WorldWideScience

Sample records for polar field precursor

  1. Apical Polarity Protein PrkCi Is Necessary for Maintenance of Spinal Cord Precursors in Zebrafish

    OpenAIRE

    Roberts, Randolph K.; Appel, Bruce

    2009-01-01

    During development, neural precursors divide to produce new precursors and cells that differentiate as neurons and glia. In Drosophila, apicobasal polarity and orientation of the mitotic spindle play important roles in specifying the progeny of neural precursors for different fates. We examined orientation of zebrafish spinal cord precursors using time-lapse imaging and tested the function of protein kinase C, iota (PrkCi), a member of the Par complex of proteins necessary for apicobasal pola...

  2. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  3. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  4. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents.

    Science.gov (United States)

    Chen, Chao; Leavey, Shannon; Krasner, Stuart W; Mel Suffet, I H

    2014-06-15

    Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents. This tool takes advantages of the polarity rapid assessment method (PRAM) and ultrafiltration (UF) (molecular weight distribution) to locate the fractions with the strongest contributions to the nitrosamine precursor pool in the effluent organic matter. Strong cation exchange (SCX) and C18 solid-phase extraction cartridges were used for their high selectivity for nitrosamine precursors. The details of PRAM operation, such as cartridge clean-up, capacity, pH influence, and quality control were included in this paper, as well as the main parameters of UF operation. Preliminary testing of the PRAM/UF method with effluents from one wastewater treatment plant gave very informative results. SCX retained 45-90% of the N-nitrosodimethylamine (NDMA) formation potential (FP)-a measure of the precursors-in secondary and tertiary wastewater effluents. These results are consistent with NDMA precursors likely having a positively charged amine group. C18 adsorbed 30-45% of the NDMAFP, which indicates that a substantial portion of these precursors were non-polar. The small molecular weight (MW) (10 kDa) fractions obtained from UF were the primary contributors to NDMAFP. The combination of PRAM and UF brings important information on the characteristics of nitrosamine precursors in water with easy operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characterization of Partially Polarized Light Fields

    CERN Document Server

    Martínez-Herrero, Rosario; Piquero, Gemma

    2009-01-01

    Polarization involves the vectorial nature of light fields. In current applications of optical science, the electromagnetic description of light with its vector features has been shown to be essential: In practice, optical radiation also exhibits randomness and spatial non-uniformity of the polarization state. Moreover, propagation through photonic devices can alter the correlation properties of the light field, resulting in changes in polarization. All these vectorial properties have been gaining importance in recent years, and they are attracting increasing attention in the literature. This is the framework and the scope of the present book, which includes the authors’ own contributions to these issues.

  6. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  7. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  8. The wireless networking system of Earthquake precursor mobile field observation

    Science.gov (United States)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  9. Polarized particle levitation in hexapole field

    International Nuclear Information System (INIS)

    Jones, T.B.; Kallio, G.A.; Robinson, K.S.

    1976-06-01

    Proposed here is a novel electrostatic levitation scheme which uses the force exerted by a non-uniform electric field on a polarized particle. The scheme differs from conventional quadrupole levitation devices principally in that the levitated particle is uncharged. In order to provide the proper force required to achieve dynamic stabilization, a very intense non-uniform time-varying electric field produced by a three-dimensional hexapole electrode structure is utilized. The primary advantage of this levitation scheme might accrue in target fabrication operations where particle charge is undesirable or where reproducible charging of the particles themselves is difficult, due to high resistivity. The disadvantages of this scheme, as compared to charged particle levitation, are (i) a more complex electrode structure and (ii) significantly higher voltages. The scheme has possible application to molecular mass spectrometry, in situations where un-ionized but strongly polar or polarizable molecules are to be trapped or confined for analysis

  10. Is there a field-theoretic explanation for precursor biopolymers?

    Science.gov (United States)

    Rosen, Gerald

    2002-08-01

    A Hu-Barkana-Gruzinov cold dark matter scalar field phi may enter a weak isospin invariant derivative interaction that causes the flow of right-handed electrons to align parallel to (inverted delta phi). Hence, in the outer regions of galaxies where (inverted delta phi) is large, as in galactic halos, the derivative interaction may induce a chirality-imbued quantum chemistry. Such a chirality-imbued chemistry would in turn be conducive to the formation of abundant precursor biopolymers on interstellar dust grains, comets and meteors in galactic halo regions, with subsequent delivery to planets in the inner galactic regions where phi and (inverted delta phi) are concomitantly near zero and left-right symmetric terrestrial quantum chemistry prevails.

  11. Trees and Fields and Negative Polarity

    DEFF Research Database (Denmark)

    Vikner, Sten

    2011-01-01

    The paper takes as its point of departure a comparison between two kinds of approaches to clause structure, namely tree analyses like the generative analysis and field analyses like the sætningsskema analysis of Danish of Diderichsen (1946) and many others (or like the topologische Modell analysis...... to accounting for negative polarity items in English, Danish and German, both the more straightforward aspects and the more complex ones, e.g. the so-called NPI-verbs as well as the interaction between NPI-elements and because-clauses...

  12. Can Polar Fields Explain Missing Open Flux?

    Science.gov (United States)

    Linker, J.; Downs, C.; Caplan, R. M.; Riley, P.; Mikic, Z.; Lionello, R.

