WorldWideScience

Sample records for polar high anti-cyclonic

  1. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    Science.gov (United States)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    the vorticity of the lower layer, h is the depth of the upper layer and w 0 is the upward entrainment velocity across the pycnocline. Under high discharge conditions the axis of the river plume proceeds in a right bounded direction, describing an inertial circle clearly seen in satellite images. Under low discharge conditions the river plume is deflected in a left bounded direction by the anti-cyclonic circulation of the upper layer.

  2. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  3. High current polarized electron source

    Science.gov (United States)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  4. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  5. Single photon detector with high polarization sensitivity.

    Science.gov (United States)

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  6. STANFORD: Highly polarized SLC electron beams

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Using specialized photocathodes made with 'strained' gallium arsenide, physicists at the Stanford Linear Accelerator Center (SLAC) have generated electron beams with polarizations in excess of 60 percent a year ahead of schedule. Together with recent luminosity increases, this breakthrough will have a major impact on the physics output of the Stanford Linear Collider (SLC). Beam polarization was almost tripled using photocathodes in which a gallium arsenide layer was grown epitaxially over a substrate of gallium arsenide phosphide. The mismatch between these two layers deforms the crystal structure and removes a degeneracy in the valence band structure, permitting selective optical pumping of one unique spin state. Whereas conventional gallium arsenide photocathodes are limited to 50 percent polarization because of this degeneracy (and realistic cathodes fall substantially below this theoretical limit), such strained crystal lattices have the potential to yield polarizations close to 100 percent. Polarization enhancement with strained lattices was first demonstrated in 1991 by a SLAC/Wisconsin/ Berkeley group (May 1991, page 6) with a 71 percent polarization in a laboratory experiment. More recently this group has achieved polarization in excess of 90 percent, reported last November at the Nagoya Spin Symposium. (In a complementary development, a Japanese KEK/ Nagoya/KEK obtains polarized beams using a 'superlattice' - May 1991, page 4.) The 1993 SLC run, the strained gallium arsenide photocathode technique's debut in an operating particle accelerator, has proved to be a resounding, unqualified success - as have physics experiments on the Z particles produced by the highly polarized beam. A conservative approach was called for, due to concerns about possible charge saturation effects. A relatively thick (0.3 micron) gallium arsenide layer was used for the photocathode in the SLC polarized electron source. With a titanium

  7. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  8. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  9. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  10. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  11. High polarization photocathode R ampersand D at SLAC

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Garwin, E.L.; Prepost, R.; Zaplac, G.H.

    1993-01-01

    This paper describes recent progress on the development of high polarization photocathodes for polarized electron sources. A strained InGaAs cathode has achieved a maximum electron-spin polarization of 71% and has demonstrated the strain enhancement of polarization for the first time. Strained GaAs cathodes have yielded polarizations as high as 90% with much higher quantum efficiency

  12. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  13. KEK/NAGOYA/SLAC: Highly polarized electrons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the push by the Japanese KEK Laboratory, in collaboration with university groups and overseas laboratories, to develop new techniques for the future Japan electronpositron collider (JLC), a recent achievement is a significant increase in the efficient yield of highly polarized electrons

  14. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  15. Performance of the SLC polarized electron source with high polarization

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.K.; Aoyagi, H.

    1993-04-01

    For the 1992 operating cycle of the SLAC Linear Collider (SLC), the polarized electron source (PES) during its maiden run successfully met the pulse intensity and overall efficiency requirements of the SLC. However, the polarization of the bulk GaAs cathode was low (∼27%) and the pulse-to-pulse stability was marginal. We have shown that adequate charge for the SLC can be extracted from a strained layer cathode having P e ∼80% even though the quantum efficiency (QE) is - beam stability. The performance of the PES during the 1993 SLC operating cycle with these and other improvements is discussed

  16. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  17. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  18. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  19. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization.

    Science.gov (United States)

    Scott Tyo, J; Ratliff, Bradley M; Alenin, Andrey S

    2016-10-15

    Many mappings from polarization into color have been developed so that polarization information can be displayed. One of the most common of these maps the angle of linear polarization into color hue and degree of linear polarization into color saturation, while preserving the irradiance information from the polarization data. While this strategy enjoys wide popularity, there is a large class of polarization images for which it is not ideal. It is common to have images where the strongest polarization signatures (in terms of degree of polarization) occur in regions of relatively low irradiance: either in shadow in reflective bands or in cold regions in emissive bands. Since the irradiance is low, the chromatic properties of the resulting images are generally not apparent. Here we present an alternate mapping that uses the statistics of the angle of polarization as a measure of confidence in the polarization signature, then amplifies the irradiance in regions of high confidence, and leaves it unchanged in regions of low confidence. Results are shown from an LWIR and a visible spectrum imager.

  20. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  1. Inducing elliptically polarized high-order harmonics from aligned molecules with linearly polarized femtosecond pulses

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer

    2010-01-01

    A recent paper reported elliptically polarized high-order harmonics from aligned N2 using a linearly polarized driving field [X. Zhou et al., Phys. Rev. Lett. 102, 073902 (2009)]. This observation cannot be explained in the standard treatment of the Lewenstein model and has been ascribed to many...

  2. The Boomerang Nebula: a highly polarized bipolar

    International Nuclear Information System (INIS)

    Taylor, K.N.R.; Scarrott, S.M.

    1980-01-01

    An optical linear polarization map of a bipolar nebula is presented. Polarizations of approximately 60 per cent are observed in the optically thin lobes. The map leads to a geometry of the object consisting of a central star with an equatorial disc of dust and optically thin lobes illuminated by the central star. The grains in the disc are aligned. The object is a protoplanetary nebula. (author)

  3. A high volume, batch mode {sup 129}Xe polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Wojna-Pelczar, Anna, E-mail: anna.wojna.pelczar@mail.muni.cz [Central European Institute of Technology, Masaryk University, Brno (Czech Republic); Formerly: Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków (Poland); Pałasz, Tadeusz [Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków (Poland)

    2017-06-01

    Numerous designs of optical gas polarizers have been proposed, broadening possible applications of the hyperpolarized gases as contrast agents in magnetic resonance imaging. We present a home–made {sup 129}Xe polarizer based on the spin exchange optical pumping method. The polarizer operates under 1 bar of the gas mixture (at the maximum temperature of 160 °C) in a high volume optical cell (5025 cm{sup 3}). Approximately 100 cm{sup 3} of {sup 129}Xe polarized at 1.50±0.37% is produced in a single cycle of polarization. Operation under standard pressure imposes polarization transfer mainly via van der Waals molecules, resulting in the efficient spin exchange between rubidium and {sup 129}Xe atoms. The design, construction and operation of the polarizer are described in details.

  4. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  5. Polarization in high Psub(trans) and cumulative hadron production

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1978-01-01

    The final hadron polarization in the high Psub(trans) processes is analyzed in the parton hard scattering picture. Scaling assumption allows a correct qualitative description to be given for the Psub(trans)-behaviour of polarization or escape angle behaviour in cumulative production. The energy scaling and weak dependence on the beam and target type is predicted. A method is proposed for measuring the polarization of hadron jets

  6. STANFORD: Producing highly polarized electrons (2)

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Electron spin polarization above 70% by photoemission from a specially prepared semiconductor has been achieved by T. Maruyama and E. Garwin of the Stanford Linear Accelerator Center (SLAC), R. Prepost and G. Zapalac of Wisconsin, and J. Walker and S. Smith of Berkeley

  7. The SLAC high-density gaseous polarized 3He target

    International Nuclear Information System (INIS)

    Johnson, J.R.; Chupp, T.E.; Smith, T.B.; Cates, G.D.; Driehuys, B.; Middleton, H.; Newbury, N.R.; Hughes, E.W.; Meyer, W.

    1995-01-01

    A large-scale high-pressure gaseous 3 He polarized target has been developed for use with a high-intensity polarized electron beam at the Stanford Linear Accelerator Center. This target was used successfully in an experiment to study the spin structure of the neutron. The target provided an areal density of about 7x10 21 nuclei/cm 2 and operated at 3 He polarizations between about 30% and 40% for the six-week duration of the experiment. ((orig.))

  8. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  9. Optical polarization of high-energy BL Lacertae objects

    Science.gov (United States)

    Hovatta, T.; Lindfors, E.; Blinov, D.; Pavlidou, V.; Nilsson, K.; Kiehlmann, S.; Angelakis, E.; Fallah Ramazani, V.; Liodakis, I.; Myserlis, I.; Panopoulou, G. V.; Pursimo, T.

    2016-12-01

    Context. We investigate the optical polarization properties of high-energy BL Lac objects using data from the RoboPol blazar monitoring program and the Nordic Optical Telescope. Aims: We wish to understand if there are differences between the BL Lac objects that have been detected with the current-generation TeV instruments and those objects that have not yet been detected. Methods: We used a maximum-likelihood method to investigate the optical polarization fraction and its variability in these sources. In order to study the polarization position angle variability, we calculated the time derivative of the electric vector position angle (EVPA) change. We also studied the spread in the Stokes Q/I-U/I plane and rotations in the polarization plane. Results: The mean polarization fraction of the TeV-detected BL Lacs is 5%, while the non-TeV sources show a higher mean polarization fraction of 7%. This difference in polarization fraction disappears when the dilution by the unpolarized light of the host galaxy is accounted for. The TeV sources show somewhat lower fractional polarization variability amplitudes than the non-TeV sources. Also the fraction of sources with a smaller spread in the Q/I-U/I plane and a clumped distribution of points away from the origin, possibly indicating a preferred polarization angle, is larger in the TeV than in the non-TeV sources. These differences between TeV and non-TeV samples seem to arise from differences between intermediate and high spectral peaking sources instead of the TeV detection. When the EVPA variations are studied, the rate of EVPA change is similar in both samples. We detect significant EVPA rotations in both TeV and non-TeV sources, showing that rotations can occur in high spectral peaking BL Lac objects when the monitoring cadence is dense enough. Our simulations show that we cannot exclude a random walk origin for these rotations. Conclusions: These results indicate that there are no intrinsic differences in the

  10. Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses

    International Nuclear Information System (INIS)

    Le, Anh-Thu; Lin, C. D.; Lucchese, R. R.

    2010-01-01

    We present theoretical calculations for polarization and ellipticity of high-order harmonics from aligned N 2 , CO 2 , and O 2 molecules generated by linearly polarized lasers. Within the rescattering model, the two polarization amplitudes of the harmonics are determined by the photo-recombination amplitudes for photons emitted with polarization parallel or perpendicular to the direction of the same returning electron wave packet. Our results show clear species-dependent polarization states, in excellent agreement with experiments. We further note that the measured polarization ellipse of the harmonic furnishes the needed parameters for a 'complete' experiment in molecules.

  11. On the possibility of obtaining high-energy polarized electrons on Yerevan synchrotron

    International Nuclear Information System (INIS)

    Melikyan, R.A.

    1975-01-01

    A possibility of producing high-energy polarized electrons on the Yerevan synchrotron is discussed. A review of a number of low-energy polarized electron sources and of some of experiments with high-energy polarized electrons is given

  12. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  13. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....

  14. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Science.gov (United States)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  15. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  16. Biogeography of photoautotrophs in the high polar biome

    Directory of Open Access Journals (Sweden)

    Stephen Brian Pointing

    2015-09-01

    Full Text Available The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favourable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on polar plant diversity and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

  17. Polarization-Resolved Study of High Harmonics from Bulk Semiconductors

    Science.gov (United States)

    Kaneshima, Keisuke; Shinohara, Yasushi; Takeuchi, Kengo; Ishii, Nobuhisa; Imasaka, Kotaro; Kaji, Tomohiro; Ashihara, Satoshi; Ishikawa, Kenichi L.; Itatani, Jiro

    2018-06-01

    The polarization property of high harmonics from gallium selenide is investigated using linearly polarized midinfrared laser pulses. With a high electric field, the perpendicular polarization component of the odd harmonics emerges, which is not present with a low electric field and cannot be explained by the perturbative nonlinear optics. A two-dimensional single-band model is developed to show that the anisotropic curvature of an energy band of solids, which is pronounced in an outer part of the Brillouin zone, induces the generation of the perpendicular odd harmonics. This model is validated by three-dimensional quantum mechanical simulations, which reproduce the orientation dependence of the odd-order harmonics. The quantum mechanical simulations also reveal that the odd- and even-order harmonics are produced predominantly by the intraband current and interband polarization, respectively. These experimental and theoretical demonstrations clearly show a strong link between the band structure of a solid and the polarization property of the odd-order harmonics.

  18. Polarization-Independent Wideband High-Index-Contrast Grating Mirror

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Park, Gyeong Cheol; Malureanu, Radu

    2015-01-01

    Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ∼192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show...

  19. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NARCIS (Netherlands)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Ozben, C. S.; Prasuhn, D.; Sandri, P. Levi; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-01-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY

  20. Radiative polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1989-01-01

    Electron and positron beams circulating in high-energy storage rings become spontaneously polarized by the emission of synchrotron radiation. The asymptotic degree of polarization that can be attained is strongly affected by so-called depolarizing resonances. Detailed experimental measurements of the polarization were made SPEAR about ten years ago, but due to lack of a suitable theory only a limited theoretical fit to the data has so far been achieved. The author presents a general formalism for calculating depolarizing resonances, which has been coded into a computer program called SMILE, and use it to fit the SPEAR data. By the use of suitable approximations, the author is able to fit both higher order and nonlinear resonances, and thereby to interpret many hitherto unexplained features in the data, and to resolve a puzzle concerning the asymmetry of certain resonance widths seen in the data. 18 refs., 2 figs

  1. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  2. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  3. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  4. High-efficiency transmision neutron polarizer for high-resolution double crystal diffractometer

    International Nuclear Information System (INIS)

    Ioffe, A.; Krist, T.; Mezei, F.; Gordeev, G.; Ibrayev, B.

    1997-01-01

    An efficient transmission geometry neutron polarizer for the high-resolution double crystal diffractometer at HMI (λ=4.8 A) is described. A polarization of about 94% was achieved and the polarized neutron beam intensity amounts to 40% of the nonpolarized beam intensity. This opens up wide possibilities for the study of magnetic small-angle scattering for extremely small momentum transfer (Q∝10 -5 A -1 ). (orig.)

  5. Optimum measurement and analysis of small polarization asymmetry in high-energy inelastic scattering using a polarized target

    International Nuclear Information System (INIS)

    Niinikoski, T.O.

    1976-01-01

    Optimum linear filter theory is employed for maximizing the signal-to-noise ratio in measurements of small polarization asymmetry in the presence of severe counting efficiency fluctuation, most likely to occur in high-energy inclusive and inelastic scattering experiments, using a polarized target. The r.m.s. error of the polarization asymmetry is obtained in closed form, allowing numeric optimization of the operation of the target. Guidelines are given for processing the record of data. (Auth.)

  6. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  7. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  8. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  9. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  10. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  11. Engaging Montana high school students in optical sciences with a polarization photo contest

    Science.gov (United States)

    Tauc, Martin Jan; Boger, James K.; Hohne, Andrew; Dahl, Laura M.; Nugent, Paul W.; Riesland, David W.; Moon, Benjamin; Baumbauer, Carol L.; Boese, Orrin; Shaw, Joseph A.; Nakagawa, Wataru

    2017-08-01

    Getting students interested in science, specifically in optics and photonics, is a worthwhile challenge. We developed and implemented an outreach campaign that sought to engage high school students in the science of polarized light. We traveled to Montana high schools and presented on the physics of light, the ways that it becomes polarized, how polarization is useful, and how to take pictures with linear polarizers to see polarization. Students took pictures that showed polarization in either a natural setting or a contrived scene. We visited 13 high schools, and presented live to approximately 450 students.

  12. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  13. Polarization Measurements in High-Energy Deuteron Photodisintegration

    International Nuclear Information System (INIS)

    Adam Sarty; Andrei Afanasev; Arunava Saha; Bogdan Wojtsekhowski; Brendan Fox; Chang, C.; Cathleen Jones; Charles Glashausser; Charles Perdrisat; Cornelis De Jager; Cornelis De Jager; Cornelis de Jager; Crovelli, D.; Daniel Simon; David Meekins; Demetrius Margaziotis; Dipangkar Dutta; Edgar Kooijman; Edward Brash; Edward Kinney; Elaine Schulte; Eugene Chudakov; Feng Xiong; Franco Garibaldi; Garth Huber; Gerfried Kumbartzki; Guido Urciuoli; Haiyan Gao; James Kelly; Javier Gomez; Jens-Ole Hansen; Jian-Ping Chen; John Calarco; John LeRose; Jordan Hovdebo; Joseph Mitchell; Juncai Gao; Kamal Benslama; Kathy McCormick; Kevin Fissum; Konrad Aniol; Krishni Wijesooriya; Louis Bimbot; Ludyvine Morand; Luminita Todor; Marat Rvachev; Mark Jones; Martin Epstein; Meihua Liang; Michael Kuss; Moskov Amarian; Nilanga Liyanage; Oleksandr Glamazdin; Olivier Gayou; Paul Ulmer; Pete Markowitz; Peter Bosted; Holt, R.; Riad Suleiman; Richard Lindgren; Rikki Roche; Robert Michaels; Roman Pomatsalyuk; Ronald Gilman; Ronald Ransome; Salvatore Frullani; Scott Dumalski; Seonho Choi; Sergey Malov; Sonja Dieterich; Steffen Strauch; Stephen Becher; Steve Churchwell; Ting Chang; Viktor Gorbenko; Vina Punjabi; Xiaodong Jiang; Zein-Eddine Meziani; Zhengwei Chai; Wang Xu

    2001-01-01

    We present measurements of the recoil proton polarization for the d(polarized y, polarized p)n reaction at thetac.m. = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization py vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(y,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime

  14. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization

  15. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  16. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  17. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    Science.gov (United States)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  18. High voltage processing of the SLC polarized electron gun

    International Nuclear Information System (INIS)

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described

  19. NCTM of liquids at high temperatures using polarization techniques

    Science.gov (United States)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.

  20. SLC polarized beam source ultra-high-vacuum design

    International Nuclear Information System (INIS)

    Lavine, T.L.; Clendenin, J.E.; Garwin, E.L.; Hoyt, E.W.; Hoyt, M.W.; Miller, R.H.; Nuttall, J.A.; Schultz, D.C.; Wright, D.

    1991-05-01

    This paper describes the design of the ultra-high vacuum system for the beam-line from the 160-kV polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photo-cathode is illuminated by 3-nsec-long laser pulses. Photo-cathode maintenance and improvements require occasional substitution of guns with rapid restoration of UHV conditions. Differential pumping is crucial since the pressure in the injector is more than 10 times greater than the photocathode can tolerate, and since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line contains a differential pumping region isolated by a pair of valves. Exchange of guns requires venting only this isolated region which can be restored to UHV rapidly by baking. The differential pumping is performed by non-evaporable getters (NEGs) and an ion pump. 3 refs., 3 figs

  1. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    International Nuclear Information System (INIS)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-01-01

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  2. Tensor polarization of the φ meson photoproduced at high t

    International Nuclear Information System (INIS)

    McCormick, K.; Audit, G.; Laget, J.M.; Anciant, E.; Auger, T.; Farhi, L.; Garcon, M.; Marchand, C.; Morand, L.; Morrow, S.A.; Sabatie, F.; Adams, G.; Bellis, M.; Cummings, J.P.; Frolov, V.; Klusman, M.; Li Ji; Napolitano, J.; Price, J.W.; Stoler, P.

    2004-01-01

    As part of a measurement [E. Anciant et al., Phys. Rev. Lett. 85, 4682 (2000)] of the cross section of φ meson photoproduction to high momentum transfer, we measured the polar angular decay distribution of the outgoing K + in the channel φ→K + K - in the φ center-of-mass frame (the helicity frame). We find that s-channel helicity conservation (SCHC) holds in the kinematical range where t-channel exchange dominates (up to -t∼2.5 GeV 2 for E γ =3.6 GeV). Above this momentum, u-channel production of a φ meson dominates and induces a violation of SCHC. The deduced value of the φNN coupling constant lies in the upper range of previously reported values

  3. Tensor polarization of the phi meson photoproduced at high t

    International Nuclear Information System (INIS)

    K. McCormick; G. Audit; J. M. Laget; G. Adams; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; T. Auger; H. Avakian; H. Bagdasaryan; J. P. Ball; S. Barrow; M. Battaglieri; K. Beard; M. Bektasoglu; M. Bellis; N. Benmouna; B. L. Berman; N. Bianchi; A. S. Biselli; S. Boiarinov; B. E. Bonner; S. Bouchigny; R. Bradford; W. K. Brooks; V. D. Burkert; C. Butuceanu; J. R. Calarco; D. S. Carman; B. Carnahan; C. Cetina; S. Chen; P. L. Cole; A. Coleman; J. Connelly; D. Cords; P. Corvisiero; D. Crabb; H. Crannell; J. P. Cummings; E. De Sanctis; R. DeVita; P. V. Degtyarenko; H. Denizli; L. Dennis; K. V. Dharmawardane; C. Djalali; G. E. Dodge; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O. P. Dzyubak; M. Eckhause; H. Egiyan; K. S. Egiyan; L. Elouadrhiri; P. Eugenio; L. Farhi; R. J. Feuerbach; J. Ficenec; T. A. Forest; V. Frolov; H. Funsten; S. J. Gaff; M. Gai; M. Garcon; G. Gavalian; S. Gilad; G. P. Gilfoyle

    2004-01-01

    As part of a measurement [E. Anciant (and others), Phys. Rev. Lett. 85, 4682 (2000)] of the cross section of phi meson photoproduction to high momentum transfer, we measured the polar angular decay distribution of the outgoing K+ in the channel K+K- in the phi center-of-mass frame (the helicity frame). We find that phi s-channel helicity conservation (SCHC) holds in the kinematical range where t-channel exchange dominates (up to -t ∼2.5 GeV2 for E = 3.6 GeV). Above this momentum, phi u-channel production of a meson dominates and induces a violation of SCHC. The deduced value of the phi NN coupling constant lies in the upper range of previously reported values

  4. Highly spin-polarized materials and devices for spintronics∗.

    Science.gov (United States)

    Inomata, Koichiro; Ikeda, Naomichi; Tezuka, Nobuki; Goto, Ryogo; Sugimoto, Satoshi; Wojcik, Marek; Jedryka, Eva

    2008-01-01

    The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co 2 Cr 1 - x Fe x Al (CCFA( x )) and Co 2 FeSi 1 - x Al x (CFSA( x )) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co 2 FeSi 0.5 Al 0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L2 1 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe 2 film deposited on a MgO (001) single crystal substrate, wherein the spinel

  5. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  6. Relativistic polarized neutrons at the Laboratory of High Energy Physics, JINR

    International Nuclear Information System (INIS)

    Kirillov, A.; Komolov, L.; Kovalenko, A.; Matyushevskij, E.; Nomofilov, A.; Rukoyatkin, P.; Sharov, V.; Starikov, A.; Strunov, L.; Svetov, A.

    1996-01-01

    Using slowly extracted polarized deuterons, available at the accelerator facility of the Laboratory of High Energy Physics, JINR, polarized quasi-monochromatic neutrons with momenta from 1.1 to 4.5 GeV/c have been generated. Depending on momentum, from 10 4 to 10 6 polarized neutrons per accelerator cycle were produced. At present, the polarized neutrons are mainly intended for measuring the (n vec, p vec) total cross section differences. 6 refs., 2 figs

  7. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  8. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  9. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former

  10. Contribution to the theory of ultracold highly polarized Fermi gases

    International Nuclear Information System (INIS)

    Giraud, Sebastien

    2010-01-01

    This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)

  11. Highly anisotropic metasurface: a polarized beam splitter and hologram

    Science.gov (United States)

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D.; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. PMID:25262791

  12. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  13. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  14. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  15. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    Science.gov (United States)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity

  16. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    Science.gov (United States)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  17. Highly stable polarization independent Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-08-15

    We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.

  18. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.

    Science.gov (United States)

    Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L

    2017-05-29

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  19. A high field optical-pumping spin-exchange polarized deuterium source

    International Nuclear Information System (INIS)

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  20. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  1. Circular polarization with crossed-planar undulators in high-gain FELs

    CERN Document Server

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  2. Polarization as a probe of high energy physics

    International Nuclear Information System (INIS)

    Moravcsik, M.J.

