Argan, A.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.W.; Chen, A.W.; Cocco, V.; Costa, E.; D'Ammando, F.; Del Monte, E.; De Paris, G.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Ferrari, A.; Fiorini, M.; Fornari, F.; Fuschino, F.; Froysland, T.; Frutti, M.; Galli, M.; Gianotti, F.; Giuliani, A.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Liello, F.; Lipari, P.; Longo, F.; Mattaini, E.; Marisaldi, M.; Mastropietro, M.; Mauri, A.; Mauri, F.; Mereghetti, S.; Morelli, E.; Morselli, A.; Pacciani, L.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pontoni, C.; Porrovecchio, G.; Prest, M.; Pucella, G.; Rapisarda, M.; Rappoldi, A.; Rossi, E.; Rubini, A.; Soffitta, P.; Traci, A.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zambra, A.; Zanello, D.; Pittori, C.; Preger, B.; Santolamazza, P.; Verrecchia, F.; Giommi, P.; Colafrancesco, S.; Antonelli, A.; Cutini, S.; Gasparrini, D.; Stellato, S.; Fanari, G.; Primavera, R.; Tamburelli, F.; Viola, F.; Guarrera, G.; Salotti, L.; D'Amico, F.; Marchetti, E.; Crisconio, M.; Sabatini, P.; Annoni, G.; Alia, S.; Longoni, A.; Sanquerin, R.; Battilana, M.; Concari, P.; Dessimone, E.; Grossi, R.; Parise, A.; Monzani, F.; Artina, E.; Pavesi, R.; Marseguerra, G.; Nicolini, L.; Scandelli, L.; Soli, L.; Vettorello, V.; Zardetto, E.; Bonati, A.; Maltecca, L.; D'Alba, E.; Patane, M.; Babini, G.; Onorati, F.; Acquaroli, L.; Angelucci, M.; Morelli, B.; Agostara, C.; Cerone, M.; Michetti, A.; Tempesta, P.; D'Eramo, S.; Rocca, F.; Giannini, F.; Borghi, G.; Garavelli, B.; Conte, M.; Balasini, M.; Ferrario, I.; Vanotti, M.; Collavo, E.; Giacomazzo, M.

    2008-01-01

    AGILE is an Italian Space Agency mission dedicated to the observation of the gamma-ray Universe. The AGILE very innovative instrumentation combines for the first time a gamma-ray imager (sensitive in the energy range 30 MeV - 50 GeV), a hard X-ray imager (sensitive in the range 18-60 keV) together with a Calorimeter (sensitive in the range 300 keV - 100 MeV) and an anticoincidence system. AGILE was successfully launched on April 23, 2007 from the Indian base of Sriharikota and was inserted in an equatorial orbit with a very low particle background. AGILE provides crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, pulsars, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. An optimal angular resolution (reaching 0.1-0.2 degrees in gamma-rays, 1-2 arcminutes in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compa...

  20. STS-68 Mission Insignia

    Science.gov (United States)

    1994-01-01

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.