    2017-12-01

    The "open" magnetic field is the portion of the Sun's magnetic field that extends out into the heliosphere and becomes the interplanetary magnetic field (IMF). Both the IMF and the Sun's magnetic field in the photosphere have been measured for many years. In the standard paradigm of coronal structure, the open magnetic field originates primarily in coronal holes. The regions that are magnetically closed trap the coronal plasma and give rise to the streamer belt. This basic picture is qualitatively reproduced by models of coronal structure using photospheric magnetic fields as input. If this paradigm is correct, there are two primary observational constraints on the models: (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Linker et al. (2017, ApJ, submitted) investigated the July 2010 time period for a range of observatory maps and both PFSS and MHD models. We found that all of the model/map combinations underestimated the interplanetary magnetic flux, unless the modeled open field regions were larger than observed coronal holes. An estimate of the open magnetic flux made entirely from solar observations (combining detected coronal hole boundaries with observatory synoptic magnetic maps) also underestimated the interplanetary magnetic flux. The magnetic field near the Sun's poles is poorly observed and may not be well represented in observatory maps. In this paper, we explore whether an underestimate of the polar magnetic flux during this time period could account for the overall underestimate of open magnetic flux. Research supported by NASA, AFOSR, and NSF.

  13. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  14. HI-SCALE Nanoparticle Composition and Precursors Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James [Univ. of California, Irvine, CA (United States); Stark, Harald [Aerodyne Research, Inc., Billerica, MA (United States); Browne, Eleanor [Univ. of Colorado, Boulder, CO (United States); Hanson, David [Augsburg College, Minneapolis, MN (United States)

    2017-06-15

    From 21 August to 27 September, 2016, during the second Intensive Operational Period (IOP) of the Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecoystems (HI-SCALE) field campaign, a suite of instruments were placed in the Guest Instrument Facility (GIF) at the Central Facility of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site in Lamont, Oklahoma. The goal of these measurements was to fully characterize the formation and evolution of atmospheric aerosol particles through measurements of gas-phase precursor and ambient nanoparticle composition. Specifically, we sought to: 1. investigate the role of acid-base chemistry in new-particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; 2. investigate the contribution of other surface-area or volume-controlled processes to nanoparticle formation and growth, such as the uptake of extremely low volatility organic compounds (ELVOCs); 3. evaluate the performance of a new instrument being developed with funding from the DOE Small Business Innovation Research (SBIR) program for measuring gas-phase amines and related compounds; and 4. together with colleagues measuring on the ground and onboard the ARM Gulfstream-1 (G-1) aircraft during HI-SCALE, create a comprehensive data set related to new particle formation and growth that can be used in modeling efforts by the research team as well as DOE collaborators.

  15. Polarization-dependent optics using gauge-field metamaterials

    International Nuclear Information System (INIS)

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-01-01

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework

  16. Degrees of polarization for a quantum field

    International Nuclear Information System (INIS)

    Sanchez-Soto, L L; Soederholm, J; Yustas, E C; Klimov, A B; Bjoerk, G

    2006-01-01

    Unpolarized light is invariant with respect to any SU(2) polarization transformation. Since this fully characterizes the set of density matrices representing unpolarized states, we introduce the degree of polarization of a quantum state as its distance to the set of unpolarized states. We discuss different candidates of distance, and show that they induce fundamentally different degrees of polarization

  17. Managing focal fields of vector beams with multiple polarization singularities.

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  18. Atomic processes in strong bichromatic elliptically polarized laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Odžak, S., E-mail: senad.odzak@gmail.com; Hasović, E.; Gazibegović-Busuladžić, A.; Čerkić, A., E-mail: anercerkic@yahoo.com; Fetić, B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegovina); Kramo, A. [BHANSA, Aeronautical Meteorology Department, Kurta Schorka 36, 71000 Sarajevo (Bosnia and Herzegovina); Busuladžić, M. [Medical Faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo (Bosnia and Herzegovina); Milošević, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegovina); Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo (Bosnia and Herzegovina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2016-03-25

    Nonlinear quantum-mechanical phenomena in strong laser fields, such as high-order harmonic generation (HHG) and above-threshold ionization (ATI) are significantly modified if the applied laser field is bichromatic and/or elliptically polarized. Numerical results obtained within the strong-field approximation are presented for two special cases. We show results for HHG by plasma ablation in a bichromatic linearly polarized laser field. We also consider the ATI process in bicircular field which consists of two coplanar counter-rotating circularly polarized fields.

  19. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  20. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  1. Vector optical fields with bipolar symmetry of linear polarization.

    Science.gov (United States)

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  2. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  3. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  4. Polarization singularities of the object field of skin surface

    International Nuclear Information System (INIS)

    Angelsky, O V; Ushenko, A G; Ushenko, Yu A; Ushenko, Ye G

    2006-01-01

    The paper deals with the investigation of formation mechanisms of laser radiation polarization structure scattered by an optically thin surface layer of human skin in two registration zones: a boundary field and a far zone of Fraunhofer diffraction. The conditions of forming polarization singularities by such an object in the scattered radiation field have been defined. Statistical and fractal polarization structure of object fields of physiologically normal and pathologically changed skin has been studied. It has been shown that polarization singularities of radiation scattered by physiologically normal skin samples have a fractal coordinate structure. It is characteristic for fields of pathologically changed skin to have a statistical coordinate structure of polarization singularities in all diffraction zones

  5. Continuous control of spin polarization using a magnetic field

    Science.gov (United States)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  6. Continuous control of spin polarization using a magnetic field

    International Nuclear Information System (INIS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-01-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  7. Continuous control of spin polarization using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y., E-mail: tingyong.chen@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-05-23

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  8. Electron heating, magnetic field amplification, and cosmic-ray precursor length at supernova remnant shocks

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Hwang, Una [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Rakowski, Cara, E-mail: laming@nrl.navy.mil, E-mail: Una.Hwang-1@nasa.gov, E-mail: pghavamian@towson.edu

    2014-07-20

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and it may be quenched by either nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to 10{sup 17}-10{sup 18} cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly generated shock precursor, which when expressed in terms of the cosmic-ray diffusion coefficient kappav and shock velocity v{sub s} is kappav/v{sub s} . In the nonresonantly saturated case, the precursor length declines less quickly with increasing v{sub s} . Where precursor length proportional to 1/v{sub s} gives constant electron heating, this increased precursor length could be expected to lead to higher electron temperatures for nonresonant amplification. This should be expected at faster supernova remnant shocks than studied by previous works. Existing results and new data analysis of SN 1006 and Cas A suggest some observational support for this idea.