    1985-07-01

    An outline is given of the particular physical and mathematical point of view taken with respect to the exploration of polarization phenomena in particle physics, and some of the results are discussed. The quantum mechanical formalism is provided in terms of the reaction matrix and spin tensors. The applications of the optimal formalism to polarization phenomena and the results obtained from it are discussed. The four principal applications discussed are: testing of symmetry laws, determination of amplitudes from experimental data, testing of specific existing theoretical models, and searching for clues of dynamics in the situations in which knowledge of the particle dynamics is nonexistent or unreliable. 44 refs., 21 figs

  3. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Science.gov (United States)

    Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang

    2016-02-01

    We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  4. Polarization of seven MBM clouds at high Galactic latitude

    Science.gov (United States)

    Neha, S.; Maheswar, G.; Soam, A.; Lee, C. W.

    2018-06-01

    We made R-band polarization measurements of 234 stars towards the direction of the MBM 33-39 cloud complex. The distance of the MBM 33-39 complex was determined as 120 ± 10 pc using polarization results and near-infrared photometry from the 2MASS survey. The magnetic field geometry of the individual clouds inferred from our polarimetric results reveals that the field lines are in general consistent with the global magnetic field geometry of the region obtained from previous studies. This implies that the clouds in the complex are permeated by the interstellar magnetic field. Multi-wavelength polarization measurements of a few stars projected on to the complex suggest that the size of the dust grains in these clouds is similar to those found in the normal interstellar medium of the Milky Way. We studied a possible formation scenario of the MBM 33-39 complex by combining the polarization results from our study with those from the literature and by identifying the distribution of ionized, atomic and molecular (dust) components of material in the region.

  5. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.

    1992-01-01

    This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range

  6. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    Science.gov (United States)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  7. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  8. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  9. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery

    International Nuclear Information System (INIS)

    Bormashenko, Edward; Chaniel, Gilad; Grynyov, Roman

    2013-01-01

    The phenomenon of hydrophobic recovery was studied for cold air plasma treated polyethylene films. Plasma-treated polymer films were immersed into liquids with very different polarities such as ethanol, acetone, carbon tetrachloride, benzene and carbon disulphide. Hydrophobic recovery was studied by measurement of contact angles. Immersion into high polarity liquids slows markedly the hydrophobic recovery. We relate this slowing to dipole–dipole interaction of polar groups of the polymer with those of the liquids. This kind of interaction becomes decisive when polar groups of polymer chains are at least partially spatially fixed.

  10. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...

  11. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear.

    Science.gov (United States)

    Pagano, A M; Durner, G M; Rode, K D; Atwood, T C; Atkinson, S N; Peacock, E; Costa, D P; Owen, M A; Williams, T M

    2018-02-02

    Regional declines in polar bear ( Ursus maritimus ) populations have been attributed to changing sea ice conditions, but with limited information on the causative mechanisms. By simultaneously measuring field metabolic rates, daily activity patterns, body condition, and foraging success of polar bears moving on the spring sea ice, we found that high metabolic rates (1.6 times greater than previously assumed) coupled with low intake of fat-rich marine mammal prey resulted in an energy deficit for more than half of the bears examined. Activity and movement on the sea ice strongly influenced metabolic demands. Consequently, increases in mobility resulting from ongoing and forecasted declines in and fragmentation of sea ice are likely to increase energy demands and may be an important factor explaining observed declines in body condition and survival. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  13. DeVelopment of the high-intensity polarized H- source with proton charge exchange on sodium optically oriented atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1982-01-01

    The results of experimental study on the source of polarized H - ions at polarized electron capture by proton from optically oriented sodium atoms are presented. Circular-polarized dye laser radiation with lamp pumping is used for polarization of highly dense sodium vapors in the pulsed mode. A facility for polarization measurement in the ion source is described. Dependence of the counting rate of metastables for the right and left circular radiation polarization in respect to wave length is presented. The results of measuring the degree of polarization under change of sodium density are revealed. The measurements have disclosed that obtaining of high polarization degree at 20-30% charge exchange effectiveness is possible but large radiation power is required. Use of a dense charge exchange target provides high effectiveness of hte whole polarization process. Yield of polarized H - ions can approach 10 μA/1 mA of the initial proton current

  14. Proposed method to produce a highly polarized e+ beam for future linear colliders

    International Nuclear Information System (INIS)

    Okugi, Toshiyuki; Chiba, Masami; Kurihara, Yoshimasa

    1996-01-01

    We propose a method to produce a spin-polarized e + beam using e + e - pair-creation by circularly polarized photons. Assuming Compton scattering of an unpolarized e - beam and circularly polarized laser light, scattered γ-rays at the high end of the energy spectrum are also circularly polarized. If those γ-rays are utilized to create e ± pairs on a thin target, the spin-polarization is preserved for e + 's at the high end of their energy spectrum. By using the injector linac of Accelerator Test Facility at KEK and a commercially available Nd:YAG pulse laser, we can expect about 10 5 polarized e + 's per second with a degree of polarization of 80% and a kinetic energy of 35-80 MeV. The apparatus for creation and measurement of polarized e + 's is being constructed. We present new idea for possible application of our method to future linear colliders by utilizing a high-power CO 2 laser. (author)

  15. Polarization behaviour of polyvinylidenefluoride-polysulfone (PVDF: PSF) blends under high field and high temperature condition

    Science.gov (United States)

    Shrivas, Sandhya; Patel, Swarnim; Dubey, R. K.; Keller, J. M.

    2018-05-01

    Thermally stimulated discharge currents of PVDF: PSF blend samples in ratio 80:20 and 95:05 prepared by the solution cast technique have been studied as a function of polarizing field and polarizing temperature, the temperature corresponding to a peak in TSDC is found to be independent of polarizing field but dependent on the polarizing temperature.

  16. High-efficiency terahertz polarization devices based on the dielectric metasurface

    Science.gov (United States)

    Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi

    2018-02-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.

  17. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  18. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    Science.gov (United States)

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  19. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  20. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    International Nuclear Information System (INIS)

    Dong Guo-Xiang; Xia Song; Li Wei; Zhang An-Xue; Xu Zhuo; Wei Xiao-Yong; Shi Hong-Yu

    2016-01-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. (paper)

  1. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  2. Experimental considerations on producing highly polarized liquid 3He in a matrix of solid 4He

    International Nuclear Information System (INIS)

    Greenberg, A.S.; Hebral, B.; Papoular, M.; Beal-Monod, M.T.

    1980-01-01

    Two experiments are briefly reviewed in which droplets of 3 He were formed in solid 4 He. These experiments indicate such conditions are favorable for the production of quasi-stable highly polarized liquid 3 He. A solid solution of dilute 3 He in 4 He is proposed as a promising system to produce experimentally realizable highly polarized liquid 3 He using the Castaing-Nozieres decompression

  3. High proton polarization at high temperature with single crystals of aromatic molecules

    International Nuclear Information System (INIS)

    Iinuma, M.; Takahashi, Y.; Shake, I.; Oda, M.; Masaike, A.; Yabuzaki, T.; Shimizu, H.M.

    2004-01-01

    Protons in single crystals of naphthalene doped with pentacene and p-terphenyl doped with pentacene have been polarized up to 32% and 18%, respectively. Such polarization has been achieved at liquid nitrogen temperature in a magnetic field of 3 kG by means of microwave-induced optical nuclear polarization. We also measured the polarization by the neutron transmission method. The relaxation time at 77 K in 7 G was found to be about 3 h and the enhancement of the obtained polarization compared with thermal polarization reached 8x10 4 . This method is applicable to neutron experiments

  4. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  5. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2016-02-01

    Full Text Available We designed a new style of broadband terahertz (THz polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  6. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  7. High Efficacy Green LEDs by Polarization Controlled MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Christian [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2013-03-31

    Amazing performance in GaInN/GaN based LEDs has become possible by advanced epitaxial growth on a wide variety of substrates over the last decade. An immediate push towards product development and worldwide competition for market share have effectively reduced production cost and generated substantial primary energy savings on a worldwide scale. At all times of the development, this economic pressure forced very fundamental decisions that would shape huge industrial investment. One of those major aspects is the choice of epitaxial growth substrate. The natural questions are to what extend a decision for a certain substrate will limit the ultimate performance and to what extent, the choice of a currently more expensive substrate such as native GaN could overcome any of the remaining performance limitations. Therefore, this project has set out to explore what performance characteristic could be achieved under the utilization of bulk GaN substrate. Our work was guided by the hypotheses that line defects such as threading dislocations in the active region should be avoided and the huge piezoelectric polarization needs to be attenuated – if not turned off – for higher performing LEDs, particularly in the longer wavelength green and deep green portions of the visible spectrum. At their relatively lower performance level, deep green LEDs are a stronger indicator of relative performance improvements and seem particular sensitive to the challenges at hand.

  8. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  9. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  10. Retrofit of a high power Nd:glass laser system with liquid crystal polarizers

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Kessler, T.J.; Seka, W.; Bahr, R.

    1985-03-01

    The glass development laser (GDL), has been operating at the Laboratory for Laser Energetics since 1978. This Nd:phosphate glass system produces high peak power optical radiation at lambda = 1054 nm or lambda = 351 nm for use in studying the interaction physics of intense laser beams with matter. The amplifier staging incorporates the propagation of linearly and circularly polarized light in rod amplifiers which vary in diameter from 16 mm to 90 mm. Numerous quartz or mica quarter waveplates and Brewster angle dielectric thin film polarizers are required to limit accumulated phase retardation between amplification stages and to accommodate interstage Pockels' cell isolation switches. We have recently replaced most of the waveplate-dielectric polarizer combinations in GDL with liquid crystal polarizers. Comprised of 11 μm thick cholesteric fluids sandwiched between optical quality glass plates, liquid crystal polarizers provide excellent polarization properties, low insertion loss, angular insensitivity, and laser damage resistance at lambda = 1054 nm. The design, fabrication, and performance of left-handed and right-handed circular polarizers will be discussed

  11. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  12. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)

    Science.gov (United States)

    Liu, Sijie; Xiao, Wenbo; Zhong, Mianzeng; Pan, Longfei; Wang, Xiaoting; Deng, Hui-Xiong; Liu, Jian; Li, Jingbo; Wei, Zhongming

    2018-05-01

    Photodetectors with high polarization sensitivity are in great demand in advanced optical communication. Here, we demonstrate that photodetectors based on titanium trisulfide (TiS3) are extremely sensitive to polarized light (from visible to the infrared), due to its reduced in-plane structural symmetry. By density functional theory calculation, TiS3 has a direct bandgap of 1.13 eV. The highest photoresponsivity reaches 2500 A W-1. What is more, in-plane optical selection caused by strong anisotropy leads to the photoresponsivity ratio for different directions of polarization that can reach 4:1. The angle-dependent photocurrents of TiS3 clearly display strong linear dichroism. Moreover, the Raman peak at 370 cm-1 is also very sensitive to the polarization direction. The theoretical optical absorption of TiS3 is calculated by using the HSE06 hybrid functional method, in qualitative agreement with the observed experimental photoresponsivity.

  13. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    Science.gov (United States)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  14. Transport of Mars atmospheric water into high northern latitudes during a polar warming

    Science.gov (United States)

    Barnes, J. R.; Hollingsworth, J. L.

    1988-01-01

    Several numerical experiments were conducted with a simplified tracer transport model in order to attempt to examine the poleward transport of Mars atmospheric water during a polar warming like that which occurred during the winter solstice dust storm of 1977. The flow for the transport experiments was taken from numerical simulations with a nonlinear beta-plane dynamical model. Previous studies with this model have demonstrated that a polar warming having essential characteristics like those observed during the 1977 dust storm can be produced by a planetary wave mechanism analogous to that responsible for terrestrial sudden stratospheric warmings. Several numerical experiments intended to simulate water transport in the absence of any condensation were carried out. These experiments indicate that the flow during a polar warming can transport very substantial amounts of water to high northern latitudes, given that the water does not condense and fall out before reaching the polar region.

  15. High flux polarized neutrons triple-axis spectrometer: 2T (LLB-Saclay)

    International Nuclear Information System (INIS)

    Bourges, Ph.; Hennion, B.; Sidis, Y.; Boutrouille, Ph.; Baroni, P.

    1999-01-01

    A description of the performance of the newly designed thermal beam triple-axis spectrometer, 2T at LLB (Saclay) is given. The beam tube will be increased to 50 x 120 mm 2 (HxV) before the monochromator. A gain of about a factor 2 on the neutron flux at the monitor position is expected after this operation, scheduled on April/May 1999. Polarized neutrons beam option will be installed on this triple axis. The polarization is obtained using high quality heusler crystals recently grown at ILL. The size of both heusler monochromator and analyzer have been chosen to fully cover the beam size. The monochromator (analyzer) will be equipped with a vertical (horizontal) curvature. The flux of the polarized beam on the detector is then expected to be 5 times better than IN20 at ILL (best existing polarized neutrons triple-axis on thermal beam) with incident energy upto 75 MeV. (author)

  16. High polarization purity operation of 99% in 9xx-nm broad stripe laser diodes

    Science.gov (United States)

    Morohashi, Rintaro; Yamagata, Yuji; Kaifuchi, Yoshikazu; Tada, Katsuhisa; Nogawa, Ryozaburo; Yamada, Yumi; Yamaguchi, Masayuki

    2018-02-01

    Polarization characteristics of self-aligned stripe (SAS) laser diodes (LDs) and Ridge-LDs are investigated to realize highly efficient polarization beam combined (PBC) LD modules. Vertical layers of both lasers are designed identically. Near field patterns (NFP) of TM polarization for the Ridge-LD showed peaks at the side edges, as expected by the strain simulation. On the other hand, SAS-LD showed a relatively flat and weak profile. Polarization purity (ITE/ (ITE+ITM)) of SAS-LDs exceeds 99%, while those of the Ridge-LDs are as low as 96%. It is confirmed that our SAS-LDs are suitable sources for PBC with low power loss.

  17. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  18. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki; Harada, Yukihiro

    2014-01-01

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n + -GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarization sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.

  19. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    Science.gov (United States)

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  20. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence.

    Science.gov (United States)

    Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng

    2018-02-19

    The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.

  1. Final-photon polarization in the scattering of photons by high-energy electrons

    International Nuclear Information System (INIS)

    Choi, J.; Choi, S.Y.; Ie, S.H.; Song, H.S.; Good, R.H. Jr.

    1987-01-01

    A general method for calculating the polarization of the outgoing photon beam in any reaction is presented. As an example the method is applied to the high-energy photon beam produced in Compton scattering of a laser beam by a high-energy electron beam. The Stokes parameters of the outgoing photon beam, relative to a unit vector normal to the photon momentum and including their dependence on the polarization of incident photon and electron beams, are obtained explicitly. It is expected that this method will be useful, both in photon production reactions and in the subsequent high-energy photon reactions

  2. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  3. Radio polarization properties of quasars and active galaxies at high redshifts

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  4. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    Science.gov (United States)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  5. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    Science.gov (United States)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  6. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    Science.gov (United States)

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  7. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Runbing [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Zhu, Chengjie [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Deng, L.; Hagley, E. W. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  8. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  9. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    International Nuclear Information System (INIS)

    Xiao Li; Zhang Wei; Huang Yidong; Peng Jiangde

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency detunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift

  10. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  11. Polarized high-brilliance and high-resolution soft x-ray source at ELETTRA: The performance of beamline BACH

    International Nuclear Information System (INIS)

    Zangrando, M.; Zacchigna, M.; Finazzi, M.; Cocco, D.; Rochow, R.; Parmigiani, F.

    2004-01-01

    BACH, a soft x-ray beamline for polarization-dependent experiments at the Italian synchrotron radiation facility ELETTRA, was recently completed and characterized. Its performance, in terms of energy resolution, flux and polarization, is presented. Based on two APPLE II undulators, BACH covers the energy range between 35 and 1600 eV with the control of the light polarization. The monochromator is equipped with four gratings and allows one to work either in a high resolution or in a high flux mode. After the monochromator, the beamline is split into two branches with different refocusing properties. One is optimized to exploit the performance of the soft x-ray spectrometer (ComIXS) available at the beamline. Resolving powers between 12000 at 90 eV photon energy and 6600 near 867 eV were achieved using the high-resolution gratings and the smallest available slit width (10 μm). For the high-brilliance grating, which works between 290 and 1600 eV, resolving powers between 7000 at 400 eV and 2200 at 867 eV were obtained. The flux in the experimental chamber, measured with the high-resolution gratings for linearly polarized light at the best achievable resolution, ranges between 4x10 11 photons/s at 125 eV and 2x10 10 photons/s between 900 and 1250 eV. In circularly polarized mode the flux is two times larger for energies up to 380 eV. A gain of nearly one order of magnitude is obtained for the high-brilliance grating, in accordance with theoretical predictions. Flux beyond 1.3x10 11 photons/s was measured up to 1300 eV, and thus over nearly the complete energy range covered by this high-brilliance grating, with a maximum of 1.6x10 11 photons/s between 800 and 1100 eV. First results from polarization measurements confirm a polarization above 99.7% for both linearly and circularly polarized modes at low energies. Circular dichroism experiments indicate a circular polarization beyond 90% at the Fe L 2 /L 3 edge near 720 eV

  12. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  13. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  14. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  15. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    International Nuclear Information System (INIS)

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180 0 about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders

  16. Polarization-independent high-index contrast grating and its fabrication tolerances

    DEFF Research Database (Denmark)

    Ikeda, Kazuhiro; Takeuchi, Kazuma; Takayose, Kentaro

    2013-01-01

    also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.......A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented...

  17. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    Science.gov (United States)

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  18. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  19. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution...

  20. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  1. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2015-01-01

    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  2. High contributions of sea ice derived carbon in polar bear (Ursus maritimus tissue.

    Directory of Open Access Journals (Sweden)

    Thomas A Brown

    Full Text Available Polar bears (Ursus maritimus rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated, rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55, irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  3. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Science.gov (United States)

    Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  4. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV in certain areas, but large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  5. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  6. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  7. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  8. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    Science.gov (United States)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  9. Formal Solutions for Polarized Radiative Transfer. II. High-order Methods

    Energy Technology Data Exchange (ETDEWEB)

    Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)

    2017-08-20

    When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.

  10. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  11. Polarization of protons produced in diffractive disintegration of deuterons by high-energy pions

    International Nuclear Information System (INIS)

    Gakh, G.Yi.; Rekalo, M.P.

    1996-01-01

    For the process of diffractive disintegration of unpolarized deuterons by the high-energy pions, π + d → π + p + n, the polarization characteristics of produced protons are calculated. Using the vector nature of the Pomeron exchange, the general structure of all components of proton polarization vector is found for d (π, π p) n. By the Pomeron-photon analogy, the amplitude of the process P + d → n + p is approximated by the isoscalar contribution of four Born diagrams similar to the case of deuteron electrodisintegration. Unitarization of the amplitude is achieved by introducing in multipole amplitudes the corresponding phases of np-scattering. The numerical calculation of all components of the polarization vector of protons, produced in the case of noncomplanar kinematics of the reaction π + d → π + p + n, is realized

  12. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  13. The high peak current polarized electron source of the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Schultz, D.; Alley, R.; Aoyagi, H.; Clendenin, J.; Frisch, J.; Garden, C.; Hoyt, E.; Kirby, R.; Klaisner, L.; Kulikov, A.; Mulhollan, G.; Prescott, C.; Saez, P.; Tang, H.; Turner, J.; Woods, M.; Yeremian, D.; Zolotorev, M.

    1994-01-01

    The Stanford Linear Collider injector requires two 2 ns pulses of 4.5-5.5 x 10 10 electrons, separated by 61 ns at 120 Hz, from its source. Since 1992, these currents have been provided by a polarized electron source based on GaAs photocathodes. A beam polarization of 76±4% has been measured at the end of the 50 GeV linac. At low photocathode quantum efficiencies, and for excitation near threshold, the maximum current delivered by the source is constrained, not by the space charge limit of the gun, but by a ''charge limit'' of the photocathode. The charge limited current is proportional to the photocathode quantum efficiency, but the proportionality varies for different photocathode types. Experience with high polarization strained GaAs photocathodes on a test beamline and on the SLC is presented. (orig.)

  14. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  15. A New Approach for High Pressure Pixel Polar Distribution on Off-line Signature Verification

    Directory of Open Access Journals (Sweden)

    Jesús F. Vargas

    2010-06-01

    Full Text Available Features representing information of High Pressure Points froma static image of a handwritten signature are analyzed for an offline verification system. From grayscale images, a new approach for High Pressure threshold estimation is proposed. Two images, one containingthe High Pressure Points extracted and other with a binary version ofthe original signature, are transformed to polar coordinates where a pixel density ratio between them is calculated. Polar space had been divided into angular and radial segments, which permit a local analysis of the high pressure distribution. Finally two vectors containing the density distribution ratio are calculated for nearest and farthest points from geometric center of the original signature image. Experiments were carried out using a database containing signature from 160 individual. The robustness of the analyzed system for simple forgeries is tested out with Support Vector Machines models. For the sake of completeness, a comparison of the results obtained by the proposed approach with similar works published is presented.

  16. A study on high NA and evanescent imaging with polarized illumination

    Science.gov (United States)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  17. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations

    Science.gov (United States)

    Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  18. Electromagnetic Ion Cyclotron Waves in the High-Altitude Cusp: Polar Observations

    Science.gov (United States)

    Le, G.; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.

    2005-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow-band waves at frequencies approx. 0.2-3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both left-handed and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle, and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  19. Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current.

    Science.gov (United States)

    Li, Shuaishuai; Wang, Tao; Chen, Xiaoshuang; Lu, Wei; Xie, Yiqun; Hu, Yibin

    2018-04-26

    High polarization sensitivity, suppressed dark current and low energy consumption are all desirable device properties for photodetectors. In this work, we propose phosphorene-based photodetectors that are driven using photogalvanic effects (PGEs). The inversion symmetry of pristine phosphorene is broken using either application of an out-of-plane gate voltage or a heterostructure that is composed of the original phosphorene and blue phosphorene. The potential asymmetry enables PGEs under illumination by polarized light. Quantum transport calculations show that robust photocurrents are indeed generated by PGEs under a zero external bias voltage because of the broken inversion symmetry. These results indicate that the proposed photodetector is self-powered. In addition, the zero bias voltage eliminates the dark currents that are caused by application of an external bias voltage to traditional photodetectors. High polarization sensitivity to both linearly and circularly polarized light can also be realized, with extinction ratios ranging up to 102. The photoresponse of the proposed phosphorene/blue phosphorene heterostructure can be greatly enhanced by gating and is several orders of magnitude higher than that in gated phosphorene.

  20. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  1. High-fidelity polarization storage in a gigahertz bandwidth quantum memory

    International Nuclear Information System (INIS)

    England, D G; Michelberger, P S; Champion, T F M; Reim, K F; Lee, K C; Sprague, M R; Jin, X-M; Langford, N K; Kolthammer, W S; Nunn, J; Walmsley, I A

    2012-01-01

    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system, we measure up to 97 ± 1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86 ± 4% for 1.5 μs storage time, which is 5000 times the pulse duration. Hence, high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks. (paper)

  2. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  3. A high efficiency bunching system for the TUNL polarized ion source

    International Nuclear Information System (INIS)

    Wender, S.A.

    1981-01-01

    The problem of producing pulsed beams without large beam current losses has been the topic of recent interest particularly in areas where large peak currents are required. In addition, an efficient bunching system will allow the use of pulsed beams when source intensities are limited. The motivation for the development of the authors' high efficiency bunching system arose from their strong interest in neutron physics and the desire to extend their research with experiments requiring polarized neutrons. A common method for the production of polarized neutrons is to bombard a deuterium gas cell with a polarized deuteron beam. The D(→d,n) 3 He reaction has a large cross section and the outgoing neutron has a polarization of approximately 60 % in the energy range between 6 MeV to 16 Mev. Most experiments which involve the detection of neutrons use time-of-flight techniques to determine the neutron energy. An excellent way of providing time-of-flight information is to use pulsed beams. To be useful for time of flight experiments beam pulses must be on the order of a few nanoseconds wide. In addition there must be sufficient time between beam bursts to allow the reaction neutrons to travel from the target to the detector before the next beam burst arrives at the target. For reactions studied at the authors' laboratory, with their flight paths, this time is on the order of 400 ns

  4. Polarization effects for pair creation by photon in oriented crystals at high energy

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2006-01-01

    Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms

  5. Detailed studies of a high-density polarized hydrogen gas target for storage rings

    International Nuclear Information System (INIS)

    Zapfe, K.; Brueckner, W.; Gaul, H.G.; Grieser, M.; Lin, M.T.; Moroz, Z.; Povh, B.; Rall, M.; Stechert, B.; Steffens, E.; Stenger, J.; Stock, F.; Tonhaeuser, J.; Montag, C.; Rathmann, F.; Fick, D.; Braun, B.; Graw, G.; Haeberli, W.

    1996-01-01

    A high-density target of polarized atomic hydrogen gas for applications in storage rings was produced by injecting atoms from an atomic beam source into a T-shaped storage cell. The influence of the internal gas target on electron-cooled beams of 27 MeV α-particles and 23 MeV protons in the Heidelberg Test Storage Ring has been studied in detail. Target polarization and target thickness were measured by means of 27 MeV α-particles. For hyperfine states 1+2 a target thickness of n=(0.96±0.04) x 10 14 H/cm 2 was achieved with the cell walls cooled to 100 K. Working with a weak magnetic holding field (∼5 G) the maximum target polarization was P T =0.84±0.02 when state 1 and P T =0.46±0.01 when states 1+2 were injected. The target polarization was found to be constant over a period of 3 months with a net charge of Q∼100 C passing the storage cell. (orig.)

  6. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  7. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    Science.gov (United States)

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  8. Terahertz polarization converter based on all-dielectric high birefringence metamaterial with elliptical air holes

    KAUST Repository

    Zi, Jianchen

    2018-02-15

    Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.

  9. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  10. On Combining High and Low Q2 Information on the Polarized Parton Densities

    International Nuclear Information System (INIS)

    Leader, Elliot; Stamenov, Dimiter B.

    2000-01-01

    We draw attention to some problems in the combined use of high-Q 2 deep inelastic scattering (DIS) data and low-Q 2 hyperon β-decay data in the determination of the polarized parton densities. We explain why factorization schemes like the JET or AB schemes are the simplest in which to study the implications of the DIS parton densities for the physics of the low-Q 2 region. (author)

  11. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  12. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    Science.gov (United States)

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  13. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  14. Monitoring of the tensor polarization of high energy deuteron beams; Monitoring tenzornoj polyarizatsii dejtronnykh puchkov vysokoj ehnergii

    Energy Technology Data Exchange (ETDEWEB)

    Zolin, L S; Litvinenko, A G; Pilipenko, Yu K; Reznikov, S G; Rukoyatkin, P A; Fimushkin, V V

    1998-12-01

    The method of determining the tensor component of high energy polarized deuteron beams, based on measuring of the tensor analyzing power in the deuteron stripping reaction, is discussed. This method is convenient for monitoring during long time runs on the tensor polarized deuteron beams. The method was tested in the 5-days run at the LHE JINR accelerator with the 3 and 9 GeV/c tensor polarized deuterons. The results made it possible to estimate the beam polarization stability in time 5 refs., 4 figs., 1 tab.

  15. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    Science.gov (United States)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  16. High-flux normal incidence monochromator for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Schaefers, F.; Peatman, W.; Eyers, A.; Heckenkamp, C.; Schoenhense, G.; Heinzmann, U.

    1986-01-01

    A 6.5-m normal incidence monochromator installed at the storage ring BESSY, which is optimized for a high throughput of circularly polarized off-plane radiation at moderate resolution is described. The monochromator employs two exit slits and is specially designed and used for low-signal experiments such as spin- and angle-resolved photoelectron spectroscopy on solids, adsorbates, free atoms, and molecules. The Monk--Gillieson mounting (plane grating in a convergent light beam) allows for large apertures with relatively little astigmatism. With two gratings, a flux of more than 10 11 photons s -1 bandwidth -1 (0.2--0.5 nm) with a circular polarization of more than 90% in the wavelength range from 35 to 675 nm is achieved

  17. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  18. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  19. Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors

    International Nuclear Information System (INIS)

    Sakowicz, M.; Lusakowski, J.; Karpierz, K.; Grynberg, M.; Knap, W.; Gwarek, W.

    2008-01-01

    Detection of 100 GHz electromagnetic radiation by a GaAs/AlGaAs high electron mobility field-effect transistor was investigated at 300 K as a function of the angle α between the direction of linear polarization of the radiation and the symmetry axis of the transistor. The angular dependence of the detected signal was found to be A 0 cos 2 (α-α 0 )+C with A 0 , α 0 , and C dependent on the electrical polarization of the transistor gate. This dependence is interpreted as due to excitation of two crossed phase-shifted oscillators. A response of the transistor chip (including bonding wires and the substrate) to 100 GHz radiation was numerically simulated. Results of calculations confirmed experimentally observed dependencies and showed that the two oscillators result from an interplay of 100 GHz currents defined by the transistor impedance together with bonding wires and substrate related modes

  20. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  1. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    International Nuclear Information System (INIS)

    Galanakis, I.

    2015-01-01

    Half-metallic Co 2 MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co 2 MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co 2 MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co 2 MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices

  2. Tentative identification of polar and mid-polar compounds in extracts from wine lees by liquid chromatography-tandem mass spectrometry in high-resolution mode.

    Science.gov (United States)

    Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D

    2015-06-01

    Sustainable agriculture has a pending goal in the revalorization of agrofood residues. Wine lees are an abundant residue in the oenological industry. This residue, so far, has been used to obtain tartaric acid or pigments but not for being qualitatively characterized as a source of polar and mid-polar compounds such as flavonoids, phenols and essential amino acids. Lees extracts from 11 Spanish wineries have been analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in high resolution mode. The high-resolution power of LC-MS/MS has led to the tentative identification of the most representative compounds present in wine lees, comprising primary amino acids, anthocyans, flavanols, flavonols, flavones and non-flavonoid phenolic compounds, among others. Attending to the profile and content of polar and mid-polar compounds in wine lees, this study underlines the potential of wine lees as an exploitable source to isolate interesting compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  3. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  4. Polarization effect of CdZnTe imaging detector based on high energy γ source

    International Nuclear Information System (INIS)

    Li Miao; Xiao Shali; Wang Xi; Shen Min; Zhang Liuqiang; Cao Yulin; Chen Yuxiao

    2011-01-01

    The inner electric potential distribution of CdZnTe detector was derived by applying poisson equation with the first type boundary condition, and the polarization effect of CdZnTe pixellated detector for imaging 137 Cs γ source was investigated. The results of numerical calculation and experiment indicate that electric potential distribution is mainly influenced by applied bias for low charge density in CdZnTe crystal and, in turn, there is linear relationship between electric potential distribution and applied bias that induces uniform electric field under low irradiated flux. However, the electric potential appears polarization phenomenon, and the electric field in CdZnTe crystal is distorted when CdZnTe detector is under high irradiated flux. Consequently, charge carriers in CdZnTe crystal drift towards the edge pixels of irradiated region, and hence, the shut-off central pixels are surrounded by a ring of low counting pixels. The polarization effect indeed deteriorates the performance of CdZnTe detector severely and the event counts of edge pixels for irradiated region reduce about 70%. (authors)

  5. Spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture objective

    International Nuclear Information System (INIS)

    Luo, Yamei; Lü, Baida

    2010-01-01

    The dynamic behavior of spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture (NA) objective is studied by using the vectorial Debye diffraction theory and complex spectral Stokes fields. It is shown that there exist s 12 , s 23 , and s 31 singularities, as well as P (completely polarized) and U (unpolarized) singularities. The motion, pair creation and annihilation, and changes in the degree of polarization of s 12 , s 23 , and s 31 singularities, and the handedness reversal of s 12 singularities (C-points) may appear by varying a controlling parameter, such as the truncation parameter, NA, or spatial correlation length. The creation and annihilation occur for a pair of s 12 singularities with opposite topological charge but the same handedness, and for a pair of oppositely charged s 23 or s 31 singularities. The critical value of the truncation parameter, at which the pair annihilation takes place, increases as the semi-angle of the aperture lens (or, equivalently, NA) or spatial correlation length increases. The collision of an s 12 singularity with an L-line (s 3 = 0 contour) leads to a V-point, which is located at the intersection of contours of s 12 = 0 and s 23 = 0 (or s 31 = 0) and is unstable

  6. Localized electron density enhancements in the high-altitude polar ionosphere and their relationships with storm-enhanced density (SED plumes and polar tongues of ionization (TOI

    Directory of Open Access Journals (Sweden)

    Y. Kitanoya

    2011-02-01

    Full Text Available Events of localized electron density increase in the high-altitude (>3000 km polar ionosphere are occasionally identified by the thermal plasma instruments on the Akebono satellite. In this paper, we investigate the vertical density structure in one of such events in detail using simultaneous observations by the Akebono and DMSP F15 satellites, the SuperDARN radars, and a network of ground Global Positioning System (GPS receivers, and the statistical characteristics of a large number (>10 000 of such events using Akebono data over half of an 11-year solar cycle. At Akebono altitude, the parallel drift velocity is remarkably low and the O+ ion composition ratio remarkably high, inside the high plasma-density regions at high altitude. Detailed comparisons between Akebono, DMSP ion velocity and density, and GPS total electron content (TEC data suggest that the localized plasma density increase observed at high altitude on Akebono was likely connected with the polar tongue of ionization (TOI and/or storm enhanced density (SED plume observed in the F-region ionosphere. Together with the SuperDARN plasma convection map these data suggest that the TOI/SED plume penetrated into the polar cap due to anti-sunward convection and the plume existed in the same convection channel as the dense plasma at high altitude; in other words, the two were probably connected to each other by the convecting magnetic field lines. The observed features are consistent with the observed high-density plasma being transported from the mid-latitude ionosphere or plasmasphere and unlikely a part of the polar wind population.

  7. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  8. Multiple Scattering Approach to Polarization Dependence of F K-Edge XANES Spectra for Highly Oriented Polytetrafluoroethylene (PTFE) Thin Film

    International Nuclear Information System (INIS)

    Nagamatsu, S.; Ono, M.; Kera, S.; Okudaira, K. K.; Fujikawa, T.; Ueno, N.

    2007-01-01

    The polarization dependence of F K-edge X-ray absorption near edge structure (XANES) spectra of highly-oriented thin-film of polytetrafluoroethylene (PTFE) has been analyzed by using multiple scattering theory. The spectra show clear polarization dependence due to the highly-oriented structure. The multiple scattering calculations reflects a local structure around an absorbing atom. The calculated results obtained by considering intermolecular-interactions are in good agreement with the observed polarization-dependence. We have also analyzed structural models of the radiation damaged PTFE films

  9. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    Science.gov (United States)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  10. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    Science.gov (United States)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  11. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Słowikowska, Agnieszka [Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra (Poland); Stappers, Benjamin W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); O' Dell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Van der Horst, Alexander J. [Astronomical Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  12. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  13. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  14. A climatological morphology of ionospheric disturbances at high and polar latitudes

    Directory of Open Access Journals (Sweden)

    Dimitris N. Fotiadis

    2016-01-01

    Full Text Available After a historical introduction on the first well-documented observations of ionospheric phenomena and a review of the current, state-of-the art polar ionospheric studies, a climatological morphology of the irregular F-region plasma structures at high and polar latitudes is being presented, following a feature-aided pattern recognition method. Using the available in three solar cycles hourly foF2 data from 18 ionosonde stations, an ionospheric definition of disturbed conditions, independent of any causative mechanism, is being applied and positive/negative disturbances of duration smaller than 24 hours are sorted out. No latitudinal/longitudinal bins or seasons are defined and disturbances in each month and station are handled separately while four local time intervals of storm commencement are considered, according to solar zenith angle. A median profile per disturbance is produced only when a minimum occurrence probability is satisfied. Non-systematic features are excluded from this analysis by careful selection of the time window under morphological investigation. First, the median profiles of disturbance patterns are fitted to standard distributions and then, if they fail, they are grouped according to their major characteristic features and are described by a dynamic variation envelope along with their distribution in space and time. The present model, while being a non-conditional stand-alone model of ionospheric storms at high and polar latitudes offered to radio users, may complement existing empirical models. Finally, the present model may ultimately reveal cause-effect relationships with geomagnetic field or interplanetary parameters after further correlation studies undertaken in the future.

  15. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  16. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  17. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  18. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    Full Text Available Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (--arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases.

  19. Quaternary Polarization-Multiplexed Subsystem for High-Capacity IM/DD Optical Data Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Usuga Castaneda, Mario A.; Porto da Silva, Edson

    2015-01-01

    We demonstrate for the first time an intensitymodulated direct-detection link using four states of polarization. The four data-independent tributaries are each assigned distinct states of polarization to enable the receiver to separate the signals. Polarization rotation due to propagation over op...

  20. Electrochemical polarization behavior of sensitized SUS 304 stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kushiya, K [Tohoku Univ., Sendai (Japan); Sugimoto, K; Ejima, T

    1978-11-01

    Anodic polarization curves for a solution-treated or sensitized SUS 304 stainless steel and solution-treated Fe-Ni-Cr ternary alloys containing 10%Ni and 6 to 14%Cr have been measured in deaerated 0.5 mol/l Na/sub 2/SO/sub 4/ solutions of pH 2.0 to 5.9 at 298, 523 and 553 K. Corrosion potentials for U-bend SCC test specimens of sensitized SUS 304 stainless steel have also been monitored for a long time in the same solutions as those used for the polarization measurements except that they were aerated. It was found that the differences in the current densities in the passive state, i sub(pass), between the solution treated steel and the sensitized one and also between the ternary alloy with higher Cr content and the one with lower Cr content become large with increasing temperature and decreasing pH. This means that the difference in the values of i sub(pass) between grain bodies and Cr-depleted zones along grain boundaries of sensitized steel becomes larger and susceptibility to intergranular corrosion of the sensitized steel in the passivation region becomes higher with increasing temperature and decreasing pH. Since corrosion potentials for the U-bend SCC test specimens in air-satulated solutions lie in the passive region of anodic polarization curves for the sensitized steel in deaerated solutions, the intergranular stress-corrosion cracking of the sensitized steel in high temperature water with dissolved oxygen is considered to be caused by the preferential corrosion in the Cr-depleted zone.

  1. Quantitative determination of high-Tc superconductivity from the lattice polarization, structure effect and approach to 300 K Tc

    International Nuclear Information System (INIS)

    Green, B.A.

    1997-01-01

    The quasiparticle state defined by the low temperature polar mobility is a large, quantized positive energy shift that is identical to the constant pairing energy (pseudogap and 2Λ) in the multi-plane high-T c superconductors, showing the lattice polarization produces the single-particle shift and pairing which then transfer to the superconducting state. The coupling-independence and state transfer follow from the nonlocality and action length of the polarization interaction, and the multiple plane requirement from the location of the polar mode. 2Δ is thereby obtained directly, without scaling, from the strong interaction on the plane. The interaction accordingly produces a dynamic, highly stable state, in contrast to BCS superconductors, and the zero-order state is the quantized energy shift. (orig.)

  2. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    Science.gov (United States)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    show anomalous acceleration or deceleration of U in the polar region, accompanied by anomalies of the opposite sign in the subtropics throughout the troposphere and stratosphere. The anomalies are conspicuously large in the polar stratosphere. The composited anomalous Z and U in the preceding and following months indicate that these large anomalies in dZ and dU occur when the polar troposphere and stratosphere are relaxing back toward the climatology from strongly anomalous states that closely resemble the positive and negative phases of the NAM. In this process of relaxation, the atmosphere actually overshoots the climatology and develops anomalies of the sign opposite to those existed initially. The anomalous wave activity flux exhibit strong signals of anomalous upward (downward) propagation of high-frequency waves in the North Atlantic storm track from the bottom of the atmosphere, penetrating up to the stratosphere, when the polar jet is anomalously strong (weak) in the preceding month. The anomalous horizontal wave activity flux shows anomalous eastward (westward) flux emanating from the North Atlantic storm track when the polar jet is anomalously strong (weak) in the preceding month. These patterns suggest that anomalous high-frequency waves originating from the North Atlantic storm track in the lower troposphere contribute to the destruction of both phases of the NAM. However, the anomalous flux divergence is very noisy everywhere due to the noisiness of the advective horizontal flux, making it difficult to ascertain the role of the high-frequency transients in the destruction of the NAM.

  3. Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA

    Science.gov (United States)

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Yen, Hsi-Wei; Su, Yu-Nung; Takakuwa, Shigehisa

    2018-03-01

    We present the first ALMA dust polarization observations toward the high-mass star-forming regions W51 e2, e8, and W51 North in Band 6 (230 GHz) with a resolution of about 0\\buildrel{\\prime\\prime}\\over{.} 26 (∼5 mpc). Polarized emission in all three sources is clearly detected and resolved. Measured relative polarization levels are between 0.1% and 10%. While the absolute polarization shows complicated structures, the relative polarization displays the typical anticorrelation with Stokes I, although with a large scatter. Inferred magnetic (B) field morphologies are organized and connected. Detailed substructures are resolved, revealing new features such as comet-shaped B-field morphologies in satellite cores, symmetrically converging B-field zones, and possibly streamlined morphologies. The local B-field dispersion shows some anticorrelation with the relative polarization. Moreover, the lowest polarization percentages together with largest dispersions coincide with B-field convergence zones. We put forward \\sin ω , where ω is the measurable angle between a local B-field orientation and local gravity, as a measure of how effectively the B field can oppose gravity. Maps of \\sin ω for all three sources show organized structures that suggest a locally varying role of the B field, with some regions where gravity can largely act unaffectedly, possibly in a network of narrow magnetic channels, and other regions where the B field can work maximally against gravity.

  4. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  5. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  6. Vector model for polarized second-harmonic generation microscopy under high numerical aperture

    International Nuclear Information System (INIS)

    Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian

    2010-01-01

    Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component P z , the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of P z increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases

  7. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  8. Stratigraphy of the north polar layered deposits of Mars from high-resolution topography

    Science.gov (United States)

    Becerra, Patricio; Byrne, Shane; Sori, Michael M.; Sutton, Sarah; Herkenhoff, Kenneth E.

    2016-01-01

    The stratigraphy of the layered deposits of the polar regions of Mars is theorized to contain a record of recent climate change linked to insolation changes driven by variations in the planet's orbital and rotational parameters. In order to confidently link stratigraphic signals to insolation periodicities, a description of the stratigraphy is required based on quantities that directly relate to intrinsic properties of the layers. We use stereo Digital Terrain Models (DTMs) from the High Resolution Imaging Science Experiment (HiRISE) to derive a characteristic of North Polar Layered Deposits (NPLD) strata that can be correlated over large distances: the topographic protrusion of layers exposed in troughs, which is a proxy for the layers’ resistance to erosion. Using a combination of image analysis and a signal-matching algorithm to correlate continuous depth-protrusion signals taken from DTMs at different locations, we construct a stratigraphic column that describes the upper ~500 m of at least 7% of the area of the NPLD, and find accumulation rates that vary by factors of up to two. We find that, when coupled with observations of exposed layers in orbital images, the topographic expression of the strata is consistently continuous through large distances in the top 300 – 500 m of the NPLD, suggesting it is better related to intrinsic layer properties than brightness alone.

  9. Parallel and series FED microstrip array with high efficiency and low cross polarization

    Science.gov (United States)

    Huang, John (Inventor)

    1995-01-01

    A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.

  10. Performances of a Compact, High-Power WB Source with Circular Polarization

    Science.gov (United States)

    Delmote, P.; Pinguet, S.; Bieth, F.

    This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.

  11. Exciplex fluorescence emission from simple organic intramolecular constructs in non-polar and highly polar media as model systems for DNA-assembled exciplex detectors.

    Science.gov (United States)

    Bichenkova, Elena V; Sardarian, Ali R; Wilton, Amanda N; Bonnet, Pascal; Bryce, Richard A; Douglas, Kenneth T

    2006-01-21

    Organic intramolecular exciplexes, N-(4-dimethylaminobenzyl)-N-(1-pyrenemethyl)amine (1) and N'-4-dimethylaminonaphthyl-N-(1-pyrenemethyl)amine (2), were used as model systems to reveal major factors affecting their exciplex fluorescence, and thus lay the basis for developing emissive target-assembled exciplexes for DNA-mounted systems in solution. These models with an aromatic pyrenyl hydrocarbon moiety as an electron acceptor appropriately connected to an aromatic dimethylamino electron donor component (N,N-dimethylaminophenyl or N,N-dimethylaminonaphthyl) showed strong intramolecular exciplex emission in both non-polar and highly polar solvents. The effect of dielectric constant on the maximum wavelength for exciplex emission was studied, and emission was observed for 1 and 2 over the full range of solvent from non-polar hydrocarbons up to N-methylformamide with a dielectric constant of 182. Quantum yields were determined for these intramolecular exciplexes in a range of solvents relative to that for Hoechst 33,258. Conformational analysis of 1 was performed both computationally and via qualitative 2D NMR using (1)H-NOESY experiments. The results obtained indicated the contribution of pre-folded conformation(s) to the ground state of 1 conducive to exciplex emission. This research provides the initial background for design of self-assembled, DNA-mounted exciplexes and underpins further development of exciplex-based hybridisation bioassays.

  12. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    Science.gov (United States)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  13. Ultra-high performance size-exclusion chromatography in polar solvents.

    Science.gov (United States)

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Polarization transfer in x-ray transitions due to photoionization in highly charged copper-like ions

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong

    2018-02-01

    Using the density matrix theory and the multi-configuration Dirac-Fock method, the 3{d}3/2 subshell photoionization of highly charged ions is studied, together with their subsequent radiative decay. The effects of polarization transfer on the linear polarization and angular distribution of the 3{d}94{s}2{}2{D}3/2\\to 3{d}104p{}2{P}1/2 characteristic line photoemission for selected Cu-like Zn+, Ba27+, {{{W}}}45+, and {{{U}}}63+ ions are investigated. Our results show that the polarization transfer, arising from the originally polarized incident light, may lead to a considerable change in the alignment parameters and the polarization properties of the radiation, the character of which is highly sensitive to the initial photon polarization, yet virtually independent of the photon energy. These characteristics are very similar to those of the electron bremsstrahlung process reported by Märtin et al (2012 Phys. Rev. Lett. 108 264801). The present results are compared with available experimental results and show a good quantitative agreement.

  15. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    International Nuclear Information System (INIS)

    Sanchez, C.; Alcala, R.; Hvilsted, S.; Ramanujam, P. S.

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate. [copyright] 2001 American Institute of Physics

  16. Dynamic nuclear polarization at high Landau levels in a quantum point contact

    Science.gov (United States)

    Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.

    2018-05-01

    We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.

  17. Intrinsic polarization of the high energy W-boson structure functions

    International Nuclear Information System (INIS)

    Ralston, J.P.; Olness, F.

    1986-01-01

    Several new issues are presented that are to be incorporated into a consistent treatment of high-energy transverse effective-W boson structure functions. The issues included the numerical importance of the proper choice of scale, and the q 2 evolution of the boson structure functions in an Altarelli-Parisi framework. We investigate a novel effect of the V-A coupling which produces a sizable intrinsic polarization of the W distributions. A preliminary estimate yields a left- to right-helicity structure function ratio W/sub L// + W/sub R/ + ≅ 1 - 21/(1 - x) + 21/(1 - x) 2 . For x ≥ 0.06, there are two lift-handed W + 's for every right-handed one in an unpolarized proton. 11 refs., 2 figs

  18. Temporal and spectral studies of high-order harmonics generated by polarization-modulated infrared fields

    International Nuclear Information System (INIS)

    Sola, I. J.; Zaier, A.; Cormier, E.; Mevel, E.; Constant, E.; Lopez-Martens, R.; Johnsson, P.; Varju, K.; Mauritsson, J.; L'Huillier, A.; Strelkov, V.