  9. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  10. Sky light polarization detection with linear polarizer triplet in light field camera inspired by insect vision.

    Science.gov (United States)

    Zhang, Wenjing; Cao, Yu; Zhang, Xuanzhe; Liu, Zejin

    2015-10-20

    Stable information of a sky light polarization pattern can be used for navigation with various advantages such as better performance of anti-interference, no "error cumulative effect," and so on. But the existing method of sky light polarization measurement is weak in real-time performance or with a complex system. Inspired by the navigational capability of a Cataglyphis with its compound eyes, we introduce a new approach to acquire the all-sky image under different polarization directions with one camera and without a rotating polarizer, so as to detect the polarization pattern across the full sky in a single snapshot. Our system is based on a handheld light field camera with a wide-angle lens and a triplet linear polarizer placed over its aperture stop. Experimental results agree with the theoretical predictions. Not only real-time detection but simple and costless architecture demonstrates the superiority of the approach proposed in this paper.

  11. SNR polarization and the direction of the magnetic field

    International Nuclear Information System (INIS)

    Milne, D.K.

    1988-01-01

    The authors are currently engaged in a program to map polarization in SNRs at 8.4 GHz. These results are compared with earlier Parkes 5 GHz maps to deduce the direction of magnetic field, Faraday rotation and depolarization

  12. Evidence that polar cap arcs occur on open field lines

    International Nuclear Information System (INIS)

    Gussenhoven, M.S.; Hardy, D.A.; Rich, F.J.; Mullen, E.G.; Redus, R.H.

    1990-01-01

    The characteristics of polar cap arc occurrence are reviewed to show that the assumption of a closed magnetospheric magnetic field topology at very high latitudes when the IMF B z is strongly northward is difficult to reconcile with a wide variety of observational and theoretical considerations. In particular, we consider the implications of observations of particle entry for high and low energy electrons, magnetic flux conservation between the near and far tail, the time sequencing in polar cap arcs events, and the hemispherical differences in polar cap arc observations. These points can be explained either by excluding the need for a major topological magnetic field change from explanations of polar cap arc dynamics, or by assuming a long-tailed magnetosphere for all IMF orientations in which magnetic field lines eventually merge with solar wind field lines in either a smooth or a patchy fashion. (author)

  13. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  14. Energy and polarization of the telluric field in correlation with seismic activity in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Vargemezis, G.; Tsokas, G. N. [Geophysical Laboratory of Thessaloniki, Thessaloniki (Greece); Zlotnicki, J. [Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand (France)

    2001-04-01

    Many attempts have been made to disclose anomalous changes of the electromagnetic field in relation with tectonic earthquakes. It was tentatively developed a new approach based on the energy and polarity of the electric field, and apply this method to the seismicity in Greece. The study of the parameters of the horizontal electric field is realized in a time interval of five years. The data allows the study of long-term variations of the field. Further, it was examined the possible relation of the geoelectric activity with long distance seismicity (up to 500 km). The energy of the electric signal was estimated and correlated with the logarithm of the seismic moment (M{sub 0}). The values of the seismic moment estimated for each earthquake were summed for daily intervals, and the logarithm of the sum was computed. The same process was applied to the energy of the geoelectric field. Then, a correlation was attempted between the energy of the geoelectric field and the seismic moment referring to daily intervals. In two cases, changes in the energy of the horizontal geoelectric field were observed before the burst of the seismic activity. The energy of the telluric field increased several months before the burst of seismic activity and recovered right after the occurrence of the mainshocks. The hodograms of the horizontal geoelectric field show polarization changes regardless of the magnetic field. This is possibly attributed to the process of generation of electric currents before major earthquakes. Due to high and continuous regional seismicity in Greece, it was impossible to attribute the response of the polarization to the activation of specific seismic areas. It seems that the long-term energy variations of the horizontal geoelectric field as well as the polarization could be used in tandem with other possible precursors in order to contribute to earthquake prediction studies.

  15. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    International Nuclear Information System (INIS)

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-01-01

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.

  16. Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis

    Directory of Open Access Journals (Sweden)

    Y. Ida

    2008-07-01

    Full Text Available An improved analysis of polarization (as the ratio of vertical magnetic field component to the horizontal one has been developed, and applied to the approximately four years data (from 1 March 2003 to 31 December 2006 observed at Kashi station in China. It is concluded that the polarization ratio has exhibited an apparent increase only just before the earthquake on 1 September 2003 (magnitude = 6.1 and epicentral distance of 116 km.

  17. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. How the geomagnetic field vector reverses polarity

    Science.gov (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  19. Vacuum polarization in Coulomb field revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zamastil, J., E-mail: zamastil@karlov.mff.cuni.cz; Šimsa, D.