    2006-01-01

    The temporal confinement of high harmonic generation (HHG) via modulation of the polarization of the fundamental pulse is studied in both temporal and spectral domains. In the temporal domain, a collinear cross-correlation setup using a 40 fs IR pump for the HHG and a 9 fs IR pulse to probe the generated emission is used to measure the XUV pulse duration. The observed temporal confinement is found to be consistent with theoretical predictions. An increased confinement is observed when a 9 fs pulse is used to generate the harmonics. An important spectral broadening, including a continuum background, is also measured. Theoretical calculations show that with 10 fs driving pulses, either one or two main attosecond pulses are created depending on the value of the carrier envelope phase

  19. The design and performance of the FNAL high-energy polarized-beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D P; Hill, D A; Laghai, M R; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab. (USA); Lehar, F; Lesquen, A de; Rossum, L van [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires; Carey, D C; Coleman, R N; Cossairt, J D; Read, A L; Schailey, R [Fermi National Accelerator Lab., Batavia, IL (USA); Derevschikov, A A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Rzaev, R A; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Tamura, N; Yoshida, T [Kyoto Univ. (Japan). Dept. of Physics; Takashima, R [Kyoto Univ. of Education, Fushimi (Japan); Takeutchi, F [Kyoto Sangyo Univ. (Japan); Maki, T [University of Occupational and Environmental; FNAL-E581/704 Collaboration

    1990-05-10

    A new polarized-proton and -antiproton beam with 185 GeV/c momentum has been built at Fermilab. The design uses the parity-nonconserving decays of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively, a beam-transport system that minimizes depolarization effects, and a set of twelve dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles. This allows a selection of particles in definite intervals of momentum and polarization. Measurements performed by two different polarimeters showed that the beam is polarized and the determination of polarization by beam-particle tagging is verified. A new measurement of the analyzing power of large-x{sub F} {pi}{sup 0} production may lead to another beam polarimeter.

  20. Detecting Changing Polarization Structures in Sagittarius A* with High Frequency VLBI

    Science.gov (United States)

    Fish, Vincent L.; Doeleman, Sheperd S.; Broderick, Avery E.; Loeb, Abraham; Rogers, Alan E. E.

    2009-12-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  1. Quad-Polarization Transmission for High-Capacity IM/DD Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Castaneda, Mario A. Usuga; Porto da Silva, Edson

    2014-01-01

    We report the first experimental demonstration of IM/DD links usi ng four states of polarization. Fiber - Induced polarization rotation is compensated with a simple tracking algorithm operating on the Stokes space. The principle is prove n at 128 Gb/s over 2 - km SSMF......We report the first experimental demonstration of IM/DD links usi ng four states of polarization. Fiber - Induced polarization rotation is compensated with a simple tracking algorithm operating on the Stokes space. The principle is prove n at 128 Gb/s over 2 - km SSMF...

  2. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  3. [Predominant polarity in type-I bipolar patients: Study in an isolated population with a high prevalence of mood disorders].

    Science.gov (United States)

    Obando, Antonio Carlos Toro; García, Ángela María Agudelo; Rodríguez, María Aurora Gallo; Palacio, Tomás Felipe Restrepo; Ontoso, Miguel Soto; Tamayo, Alejandra; Jaramillo, Carlos Alberto López

    2012-12-01

    Recent studies have shown that the predominant description of polarity has effects upon early detection and the timely beginning of treatment in patients with bipolar affective disorder (BAD). Cross sectional cut and descriptive study in 101 BAD patients coming from a genetically isolated population from the Colombian Region of Antioquia. The study covered a population of 101 patients with type-I BAD diagnosis, out of which 57,4% met the criteria for maniac polarity (MP), 10,1% exhibited depressive polarity (DP) and 25,7% were classified with Indefinite Polarity (IP). In comparison, MP patients have a lower education level and less starting age, including a greater number of single people. The MP group showed the greatest prevalence of suicide and greater use of cannabinoids and cocaine. Within the DP group there was a strong tendency to cigarette and alcohol consumption. With respect to pharmaceutical drugs consumed by the study patients during their lives, antipsychotics were the most widely used group, followed by lithium and anti-convulsivants. There is high percentage of MP patients who have used antidepressants during their lives. The polarity of the first episode of the disease seems to be a valid predictive parameter concerning the polarity of subsequent episodes; therefore, it works indirectly as a valid predictor of the disease's course. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    Science.gov (United States)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern latitudes where plasma convection estimates are accurately deduced from all SuperDARN radars in the southern hemisphere. Statistical analysis is presented showing that the predominance of the

  5. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  6. A nonuniform-polarization high-energy ultra-broadband laser with a long erbium-doped fiber

    International Nuclear Information System (INIS)

    Mao, Dong

    2013-01-01

    We have experimentally investigated nonuniformly polarized broadband high-energy pulses delivered from a mode-locked laser with an ultra-long erbium-doped fiber (EDF). The pulses exhibit a broadband spectrum of ∼73 nm and can avoid optical wave breaking at high-pump regimes. The polarization states of the pulses evolve from uniform to nonuniform at each round trip in the oscillator, which is distinct from other pulses. Remarkably, the output pulses broaden in anomalous- or normal-dispersion regimes while they can be shortened with an EDF amplifier external to the cavity. Our results suggest that the long EDF results in a nonuniform-polarization state and plays a decisive role in the formation of high-energy pulses. (paper)

  7. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    Science.gov (United States)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range

  8. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  9. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  10. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  11. Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified Quick Polar Pesticides Extraction method.

    Science.gov (United States)

    Lara, Francisco J; Chan, Danny; Dickinson, Michael; Lloyd, Antony S; Adams, Stuart J

    2017-05-05

    Direct analysis in real time (DART) was evaluated for the determination of a number of highly polar pesticides using the Quick Polar Pesticides Extraction (QuPPe) method. DART was hyphenated to high resolution mass spectrometry (HRMS) in order to get the required selectivity that allows the determination of these compounds in complex samples such as lettuce and celery. Experimental parameters such as desorption temperature, scanning speed, and distances between the DART ion source and MS inlet were optimized. Two different mass analyzers (Orbitrap and QTOF) and two accessories for sample introduction (Dip-it ® tips and QuickStrip™ sample cards) were evaluated. An extra clean-up step using primary-secondary amine (PSA) was included in the QuPPe method to improve sensitivity. The main limitation found was in-source fragmentation, nevertheless QuPPe-DART-HRMS proved to be a fast and reliable tool with quantitative capabilities for at least seven compounds: amitrole, cyromazine, propamocarb, melamine, diethanolamine, triethanolamine and 1,2,4-triazole. The limits of detection ranged from 20 to 60μg/kg. Recoveries for fortified samples ranged from 71 to 115%, with relative standard deviations <18%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2015-06-01

    Full Text Available A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E, continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55–80 km (polar mesosphere winter echoes, PMWE on 60% of all winter days (from March to October. This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA, a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm−3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn–dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be

  13. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Lee, Y.S. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of)

    2015-10-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72 S, 2.5 E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm{sup -3}, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  14. High-Amplitude, Rapid Photometric Variation of the New Polar Master OT J132104.0+560957.8

    Science.gov (United States)

    2015-02-05

    HIGH-AMPLITUDE, RAPID PHOTOMETRIC VARIATION OF THE NEW POLAR MASTER OT J132104.04+560957.8 LITTLEFIELD, COLIN;1,2 GARNAVICH, PETER;1 MAGNO, KATRINA;1...18.5 during each photometric cycle, becoming so faint that we could no longer detect it. The data showed a period of roughly 91 minutes with each...TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE High-Amplitude, Rapid Photometric Variation Of The New Polar Master OT

  15. High-quality ZnO growth, doping, and polarization effect

    Science.gov (United States)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  16. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    Science.gov (United States)

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

  17. DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L; Doeleman, Sheperd S; Rogers, Alan E. E. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2009-12-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to <10 Schwarzschild radii of the presumed 4 x 10{sup 6} M {sub sun} black hole. In previous work, we demonstrated the potential for total-intensity (sub)millimeter-wavelength very long baseline interferometry (VLBI) to detect time-variable-and periodic-source structure changes in the Sgr A* black hole system using nonimaging analyses. Here, we extend this work to include full polarimetric VLBI observations. We simulate full-polarization (sub)millimeter VLBI data of Sgr A* using a hot spot model that is embedded within an accretion disk, with emphasis on nonimaging polarimetric data products that are robust against calibration errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  18. DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI

    International Nuclear Information System (INIS)

    Fish, Vincent L.; Doeleman, Sheperd S.; Rogers, Alan E. E.; Broderick, Avery E.; Loeb, Abraham

    2009-01-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to 6 M sun black hole. In previous work, we demonstrated the potential for total-intensity (sub)millimeter-wavelength very long baseline interferometry (VLBI) to detect time-variable-and periodic-source structure changes in the Sgr A* black hole system using nonimaging analyses. Here, we extend this work to include full polarimetric VLBI observations. We simulate full-polarization (sub)millimeter VLBI data of Sgr A* using a hot spot model that is embedded within an accretion disk, with emphasis on nonimaging polarimetric data products that are robust against calibration errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  19. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    Science.gov (United States)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  20. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    Science.gov (United States)

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  1. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  2. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.

    Science.gov (United States)

    St Louis, Vincent L; Derocher, Andrew E; Stirling, Ian; Graydon, Jennifer A; Lee, Caroline; Jocksch, Erin; Richardson, Evan; Ghorpade, Sarah; Kwan, Alvin K; Kirk, Jane L; Lehnherr, Igor; Swanson, Heidi K

    2011-07-15

    Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ∼ 4.7 and ∼ 4.0 trophic levels long, whereas in WHB they are only ∼ 3.6 and ∼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ∼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western

  3. Gluons and the quark sea at high energies: distributions, polarization, tomography

    Energy Technology Data Exchange (ETDEWEB)

    Boer, D.; Venugopalan, R.; Diehl, M.; Milner, R.; Vogelsang, W.; et al.

    2011-09-30

    This report is based on a ten-week program on Gluons and the quark sea at high-energies, which took place at the Institute for Nuclear Theory (INT) in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics (QCD). This report is organized around the following four major themes: (i) the spin and flavor structure of the proton, (ii) three dimensional structure of nucleons and nuclei in momentum and configuration space, (iii) QCD matter in nuclei, and (iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.

  4. Screening for Antifibrotic Compounds Using High Throughput System Based on Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    Branko Stefanovic

    2014-04-01

    Full Text Available Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I mRNA and α2(I mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL. Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.

  5. Gluons and the quark sea at high energies: distributions, polarization, tomography

    CERN Document Server

    Boer, D; Milner, Richard; Venugopalan, Raju; Vogelsang, Werner; Kaplan, David; Montgomery, Hugh; Vigdor, Steven; Accardi, A.; Aschenauer, E.C.; Burkardt, M.; Ent, R.; Guzey, V.; Hasch, D.; Kumar, K.; Lamont, M.A.C.; Li, Ying-chuan; Marciano, W.; Marquet, C.; Sabatie, F.; Stratmann, M.; Yuan, F.; Sassot, R.; Zurita, P.; Cherednikov, I.O.; Goncalves, V.P.; Sandapen, R.; Kopeliovich, B.Z.; Gao, J.-H.; Liang, Z.-T.; Passek-Kumericki, K.; Kumericki, K.; Lappi, T.; Wallon, S.; Pire, B.; Geraud, R.; Moutarde, H.; Gelis, F.; Soyez, G.; Meskauskas, M.; Mueller, Dieter; Stefanis, N.G.; Gallmeister, K.; Mosel, U.; Diehl, M.; Bartels, J.; Pirner, H.J.; Hagler, P.; Jager, B.; Spiesberger, H.; Lautenschlager, T.; Schafer, A.; Ringer, F.; Vogelsang, W.; Kroll, P.; Alekhin, S.; Blumlein, J; Moch, S.-O.; Pisano, C.; Rojo, J.; Bacchetta, A.; Pasquini, B.; Radici, M.; Ciofi degli Atti, C.; Mezzetti, C.B.; Kaptari, L.P.; Anselmino, M.; Tanaka, K.; Koike, Y.; Kumano, S.; Motyka, L.; Golec-Biernat, K.; Stasto, A.M.; Golec-Biernat, K.; Szymanowski, L.; Cherednikov, I.O.; Kaptari, L.P.; Radyushkin, A.; Alekhin, S.; Kondratenko, A.; Horowitz, W.A.; Schnell, G.; Chevtsov, P.; Mulders, P.J.; Rogers, T.C.; Boer, D.; Forshaw, J.R.; Cooper-Sarkar, A.; Chirilli, G.A.; Muller, D.; Wang, X.-N.; Yuan, F.; Qian, X.; Brodsky, S.J.; Schweitzer, P.; Horn, T.; Tuchin, K.; Dupre, R.; Erdelyi, B.; Manikonda, S.; Ostrumov, P.N.; Abeyratne, S.; Erdelyi, B.; Vossen, A.; Riordan, S.; Tsentalovich, E.; Goldstein, G.R.; Pozdeyev, E.; Huang, M.; Aidala, C.; Dumitru, A.; Dominguez, F.; Ben-Zvi, I.; Deshpande, A.; Faroughy, C.; Hammons, L.; Hao, Y.; Johnson, E.C.; Litvinenko, V.N.; Taneja, S.; Tsoupas, N.; Webb, S.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M.M.; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hahn, H.; Hammons, L.; Hao, Y.; He, P.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Ptitsyn, V.; Rao, T.; Roser, T.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Zelenski, A.; Beuf, G.; Burton, T.; Debbe, R.; Fazio, S.; Marciano, W.J.; Qiu, J.-W.; Toll, T.; Ullrich, T.; Deshpande, A.; Dumitru, A.; Kang, Z.-B.; Stasto, A.M.; Yuan, F.; Kovchegov, Y.V.; Majumder, A; Metz, A.; Zhou, J.; Gamberg, L.; Stasto, A.M.; Strikman, M.; Xiao, B.-W.; Guzzi, M.; Nadolsky, P.; Olness, F.; BC, H.; Liuti, S.; Ahmed, S.; Bogacz, A.; Derbenev, Ya.; Hutton, A.; Krafft, G.; Li, R.; Marhauser, F.; Morozov, V.; Pilat, F.; Rimmer, R.; Satogata, T.; Sullivan, M.; Spata, M.; Terzic, B.; Wang, H.; Yunn, B.; Zhang, Y.; Avakian, H.; Musch, B.; Nadel-Turonski, P.; Prokudin, A.; Radyushkin, A.; Weiss, C.; Krafft, G.; Radyushkin, A.; Sayed, H.; Gilfoyle, G.P.; Cloet, I.C.; Miller, G.; Gonderinger, M.

    2011-01-01

    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific op...

  6. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake.

    Directory of Open Access Journals (Sweden)

    Kei Takahashi

    Full Text Available Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties.

  7. Production of highly polarized 3He using spectrally narrowed diode laser array bars

    International Nuclear Information System (INIS)

    Chann, B.; Babcock, E.; Anderson, L.W.; Walker, T.G.; Chen, W.C.; Smith, T.B.; Thompson, A.K.; Gentile, T.R.

    2003-01-01

    We have produced 70%-75% 3 He polarization by spin-exchange optical pumping in cells ≅100 cm 3 in volume. The polarization achieved is consistent with known spin-exchange and spin-relaxation rates, but only when the recently discovered temperature dependence of 3 He relaxation is included. Absolute 3 He polarization measurements were performed using two different methods in two different laboratories. The results were obtained with either a spectrally narrowed laser or one type of broadband laser. Based on tests of several larger cells at pressures near 1 bar, we find that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser. This last result indicates that spectrally narrowed lasers will be important for obtaining the highest polarization in large volume neutron spin filters. Polarization in excess of 55% as obtained in cells up to 640 cm 3 in volume and 70% polarization is anticipated with available increases in spectrally narrowed laser power

  8. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    Science.gov (United States)

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  9. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    Science.gov (United States)

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  10. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  11. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhe, E-mail: zhe.duan@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Bai, Mei [Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Barber, Desmond P. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Qin, Qing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2015-09-01

    With the recently emerging global interest in building a next generation of circular electron–positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code (PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1979 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called “correlated” crossing of spin resonances during synchrotron oscillations at current energies evolves into “uncorrelated” crossing of spin resonances at ultra-high energies.

  12. Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Czech Academy of Sciences Publication Activity Database

    Ageev, E.; Alexakhin, V.; Alexandrov, Y.; Alexeev, G.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.; Bytchkov, V.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.; Costa, S.; Crespo, M.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Denisov, O.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.; Dolgopolov, A.; Donskov, S.; Dorofeev, V.; Doshita, N.; Duic, V.; Dünnweber, W.; Ehlers, J.; Eversheim, P.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.; Grajek, O.; Grasso, A.; Grube, B.; Grünemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.; Ilgner, C.; Ioukaev, A.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Khomutov, N.; Kisselev, Y.; Klein, F.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konoplyannikov, A.; Konorov, I.; Konstantinov, V.; Korentchenko, A.; Korzenev, A.; Kotzinian, A.; Koutchinski, N.; Kowalik, K.; Kravchuk, N.; Krivokhizhin, G.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.; Lamanna, M.; Le Goff, J.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Manuilov, I.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.; Medved, K.; Meyer, W.; Mielech, A.; Mikhailov, Y.; Moinester, M.; Nähle, O.; Nassalski, J.; Neliba, S.; Neyret, D.; Nikolaenko, V.; Nozdrin, A.; Obraztsov, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.; Peshekhonov, D.; Peshekhonov, V.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.; Popov, A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.; Rondio, E.; Sadovski, A.; Saller, E.; Samoylenko, V.; Sandacz, A.; Sans, M.; Sapozhnikov, M.; Savin, I.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.; Shishkin, A.; Siebert, H.; Sinha, L.; Sissakian, A.; Skachkova, A.; Slunecka, M.; Smirnov, G.; Sozzi, F.; Sugonyaev, V.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.; Tassarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.; Toeda, T.; Tretyak, V.; Trousov, S.; Varanda, M.; Virius, M.; Vlassov, N.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2006-01-01

    Roč. 633, č. 1 (2006), s. 25-32 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : nucleon * spin * gluon * polarization * asymmetry * deep inelastic scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.043, year: 2006

  13. Study on Brewster angle thin film polarizer using hafnia-silica mixture as high-refractive-index material

    Science.gov (United States)

    Xu, Nuo; Zhu, Meiping; Sun, Jian; Chai, Yingjie; Kui, Yi; Zhao, Yuanan; Shao, Jianda

    2018-02-01

    Two kinds of polarizer coatings were prepared by electron beam evaporation, using HfO2-SiO2 mixture and HfO2 as the high-refractive-index materials, respectively. The HfO2-SiO2 mixture layer was implemented by coevaporating SiO2 and metal Hf, the materials were deposited at an oxygen atmosphere to achieve stoichiometric coatings. The certain HfO2 and SiO2 content ratio is controlled by adjusting the deposition rate of HfO2 and SiO2 using individual quartz crystal monitor. The spectral performance, surface and interfacial properties, as well as the laser-induced damage performance were studied and compared. Comparing with polarizer coating using HfO2 as high-refractive-index material, the polarizer coating using HfO2-SiO2 mixture as high-refractive-index material shows better performance with broader polarizing bandwidth, lower surface roughness, better interfacial property while maintaining high laser-induced damage threshold.

  14. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  15. Ultra-High-Speed Travelling Wave Protection of Transmission Line Using Polarity Comparison Principle Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

  16. Polarization of X rays of multiply charged ions in dense high-temperature plasma

    NARCIS (Netherlands)

    Baronova, EO; Dolgov, AN; Yakubovskii, LK

    2004-01-01

    The development of a method for studying the features of X-ray emission by multiply charged ions in a dense hot plasma is considered. These features are determined by the radiation polarization phenomenon.

  17. A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings

    Science.gov (United States)

    Komanduri, Ravi K.; Lawler, Kris F.; Escuti, Michael J.

    2011-05-01

    We report on a broadband, diffractive, light shutter with the ability to modulate unpolarized light. This polarizer-free approach employs a conventional liquid crystal (LC) switch, combined with broadband Polarization Gratings (PGs) formed with polymer LC materials. The thin-film PGs act as diffractive polarizing beam-splitters, while the LC switch operates on both orthogonal polarization states simultaneously. As an initial experimental proof-of- concept for unpolarized light with +/-7° aperture, we utilize a commercial twisted-nematic LC switch and our own polymer PGs to achieve a peak transmittance of 80% and peak contrast ratio of 230:1. We characterize the optoelectronic performance, discuss the limitations, and evaluate its use in potential nonmechanical shutter applications (imaging and non-imaging).

  18. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  19. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres.

    Science.gov (United States)

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A

    2016-02-24

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g(-1)). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic.

  20. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure.

    Science.gov (United States)

    Suzuki, Yoshiharu; Tominaga, Yasunori

    2010-10-28

    We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ∼0.35 GPa increases, while the volume of HDA on heating above ∼0.35 GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100 cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.

  1. Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality

    Science.gov (United States)

    Benson, Roger B. J.; Rich, Thomas H.; Vickers-Rich, Patricia; Hall, Mike

    2012-01-01

    The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the

  2. Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Kumbhakar, Manoj [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Nath, Sukhendu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Pal, Haridas [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2005-08-29

    Photophysical properties of coumarin-1 (C1) dye in different protic solvents have been investigated using steady-state and time-resolved fluorescence measurements. Correlation of the Stokes' shifts ({delta}{nu}-bar ) with the solvent polarity ({delta}f) suggests the intramolecular charge transfer (ICT) character for the dye fluorescent state. Fluorescence quantum yields ({phi}{sub f}) and lifetimes ({tau}{sub f}) of the dye show an abrupt reduction in high polarity solvents having {delta}f >{approx}0.28. In these solvents {tau}{sub f} is seen to be strongly temperature dependent, though it is temperature independent in solvents with {delta}f <{approx}0.28. It is inferred that in high polarity protic solvents there is a participation of an additional nonradiative decay process via the involvement of twisted intramolecular charge transfer (TICT) state. Unlike present results, no involvement of TICT state was observed even in strongly polar aprotic solvent like acetonitrile. It is indicated that the intermolecular hydrogen bonding of the dye with protic solvents in addition with the solvent polarity helps in the stabilization of the TICT state for C1 dye. Unlike most TICT molecules, the activation barrier ({delta}E{sub a}) for the TICT mediated nonradiative process for C1 dye is seen to increase with solvent polarity. This is rationalized on the basis of the assumption that the TICT to ground state conversion is the activation-controlled rate-determining step for the present system than the usual ICT to TICT conversion as encountered for most other TICT molecules.

  3. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  4. Polarized training has greater impact on key endurance variables than threshold, high intensity or high volume training

    Directory of Open Access Journals (Sweden)

    Thomas eStöggl

    2014-02-01

    Full Text Available Endurance athletes integrate four conditioning concepts in their training programs: high-volume training (HVT, ‘threshold-training’ (THR, high-intensity interval training (HIIT and a combination of these aforementioned concepts known as polarized training (POL. The purpose of this study was to explore which of these four training concepts provides the greatest response on key components of endurance performance in well-trained endurance athletes. Methods: Forty eight runners, cyclists, triathletes and cross-country skiers (peak oxygen uptake: (VO2peak: 62.6±7.1 mL∙min-1∙kg-1 were randomly assigned to one of four groups performing over nine weeks. An incremental test, work economy and a VO2peak tests were performed. Training intensity was heart rate controlled. Results: POL demonstrated the greatest increase in VO2peak (+6.8 ml∙min∙kg-1 or 11.7%, P0.05. Conclusion: POL resulted in the greatest improvements in most key variables of endurance performance in well-trained endurance athletes. THR or HVT did not lead to further improvements in performance related variables.

  5. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  6. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  7. Polarity-specific high-level information propagation in neural networks.

    Science.gov (United States)

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  8. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    The development of magnetic Heusler compounds, specifically designed as materials for spintronic applications, has made tremendous progress in the very recent past [1-21]. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% [1]. These materials are exceptionally well suited for applications in magnetic tunnel junctions acting, for example, as sensors for magnetic fields. The tunnelling magneto-resistance (TMR) effect is the relative change in the electrical resistance upon application of a small magnetic field. Tunnel junctions with a TMR effect of 580% at 4 K were reported by the group of Miyazaki and Ando [1], consisting of two Co2MnSi Heusler electrodes. High Curie temperatures were found in Co2 Heusler compounds with values up to 1120 K in Co2FeSi [2]. The latest results are for a TMR device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a TMR effect of 174% [3]. The first significant magneto-resistance effect was discovered in Co2Cr0.6Fe0.4Al (CCFA) in Mainz [4]. With the classical Heusler compound CCFA as one electrode, the record TMR effect at 4 K is 240% [5]. Positive and negative TMR values at room temperature utilizing magnetic tunnel junctions with one Heusler compound electrode render magnetic logic possible [6]. Research efforts exist, in particular, in Japan and in Germany. The status of research as of winter 2005 was compiled in a recent special volume of Journal of Physics D: Applied Physics [7-20]. Since then specific progress has been made on the issues of (i) new advanced Heusler materials, (ii) advanced characterization, and (iii) advanced devices using the new materials. In Germany, the Mainz and Kaiserslautern based Research Unit 559 `New Materials with High Spin Polarization', funded since 2004 by the Deutsche Forschungsgemeinschaft, is a basic science approach to Heusler compounds, and it addresses the first two topics in particular

  9. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation

    Science.gov (United States)

    Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin

    2017-11-01

    We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.

  10. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  11. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    Science.gov (United States)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  12. Semi-polar GaN heteroepitaxy an high index Si-surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ravash, Roghaiyeh; Blaesing, Juergen; Hempel, Thomas; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-University Magdeburg, FNW/IEP/AHE, Magdeburg (Germany)

    2011-07-01

    Due to the lack of GaN homosubstrates, the growth of GaN-based devices is usually performed on heterosubstrates as sapphire or SiC. These substrates are either insulating or expensive, and both unavailable in large diameters. Meanwhile, silicon can meet the requirements for a low price and thermally well conducting substrate and also enabling the integration of optoelectronic devices with Si-based electronics. Up to now, the good matching of hexagonal GaN with the three-fold symmetry of Si(111) greatly promotes the c-axis orientated growth of GaN on this surface plane. A large spontaneous and piezoelectric polarization oriented along the c-axis exists in such hexagonal structure leading to low efficiencies for thick quantum wells. The attention to the growth of non-polar or semi-polar GaN based epitaxial structures has been increased recently because of reducing the effect of the polarization fields in these growth directions. Therefore we studied semi-polar GaN epilayers grown by metalorganic vapor phase epitaxy on silicon substrates with different orientations from Si(211) to Si(711). We observed that AlN seeding layer growth time play a significant role in obtaining the different GaN texture.

  13. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  14. Semi-polar GaN materials technology for high IQE green LEDs.

    Energy Technology Data Exchange (ETDEWEB)

    Koleske, Daniel; Lee, Stephen Roger; Crawford, Mary H; Coltrin, Michael Elliott; Fini, Paul

    2013-06-01

    The goal of this NETL funded program was to improve the IQE in green (and longer wavelength) nitride- based LEDs structures by using semi-polar GaN planar orientations for InGaN multiple quantum well (MQW) growth. These semi-polar orientations have the advantage of significantly reducing the piezoelectric fields that distort the QW band structure and decrease electron-hole overlap. In addition, semipolar surfaces potentially provide a more open surface bonding environment for indium incorporation, thus enabling higher indium concentrations in the InGaN MQW. The goal of the proposed work was to select the optimal semi-polar orientation and explore wafer miscuts around this orientation that produced the highest quantum efficiency LEDs. At the end of this program we had hoped to have MQWs active regions at 540 nm with an IQE of 50% and an EQE of 40%, which would be approximately twice the estimated current state-of-the-art.

  15. Triple gauge couplings and polarization at the ILC and leakage in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, Ivan

    2011-12-15

    The work presented in this thesis was developed in the framework of detector R and D and physics studies for the International Linear Collider (ILC), a planned e{sup +}e{sup -} accelerator that will reach center of mass energies up to 500 GeV in its first stage. In the first part of the thesis a simultaneous measurement of longitudinal beam polarization and Triple Gauge Couplings (TGCs) at the ILC is implemented, using fully simulated Monte Carlo events. In order to perform such a measurement, semileptonic decays of the W-pairs at {radical}(s)=500 GeV are selected. Additionally, two techniques to measure the polarization alone are also compared. Assuming 80% longitudinal polarization for the electron beam and 60% for the positron beam, a statistical relative precision of better than 0.2% on the average beam polarization of both beams is achieved at an integrated luminosity of 250 fb{sup -1}. In the option of a low positron polarization of 30%, with an integrated luminosity of 500 fb{sup -1} the statistical relative precision on the average polarization is {proportional_to} 0.1% for the electron beam and {proportional_to} 0.35% for the positron beam. Three independent TGCs are fitted simultaneously with the polarization, without loosing sensitivity on the polarization. An absolute statistical uncertainty on the couplings is reached of the order of 10{sup -3}. The second part of the thesis presents the analysis of experimental data collected using the CALICE prototypes, during the 2007 test beam campaign at CERN. The complete setup of the experiment consisted of a silicon-tungsten electromagnetic calorimeter, an analog scintillator-steel hadron calorimeter and a scintillator-steel tail catcher. Events collected using pion beams in the energy range 8-100 GeV are selected and compared to the Monte Carlo simulations. While the leakage from the full setup is negligible, when removing the tail catcher information either partly or completely the energy loss becomes

  16. Triple gauge couplings and polarization at the ILC and leakage in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Marchesini, Ivan

    2011-12-01

    The work presented in this thesis was developed in the framework of detector R and D and physics studies for the International Linear Collider (ILC), a planned e + e - accelerator that will reach center of mass energies up to 500 GeV in its first stage. In the first part of the thesis a simultaneous measurement of longitudinal beam polarization and Triple Gauge Couplings (TGCs) at the ILC is implemented, using fully simulated Monte Carlo events. In order to perform such a measurement, semileptonic decays of the W-pairs at √(s)=500 GeV are selected. Additionally, two techniques to measure the polarization alone are also compared. Assuming 80% longitudinal polarization for the electron beam and 60% for the positron beam, a statistical relative precision of better than 0.2% on the average beam polarization of both beams is achieved at an integrated luminosity of 250 fb -1 . In the option of a low positron polarization of 30%, with an integrated luminosity of 500 fb -1 the statistical relative precision on the average polarization is ∝ 0.1% for the electron beam and ∝ 0.35% for the positron beam. Three independent TGCs are fitted simultaneously with the polarization, without loosing sensitivity on the polarization. An absolute statistical uncertainty on the couplings is reached of the order of 10 -3 . The second part of the thesis presents the analysis of experimental data collected using the CALICE prototypes, during the 2007 test beam campaign at CERN. The complete setup of the experiment consisted of a silicon-tungsten electromagnetic calorimeter, an analog scintillator-steel hadron calorimeter and a scintillator-steel tail catcher. Events collected using pion beams in the energy range 8-100 GeV are selected and compared to the Monte Carlo simulations. While the leakage from the full setup is negligible, when removing the tail catcher information either partly or completely the energy loss becomes significant and affects the performance. The average measured

  17. Simulations of Polarization Levels and Spin Tune Biases in High Energy Leptons Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice, E. [Fermilab

    2016-01-01

    The use of resonant depolarization has been suggested for precise beam energy measurements in the 100 km long Future Circular Collider e+e-. The principle behind resonant depolarization is that a vertically polarized beam excited through an oscillating horizontal magnetic field gets depolarized when the excitation frequency is in a given relationship with the beam energy. In this paper the possibility of self- polarized leptons at 45 GeV (Z resonance) and 80 GeV (WW in presence of quadrupole vertical misalignment is investigated.

  18. Linearly polarized light emission from InGaN/GaN quantum well structure with high indium composition.

    Science.gov (United States)

    Song, Hooyoung; Kim, Eun Kyu; Han, Il Ki; Lee, Sung-Ho; Hwang, Sung-Min

    2011-10-01

    We fabricated yellow (575 nm) emitting a-plane InGaN/GaN light emitting diode (LED). Microstructure and stress relaxation of the InGaN well layer were observed from the images of dark field transmission electron microscopy. The LED chip was operated at 3.7 V, 20 mA, and the polarization-free characteristic in nonpolar InGaN layer was confirmed from a small blue-shift of approximaely 1.7 nm with increase of current density. The high photoluminescence (PL) efficiency of 30.4% showed that this non-polar InGaN layer has a potential of application to green-red long wavelength light emitters. The PL polarization ratio at 290 K was 0.25 and the energy difference between two subbands was estimated to be 40.2 meV. The low values of polarization and energy difference were due to the stress relaxation of InGaN well layer.

  19. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  20. Study of a polarized proton source for a cyclotron using a high frequency transition (1961)

    International Nuclear Information System (INIS)

    Thirion, J.; Beurtey, R.; Papineau, A.

    1961-01-01

    The authors have developed an experimental unit yielding a jet of hydrogen or deuterium atoms in which the protons and deutons are polarized. By use of the 'adiabatic passage' method a proton polarisation approaching 100 per cent is assured. (authors) [fr

  1. The circular polarization of gamma rays from heavy-ion reactions high above the Coulomb barrier

    International Nuclear Information System (INIS)

    Lauterbach, C.; Boer, J. de; Duennweber, W.; Graw, G.; Hering, W.; Puchta, H.; Trautmann, W.

    1978-01-01

    We have measured the circular polarization P of the γ radiation emitted in coincidence with the projectile-like fragments from the 100 MeV 16 O+ 27 Al, 58 Ni reactions at the Munich MP tandem accelerator and the 284 (303) Mev 40 Ar+Ag and 539 MeV 86 Kr+Ag reactions at the GSI UNILAC. (orig.) [de

  2. Development of a High-Throughput Fluorescence Polarization Assay to Identify Novel Ligands of Glutamate Carboxypeptidase II

    Czech Academy of Sciences Publication Activity Database

    Alquicer, Glenda; Sedlák, David; Byun, Y.; Pavlíček, Jiří; Stathis, M.; Rojas, C.; Slusher, B.; Pomper, M.G.; Bartůněk, Petr; Bařinka, Cyril

    2012-01-01

    Roč. 17, č. 8 (2012), s. 1030-1040 ISSN 1087-0571 R&D Projects: GA MŠk(CZ) ME10031; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:68378050 Keywords : fluorescence polarization * glutamate carboxypeptidase II * high-throughput screening Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.207, year: 2012

  3. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  4. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  5. High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array

    Science.gov (United States)

    Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping

    2017-07-01

    In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.

  6. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  7. Spin polarization of a non-magnetic high g-factor semiconductor at low magnetic field

    International Nuclear Information System (INIS)

    Lee, J.; Back, J.; Kim, K.H.; Kim, S.U.; Joo, S.; Rhie, K.; Hong, J.; Shin, K.; Lee, B.C.; Kim, T.

    2007-01-01

    We have studied the spin polarization of HgCdTe by measuring Shubnikov-de Haas oscillations. The magnetic field have been applied in parallel and perpendicular to the current. Relatively long spin relaxation time was observed since only spin conserved transition is allowed by selection rules. The electronic spin is completely polarized when the applied magnetic field is larger than 0.5 Tesla, which can be easily generated by micromagnets deposited on the surface of the specimen. Thus, the spin-manipulation such as spin up/down junction can be realized with this semiconductor. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Gluons and the Quark Sea at High Energies: Distributions, Polarization, Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Daniel; /Groningen U.; Diehl, Markus; /DESY; Milner, Richard; /MIT; Venugopalan, Raju; /Brookhaven; Vogelsang, Werner; /Tubingen U.; Kaplan, David; /Washington U., Seattle; Montgomery, Hugh; /Jefferson Lab; Vigdor, Steven; /Brookhaven; Accardi, A.; /Jefferson Lab; Aschenauer, E.C.; /Brookhaven; Burkardt, M.; /New Mexico State U.; Ent, R.; /Jefferson Lab; Guzey, V.; /Jefferson Lab; Hasch, D.; /Frascati; Kumar, K.; /Massachusetts U., Amherst; Lamont, M.A.C.; /Brookhaven; Li, Ying-chuan; /Brookhaven; Marciano, W.; /Brookhaven; Marquet, C.; /CERN; Sabatie, F.; /IRFU, SPhN, Saclay; Stratmann, M.; /Brookhaven /LBL, Berkeley /Buenos Aires U. /Antwerp U. /Pelotas U. /Moncton U. /Santa Maria U., Valparaiso /CCTVal, Valparaiso /Hefei, CUST /Shandong U., Weihai /Boskovic Inst., Zagreb /Zagreb U., Phys. Dept. /Jyvaskyla U. /Orsay, LPT /Paris U., VI-VII /Ecole Polytechnique, CPHT /IRFU, SPhN, Saclay /Saclay, SPhT /Ruhr U., Bochum /Giessen U. /DESY /Hamburg U., Inst. Theor. Phys. II /Heidelberg U. /Mainz U., Inst. Kernphys. /Mainz U., Inst. Phys. /Regensburg U. /Tubingen U. /Wuppertal U. /DESY /Cagliari U. /INFN, Cagliari /Frascati /Milan U. /INFN, Milan /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U.; /more authors..

    2012-06-07

    This report on the science case for an Electron-Ion Collider (EIC) is the result of a ten-week program at the Institute for Nuclear Theory (INT) in Seattle (from September 13-November 19, 2010), motivated by the need to develop a strong case for the continued study of the QCD description of hadron structure in the coming decades. Hadron structure in the valence quark region will be studied extensively with the Jefferson Lab 12 GeV science program, the subject of an INT program the previous year. The focus of the INT program was on understanding the role of gluons and sea quarks, the important dynamical degrees of freedom describing hadron structure at high energies. Experimentally, the most direct and precise way to access the dynamical structure of hadrons and nuclei at high energies is with a high luminosity lepton probe in collider mode. An EIC with optimized detectors offers enormous potential as the next generation accelerator to address many of the most important, open questions about the fundamental structure of matter. The goal of the INT program, as captured in the writeups in this report, was to articulate these questions and to identify golden experiments that have the greatest potential to provide definitive answers to these questions. At resolution scales where quarks and gluons become manifest as degrees of freedom, the structure of the nucleon and of nuclei is intimately connected with unique features of QCD dynamics, such as confinement and the self-coupling of gluons. Information on hadron sub-structure in DIS is obtained in the form of 'snapshots' by the 'lepton microscope' of the dynamical many-body hadron system, over different momentum resolutions and energy scales. These femtoscopic snapshots, at the simplest level, provide distribution functions which are extracted over the largest accessible kinematic range to assemble fundamental dynamical insight into hadron and nuclear sub-structure. For the proton, the EIC would be

  9. Polarizing a stored proton beam by spin flip? - A high statistic reanalysis

    International Nuclear Information System (INIS)

    Oellers, Dieter

    2011-01-01

    Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. A reanalysis of the data leeds to a reduced statistical errors resulting in a factor of 4 reduced upper limit for the spin flip cross section. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam.

  10. High-gradient quadrupole magnet for a polarized-beam facility

    International Nuclear Information System (INIS)

    Smith, R.P.; Hoffman, J.A.; Kim, S.H.; Mataya, K.F.; Niemann, R.C.; Turner, L.R.

    1980-01-01

    A prototype quadrupole magnet with 2.8 m effective length is under design and construction for use in a polarized beam transport system at Fermi National Accelerator Laboratory. The operating gradient required is 50 T/m and the higher multipole error fields must not exceed a few parts in one thousand over a 10 cm diameter bore. For cryogenic efficiency the magnet will operate at 1000 amperes and a cold iron yoke will provide complete field shielding

  11. Highly polarized emission from the E-hotspot in DA240

    International Nuclear Information System (INIS)

    Tsien, S.C.; Saunders, R.

    1982-01-01

    The hotspot in the eastern lobe of the nearby giant radio galaxy DA240 (z=0.0356) provides a rare opportunity to examine the detailed polarization structure of a hotspot. Maps have been made with the Cambridge 5-km telescope at 2.7 and 5.0 GHz and the 5.0-GHz maps are shown here. The main characteristics are discussed briefly. (Auth.)

  12. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  13. Leaving School — learning at SEA: Regular high school education alongside polar research

    Science.gov (United States)

    Gatti, Susanne

    2010-05-01

    Against the background of unsatisfactory results from the international OECD study PISA (Program for International Student Assessment), Germany is facing a period of intense school reforms. Looking back at a tradition of school culture with too few changes during the last century, quick and radical renewal of the school system is rather unlikely. Furthermore students are increasingly turning away from natural sciences [1]. The AWI aims at providing impulses for major changes in the schooling system and is offering solid science education not only for university students but also for a larger audience. All efforts towards this goal are interconnected within the project SEA (Science & Education @ the AWI). With the school-term of 2002/03 the Alfred-Wegener-Institute for Polar and Marine Research started HIGHSEA (High school of SEA). The program is the most important component of SEA. Each year 22 high school students (grade 10 or 11) are admitted to HIGHSEA spending their last three years of school not at school but at the institute. Four subjects (biology as a major, chemistry, math and English as accessory subjects) are combined and taught fully integrated. Students leave their school for two days each week to study, work and explore all necessary topics at the AWI. All of the curricular necessities of the four subjects have been rearranged in their temporal sequencing thus enabling a conceptual formulation of four major questions to be dealt with in the course of the three-year program [2]. Students are taught by teachers of the cooperation schools as well as by scientists of the AWI. Close links and intense cooperation between both groups are the basis of fundamental changes in teaching and learning climate. We are organizing expeditions for every group of HIGHSEA-students (e. g. to the Arctic or to mid-Atlantic seamounts). For each student expedition we devise a "real" research question. Usually a single working group at the AWI has a special interest in the

  14. Experimental Investigations of Cochannel Interference Reduction Effect at High Elevation Base Station Using Beam Tilt and Orthogonal Polarization

    Directory of Open Access Journals (Sweden)

    Shuta Uwano

    2014-01-01

    Full Text Available This paper addresses the problem of cochannel interference (CCI generated in a mixed cell architecture in microcellular systems. In this type of microcellular systems in which both microcells and macrocells coexist in the same geographical urban area, the base station antennas mounted on the rooftops of buildings to cover wide circular radio zones suffer severe CCI from the surrounding low base stations. A dielectric-loaded slotted-cylinder antenna (DSCA is applied to horizontally polarized omnidirectional array antennas in a height-diversity configuration with the high gain of 8 dBi, which is comparable to that of a collinear antenna, to reduce the CCI. The measurements conducted in a suburban area clarify the reduction in the CCI for three techniques. The beam-tilt technique reduces the CCI level by approximately 10 dB for both collinear antennas and the DSCA array antennas. The use of horizontal polarization reduces the CCI level by approximately 13 dB for the DSCA array antennas with and without beam tilt. The combination of the beam tilt and horizontal polarization or the DSCA array antennas with beam tilt significantly reduces the CCI level by approximately 23 dB.

  15. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields

    Science.gov (United States)

    Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-05-01

    We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite

  16. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  17. Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry

    International Nuclear Information System (INIS)

    Freeman, Neville J; Peel, Louise L; Swann, Marcus J; Cross, Graham H; Reeves, Andrew; Brand, Stuart; Lu, Jian R

    2004-01-01

    A novel method for the analysis of thin biological films, called dual polarization interferometry (DPI), is described. This high resolution (<1 A), laboratory-based technique allows the thickness and refractive index (density) of biological molecules adsorbing or reacting at the solid-liquid interface to be measured in real time (up to 10 measurements per second). Results from the adsorption of bovine serum albumin (BSA) on to a silicon oxynitride chip surface are presented to demonstrate how time dependent molecular behaviour can be examined using DPI. Mechanistic and structural information relating to the adsorption process is obtained as a function of the solution pH

  18. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  19. Semi-analytical approach for guided mode resonance in high-index-contrast photonic crystal slab: TE polarization.

    Science.gov (United States)

    Yang, Yi; Peng, Chao; Li, Zhengbin

    2013-09-09

    In high-contrast (HC) photonic crystals (PC) slabs, the high-order coupling is so intense that it is indispensable for analyzing the guided mode resonance (GMR) effect. In this paper, a semi-analytical approach is proposed for analyzing GMR in HC PC slabs with TE-like polarization. The intense high-order coupling is included by using a convergent recursive procedure. The reflection of radiative waves at high-index-contrast interfaces is also considered by adopting a strict Green's function for multi-layer structures. Modal properties of interest like band structure, radiation constant, field profile are calculated, agreeing well with numerical finite-difference time-domain simulations. This analysis is promising for the design and optimization of various HC PC devices.

  20. High-Wattage Pulsed Irradiation of Linearly Polarized Near-Infrared Light to Stellate Ganglion Area for Burning Mouth Syndrome

    Directory of Open Access Journals (Sweden)

    Yukihiro Momota

    2014-01-01

    Full Text Available The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS and to assess the efficacy of the stellate ganglion area irradiation (SGR on BMS using differential time-/frequency-domain parameters (D parameters. Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

  1. Searching for Models Exhibiting High Circularly Polarized Luminescence: the Electroactive Inherently Chiral Oligothiophenes.

    Science.gov (United States)

    Benincori, Tiziana; Appoloni, Giulio; Mussini, Patrizia Romana; Arnaboldi, Serena; Cirilli, Roberto; Quartapelle Procopio, Elsa; Panigati, Monica; Abbate, Sergio; Mazzeo, Giuseppe; Longhi, Giovanna

    2018-05-02

    Two new inherently chiral oligothiophenes characterized by the atropisomeric 3,3'-bithianaphtene scaffold functionalized with fused ring bithiophene derivatives, namely 4H-cyclopenta [2,1-b3:4b']dithiophene (CPDT) and dithieno[3,3-b:2',3'-d]pyrrole (DTP), were synthesized. The racemates were fully characterized and resolved into antipodes by enantioselective HPLC. The enantiomers were analyzed through different chiroptical techniques: electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) were employed to attribute the absolute configuration (AC). Comparison of experimental and calculated VCD spectra confirmed the DFT calculated conformational characteristics. The compound functionalized with two CPDT units was oxidized with FeCl3 and ECD and CPL of the resulting material were measured. Circularly Polarized Luminescence (CPL) was measured in order to verify if inherently chiral oligothiophenes could be promising systems for chiral photonics applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    Science.gov (United States)

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-06-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro-inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    Science.gov (United States)

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .

  4. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  5. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  6. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  7. Application of the cubic-plus-association equation of state to mixtures with polar chemicals and high pressures

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    was given to low pressures and liquid-liquid equilibria. In this work, CPA is applied to two classes of mixtures containing polar chemicals for which high-pressure data are available: acetone-containing systems and dimethyl ether mixtures. They are of both scientific and industrial importance. Moreover, CPA......The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...... to conventional models such as MHV2. Very good results are also obtained for multicomponent vapor-liquid-liquid equilibria for mixtures containing gases, water, and dimethyl ether. Finally, it is shown that high-pressure SLE can be predicted based on interaction parameters obtained from low-pressure SLE data....

  8. Polarization memory of blue and red luminescence from nanocrystalline porous silicon treated by high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, B.; Koyama, H.; Koshida, N.

    2008-01-01

    The polarization memory (PM) effect in the blue and red photoluminescence (PL) of p-type porous Si (PS) treated by high-pressure water vapor annealing (HWA) has been investigated. HWA induces a significant blue PL emission at about 450 nm, together with a drastic enhancement of the red PL intensity. The polarization memory of the red emission band is anisotropic and is in agreement with emission from quantum sized Si nanocrystals, whereas that of the blue band is high and isotropic, indicating an emission mechanism related to localized states in the amorphous Si oxide surrounding the Si skeleton of the PS layer after HWA. HWA does not induce any blue emission in PS that was electrochemically oxidized (ECO) beforehand because the electrochemically grown oxide tends to prevent the formation of blue-emitting amorphous oxide upon HWA. The PM of ECO-PS at low emission energies is anisotropic, but in a direction 45 deg. rotated compared to that of PS treated by HWA. This unique behavior may be related to the electrical nature of electrochemical oxidation. HWA increases the PM of ECO-PS. This could be attributed to the enhanced passivation induced by HWA

  9. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station

    Science.gov (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł

    2017-12-01

    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  10. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    Science.gov (United States)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  11. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  12. Planck intermediate results XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    2016-01-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to me...

  13. High Resolution Topography of Polar Regions from Commercial Satellite Imagery, Petascale Computing and Open Source Software

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen

    2017-04-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.

  14. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay.

    Science.gov (United States)

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen

    2017-01-01

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  15. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen (UMASS, MED); (Pfizer)

    2017-09-21

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  16. An inverted-geometry, high voltage polarized electron gun with UHV load lock

    International Nuclear Information System (INIS)

    Breidenbach, M.; Foss, M.; Hodgson, J.; Kulikov, A.; Odian, A.; Putallaz, G.; Rogers, H.; Schindler, R.; Skarpaas, K.; Zolotorev, M.

    1994-01-01

    The design of a high voltage electron source with a GaAs photocathode and a load lock system is described. The inverted high voltage structure of the gun permits a compact and simple design. Test results demonstrate that the load lock system provides a reliable way to achieve high quantum efficiency of the photocathode in a high voltage device. ((orig.))

  17. Radio-continuum study of the supernova remnants in the large Magellanic Cloud: An SNR with a highly polarized breakout region: SNR J0455-6838

    Directory of Open Access Journals (Sweden)

    Crawford E.J.

    2008-01-01

    Full Text Available We present the results of new moderate resolution ATCA observations of SNR J0455-6838. We found that this SNR exhibits a mostly typical appearance with rather steep and curved α=-0.81±0.18 and D=43×31±1 pc. Regions of high polarization were detected, including unusually strong (~70% region corresponding to the northern breakout. Such a strong polarization in breakout regions has not been observed in any other SNR.