    2017-04-15

    Simplified derivation of Wichmann–Kroll term is presented. The derivation uses two formulas for hypergeometric functions, but otherwise is elementary. It is found that Laplace transform of the vacuum charge density diverges at zero momentum transfer. This divergence has nothing to do with known ultraviolet divergence. The latter is related to the large momentum behavior of the pertinent integral, while the former to the small momentum behavior. When these divergences are removed, the energy shift caused by vacuum polarization for an ordinary hydrogen obtained here is in an exact agreement with the result obtained by Wichmann and Kroll. Also, for muonic hydrogen the result obtained here reasonably agrees with that given in literature.

  20. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  1. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  2. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  3. Vacuum polarization of massless fields in black holes

    International Nuclear Information System (INIS)

    Zel'nikov, A.I.; Frolov, V.P.

    1987-01-01

    This chapter contains a detailed survey of the fundamental results from an investigation of the contribution of massless fields to vacuum polarization near black holes. A method is developed for calculating the vacuum average energy-momentum tensor for the electromagnetic field on the surface of a black hole. An explicit value is derived for the renormalized energy-momentum tensor of an electromagnetic field near the event horizon of a rotating black hole

  4. Cosmic microwave background polarization signals from tangled magnetic fields.

    Science.gov (United States)

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500polarization, which could help in their detection.

  5. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  6. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  7. Three-dimensional polarization states of monochromatic light fields.

    Science.gov (United States)

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  8. Near-field circular polarization probed by chiral polyfluorene

    NARCIS (Netherlands)

    Savoini, M.; Biagioni, P.; Lakhwani, G.; Meskers, S.C.J.; Duò, L.; Finazzi, M.

    2009-01-01

    We demonstrate that a high degree of circular polarization can be delivered to the near field (NF) of an aperture at the apex of hollow-pyramid probes for scanning optical microscopy. This result is achieved by analyzing the dichroic properties of an annealed thin polymer film containing a chiral

  9. Three dimensional alignment of molecules using elliptically polarized laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Hald, K.

    2000-01-01

    We demonstrate, theoretically and experimentally, that an intense, elliptically polarized, nonresonant laser field can simultaneously force all three axes of a molecule to align along given axes fixed in space, thus inhibiting the free rotation in all three Euler angles. Theoretically, the effect...

  10. Polar Magnetic Field Reversals of the Sun in Maunder Minimum

    Indian Academy of Sciences (India)

    tribpo

    The data on polar migration of solar magnetic fields were obtained on the basis of. Η alpha magnetic synoptic charts for 1880 1991 using Kodaikanal, Kislovodsk and Italian observations, and Atlas of Η alpha charts (Mclntosh 1979; Makarov &. Fatianov 1980; Makarov & Sivaraman 1989; Makarov 1994). The Wolf numbers ...

  11. Local field in LiD polarized target material

    CERN Document Server

    Kisselev, Yu V; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Horikawa, N; Koivuniemi, J H; Kondo, K; Magnon, A; Meyer, Werner T; Reicherz, G

    2004-01-01

    We have experimentally studied the first and the second moments of D, **6Li and **7Li (I greater than 1/2) NMR lines in a granulated LiD- target material as a function of nuclear polarizations and the data has been compared with a theory elaborated by Abragam, Roinel and Bouffard for monocrystalline samples. The experiments were carried out in the large COMPASS twin-target at CERN. The static local magnetic field of the polarized nuclei was measured by frequency shift between the NMR-signals in the two oppositely polarized cells and lead to the first moment, whereas the investigation of the second moment was done through Gaussian approximation. The average field magnitude in granulated material was estimated 20% larger than the value given by the calculations for monocrystalline samples of cylindrical shape. The second moment shows a qualitative agreement with the theory but it is slightly larger at the negative than at the positive polarization. In a polarized mode, the moments depend on the saturated microw...

  12. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di; Clemens, D. P.; Krco, Marko

    2011-01-01

    We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A V ∼ 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 μG and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales (∼2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

  13. Magnetic field reversals, polar wander, and core-mantle coupling.

    Science.gov (United States)

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  14. Single-particle spectra and magnetic field effects within precursor superconductivity

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.; Perali, A.

    2004-01-01

    We study the single-particle spectra below the superconducting critical temperature from weak to strong coupling within a precursor superconductivity scenario. The spectral-weight function is obtained from a self-energy that includes pairing-fluctuations within a continuum model representing the hot spots of the Brillouin zone. The effects of strong magnetic fields on the pseudogap temperature are also discussed within the same scenario

  15. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  16. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  17. A study of the inferred interplanetary magnetic field polarity periodicities

    International Nuclear Information System (INIS)

    Xanthakis, J.; Tritakis, V.P.; Zerefos, Ch.

    1981-01-01

    A detailed Power Spectrum Analysis applied on the daily polarities of the inferred interplanetary magnetic field, published by Svalgaard, has pointed out that the main periodicity apparent in these data is 27-28 days, which suggests a recurrency of a 2-sector structure. There is also a secondary periodicity of 13-14 days which mainly appears in the yers of the descending branch of the solar cycle and superimposes on the 2-sector structure, transforming it into a 4-sector structure. A strict statistical study of the correlation between the predominant polarity of the interplanetary magnetic field and the heliographic latitude of the Earth, also known as the Rosenberg-Coleman effect, pointed out that perhaps there is a faint correspondence between these two elements, but one cannot speak of a systematic effect. (Auth.)

  18. A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments

    NARCIS (Netherlands)

    Hartla, Paul; Tauxe, Lisa

    1995-01-01

    The period some 20-25 kyr just prior to the most recent generally recognized geomagnetic field polarity transition, the Matuyama-to-Brunhes reversal, appears to be marked by significant geomagnetic variability, manifested as pronounced oscillations in intensity. We compare several previously

  19. Classical origins of stabilization in circularly polarized laser fields

    International Nuclear Information System (INIS)

    Chism, Will; Choi, Dae-Il; Reichl, L. E.