  18. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    Science.gov (United States)

    2016-05-23

    2 Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA 3Department of Physics and Optical Engineering, Ort Braude...polarized high harmonic generation, phase matching, ultrafast chiral physics, attosecond pulses (Some figures may appear in colour only in the online...temporal resolution and in spectral regions unavailable to circular polarization thus far. Acknowledgments This work was supported by the USA –Israel

  19. High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties.

    Science.gov (United States)

    Tang, Shiwei; Cai, Tong; Wang, Guang-Ming; Liang, Jian-Gang; Li, Xike; Yu, Jiancheng

    2018-04-23

    Vortex beam is believed to be an effective way to extend communication capacity, but available efforts suffer from the issues of complex configurations, fixed operation mode as well as low efficiency. Here, we propose a general strategy to design dual-modes vortex beam generator by using metasurfaces with polarization-dependent transmission and reflection properties. Combining the focusing and vortex functionalities, we design/fabricate a type of compact dual-modes vortex beam generator operating at both reflection/transmission sides of the system. Experimental results demonstrate that the designed metadevice can switch freely and independently between the reflective vortex with topological charge m 1  = 2 and transmissive vortex with m 2  = 1. Moreover, the metadevice exhibits very high efficiencies of 91% and 85% for the reflective and transmissive case respectively. Our findings open a door for multifunctional metadevices with high performances, which indicate wide applications in modern integration-optics and wireless communication systems.

  20. Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O(3)-PZT thin films.

    Science.gov (United States)

    Wasa, Kiyotaka; Adachi, Hideaki; Nishida, Ken; Yamamoto, Takashi; Matsushima, Tomoaki; Kanno, Isaku; Kotera, Hidetoshi

    2012-01-01

    In-plane unstrained single-c-domain/single-crystal thin films of PZT-based ternary ferroelectric perovskite, ξPb(Mn,Nb)O3-(1 - ξ)PZT, were grown on SrRuO(3)/Pt/MgO substrates using magnetron sputtering followed by quenching. The sputtered unstrained thin films exhibit unique ferroelectric properties: high coercive field, Ec > 180 kV/cm, large remanent polarization, P(r) = 100 μC/cm(2), small relative dielectric constants, ε* = 100 to 150, high Curie temperature, Tc = ~600 °C, and bulk-like large transverse piezoelectric constants, e31,f = -12.0 C/m(2) for PZT(48/52) at ξ = 0.06. The unstrained thin films are an ideal structure to extract the bulk ferroelectric properties. Their micro-structures and ferroelectric properties are discussed in relation to the potential applications for piezoelectric MEMS. © 2012 IEEE

  1. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    Science.gov (United States)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  2. Generation of high-intensity sub-30 as pulses by inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Science.gov (United States)

    Feng, Liqiang; Feng, A. Yuanzi

    2018-04-01

    The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.

  3. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption.

    Science.gov (United States)

    Zhang, Yanan; Liu, Wei; Quan, Bin; Ji, Guangbin; Ma, Jianna; Li, Daoran; Meng, Wei

    2017-12-15

    Design of dielectric/magnetic heterostructure and multiple interfaces is a challenge for the microwave absorption. Thus, in this study, a novel C/Fe 3 C nanocomposites have been fabricated by annealing the precursors obtained by the facile chemical blowing of polyvinyl pyrrolidone (PVP) and Fe(NO 3 ) 3 ·9H 2 O. By changing the content of Fe(NO 3 ) 3 ·9H 2 O, the honeycomb-like structure with scads of pores and electromagnetic parameters could be successfully tailored. When the addition of Fe(NO 3 ) 3 ·9H 2 O is ranging from 1 to 2g, honeycomb-structured nanocomposites possess high performance microwave absorption when mixed with 90wt% paraffin. The minimal reflection loss is -37.4dB at 13.6GHz and effective bandwidth can reach to 5.6GHz when the thickness is 2.0mm, indicating its great potential in microwave absorbing field. Its outstanding microwave performance is tightly related to the porous structure and substantial interface such as carbon/air and carbon/Fe 3 C, which are in favor of the impedance matching and interfacial polarization. Thus, our study may provide a good reference for the facile synthesis of light-weight carbon-based nanocomposites with effective interfacial polarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  5. N-polar GaN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor formed on sapphire substrate with minimal step bunching

    Science.gov (United States)

    Prasertsuk, Kiattiwut; Tanikawa, Tomoyuki; Kimura, Takeshi; Kuboya, Shigeyuki; Suemitsu, Tetsuya; Matsuoka, Takashi

    2018-01-01

    The metal-insulator-semiconductor (MIS) gate N-polar GaN/AlGaN/GaN high-electron-mobility transistor (HEMT) on a (0001) sapphire substrate, which can be expected to operate with lower on-resistance and more easily work on the pinch-off operation than an N-polar AlGaN/GaN HEMT, was fabricated. For suppressing the step bunching and hillocks peculiar in the N-polar growth, a sapphire substrate with an off-cut angle as small as 0.8° was introduced and an N-polar GaN/AlGaN/GaN HEMT without the step bunching was firstly obtained by optimizing the growth conditions. The previously reported anisotropy of transconductance related to the step was eliminated. The pinch-off operation was also realized. These results indicate that this device is promising.

  6. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  7. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  8. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    Science.gov (United States)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  9. Complete dipole strength distributions in 208Pb from high-resolution polarized proton scattering at 0°

    International Nuclear Information System (INIS)

    Von Neumann-Cosel, Peter

    2012-01-01

    Small-angle polarized proton scattering including 0° at incident energies of a few 100 MeV/nucleon is established as a new spectrospcopic tool for the study of E1 and M1 strength distributions. Experiments of this type have been realized recently at RCNP, Osaka, Japan with high energy resolution of the order 25 - 30 keV (FWHM). Using 208 Pb as an example, the physics potential of such data is discussed. It includes information on the properties of the Pygmy Dipole Resonance but also on complete E1 and M1 strength distributions and thus the gamma strength function. The E1 polarizability can be extracted with a precision of about 4% providing important experimental constraints on the neutron skin thickness in 208 Pb.

  10. Spin asymmetries for events with high pT hadrons in DIS and an evaluation of the gluon polarization

    International Nuclear Information System (INIS)

    Adeva, B.; Gallas, A.; Gracia, G.; Plo, M.; Saborido, J.; Arik, E.; Ozben, C.; Unel, G.; Arvidson, A.; Rodriguez, M.; Badelek, B.; Baum, G.; Bueltmann, S.; Tripet, A.; Berglund, P.; Betev, L.; Haft, K.; Staude, A.; Vogt, J.; Birsa, R.

    2004-01-01

    We present a measurement of the longitudinal spin cross section asymmetry for deep-inelastic muon-nucleon interactions with two high transverse momentum hadrons in the final state. Two methods of event classification are used to increase the contribution of the photon-gluon fusion process to above 30%. The most effective one, based on a neural network approach, provides the asymmetries A p = 0.030±0.057(stat)±0.010(syst) and A d =0.070±0.076(stat)±0.010(syst). From these values we derive an averaged gluon polarization ΔG/G=-0.20±0.28(stat)±0.10(syst) at an average fraction of nucleon momentum carried by gluons =0.07

  11. High luminosity (1--4) GeV, cw polarized electron beams -Great expectations for hardronic physics-

    International Nuclear Information System (INIS)

    Huberts, P.K.A.d.W.

    1992-01-01

    In hadronic physics several key topics are in focus: high-momentum nucleons in nuclei, nucleon-nucleon correlations, pion production form factors from the free- and the bound nucleon, meson fields and the properties of baryon-resonances in the nuclear medium. New tools of unprecedented quality to investigate this physics will soon become available with commissioning of the new facilities in Europe and the US that deliver continuous wave beams of (polarized) electrons with energy ranging from ∼1 GeV up to ∼5 GeV. With the recent empirical observations as a starting point I will discuss some selected opportunities that the new facilities offer for hadronic physics

  12. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    International Nuclear Information System (INIS)

    Mikhailova, T V; Berzhansky, V N; Karavainikov, A V; Shaposhnikov, A N; Prokopov, A R; Lyashko, S D

    2016-01-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 A l0.8 O 12 / Bi 2.8 Y 0.2 Fe 5 Oi 2 is located between the dielectric Bragg mirrors (SiO 2 / TiO 2 ) m (were m is number of layer pairs) and buffer SiO 2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found. (paper)

  13. Propagation of high-order circularly polarized Bessel beams and vortex generation in uniaxial crystals

    CSIR Research Space (South Africa)

    Belyi, VN

    2011-05-01

    Full Text Available The authors investigate the generation and transformation of Bessel beams through linear and nonlinear optical crystals. They outline the generation of high-order vortices due to propagation of Bessel beams along the optical axis of uniaxial...

  14. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  15. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  16. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION (VOLUME 31)

    International Nuclear Information System (INIS)

    BUNCE, G.; VIGDOR, S.

    2001-01-01

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce

  18. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    Science.gov (United States)

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  19. Migrational polarization in high-current density molten salt electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Vallet, C.E.

    1977-01-01

    Electrochemical flux equations based on the thermodynamics of irreversible processes have been derived in terms of experimental transport coefficients for binary molten salt mixtures analogous to those proposed for high temperature batteries and fuel cells. The equations and some numerical solutions indicate steady state composition gradients of significant magnitude. The effects of migrational separation must be considered along with other melt properties in the characterization of electrode behavior, melt composition, operating temperatures and differences of phase stability, wettability and other physicochemical properties at positive and negative electrodes of high current density devices with mixed electrolytes.

  20. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  1. Complete dipole response in 208Pb from high-resolution polarized proton scattering at 0 deg

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Kalmykov, Y.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Matsubara, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Bertulani, C. A.; Carter, J.; Fujita, H.; Dozono, M.; Fujita, K.; Hashimoto, H.; Hatanaka, K.

    2009-01-01

    The structure of electric and magnetic dipole modes in 208 Pb is investigated in a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg. First results on the E1 strength in the region of the pygmy dipole resonance are reported.

  2. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  3. Gluons and the quark sea at high energies : distributions, polarization, tomography

    NARCIS (Netherlands)

    Boer, D.; Diehl, M.; Milner, R.; Venugopalan, R.; Vogelsang, W.; Accardi, A.; Aschenauer, E.; Burkardt, M.; Ent, R.; Guzey, V.; Hasch, D.; Kumar, K.; Lamont, M. A. C.; Li, Y.; Marciano, W. J.; Marquet, C.; Sabatie, F.; Stratmann, M.; Yuan, F.; Abeyratne, S.; Ahmed, S.; Aidala, C.; Alekhin, S.; Anselmino, M.; Avakian, H.; Bacchetta, A.; Bartels, J.; H., BC; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Beuf, G.; Blumlein, J.; Blaskiewicz, M .; Bogacz, A.; Brodsky, S. J.; Burton, T.; Calaga, R.; Chang, X.; Cherednikov, I. O.; Chevtsov, P.; Chirilli, G. A.; Atti, C. Ciofi degli; Cloet, I. C.; Cooper-Sarkar, A.; Debbe, R.; Derbenev, Ya; Deshpande, A.; Dominguez, F.; Dumitru, A.; Dupre, R.; Erdelyi, B.; Faroughy, C.; Fazio, S.; Fedotov, A.; Forshaw, J. R.; Geraud, R.; Gallmeister, K.; Gamberg, L.; Gao, J. -H.; Gassner, D.; Gelis, F.; Gilfoyle, G. P.; Goldstein, G.; Golec-Biernat, K.; Goncalves, V. P.; Gonderinger, M.; Guzzi, M.; Hagler, P.; Hahn, H.; Hammons, L.; Hao, Y.; He, P.; Horn, T.; Horowitz, W. A.; Huang, M.; Hutton, A.; Jager, B.; Jackson, W.; Jain, A.; Johnson, E. C.; Kang, Z. -B.; Kaptari, L. P.; Kayran, D.; Kewisch, J.; Koike, Y.; Kondratenko, A.; Kopeliovich, B. Z.; Kovchegov, Y. V.; Krafft, G.; Kroll, P.; Kumano, S.; Kumericki, K.; Lappi, T.; Lautenschlager, T.; Li, R.; Liang, Z. -T.; Litvinenko, V. N.; Liuti, S.; Luo, Y.; Muller, D.; Mahler, G.; Majumder, A.; Manikonda, S.; Marhauser, F.; McIntyre, G.; Meskauskas, M.; Meng, W.; Metz, A.; Mezzetti, C. B.; Miller, G. A.; Minty, M.; Moch, S. -O.; Morozov, V.; Mosel, U.; Motyka, L.; Moutarde, H.; Mulders, P. J.; Musch, B.; Nadel-Turonski, P.; Nadolsky, P.; Olness, F.; Ostrumov, P. N.; Parker, B.; Pasquini, B.; Passek-Kumericki, K.; Pikin, A.; Pilat, F.; Pire, B.; Pirner, H.; Pisano, C.; Pozdeyev, E.; Prokudin, A.; Ptitsyn, V.; Qian, X.; Qiu, J. -W.; Radici, M.; Radyushkin, A.; Rao, T.; Rimmer, R.; Ringer, F.; Riordan, S.; Rogers, T.; Rojo, J.; Roser, T.; Sandapen, R.; Sassot, R.; Satogata, T.; Sayed, H.; Schafer, A.; Schnell, G.; Schweitzer, P.; Sheehy, B.; Skaritka, J.; Soyez, G.; Spata, M.; Spiesberger, H.; Stasto, A. M.; Stefanis, N. G.; Strikman, M.; Sullivan, M.; Szymanowski, L.; Tanaka, K.; Taneja, S.; Tepikian, S.; Terzic, B.; Than, Y.; Toll, T.; Trbojevic, D.; Tsentalovich, E.; Tsoupas, N.; Tuchin, K.; Tuozzolo, J.; Ullrich, T.; Vossen, A.; Wallon, S.; Wang, G.; Wang, H.; Wang, X. -N.; Webb, S.; Weiss, C.; Wu, Q.; Xiao, B. -W.; Xu, W.; Yunn, B.; Zelenski, A.; Zhang, Y.; Zhou, J.; Zurita, P.

    2011-01-01

    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that

  4. Elliptically polarized high-order harmonics from aligned molecules within the strong-field approximation

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer

    A correction term is introduced in the stationary-point analysis on high-order harmonic generation (HHG) from aligned molecules. Arising from a multi-centre expansion of the electron wave function, this term brings our numerical calculations of the Lewenstein model into qualitative agreement...

  5. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...

  6. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    Energy Technology Data Exchange (ETDEWEB)

    He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn [Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Feng, Jiwen; Wang, Dong; Chen, Fang; Liu, Maili [State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Zhang, Zhi; Wang, Chao [State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100048 (China)

    2015-08-15

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.

  7. AUTOMATED WETLAND DELINEATION FROM MULTI-FREQUENCY AND MULTI-POLARIZED SAR IMAGES IN HIGH TEMPORAL AND SPATIAL RESOLUTION

    Directory of Open Access Journals (Sweden)

    L. Moser

    2016-06-01

    Full Text Available Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks and a high spatial sampling (about five meters. The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  8. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column

    Directory of Open Access Journals (Sweden)

    Vingering Nathalie

    2010-05-01

    Full Text Available The increasing concern for consumed fat by western populations has raised the question of the level and the quality of fat intake, especially the composition of fatty acids (FA and their impact on human health. As a consequence, consumers and nutritionists have requested updated publications on FA composition of food containing fat. In the present study, fourteen different kinds of edible oils (rapeseed, olive, hazelnut, argan, groundnut, grape seed, sesame, sunflower, walnut and organic walnut, avocado, wheat germ, and two combined oils were analysed for FA determination using a BPX-70 60 m highly polar GC column. Oils were classified according to the classification of Dubois et al. (2007, 2008. Monounsaturated FA (MUFA group oils, including rapeseed, olive, hazelnut, and avocado oils, contained mainly oleic acid (OA. Groundnut and argan oils, also rich in MUFA, showed in addition high linoleic acid (LA contents. In the polyunsaturated (PUFA group, grape seed oil presented the highest LA content while sunflower, sesame, and wheat germ oils showed noticeable MUFA amounts in addition to high PUFA contents. Walnut oils, also rich in LA, showed the highest linolenic acid (ALA content. The n-6/n-3 ratio of each oil was calculated. Trans-FA (TFA was also detected and quantified. Results were compared with the data published during the past decade, and the slight discrepancies were attributed to differences in origin and variety of seed-cultivars, and in seed and oil processes.

  9. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  10. Computer simulations analysis for determining the polarity of charge generated by high energy electron irradiation of a thin film

    DEFF Research Database (Denmark)

    Malac, Marek; Hettler, Simon; Hayashida, Misa

    2017-01-01

    Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign of the electrost......Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign...... of the electrostatic potential developed under the beam with reference to a ground electrode. We discuss the two methods most frequently used to assess charge polarity: Fresnel imaging of the irradiated area and Thon rings analysis. We also briefly discuss parameter optimization for hole free phase plate (HFPP...

  11. Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism.

    Science.gov (United States)

    Khanfar, H K; Azzam, R M A

    2009-09-20

    An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism-PCL interface at 45 degrees angle of incidence. A high extinction ratio in reflection (>50 dB) over the 4-12 microm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of +/-6.6 degrees and in the presence of grating filling factor errors of up to +/-10%. Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.

  12. Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth

    International Nuclear Information System (INIS)

    Dasgupta, Sansaptak; Nidhi,; Brown, David F.; Wu, Feng; Keller, Stacia; Speck, James S.; Mishra, Umesh K.

    2010-01-01

    Ultralow Ohmic contact resistance and a self-aligned device structure are necessary to reduce the effect of parasitic elements and obtain higher f t and f max in high electron mobility transistors (HEMTs). N-polar (0001) GaN HEMTs, offer a natural advantage over Ga-polar HEMTs, in terms of contact resistance since the contact is not made through a high band gap material [Al(Ga)N]. In this work, we extend the advantage by making use of polarization induced three-dimensional electron-gas through regrowth of graded InGaN and thin InN cap in the contact regions by plasma (molecular beam epitaxy), to obtain an ultralow Ohmic contact resistance of 27 Ω μm to a GaN 2DEG.

  13. Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA

    International Nuclear Information System (INIS)

    Vogt, M.

    2000-12-01

    For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring

  14. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Spin-polarized high-energy scattering of charged leptons on nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, Matthias; Nowak, Wolf-Dieter; MILLER, A.

    2009-01-01

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress i

  16. High ambient contrast ratio OLED and QLED without a circular polarizer

    International Nuclear Information System (INIS)

    Tan, Guanjun; Zhu, Ruidong; Luo, Zhenyue; Wu, Shin-Tson; Tsai, Yi-Shou; Lee, Kuo-Chang; Lee, Yuh-Zheng

    2016-01-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized. (paper)

  17. Leaving School — learning at SEA: Regular high school education alongside polar research, not only during IPY

    Science.gov (United States)

    Gatti, S.

    2006-12-01

    Against the background of unsatisfactory results from the international OECD study PISA (Program for International Student Assessment), Germany is facing a period of intense school reforms. Looking back at a tradition of school culture with too few changes during the last century, quick and radical renewal of the school system is rather unlikely. Furthermore students are increasingly turning away from natural sciences. The AWI aims at providing impulses for major changes in the schooling system and is offering solid science education not only for university students but also for a much younger audience. All efforts towards this goal are interconnected within the project SEA (Science & Education @ the AWI). Fife years ago the AWI started HIGHSEA (High school of SEA). Each year 22 high school students (grade 11) are admitted to HIGHSEA spending their last three years of school not at school but at the institute. Four subjects (biology as a major, chemistry, math and English as accessory subjects) are combined and taught fully integrated. Students leave their schools for two days each week to study, work and explore all necessary topics at the AWI. All of the curricular necessities of the four subjects are being met. After rearrangement of the temporal sequencing conceptual formulation of four major questions around AWI-topics was possible. Students are taught by teachers of the cooperating schools as well as by scientists of the AWI. Close links and intense cooperation between all three groups are the basis of fundamental changes in teaching and learning climate. For each group of students we organize a short research expedition: in August 2005 we worked in the high Arctic, in January and February 2006 we performed measurements at two eastern Atlantic seamounts. Even if the amount of data coming from these expeditions is comparatively small they still contribute to ongoing research projects of the oceanographic department. The first two groups of students finished

  18. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    Science.gov (United States)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  19. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  20. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  1. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler.

    Science.gov (United States)

    Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng

    2017-11-01

    We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30  dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30  dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30  dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42  dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

  2. Signatures of the high-altitude polar cusp and dayside auroral regions as seen by the Viking electric field experiment

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Faelthammar, C.G.; Erlandson, R.E.; Potemra, T.A.

    1990-01-01

    Electric field and satellite potential observations along 42 Viking orbits in the high-altitude (2R E ) polar cusp and dayside auroral region have been examined. Within the cusp the plasma density usually reaches a maximum, and it is typically very homogeneous, in contrast to the irregular and lower density in the cleft and dayside auroral regions. The maxima in the plasma density are sometimes anticorrelated with the magnetic field strength, indicating a diamagnetic effect. The entire cusp and dayside auroral regions are characterized by irregular and burstlike electric fields, comprising field reversals on various scales (up to 3 min or 500 km), the larger scales, however, being rare in the cusp. Another common feature in these regions is the high correlation between mutually orthogonal components of the electric and magnetic fields, both for large-scale variations across spatial structures and for wave and pulsations in the ULF frequency range. The electric field signatures in the cusp (in the 1100-1300 MLT sector) are, however, characteristically different from the cleft and oval field signatures in that the electric field is usually less intense and less structured and not correlated with the substorm activity level

  3. Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Directory of Open Access Journals (Sweden)

    B. Grison

    2005-12-01

    Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 RE cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.

  4. Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Directory of Open Access Journals (Sweden)

    B. Grison

    2005-12-01

    Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 RE cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.

  5. Spin-polarized high-energy scattering of charged leptons on nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, M. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Physics; Miller, C.A. [TRIUMF, Vancouver, BC (Canada); Nowak, W.D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-08-15

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)

  6. Spin-polarized high-energy scattering of charged leptons on nucleons

    International Nuclear Information System (INIS)

    Burkardt, M.; Nowak, W.D.

    2009-08-01

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)

  7. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Terzic, Senka; Ahel, Marijan

    2011-01-01

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n = 3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. - Research highlights: → UHPLC-QTOFMS coupling was applied for nontarget analysis of polar contaminants. → Wide spectrum of polar contaminants was identified in polluted sediments. → Pharmaceuticals and their intermediates were present in high concentrations. - Comprehensive analysis of freshwater sediments by UPLC/QTOF indicated importance of pharmaceutically-derived polar contaminants.

  8. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Terzic, Senka, E-mail: terzic@irb.h [Division of Marine and Environmental Research, Rudjer Boskovic Institute, 10000 Zagreb (Croatia); Ahel, Marijan [Division of Marine and Environmental Research, Rudjer Boskovic Institute, 10000 Zagreb (Croatia)

    2011-02-15

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n = 3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. - Research highlights: UHPLC-QTOFMS coupling was applied for nontarget analysis of polar contaminants. Wide spectrum of polar contaminants was identified in polluted sediments. Pharmaceuticals and their intermediates were present in high concentrations. - Comprehensive analysis of freshwater sediments by UPLC/QTOF indicated importance of pharmaceutically-derived polar contaminants.

  9. High resolution polarimetry of the Sun at 3. 7 and 11. 1 cm wavelengths. [Stokes parameters, polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lang, K R [Tufts Univ., Medford, Mass. (USA). Dept. of Physics

    1977-04-01

    The four Stokes parameters are presented for interferometric observations of the Sun at wavelengths of lambda=3.7 cm and lambda=11 cm with angular resolutions between 2.7 and 36.7 seconds of arc. An H..cap alpha.. solar flare of importance SN and type C has a radio wavelength (lambda=3.7 cm) size of 5 seconds of arc, a flux density of 0.3 x 10/sup -22/Wm/sup -2/Hz/sup -1/, and a brightness temperature on the order of 10/sup 7/K. The radio flare is 30% left circularly polarized at lambda=3.7 cm, 70% left circularly polarized at lambda=11 cm, and no detectable linear polarization was observed at either wavelength. During a forty hour observation of sunspot region McMath No 13926 no substantial variations in circular polarization were observed, whereas one hour prior to the eruption of a solar flare dramatic changes in circular polarization were observed. Small scale features whose angular sizes are on the order of five seconds of arc exhibit changes of circular polarization of up to 80%. At times other than those immediately preceding flare emission, the degree of circular polarization was the same as the two wavelengths but the sign was reversed. This situation can be explained if magnetic fields of intensity H<=1000 G and electron densities of Nsub(e)>=10/sup 7/cm/sup -3/ are present.

  10. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    Science.gov (United States)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  11. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  12. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  13. Lepton-pair production and the modified Drell-Yan mechanism in high-energy unpolarized and polarized pp and p anti p collisions

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    A modified Drell-Yan mechanism for inclusive dilepton pair production in hadronic reactions is studied, and the significance of comparing high-energy unpolarized and polarized pp and p anti p collisions is discussed. The required beams are currently proposed at Fermilab and CERN

  14. Production of the associated J/ψ+γ with high transverse momentum in polarized proton-proton collisions at √s = 50-500 GeV

    International Nuclear Information System (INIS)

    Usubov, Z.U.

    1996-01-01

    The paper considers a possibility to investigate the associated production of J/ψ+γ with high transverse momentum in polarized pp-interactions at Relativistic Heavy Ion Collider energies. The differential cross sections and their asymmetries are evaluated. The accuracy which can be achieved in the gluon distribution function measurement is discussed. 16 refs., 4 figs., 1 tab

  15. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure

    International Nuclear Information System (INIS)

    Feng, Ting; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Tan, Siyu; Liang, Xiao; Wen, Xiaodong

    2014-01-01

    A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure is proposed and demonstrated experimentally. The compound-cavity is composed of a main-linear-cavity and a subring-cavity. Using a pump power of 150 mW, the optical signal to noise ratio of the laser output is as high as ∼67 dB; the wavelength and output power fluctuation are 0.7 pm and 0.07 dBm respectively in an experimental period of 1 h; the linewidth of the laser output is as narrow as 650 Hz; the degree of polarization of the laser output is stable at a value of 100.8% in 15 min and the polarization extinction ratio is as high as 30.57 dB; the wavelength-tunable range is as wide as ∼8.1 nm. The proposed fiber laser can be used in areas where high stability, narrow-linewidth, single-polarization and wide wavelength-tunable range are needed. (letter)

  16. An on-line normal-phase high performance liquid chromatography method for the rapid detection of radical scavengers in non-polar food matrixes

    NARCIS (Netherlands)

    Zhang, Q.; Klift, van der E.J.C.; Janssen, H.G.; Beek, van T.A.

    2009-01-01

    An on-line method for the rapid pinpointing of radical scavengers in non-polar mixtures like vegetable oils was developed. To avoid problems with dissolving the sample, normal-phase chromatography on bare silica gel was used with mixtures of hexane and methyl tert-butyl ether as the eluent. The high

  17. Interferometric Observation of the Highly Polarized SiO Maser Emission from the v = 1, J = 5-4 Transition Associated with VY Canis Majoris

    Science.gov (United States)

    Shinnaga, Hiroko; Moran, James M.; Young, Ken H.; Ho, Paul T. P.

    2004-11-01

    We used the Submillimeter Array to image the SiO maser emission in the v=1, J=5-4 transition associated with the peculiar red supergiant VY Canis Majoris. We identified seven maser components and measured their relative positions and linear polarization properties. Five of the maser components are coincident to within about 150 mas (~200 AU at the distance of 1.5 kpc); most of them may originate in the circumstellar envelope at a radius of about 50 mas from the star along with the SiO masers in the lowest rotational transitions. Our measurements show that two of the maser components may be offset from the inner stellar envelope (at the 3 σ level of significance) and may be part of a larger bipolar outflow associated with VY CMa identified by Shinnaga et al. The strongest maser feature at a velocity of 35.9 km s-1 has a 60% linear polarization, and its polarization direction is aligned with the bipolar axis. Such a high degree of polarization suggests that maser inversion is due to radiative pumping. Five of the other maser features have significant linear polarization.

  18. Development and validation of polar RP-HPLC method for screening for ectoine high-yield strains in marine bacteria with green chemistry.

    Science.gov (United States)

    Chen, Jun; Chen, Jianwei; Wang, Sijia; Zhou, Guangmin; Chen, Danqing; Zhang, Huawei; Wang, Hong

    2018-04-02

    A novel, green, rapid, and precise polar RP-HPLC method has been successfully developed and screened for ectoine high-yield strain in marine bacteria. Ectoine is a polar and extremely useful solute which allows microorganisms to survive in extreme environmental salinity. This paper describes a polar-HPLC method employed polar RP-C18 (5 μm, 250 × 4.6 mm) using pure water as the mobile phase and a column temperature of 30 °C, coupled with a flow rate at 1.0 mL/min and detected under a UV detector at wavelength of 210 nm. Our method validation demonstrates excellent linearity (R 2  = 0.9993), accuracy (100.55%), and a limit of detection LOQ and LOD of 0.372 and 0.123 μgmL -1 , respectively. These results clearly indicate that the developed polar RP-HPLC method for the separation and determination of ectoine is superior to earlier protocols.

  19. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  20. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  1. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  2. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    Science.gov (United States)

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  3. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    Science.gov (United States)

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  4. Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing.

    Science.gov (United States)

    Li, Mingjie; Wei, Qi; Muduli, Subas Kumar; Yantara, Natalia; Xu, Qiang; Mathews, Nripan; Mhaisalkar, Subodh G; Xing, Guichuan; Sum, Tze Chien

    2018-06-01

    At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical-gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low-threshold (as low as ≈8 µJ cm -2 ) linearly polarized lasing from solution-processed Ruddlesden-Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite-difference time-domain simulations validate that the mixed lower-dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher-dimensional RP perovskites (functioning as the active gain media). Furthermore, structure-lasing-threshold relationship (i.e., correlating the content of lower-dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual-wavelength lasing from these quasi-2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self-assembled multilayer planar waveguide gain media favorable for developing efficient lasers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  6. Transparent Si–DLC coatings on metals with high repetition bi-polar pulses of a PBII system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeyama, Masami, E-mail: ikeyama3@aist.go.jp; Sonoda, Tsutomu, E-mail: tsutomu.sonoda@aist.go.jp

    2013-07-15

    Diamond-like carbon (DLC) is widely used because of its good properties. However, the color of DLC is usually dark brown or black. Recently, we have made fairly transparent Si contained DLC (Si–DLC) coatings in visible light region. The fairly transparent Si–DLC was made by using our original bi-polar pulse type plasma based ion implantation (PBII) system, with recently introduced high slew rate pulse power supply. The colors of metal sample surface were uniformly changed as subdued red, yellow, subdued green and subdued blue or violet, with the change of Si–DLC coating’s thickness. The colors come from the interference between reflected lights at the surface of the Si–DLC coatings and the surface of the metal samples. The colors were also changed with the angle of glancing. Estimated refractive indexes show well agreements among almost all Si–DLC coatings, instead of the differences of coating conditions. Generally, the longer coating time or slower coating process makes the higher refractive index in near infrared region. Estimated band gap of a Si–DLC coating was about 1.5 eV. The developed Si–DLC coatings must be useful as not only protective but also decorative coatings.

  7. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  8. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hivon, E.; Holmes, W.A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J.D.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-09

    The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_\\ell^{EE,BB}$ over the range $40<\\ell<600$. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_\\ell$. For the dust, they are well described by power laws in $\\ell$ with exponents $\\alpha^{EE,BB}=-2.42\\pm0.02$. The amplitudes of the polarization $C_\\ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $\\beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of ...

  9. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  10. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT  0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.

  11. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  12. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  13. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    Science.gov (United States)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  14. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  15. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  16. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    International Nuclear Information System (INIS)

    Gao, Tao; Xu, Ruimin; Kong, Yuechan; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng

    2015-01-01

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr 0.52 Ti 0.48 )-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g m -V g ) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric

  17. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tao [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China); Xu, Ruimin [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Kong, Yuechan, E-mail: kycfly@163.com; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng [Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2015-06-15

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr{sub 0.52}Ti{sub 0.48})-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g{sub m}-V{sub g}) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.

  18. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  19. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  20. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    Science.gov (United States)

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s 1 , s 2 , s 3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF 6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s 1 , s 2 , s 3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are

  1. Complexation-mediated electromembrane extraction of highly polar basic drugs – a fundamental study with catecholamines in urine as model system

    DEFF Research Database (Denmark)

    Fernández, Elena; Vårdal, Linda; Vidal, Lorena

    2017-01-01

    Complexation-mediated electromembrane extraction (EME) of highly polar basic drugs (log P ... as complexation reagent, and selectively formed boronate esters by reversible covalent binding with the model analytes at the sample/SLM interface. This enhanced the mass transfer of the highly polar model analytes across the SLM, and EME of basic drugs with log P in the range -1 to -2 was shown for the first...... chromatography coupled to tandem mass spectrometry and evaluated for quantification of epinephrine and dopamine. Standard addition calibration was applied to a pooled human urine sample. Calibration curves using standards between 25 and 125 μg L-1 gave a high level of linearity with a correlation coefficient...

  2. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.; Farrell, R.M.; Cohen, D.A.; Becerra, D.L.; DenBaars, S.P.; Nakamura, S.

    2016-01-01

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  3. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm.

    Science.gov (United States)

    Yang, Changsheng; Guan, Xianchao; Zhao, Qilai; Lin, Wei; Li, Can; Gan, Jiulin; Qian, Qi; Feng, Zhouming; Yang, Zhongmin; Xu, Shanhui

    2018-05-14

    A 1603 nm high optical signal-to-noise ratio (OSNR) kHz-linewidth linearly-polarized all-fiber single-frequency master-oscillator power amplifier (MOPA) is demonstrated. To suppress the amplified spontaneous emission from Yb 3+ /Er 3+ ions with the customized filters and optimize the length of the double cladding active fiber, an over 15 W stable single-longitudinal-mode laser is achieved with an OSNR of >70 dB. A measured laser linewidth of 4.5 kHz and a polarization-extinction ratio of >23 dB are obtained at the full output power. This L-band high-power single-frequency MOPA is promising for high-resolution molecular spectroscopy and pumping of Tm 3+ -doped or Tm 3+ /Ho 3+ co-doped laser.

  4. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.

    2016-10-11

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  5. Polarization: A must for fusion

    Directory of Open Access Journals (Sweden)

    Didelez J.-P.

    2013-11-01

    Full Text Available The complete polarization of DT fuel would increase the fusion reactivity by 50% in magnetic as well as in inertial confinements. The persistence of polarization in a fusion process could be tested, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the emitted neutrons and the change in the corresponding total Cross Section (CS can sign the polarization persistence. The polarization of solid H2, D2 or T2 Hydrogen isotopes is very difficult. However, it has been possible to polarize HD, a hetero-molecular form of Hydrogen, by static polarization, at very low temperature and very high field. The radioactivity of DT molecules forbids there high polarization by the static method, therefore one has to develop the Dynamic Nuclear Polarization (DNP by RF transitions. The DNP of HD has been investigated in the past. The magnetic properties of HD and DT molecules are very similar, it is therefore expected that any polarization result obtained with HD could be extrapolated to DT.

  6. Polarization measurements in high energy elastic scattering of pions, kaons, protons and antiprotons on protons and comparison with Regge phenomenology

    International Nuclear Information System (INIS)

    Gaidot, A.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Pierrard, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The polarization parameter P has been measured for elastic scattering on polarized protons, of π - , K - and anti-p at 40GeV/c and of π + , K + and p at 45GeV/c. Four-momentum transfer ranges from -0.08 to -1.8(GeV/c) 2 for π - p and pp, and from -0.08 to -1.2(GeV/c) 2 for π + , K + or K - and anti-p [fr

  7. Transient-field strength measurements for 52Cr traversing Fe hosts at high velocity and polarization transfer mechanisms

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Doran, C.E.; Byrne, A.P.; Bolotin, H.H.; Dracoulis, G.D.

    1986-12-01

    Transient-field strengths were measured for 52 Cr ions traversing polarized Fe hosts at velocities up to 12v>=o (v>=o = c/137 = Bohr velocity). The results are compared with predictions of various transient field parametrizations and discussed in terms of possible mechanisms by which polarization might be transferred from the Fe host to inner vacancies of the moving Cr ions. The g-factor of the first 2 + state of 52 Cr was also measured by the transient field technique and found to be in accord with shell-model calculations

  8. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    Science.gov (United States)

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  9. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  10. Polarization Effects at a Muon Collider

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-01-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC)

  11. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  12. High-quality InN grown on KOH wet etched N-polar InN template by RF-MBE

    International Nuclear Information System (INIS)

    Muto, D.; Araki, T.; Kitagawa, S.; Kurouchi, M.; Nanishi, Y.; Naoi, H.; Na, H.

    2006-01-01

    We have succeeded in dramatically decreasing the density of dislocations in InN by regrowing InN films on micro-facetted N-polar InN templates. The micro-facetted N-polar InN templates were formed by wet etching in a 10 mol/l KOH solution. InN films were regrown on the micro-facetted N-polar InN templates and on flat surface N-polar InN templates for comparison by radio-frequency plasma-assisted molecular beam epitaxy. InN regrown on micro-facetted InN had considerably smaller twist distribution than that grown on the flat InN templates. From transmission electron microscopy observation, it was confirmed that the InN grown on the micro-facetted InN template had much lower density of dislocations than that grown on the flat InN template, and moreover the propagation of edge dislocations was almost completely terminated at the interface between the regrown InN and the micro-facetted InN template. Based on the results, we propose that regrowth of InN on micro-facetted InN templates is an effective way to obtain high-quality InN films. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  14. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  15. High-power fiber laser with a polarizing diffraction grating milled on the facet of an optical fiber

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Martin; Vaniš, Jan; Baravets, Yauhen; Todorov, Filip; Čtyroký, Jiří; Honzátko, Pavel

    2016-01-01

    Roč. 24, č. 26 (2016), s. 30225-30233 ISSN 1094-4087 R&D Projects: GA ČR GA15-07908S Institutional support: RVO:67985882 Keywords : Optical fibers * Polarization * Diffraction gratings Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.307, year: 2016

  16. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs

    DEFF Research Database (Denmark)

    Chung, Il-Sug

    2015-01-01

    -refractive-index media surrounding the HCG. This enables to achieve a very short effective cavity length for VCSELs, which is essential for ultrahigh speed VCSELs and MEMS-tunable VCSELs. The obtained understandings on polarization dependences will be able to serve as important design guidelines for various HCG...

  17. Comparing lightning polarity and cloud microphysical properties over regions of high ground flash density in South Africa

    CSIR Research Space (South Africa)

    Simpson, LA

    2011-09-01

    Full Text Available This study aims to find a correlation between lightning polarity and microphysical properties of a storm cloud, for events where large amounts of lightning damage have occured and/or there has been a reported lightning-related fatality....

  18. High-power fiber laser with a polarizing diffraction grating milled on the facet of an optical fiber

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Martin; Vaniš, Jan; Baravets, Yauhen; Todorov, Filip; Čtyroký, Jiří; Honzátko, Pavel

    2016-01-01

    Roč. 24, č. 26 (2016), s. 30225-30233 ISSN 1094-4087 R&D Projects: GA ČR GA15-07908S Institutional support: RVO:67985882 Keywords : Optical fiber s * Polarization * Diffraction gratings Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.307, year: 2016

  19. Creation of High Mobility Two-Dimensional Electron Gases via Strain Induced Polarization at an Otherwise Nonpolar Complex Oxide Interface

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Trier, Felix; Kasama, Takeshi

    2015-01-01

    The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Rem...

  20. Recent results of the STAR high-energy polarized proton-proton program at RHIC at BNL

    International Nuclear Information System (INIS)

    Surrow, Bernd

    2007-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at √(s) 200 - 500GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, ALL, for various processes. Recent results will be shown on the measurement of ALL for inclusive jet production, neutral pion production and charged pion production at √(s) = 200GeV. In addition to these measurements involving longitudinal polarized proton beams, the STAR collaboration has performed several important measurements employing transverse polarized proton beams. New results on the measurement of the transverse single-spin asymmetry, AN, for forward neutral pion production and the first measurement of AN for mid-rapidity di-jet production will be discussed

  1. High-energy azimuthally polarized laser beam generation from an actively Q-switched Nd:YAG laser with c-cut YVO4 crystal

    Science.gov (United States)

    Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao

    2018-05-01

    A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.

  2. A Wideband High-Gain Dual-Polarized Slot Array Patch Antenna for WiMAX Applications in 5.8 GHz

    Directory of Open Access Journals (Sweden)

    Amir Reza Dastkhosh

    2012-01-01

    Full Text Available A low-cost, easy-to-fabricate, wideband and high-gain dual-polarized array antenna employing an innovative microstrip slot patch antenna element is designed and fabricated. The design parameters of the antenna are optimized using commercial softwares (Microwave Office and Zeland IE3D to get the suitable -parameters and radiation patterns. Finally, the simulation results are compared to the experimental ones and a good agreement is demonstrated. The antenna has an approximately bandwidth of 14% (5.15–5.9 GHz which covers Worldwide Interoperability Microwave Access (WiMAX/5.8. It also has the peak gain of 26 dBi for both polarizations and high isolation between two ports over a wide bandwidth.

  3. Evolution with Composition of the d-Band Density of States at the Fermi Level in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Kuhns, P. L.; Hoch, M. J. R.; Reyes, A. P.; Moulton, W. G.; Wang, L.; Leighton, C.

    2006-04-01

    Highly spin polarized (SP) and half-metallic ferromagnetic systems are of considerable current interest and of potential importance for spintronic applications. Recent work has demonstrated that Co1-xFexS2 is a highly polarized ferromagnet (FM) where the spin polarization can be tuned by alloy composition. Using Co59 FM-NMR as a probe, we have measured the low-temperature spin relaxation in this system in magnetic fields from 0 to 1.0 T for 0≤x≤0.3. The Co59 spin-lattice relaxation rates follow a linear T dependence. Analysis of the data, using expressions for a FM system, permits information to be obtained on the d-band density of states at the Fermi level. The results are compared with independent density of states values inferred from electronic specific heat measurements and band structure calculations. It is shown that FM-NMR can be an important method for investigating highly SP systems.

  4. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  5. No Additional Benefits of Block- Over Evenly-Distributed High-Intensity Interval Training within a Polarized Microcycle.

    Science.gov (United States)

    McGawley, Kerry; Juudas, Elisabeth; Kazior, Zuzanna; Ström, Kristoffer; Blomstrand, Eva; Hansson, Ola; Holmberg, Hans-Christer

    2017-01-01

    Introduction: The current study aimed to investigate the responses to block- versus evenly-distributed high-intensity interval training (HIT) within a polarized microcycle. Methods: Twenty well-trained junior cross-country skiers (10 males, age 17.6 ± 1.5 and 10 females, age 17.3 ± 1.5) completed two, 3-week periods of training (EVEN and BLOCK) in a randomized, crossover-design study. In EVEN, 3 HIT sessions (5 × 4-min of diagonal-stride roller-skiing) were completed at a maximal sustainable intensity each week while low-intensity training (LIT) was distributed evenly around the HIT. In BLOCK, the same 9 HIT sessions were completed in the second week while only LIT was completed in the first and third weeks. Heart rate (HR), session ratings of perceived exertion (sRPE), and perceived recovery (pREC) were recorded for all HIT and LIT sessions, while distance covered was recorded for each HIT interval. The recovery-stress questionnaire for athletes (RESTQ-Sport) was completed weekly. Before and after EVEN and BLOCK, resting saliva and muscle samples were collected and an incremental test and 600-m time-trial (TT) were completed. Results: Pre- to post-testing revealed no significant differences between EVEN and BLOCK for changes in resting salivary cortisol, testosterone, or IgA, or for changes in muscle capillary density, fiber area, fiber composition, enzyme activity (CS, HAD, and PFK) or the protein content of VEGF or PGC-1α. Neither were any differences observed in the changes in skiing economy, [Formula: see text] or 600-m time-trial performance between interventions. These findings were coupled with no significant differences between EVEN and BLOCK for distance covered during HIT, summated HR zone scores, total sRPE training load, overall pREC or overall recovery-stress state. However, 600-m TT performance improved from pre- to post-training, irrespective of intervention ( P = 0.003), and a number of hormonal and muscle biopsy markers were also significantly

  6. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  7. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.; Frisch, J.; Kotseroglou, T.; Mulhollan, G.; Schultz, D.; Tang, H.; Turner, J.; Yeremian, A.D.

    1997-08-01

    Since 1992, the SLAC 3-km linac has operated exclusively with polarized electrons. The polarized electron source is highly reliable, remotely operated and monitored, and able to produce a variety of electron bunch profiles for high-energy physics experiments. The source and its operating characteristics are described. Some implications drawn from the operating experience are discussed

  8. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  9. Electro-optic switching and dielectric spectroscopy studies of ferroelectric liquid crystals with low and high spontaneous polarization

    Czech Academy of Sciences Publication Activity Database

    Malik, P.; Raina, K.K.; Bubnov, Alexej; Choudhary, A.; Singh, R.

    Roč. 519, č. 3 ( 2010 ), 1052-1055 ISSN 0040-6090 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047 Grant - others:RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : spontaneous polarization * ferroelectric liquid crystal * relaxation frequency * Goldstone mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  10. Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    CERN Document Server

    Ageev, E S; Alexandrov, Yu A; Alexeev, G D; Amoroso, A; Badelek, B; Balestra, F; Ball, J; Baum, G; Bedfer, Y; Berglund, P; Bernet, C; Bertini, R; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Bychkov, V N; Cerini, L; Chapiro, A; Cicuttin, A; Colantoni, M L; Colavita, A A; Costa, S; Crespo, M L; Dalla Torre, S; Das-Gupta, S S; Dedek, N; De Masi, R; Denisov, O Yu; Dhara, L; Díaz, V; Dinkelbach, A M; Dolgopolov, A V; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dünnweber, W; Ehlers, J; Eversheim, P D; Eyrich, W; Fabro, M; Faessler, Martin A; Falaleev, V; Fauland, P; Ferrero, A; Ferrero, L; Finger, Miroslav H; Finger, M Jr; Fischer, H; Franz, J; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S G; Geyer, R; Giorgi, M; Gobbo, B; Görtz, S; Gorin, A M; Grajek, O A; Grasso, A; Grube, B; Grünemaier, A; Hannappel, J; Von Harrach, D; Hasegawa, T; Hedicke, S; Heinsius, F H; Hermann, R; Hess, C; Hinterberger, F; Von Hodenberg, M; Horikawa, N; Horikawa, S; D'Hose, N; Ijaduola, R B; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Iwata, T; Jahn, R; Janata, A; Joosten, R; Jouravlev, N I; Kabuss, E M; Kalinnikov, V; Kang, D; Karstens, F; Kastaun, W; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Khomutov, N V; Kisselev, Yu V; Klein, F; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Königsmann, K C; Konoplyannikov, A K; Konorov, I; Konstantinov, V F; Korentchenko, A S; Korzenev, A; Kotzinian, A M; Koutchinski, N A; Kowalik, K L; Kravchuk, N P; Krivokhizhin, V G; Krumshtein, Z; Kühn, R; Kunne, Fabienne; Kurek, K; Ladygin, M E; Lamanna, M; Leberig, M; Le Goff, J M; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Manuilov, I V; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Matsuda, T; Maksimov, A N; Medved, K S; Meyer, W; Mielech, A; Mikhailov, Yu V; Moinester, M A; Nahle, O; Nassalski, J P; Neliba, S; Neyret, D P; Nikolaenko, V I; Nozdrin, A A; Obraztsov, V F; Olshevskii, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pereira, H D; Peshekhonov, V D; Piragino, G; Platchkov, S; Platzer, K; Pochodzalla, J; Polyakov, V A; Popov, A A; Pretz, J; Procureur, S; Quintans, C; Ramos, S; Rebourgeard, P C; Reicherz, G; Reymann, J; Rith, K; Rondio, Ewa; Rozhdestvensky, A M; Sadovski, A B; Saller, E; Samoylenko, V D; Sandacz, A; Sans, M; Sapozhnikov, M G; Savin, I A; Schiavon, Paolo; Schill, C; Schmidt, T; Schmitt, H; Schmitt, L; Shevchenko, O Yu; Shishkin, A A; Siebert, H W; Sinha, L; Sissakian, A N; Skachkova, A N; Slunecka, M; Smirnov, G I; Sozzi, F; Srnka, A; Stinzing, F; Stolarski, M; Sugonyaev, V P; Sulc, M; Sulej, R; Takabayashi, N; Tchalishev, V V; Tessarotto, F; Teufel, A; Thers, D; Tkatchev, L G; Toeda, T; Tretyak, V I; Trousov, S; Varanda, M; Virius, M; Vlassov, N V; Wagner, M; Webb, R; Weise, E; Weitzel, Q; Wiedner, U; Wiesmann, M; Windmolders, R; Wirth, S; Wislicki, W; Zanetti, A M; Zaremba, K; Zhao, J; Ziegler, R; Zvyagin, A

    2006-01-01

    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2 = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.