    2000-01-01

    We investigate the interaction of a two-dimensional model atom with an intense, high-frequency circularly polarized laser pulse. As the laser intensity is increased, the ionization rate initially increases, then decreases dramatically, with the electron wave function developing an asymmetric ring form which rotates with the electric field. We provide evidence that this wave form is due to localization of the electron onto nonlinear classical structures. (c) 2000 The American Physical Society

  20. Polarization behaviour of polyvinylidenefluoride-polysulfone (PVDF: PSF) blends under high field and high temperature condition

    Science.gov (United States)

    Shrivas, Sandhya; Patel, Swarnim; Dubey, R. K.; Keller, J. M.

    2018-05-01

    Thermally stimulated discharge currents of PVDF: PSF blend samples in ratio 80:20 and 95:05 prepared by the solution cast technique have been studied as a function of polarizing field and polarizing temperature, the temperature corresponding to a peak in TSDC is found to be independent of polarizing field but dependent on the polarizing temperature.

  1. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  2. Radical polarization in double switching of external magnetic field

    International Nuclear Information System (INIS)

    Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.

    1999-01-01

    Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Investigation of Polarization Phase Difference Related to Forest Fields Characterizations

    Science.gov (United States)

    Majidi, M.; Maghsoudi, Y.

    2013-09-01

    The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  4. INVESTIGATION OF POLARIZATION PHASE DIFFERENCE RELATED TO FOREST FIELDS CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    M. Majidi

    2013-09-01

    Full Text Available The information content of Synthetic Aperture Radar (SAR data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L., red pine (Pinus resinosa Ait., jack pine (Pinus banksiana Lamb., white spruce (Picea glauca (Moench Voss, black spruce (Picea mariana (Mill B.S.P., poplar (Populus L., red oak (Quercus rubra L. , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  5. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  6. International Field School on Permafrost, Polar Urals, 2012

    Science.gov (United States)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the

  7. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  8. Solar Polar Field Observed by SOHO/MDI and Hinode

    Science.gov (United States)

    Liu, Y.

    2009-12-01

    Using 1-minute cadence time-series full disk magnetograms taken by SOHO/MDI in 2007 March, and the corresponding Hinode/SOT vector magnetograms, I have studied evolutionary characteristics of magnetic elements in Sun's south polar region in solar minimum. It is found that the lifetime of magnetic elements is 17.0 hours on average with an average lifetime of 21.8 hours for elements with positive field, the dominant polarity in the south pole, and 1.6 hours for elements with negative field. The elements with positive field are dominant in the south pole with a percentage of 76% in element number and 90.5% in magnetic flux. The lifetime and magnetic flux of the elements is found to be highly related. This agrees with some previous studies for the elements in low latitude quiet regions. Using an image cross correlation method, I also measure solar rotation rate at high latitude, up to 85° in latitude, which is ω = 2.914-0.342 × sin2φ-0.482×sin4φ μrad/s sidereal. It agrees with previous studies using spectroscopic and image cross correlation methods, and also agrees with the results from some work using the element tracking method in which the sample of tracked elements is large. The consistency of those results from different data and methods strongly suggests that this rate at high latitude is reliable.

  9. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  10. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    Science.gov (United States)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  11. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  12. Effect of the interplanetary magnetic field on the distribution of electric fields in the polar ionosphere

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1985-08-01

    Heppner (1972), in an analysis of satellite data, observed 12 types of electric-field distributions in the polar ionosphere along the morning-evening meridian. In the present paper it is shown that these distribution types can be described by the analytical model of Uvarov and Barashkov (1984). In this model the excitation of the electric fields is investigated by solving the set of continuity equations for current in three regions (the north and south polar caps and a region outside the caps) with allowance for the magnetic conjugacy of the ionosphere in the two hemispheres.

  13. Intermediate polars as low-field magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Wickramasinghe, D.T.; Kinwah Wu; Ferrario, Lilia

    1991-01-01

    We present the first detailed calculations of the polarization properties of extended accretion shocks on the surface of a magnetic white dwarf where allowance is made both for field spread and for the change in shock height as a function of specific accretion rate. These results are used to show conclusively that the null detection of circular polarization in most IPs imply fields of less than 5 MG. We suggest that the X-ray properties of MCVs depends critically on the fractional area of the white-dwarf surface over which accretion occurs, and on the type of accretion (smooth or clumpy). We argue that in the known IPs, accretion occurs via a disc. The accretion flow is smooth and a strong shock forms making them a powerful source of hard X-rays. We propose that there is a new class of MCV distinct from the IPs, where the white dwarf is asynchronous and accretes without a disc in which the accretion is clumpy and the radiation is mainly in the EUV region. (author)

  14. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  15. Plasma polarization spectroscopy on the ECR helium plasma in a cusp magnetic field

    International Nuclear Information System (INIS)

    Sato, T.; Iwamae, A.; Fujimoto, T.; Uchida, M.; Maekawa, T.

    2004-01-01

    Helium emission lines have been observed on the ECR plasma in a cusp field with the polarized components resolved. The polarization map is constructed for the 501.6 nm (2 1 S-3 1 P) line emission. Lines from n 1 P and n 1 D levels are strongly polarized and those from n 3 D levels are weakly polarized. As the helium pressure increases the polarization degree decreases. (author)

  16. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  17. Near-field microwave detection of corrosion precursor pitting under thin dielectric coatings in metallic substrate

    International Nuclear Information System (INIS)

    Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.

    2003-01-01

    Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS TM scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented

  18. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  19. Graphene Dirac point tuned by ferroelectric polarization field

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  20. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    Science.gov (United States)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  1. Optimization of s-Polarization Sensitivity in Apertureless Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Yuika Saito

    2012-01-01

    Full Text Available It is a general belief in apertureless near-field microscopy that the so-called p-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, the s-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to the s-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements with s-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined the s-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that the s-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.

  2. Radio polarization and magnetic field structure in M 101

    Science.gov (United States)

    Berkhuijsen, E. M.; Urbanik, M.; Beck, R.; Han, J. L.

    2016-04-01

    We observed total and polarized radio continuum emission from the spiral galaxy M 101 at λλ 6.2 cm and 11.1 cm with the Effelsberg telescope. The angular resolutions are 2.´ 5 (=5.4 kpc) and 4.´ 4 (=9.5 kpc), respectively. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R = 16 kpc (=7.´ 4), where it steepens to an exponential scale length of L ≃ 5 kpc, which is about 2.5 times smaller than at Rchange in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R = 16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 μG at R = 70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 μG at Rmechanism. We show that energetic events causing H I shells of mean diameter pitch angles that are about 8° larger than those of H I filaments. Based on observations with the 100 m telescope of the MPIfR at Effelsberg.FITS files of the images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A114

  3. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  4. Heliospheric magnetic field polarity inversions driven by radial velocity field structures

    Czech Academy of Sciences Publication Activity Database

    Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 33, č. 14 (2006), L14101/1-L14101/5 ISSN 0094-8276 Grant - others:European Commission(XE) HRPN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * magnetic field polarity inversions * microstreams * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.602, year: 2006

  5. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    Science.gov (United States)

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  6. Electromagnetically induced transparency in the case of elliptic polarization of interacting fields

    Science.gov (United States)

    Parshkov, Oleg M.

    2018-04-01

    The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.

  7. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  8. Rydberg atoms in circular polarization: Classical stabilization in optical frequency fields

    International Nuclear Information System (INIS)

    Chism, Will; Reichl, L.E.

    2002-01-01

    We investigate the classical dynamics of the Rydberg atom in circularly polarized laser fields, restricted to the two-dimensional plane of polarization. We use a Poincare surface of section to study nonlinear resonance structures for optical frequency driving fields. We demonstrate the existence and morphology of these structures as the laser intensity transitions from moderate to intense

  9. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  10. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  11. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  12. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    Science.gov (United States)

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  13. Recent progress on the unified theory of polarization and coherence for stochastic electromagnetic fields

    DEFF Research Database (Denmark)

    Wang, Wei; Zhao, Juan; Hu, Xiaoying

    2017-01-01

    All optical fields undergo random fluctuation and the underlying theory referred to as coherence and polarization of optical fields has played a fundamental role as an important manifestation of the random fluctuations of the electric fields. In this paper, we reviewed our recent theoretical...... and experimental work on the unified theory of polarization and coherence including coherence tensor wave, degree of coherence tensor, degree of generalized Stokes parameters, and their applications including coherence tensor holography and two-point resolution of polarimetric imaging....

  14. Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal.

    Science.gov (United States)

    Letcher, Robert J; Chu, Shaogang; McKinney, Melissa A; Tomy, Gregg T; Sonne, Christian; Dietz, Rune

    2014-10-01

    Perfluorooctane sulfonate (PFOS) has been reported to be among the most concentrated persistent organic pollutants in Arctic marine wildlife. The present study examined the in vitro depletion of major PFOS precursors, N-ethyl-perfluorooctane sulfonamide (N-EtFOSA) and perfluorooctane sulfonamide (FOSA), as well as metabolite formation using an assay based on enzymatically viable liver microsomes for three top Arctic marine mammalian predators, polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat (Rattus rattus) serving as a general mammalian model and positive control. Rat assays showed that N-EtFOSA (38 nM or 150 ng mL(-1)) to FOSA metabolism was >90% complete after 10 min, and at a rate of 23 pmol min(-1) mg(-1) protein. Examining all species in a full 90 min incubation assay, there was >95% N-EtFOSA depletion for the rat active control and polar bear microsomes, ∼65% for ringed seals, and negligible depletion of N-EtFOSA for beluga whale. Concomitantly, the corresponding in vitro formation of FOSA from N-EtFOSA was also quantitatively rat≈polar bear>ringed seal>beluga whale. A lack of enzymatic ability and/or a rate too slow to be detected likely explains the lack of N-EtFOSA to FOSA transformation for beluga whale. In the same assays, the depletion of the FOSA metabolite was insignificant (p>0.01) and with no concomitant formation of PFOS metabolite. This suggests that, in part, a source of FOSA is the biotransformation of accumulated N-EtFOSA in free-ranging Arctic ringed seal and polar bear. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  16. Assessing the Polarization of a Quantum Field from Stokes Fluctuations

    DEFF Research Database (Denmark)

    Klimov, A. B.; Björk, G.; Söderholm, J.

    2010-01-01

    We propose an operational degree of polarization in terms of the variance of the Stokes vector minimized over all the directions of the Poincaré sphere. We examine the properties of this second-order definition and carry out its experimental determination. Quantum states with the same standard...

  17. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  18. NMR at earth's magnetic field using para-hydrogen induced polarization

    NARCIS (Netherlands)

    Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M.