  11. Are liver and renal lesions in East Greenland polar bears (Ursus maritimus associated with high mercury levels?

    Directory of Open Access Journals (Sweden)

    Born Erik W

    2007-04-01

    Full Text Available Abstract Background In the Arctic, polar bears (Ursus maritimus bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida and bearded seals (Erignathus barbatus. Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. Methods We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59 and kidney (n = 57 tissues. Results Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p Conclusion Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs.

  12. The First Asymmetry Measurements in High-Energy Polarized Proton-Nucleus Collision at PHENIX-RHIC

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available The single spin asymmetries in very forward neutron production had been first observed about a decade ago at RHIC in transversely polarized proton + proton collision at √s = 200 GeV. Although neutron production near zero degrees is well described by the one-pion exchange (OPE framework, the OPE appeared to be not satisfactory to describe the observed analyzing power AN. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However the amplitude predicted by the OPE is too small to explain the large observed asymmetries. Only the model which introduces interference between major pion and small a1-Reggeon exchange amplitudes has been successful in reproducing the experimental data. During RHIC Run-15, RHIC delivered polarized proton collisions with Au and Al for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. A very striking A-dependence was discovered in very forward neutron production at PHENIX in transversely polarized proton + nucleus collision at √s = 200 GeV. Such a dependence has not been predicted from the existing framework which has been succesful in proton + proton collision. In this report, experimental and theoretical efforts are discussed to disentangle the mysterious A-dependence in the very forward neutron asymmetry.

  13. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  14. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  15. Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide

    International Nuclear Information System (INIS)

    Yang, Liu; Kou, Pengfei; Shen, Jianqi; Lee, El Hang; He, Sailing

    2015-01-01

    We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold–silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2–1.6 μm. Moreover, the Schottky contact is only 4 μm long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration. (paper)

  16. Sidereal semi-diurnal variation observed at high zenith angles at Mawson, 1968-1984, and the polarity of the solar main field

    International Nuclear Information System (INIS)

    Jacklyn, R.M.; Duldig, M.L.

    1985-01-01

    High zenith-angle North/South telescopes viewing equatorially and at midlatitudes through 40 MWE of atmosphere have been operating at Mawson since early 1968. It is evident that a sidereal semi-diurnal component of galactic origin has been observed, over and above a possible spurious component proposed by Nagashima, arising from a bi-directional component of the solar anisotropy. Although a very pronounced reduction in the semi-diurnal galactic response followed the reversal of polarity of the solar main field during 1969 to 1971, so far the observations indicate that there has been no recurrence of a larger galactic response following the reversal of polarity around 1981. The possible role of the latitudional extent lambda omicron of the wavy neutral sheet is discussed

  17. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    Science.gov (United States)

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl

  18. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    Science.gov (United States)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower

  19. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  20. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  1. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  2. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  3. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    International Nuclear Information System (INIS)

    Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.

    2016-01-01

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  4. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  5. Polarization preservation in the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization

  6. Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD

    Science.gov (United States)

    Omar, Al-Zuhairi; Shuhaimi Bin Abu Bakar, Ahmad; Makinudin, Abdullah Haaziq Ahmad; Khudus, Muhammad Imran Mustafa Abdul; Azman, Adreen; Kamarundzaman, Anas; Supangat, Azzuliani

    2018-05-01

    The effect of ammonia flux towards the quality of the semi-polar (11-22) gallium nitride thin film on m-plane (10-10) sapphire is presented. Semi-polar (11-22) gallium nitride epi-layers were obtained using a two-step growth method, consisting of high temperature aluminum nitride followed by gallium nitride via metal organic chemical vapor deposition. The surface morphology analysis via field emission scanning electron microscopy and atomic force microscopy of the semi-polar (11-22) gallium nitride has shown that low ammonia flux promotes two-dimensional growth with low surface roughness of 4.08 nm. A dominant diffraction peak of (11-22) gallium nitride was also observed via X-ray diffraction upon utilizing low ammonia flux. The on- and off-axis X-ray rocking curve measurements illustrate the enhancement of the crystal quality, which might result from the reduction of the basal stacking faults and perfect dislocation. The full width half maximum values were reduced by at least 15% for both on- and off-axis measurements.

  7. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  8. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; Khadka, Shantipriya; Jonnada, Murthy; El Rassi, Ziad

    2017-01-01

    This review article is a continuation of the previous reviews on the area of monolithic columns covering the progress made in the field over the last couple of years from the beginning of the second half of 2014 until the end of the first half of 2016. It summarizes and evaluates the evolvement of both polar and nonpolar organic monolithic columns and their use in hydrophilic interaction LC and CEC and reversed-phase chromatography and RP-CEC. The review article discusses the results reported in a total of 62 references. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of octanol-water partition coefficients of polar polycyclic aromatic compounds (N-PAC) by high performance liquid chromatography

    DEFF Research Database (Denmark)

    Helweg, C.; Nielsen, T.; Hansen, P.E.

    1997-01-01

    Prediction of 1-octanol water partition coefficients for a range of polar N-PAC from HPLC capacity coefficients has been investigated. Two commercially available columns, an ODS column and a Diol column were tested with water-methanol eluents. The best prediction of log K-ow for N-PAC was achieve...... with size and log K-ow for N-PAC was 1.1-1.3 lower than log K-ow for the equivalent PAH. Shielding of the nitrogen atom in the N-PAC compounds caused an increase in log K-ow. (C) 1997 Elsevier Science Ltd....

  10. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  11. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  12. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    Science.gov (United States)

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  13. Role of 14-3-3η protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus.

    Science.gov (United States)

    Sreedhar, Remya; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Koga, Yusuke; Nakamura, Takashi; Harima, Meilei; Watanabe, Kenichi

    2017-07-01

    Diabetic cardiomyopathy (DCM), a metabolic disorder, is one of the leading causes of mortality around the world and its pathogenesis involves cardiac inflammation and altered metabolic profile. Altered fatty acid metabolism during DCM can cause macrophage polarization in which inflammatory M1 phenotype dominates over the anti-inflammatory M2 phenotype. Hence, it is essential to identify a specific target, which could revert the metabolic profile and thereby reducing the M1 macrophage polarization. 14-3-3η protein has several cellular protective functions especially in the heart as plenty of reports available in various animal models of heart failure including diabetes mellitus. However, its role in the cardiac fatty acid metabolism and macrophage polarization remains unidentified. The present study has been designed to delineate the effect of cardiospecific dominant negative mutation of 14-3-3η protein (DN14-3-3) on various lipid metabolism related marker proteins expressions and cardiac macrophage phenotype in high fat diet (HFD) fed mice. Feeding HFD for 12 weeks has produced significant increase in body weight in the DN14-3-3 (TG) mice than C57BL6/J (WT) mice. Western blotting and immunohistochemical staining analysis of the heart tissue has revealed an increase in the expression of markers of cardiac fatty acid synthesis related proteins in addition to the reduced expression of fatty acid oxidation related proteins in TG mice fed HFD than WT mice fed HFD. Furthermore, the M1 macrophage marker proteins were increasingly expressed while M2 markers expressions were reduced in the hearts of TG mice fed HFD. In conclusion, our current study has identified that there is a definite role for the 14-3-3η protein against the pathogenesis of heart failure via regulation of cardiac fatty acid metabolism and macrophage polarization. Copyright © 2017. Published by Elsevier Ltd.

  14. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    Science.gov (United States)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  15. Polarized proton beams since the ZGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1994-01-01

    The author discusses research involving polarized proton beams since the ZGS's demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world's first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970's; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE

  16. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  17. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  18. ARGONNE/ NOVOSIBIRSK: Storing polarized deuterons

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Promising new results come from a collaboration between the Institute of Physics, Novosibirsk, and the US Argonne Laboratory, initiated in 1988 to look at the possibilities for using polarized (spin oriented) gas targets in high current electron storage rings, the object being to maximize target polarization levels

  19. Polarization in pp → p(baryon)

    International Nuclear Information System (INIS)

    Castillo-Vallejo, Victor M.; Felix, Julian

    2003-01-01

    It's introduced a calculation, which is based on symmetries followed by high energy hadronic interactions, of resonance polarization and specific angular momentum state polarization created in pp → p(baryon)

  20. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  1. DAQ systems for the high energy and nuclotron internal target polarimeters with network access to polarization calculation results and raw data

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2004-01-01

    On-line data acquisition (DAQ) system for the Nuclotron Internal Target Polarimeter (ITP) at the LHE, JINR, is explained in respect of design and implementation, based on the distributed data acquisition and processing system qdpb. Software modules specific for this implementation (dependent on ITP data contents and hardware layout) are discussed briefly in comparison with those for the High Energy Polarimeter (HEP) at the LHE, JINR. User access methods both to raw data and to results of polarization calculations of the ITP and HEP are discussed

  2. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection.

    Science.gov (United States)

    Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A

    2008-06-23

    In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

  3. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  4. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Soares-Silveira Alda

    2002-07-01

    Full Text Available Abstract Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ.

  5. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  6. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  7. ANÁLISIS DE LA FINALIZACIÓN DEL ATAQUE EN PARTIDOS IGUALADOS DE BALONMANO DE ALTO NIVEL MEDIANTE COORDENADAS POLARES [Analysis of the finalization of the attack in equalized games of high level handball using polar coordinates

    Directory of Open Access Journals (Sweden)

    Andrés González Ramírez

    2013-07-01

    Full Text Available En este trabajo se estudia la eficacia de la finalización del ataque en los momentos finales de partidos igualados de balonmano de alto nivel. Para ello se analizaron los diez minutos finales de 55 partidos pertenecientes a los CM 2011 y JJOO 2012 de categoría masculina y femenina donde el marcador final no superó los tres goles de diferencia entre ganador y perdedor. El diseño de la investigación se realizó siguiendo los pasos que establece la metodología observacional. Se construyó un instrumento de observación “ad hoc” y  se cumplieron los requisitos para garantizar la calidad del dato. Utilizando la técnica de coordenadas polares se representó la relación secuencial entre las diferentes conductas del sistema de categorías. Como resultados destacados se observó la vinculación entre la interceptación y la obtención de gol tanto en ganadores como en perdedores; la asociación de lanzamientos atajados a ganadores; y la relación de fallos de lanzamiento y errores previos al lanzamiento en perdedores.AbstractIn this job the efficiency of the finalization of the attack in the final moments of equalized high level handball games is studied. For that reason the last ten minutes of 55 male and female matches of the World Championship 2011 and Olympic Games 2012 where the final score was not over a 3 goal difference between winner and loser, were analyzed. The design of the investigation was following the guidelines established by the observational methodology. An observational instrument “ad hoc” was developed and the requirements to guaranteed the data quality were accomplished. Using the polar coordinate technique, the sequential relationship between the different behaviors of the category system was presented. As highlighted results the following were seen: relationship between the interception and a goal obtained either in winner or loser; the association of throws saved to winner; the relationship between mistakes in

  8. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides.

    Science.gov (United States)

    Kaczyński, Piotr

    2017-09-01

    This study reports an innovative and sensitive procedure for analysis of difficult high polar herbicides (HPH) in diverse foods of plant origin. The QuPPe (Quick Polar Pesticides) method followed by determination by LC-MS/MS was modified. Chromatographic conditions, extraction, clean-up, and matrix effect were studied. Several liquid chromatography stationary and mobile phases were evaluated, and it was found that hydrophilic interaction chromatography (HILIC) gives good retention and sensitivity. An acidified methanol-water mixture was used as an effective extraction solvent of eleven HPH. Dispersive solid-phase clean-up sorbents (C18, GCB, Florisil, chitosan and graphene) were evaluated. The efficiency of the method was examined using data on recovery, precision and matrix effects. High extraction yields were achieved, and recoveries were within the 64-97% range with relative standard deviations <20% for all HPH in all commodities. Low matrix effects were observed when graphene was used during clean-up of onion extract and when chitosan was used for wheat, potato and pea extract. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    Science.gov (United States)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  10. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors.

    Science.gov (United States)

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-12-14

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.

  11. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors

    Science.gov (United States)

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-01-01

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331

  12. Impact of AlN seeding layer growth rate in MOVPE growth of semi-polar gallium nitride structures on high index silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ravash, Roghaiyeh; Blaesing, Juergen; Hempel, Thomas; Noltemeyer, Martin; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-University Magdeburg, FNW/IEP/AHE, Postfach 4120, 39016 Magdeburg (Germany)

    2011-03-15

    We present metal organic vapor phase epitaxy growth of semi-polar GaN structures on high index silicon surfaces. The crystallographic structure of GaN grown on Si(112), (115), and (117) substrates is investigated by X-ray analysis and scanning electron microscopy. X-ray diffraction was performed in Bragg Brentano geometry as well as pole figure measurements. The results demonstrate that the orientation of GaN crystallites on Si is significantly dependent on thickness of the AlN seeding layer and TMAl-flow rate. We observe that the crystallographic structures of GaN by applying thin AlN seeding layers grown with high TMAl-flow rate depend on Si surface direction while they are independent for thicker layers. By applying such seeding layer we obtain single crystalline semi-polar GaN on Si(112), while GaN structures grown with the same growth parameters on Si(117) show four components of GaN(0002). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    Science.gov (United States)

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Microwave-gated dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bornet, Aurélien; Pinon, Arthur; Jhajharia, Aditya

    2016-01-01

    Dissolution dynamic nuclear polarization (D-DNP) has become a method of choice to enhance signals in nuclear magnetic resonance (NMR). Recently, we have proposed to combine cross-polarization (CP) with D-DNP to provide high polarization P((13)C) in short build-up times. In this paper, we show...

  15. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  16. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  17. HIGH-RESOLUTION 8 mm AND 1 cm POLARIZATION OF IRAS 4A FROM THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tobin, John [Leiden Observatory, Leiden University, P.O. Box 9513, 2000-RA Leiden (Netherlands); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Tychoniec, Łukasz [Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, PL-60-268 Poznań (Poland); Chandler, Claire J.; Perez, Laura M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kratter, Kaitlin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Sadavoy, Sarah I., E-mail: egcox2@illinois.edu [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany)

    2015-12-01

    Magnetic fields can regulate disk formation, accretion, and jet launching. Until recently, it has been difficult to obtain high-resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ∼0.″2 (50 AU) resolution at λ = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with β ∼ 1.3, suggesting that millimeter-/centimeter-sized grains have grown and survived in the short lifetime of the protostar.

  18. AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating

    Science.gov (United States)

    Liu, Xinke; Lu, Youming; Yu, Wenjie; Wu, Jing; He, Jiazhu; Tang, Dan; Liu, Zhihong; Somasuntharam, Pannirselvam; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun; Chen, Shaojun; Seow Tan, Leng

    2015-01-01

    Effect of a polarized P(VDF-TrFE) ferroelectric polymer gating on AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) was investigated. The P(VDF-TrFE) gating in the source/drain access regions of AlGaN/GaN MOS-HEMTs was positively polarized (i.e., partially positively charged hydrogen were aligned to the AlGaN surface) by an applied electric field, resulting in a shift-down of the conduction band at the AlGaN/GaN interface. This increases the 2-dimensional electron gas (2-DEG) density in the source/drain access region of the AlGaN/GaN heterostructure, and thereby reduces the source/drain series resistance. Detailed material characterization of the P(VDF-TrFE) ferroelectric film was also carried out using the atomic force microscopy (AFM), X-ray Diffraction (XRD), and ferroelectric hysteresis loop measurement. PMID:26364872

  19. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    Science.gov (United States)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  20. Simultaneous 10 Gbps data and polarization-based pulse-per-second clock transmission using a single VCSEL for high-speed optical fibre access networks

    Science.gov (United States)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.

  1. The Polar Cusp

    International Nuclear Information System (INIS)

    Holtet, J.A.; Egeland, A.

    1985-01-01

    The upper atmosphere at high latitudes is often called the ''earth's window to outer space.'' Through various electrodynamic coupling processes, as well as direct transfer of particles, many of the geophysical effects displayed are direct manifestations of phenomena occurring in deep space. The high latitude ionosphere also exerts a feedback on the regions of the magnetosphere and atmosphere to which it is coupled. Of particular interest are the sections of the near space known as the Polar Cusp. A vast portion of the Earth's magnetic field envelope is electrically connected to these regions. This geometry results in a spatial mapping of the magnetospheric processes and a focusing on the ionosphere. In the Polar Cusps, the solar wind plasma also has direct access to the upper atmosphere

  2. Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency

    Science.gov (United States)

    2016-03-03

    augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective...brightness of the display [7]. A key component for polarization management is polarizing beam splitter (PBS). Even though the PBS has exceptional...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and

  3. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  4. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  5. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2004-03-01

    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence

  6. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2004-03-01

    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the

  7. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often...... is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI...... affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher...

  8. Analysis of trace element compositions in adhesive cloth tapes using high-energy x-ray fluorescence spectrometer with three-dimensional polarization optics for forensic discrimination

    International Nuclear Information System (INIS)

    Goto, Akiko; Hokura, Akiko; Nakai, Izumi

    2008-01-01

    The forensic discrimination of adhesive cloth tapes often used in crimes was developed using a high-energy energy-dispersive X-ray fluorescence spectrometer with 3-dimensional polarization optics. The best measurement condition for discrimination of the tape was as follows: secondary targets, Rh and Al 2 O 3 ; measurement time, 300 s for Rh and 600 s for Al 2 O 3 ; 14 elements (Ca, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Zr, Nb, Mo, Sb, Ba and Pb) were used for discrimination. It is found that the combined information of yarn density and the XRF peak intensity of the 14 elements successfully discriminated 29 out of 31 samples, of which 2 probably had the same origin. This technique is useful for forensic analysis, because it is nondestructive, rapid and easy. Therefore, it can be applied to actual forensic identification. (author)

  9. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    Science.gov (United States)

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride-based dielectric film for high energy density capacitor

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2017-07-01

    Full Text Available It is essential to develop the dielectric energy storage capacitor for the modern electrical and electronic equipment. Here, the all-organic sandwich-structured composite with superior breakdown strength and delayed saturation polarization is presented. Furthermore, the energy storage characteristics of the composite are enhanced by the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene fiber and the redistribution of local electric field. The dielectric permittivity of composite increases to ∼16, and the discharged energy density is high to ∼8.7 J/cm3 at 360 kV/mm, and the breakdown strength is up to ∼408 kV/mm. The excellent performance of the composite broadens the application in the field of power electronics industry.

  11. High expression of Rac1 is correlated with partial reversed cell polarity and poor prognosis in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Liu, Bingbing; Xiong, Jianhua; Liu, Guiqiu; Wu, Jing; Wen, Likun; Zhang, Qin; Zhang, Chuanshan

    2017-07-01

    The change of cell polarity is usually associated with invasion and metastasis. Partial reverse cell polarity in IDC-NOS may play a role in lymphatic tumor spread. Rac1 is a kind of polarity related protein. It plays an important role in invasion and metastasis in tumors. We here investigated the expression of Rac1 and partial reverse cell polarity status in breast cancer and evaluated their value for prognosis in breast cancer. The association of the expression of Rac1 and MUC-1 with clinicopathological parameters and prognostic significance was evaluated in 162 cases of IDC-NOS paraffin-embedded tissues by immunohistochemical method. The Rac1 messenger RNA expression was measured by real-time polymerase chain reaction in 30 breast cancer patients, which was divided into two groups of partial reverse cell polarity and no partial reverse cell polarity. We found that lymph node metastasis of partial reverse cell polarity patients was higher than no partial reverse cell polarity patients (Z = -4.030, p = 0.000). Rac1 was upregulated in partial reverse cell polarity group than no partial reverse cell polarity group (Z = -3.164, p = 0.002), and there was correlationship between the expression of Rac1 and partial reverse cell polarity status (r s  = 0.249, p = 0.001). The level of Rac1 messenger RNA expression in partial reverse cell polarity group was significantly higher compared to no partial reverse cell polarity group (t = -2.527, p = 0.017). Overexpression of Rac1 and partial reverse cell polarity correlates with poor prognosis of IDC-NOS patients (p = 0.011). Partial reverse cell polarity and lymph node metastasis remained as independent predictors for poor disease-free survival of IDC-NOS (p = 0.023, p = 0.046). Our study suggests that partial reverse cell polarity may lead to poor prognosis of breast cancer. Overexpression of Rac1 may lead to polarity change in IDC-NOS of the breast. Therefore, Rac1 could be a

  12. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  13. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  14. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology

    Science.gov (United States)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel

    2016-04-01

    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  15. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    International Nuclear Information System (INIS)

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-01-01

    Herein, we introduced a tungsten disulfide (WS 2 ) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS 2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS 2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS 2 nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA glycosylase

  16. Dynamics of a charged particle in a linearly polarized traveling wave. Hamiltonian approach to laser-matter interaction at very high intensities

    International Nuclear Information System (INIS)

    Bourdier, A.; Patin, D.

    2005-01-01

    The basic physical processes in laser-matter interaction, up to 10 17 W/cm 2 (for a neodymium laser) are now well understood, on the other hand, new phenomena evidenced in particle-in-cell code simulations have to be investigated above 10 18 W/cm 2 . Thus, the relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is studied, here, using the Hamiltonian formalism. First, the motion of a single particle in a linearly polarized traveling wave propagating in a non-magnetized space is explored. The problem is shown to be integrable. The results obtained are compared to those derived considering a cold electron plasma model. When the phase velocity is close to c, it is shown that the two approaches are in good agreement during a finite time. After this short time, when the plasma response is taken into account no chaos take place at least when considering low densities and/or high wave intensities. The case of a charged particle in a traveling wave propagating along a constant homogeneous magnetic field is then considered. The problem is shown to be integrable when the wave propagates in vacuum. The existence of a synchronous solution is shown very simply. In the case when the wave propagates in a low density plasma, using a simplifying Lorentz transformation, it is shown that the system can be reduced to a time-dependent system with two degrees of freedom. The system is shown to be non-integrable, chaos appears when a secondary resonance and a primary resonance overlap. Finally, stochastic instabilities are studied by considering the motion of one particle in a very high intensity wave perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. (authors)

  17. Recent advance in polar seismology: Global impact of the International Polar Year

    Science.gov (United States)

    Kanao, Masaki; Zhao, Dapeng; Wiens, Douglas A.; Stutzmann, Éléonore

    2015-03-01

    The most exciting initiative for the recent polar studies was the International Polar Year (IPY) in 2007-2008. The IPY has witnessed a growing community of seismologists who have made considerable efforts to acquire high-quality data in polar regions. It also provided an excellent opportunity to make significant advances in seismic instrumentation of the polar regions to achieve scientific targets involving global issues. Taking these aspects into account, we organize and publish a special issue in Polar Science on the recent advance in polar seismology and cryoseismology as fruitful achievements of the IPY.

  18. Accelerating and storing polarized hadron beams

    International Nuclear Information System (INIS)

    Teng, L.C.

    1990-10-01

    Polarization hadron experiments at high energies continue to generate surprises. Many questions remain unanswered or unanswerable within the frame work of QCD. These include such basic questions as to why at high energies the polarization analyzing power in pp elastic scattering remains high, why hyperons are produced with high polarizations etc. It is, therefore, interesting to investigate the possibilities of accelerating and storing polarized beams in high energy colliders. On the technical side the recent understanding and confirmation of the actions of partial and multiple Siberian snakes made it possible to contemplate accelerating and storing polarized hadron beams to multi-TeV energies. In this paper, we will examine the equipment, the operation and the procedure required to obtain colliding beams of polarized protons at TeV energies

  19. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J H; Brindle, C; Axon, D J; Bailey, J; Sparks, W B

    1987-02-15

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10/sup 41/ erg s/sup -1/. This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear.

  20. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    International Nuclear Information System (INIS)

    Hough, J.H.; Brindle, C.; Axon, D.J.; Bailey, J.; Sparks, W.B.

    1987-01-01

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10 41 erg s -1 . This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear. (author)