    2011-01-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal

  19. A high field optical-pumping spin-exchange polarized deuterium source

    International Nuclear Information System (INIS)

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  20. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  1. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  2. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  3. Spin dynamics of electrons in strong fields studied via bremsstrahlung from a polarized electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav [Royal Institute of Technology, Stockholm (Sweden); Stockholm University (Sweden); Physikalisches Institut, Universitaet Heidelberg (Germany); Baeck, Torbjoern; Cederwall, Bo; Khaplanov, Anton; Schaessburger, Kai-Uwe [Royal Institute of Technology, Stockholm (Sweden); Barday, Roman; Enders, Joachim; Poltoratska, Yuliya [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Surzhykov, Andrey [Physikalisches Institut, Universitaet Heidelberg (Germany); GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2011-07-01

    Linear polarization of the photons emitted in the process of the atomic field electron bremsstrahlung has been studied at the newly developed 100 keV polarized electron source of TU Darmstadt. A correlation between the initial orientation of the electron spin and the degree and the angle of photon linear polarization has been measured for the first time. For this purpose a hard x-ray Compton polarimeter consisting of a segmented high purity germanium detector and an external passive photon scattering target have been applied. Linear polarization sensitive Compton and Rayleigh photon scattering distributions have been sampled by the segmented detector. The observed polarization correlation reveals a precession of the electron spin as it moves in the field of the nucleus. The full-relativistic calculations for the case of radiative recombination into a Rydberg series limit have been corroborated by the measurement. The results of this experiment suggest a new method for electron beam polarimetry.

  4. Polarization operator in quantum electrodynamics with a pair-producing external field

    International Nuclear Information System (INIS)

    Barashev, V.P.; Shvartsman, Sh.M.; Shabad, A.E.

    1986-01-01

    Various radiative processes with one-photon initial state are treated in QED with pair-producing external field. It is shown that the probabilities of such processes are expressed in terms of two different polarization operators. For the case of a constant field the polarization operator which is expressed through the so-called causal Green electron function, is calculated. This operator has never been calculated previously. It enters the formula for probability of production of N arbitrary pairs by a photon

  5. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  6. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  7. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  8. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  9. Polarization of the vacuum by a stochastic external field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.; Rozhavskii, A.S.

    1988-01-01

    The effect of disorder, realized in the form of a fluctuating extra mass term, on the bosonic vacuum and fermionic vacuum of models of quantum field theory is studied. A method is developed for calculating the mean effective potential in the stochastic external field. For a model of interacting scalar and fermion fields in (3+1)-dimensional space-time it is shown that random fluctuations of the mass lead to an increase of the equilibrium mean scalar field in the system

  10. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  11. General solution for calculating polarization electric fields in the auroral ionosphere and application examples

    Science.gov (United States)

    Amm, O.; Fujii, R.; VanhamäKi, H.; Yoshikawa, A.; Ieda, A.

    2013-05-01

    We devise an approach to calculate the polarization electric field in the ionosphere, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups, and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field of its potential which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, and the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate our theory, we then apply it to two simple models of auroral electrodynamic situations, the first being a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, and a morning sector auroral arc with only a weak conductance enhancement, but a large southward primary electric field at the poleward flank of the arc. While the significance of the polarization electric field for maximum Cowling efficiency is large for the first case, it is rather minor for the second one. Both models show that the polarization electric field effect may not only change the magnitude of the current systems but also their overall geometry. Furthermore, the polarization electric field may extend into regions where the primary electric field is small, thus even dominating the total electric field in these regions. For the first model case, the total Joule heating integrated over the analysis area decreases by a factor of about 4 for maximum Cowling efficiency as compared to the case of vanishing Cowling efficiency

  12. Characteristics of magnetospheric convective electric fields as mapped onto the polar caps

    International Nuclear Information System (INIS)

    Saunders, R.S.

    1976-01-01

    A study is made of the open connected magnetosphere using two numerical computer models: the Hones-Taylor (1965), with image and internal dipoles being the only sources, and the Mead-Williams (1965) with a current sheet added. The objectives of the study are to demonstrate that steady state field line connection across the magnetopause is a possible mechanism for producing the polar cap electric fields detected there, and to show the interesting characteristics of such fields. A review of the literature pertinent to the polar cap electric fields is included

  13. Sequential double photodetachment of He- in elliptically polarized laser fields

    Science.gov (United States)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  14. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  15. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  16. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  17. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  18. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  19. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  20. ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R.; Robbrecht, E.

    2009-01-01

    The Sun's polar fields are currently ∼40% weaker than they were during the previous three sunspot minima. This weakening has been accompanied by a corresponding decrease in the interplanetary magnetic field (IMF) strength, by a ∼20% shrinkage in the polar coronal-hole areas, and by a reduction in the solar-wind mass flux over the poles. It has also been reflected in coronal streamer structure and the heliospheric current sheet, which only showed the expected flattening into the equatorial plane after sunspot numbers fell to unusually low values in mid-2008. From latitude-time plots of the photospheric field, it has long been apparent that the polar fields are formed through the transport of trailing-polarity flux from the sunspot latitudes to the poles. To address the question of why the polar fields are now so weak, we simulate the evolution of the photospheric field and radial IMF strength from 1965 to the present, employing a surface transport model that includes the effects of active region emergence, differential rotation, supergranular convection, and a poleward bulk flow. We find that the observed evolution can be reproduced if the amplitude of the surface meridional flow is varied by as little as 15% (between 14.5 and 17 m s -1 ), with the higher average speeds being required during the long cycles 20 and 23.

  1. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  2. Robust sky light polarization detection with an S-wave plate in a light field camera.

    Science.gov (United States)

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.

  3. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  4. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  5. Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.

    Science.gov (United States)

    Alonso, Miguel A

    2004-11-01

    New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.

  6. Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths....... Is is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realise imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical...

  7. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    Science.gov (United States)

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that

  8. Polarization effects in above-threshold ionization with a mid-infrared strong laser field

    Science.gov (United States)

    Kang, Hui-Peng; Xu, Song-Po; Wang, Yan-Lan; Yu, Shao-Gang; Zhao, Xiao-Yun; Hao, Xiao-Lei; Lai, Xuan-Yang; Pfeifer, Thomas; Liu, Xiao-Jun; Chen, Jing; Cheng, Ya; Xu, Zhi-Zhan

    2018-05-01

    Using a semiclassical approach, we theoretically study the above-threshold ionization of magnesium by intense, mid-infrared laser pulses. The formation of low-energy structures in the photoelectron spectrum is found to be enhanced by comparing with a calculation based on the single-active electron approximation. By performing electron trajectory and recollision-time distribution analysis, we demonstrate that this phenomenon is due to the laser-induced ionic core polarization effects on the recolliding electrons. We also show that the polarization effects should be experimentally detectable. Our finding provides new insight into ultrafast control of strong-field photoionization and imaging of polar molecules.

  9. Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data

    Directory of Open Access Journals (Sweden)

    N. A. Tsyganenko

    2009-04-01

    Full Text Available A detailed statistical study of the magnetic structure of the dayside polar cusps is presented, based on multi-year sets of magnetometer data of Polar and Cluster spacecraft, taken in 1996–2006 and 2001–2007, respectively. Thanks to the dense data coverage in both Northern and Southern Hemispheres, the analysis spanned nearly the entire length of the cusps, from low altitudes to the cusp "throat" and the magnetosheath. Subsets of data falling inside the polar cusp "funnels" were selected with the help of TS05 and IGRF magnetic field models, taking into account the dipole tilt and the solar wind/IMF conditions. The selection funnels were shifted within ±10° of SM latitude around the model cusp location, and linear regression parameters were calculated for each sliding subset, further divided into 10 bins of distance in the range 2≤R≤12 RE, with the following results. (1 Diamagnetic depression, caused by the penetrated magnetosheath plasma, becomes first visible at R~4–5 RE, rapidly deepens with growing R, peaks at R~6–9 RE, and then partially subsides and widens in latitude at the cusp's outer end. (2 The depression peak is systematically shifted poleward (by ~2° of the footpoint latitude with respect to the model cusp field line, passing through the min{|B|} point at the magnetopause. (3 At all radial distances, clear and distinct peaks of the correlation between the local By and By(IMF and of the corresponding proportionality coefficient are observed. A remarkably regular variation of that coefficient with R quantitatively confirms the field-aligned geometry of the cusp currents associated with the IMF By, found in earlier observations.

  10. Spin-polarized neutron matter at different orders of chiral effective field theory

    OpenAIRE

    Sammarruca, F.; Machleidt, R.; Kaiser, N.

    2015-01-01

    Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...

  11. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  12. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  13. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  14. A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-05-01

    Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).

  15. General method for calculating polarization electric fields produced by auroral Cowling mechanism and application examples

    Science.gov (United States)

    Vanhamäki, Heikki; Amm, Olaf; Fujii, Ryo; Yoshikawa, Aki; Ieda, Aki

    2013-04-01

    The Cowling mechanism is characterized by the generation of polarization space charges in the ionosphere in consequence of a partial or total blockage of FAC flowing between the ionosphere and the magnetosphere. Thus a secondary polarization electric field builds up in the ionosphere, which guarantees that the whole (primary + secondary) ionospheric current system is again in balance with the FAC. In the Earth's ionosphere the Cowling mechanism is long known to operate in the equatorial electrojet, and several studies indicate that it is important also in auroral current systems. We present a general method for calculate the secondary polarization electric field, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. Here the Cowling efficiency is defined as the fraction of the divergent Hall current canceled by secondary Pedersen current. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups (like an auroral arc), and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field or its potential, which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, for which the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate the effect of Cowling mechanism on ionospheric current systems, we apply our method to two simple models of auroral electrodynamic situations: 1) a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, 2) a morning sector auroral arc with only a weak conductance

  16. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  17. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.

    Science.gov (United States)

    Rui, Guanghao; Chen, Jian; Wang, Xiaoyan; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-10-17

    The propagation and focusing properties of light beams continue to remain a research interest owning to their promising applications in physics, chemistry and biological sciences. One of the main challenges to these applications is the control of polarization distribution within the focal volume. In this work, we propose and experimentally demonstrate a method for generating a focused beam with arbitrary homogeneous polarization at any transverse plane. The required input field at the pupil plane of a high numerical aperture objective lens can be found analytically by solving an inverse problem with the Richard-Wolf vectorial diffraction method, and can be experimentally created with a vectorial optical field generator. Focused fields with various polarizations are successfully generated and verified using a Stokes parameter measurement to demonstrate the capability and versatility of proposed technique.

  18. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  19. Chaotic scattering from hydrogen atoms in a circularly polarized laser field

    International Nuclear Information System (INIS)

    Okon, Elias; Parker, William; Chism, Will; Reichl, Linda E.

    2002-01-01

    We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of chaos in the dynamics of the atom-field system

  20. Internal electric fields of electrolytic solutions induced by space-charge polarization

    Science.gov (United States)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  1. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  2. Polarization leakage in epoch of reionization windows - III. Wide-field effects of narrow-field arrays

    Science.gov (United States)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; de Bruyn, A. G.; Pandey, V. N.; Gehlot, B. K.

    2018-05-01

    Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic side-lobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the `EoR window' of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and North Celestial Pole (NCP) fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-k∥ that could potentially leak to Stokes I. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes I because of the primary beam. We find that the rms fractional leakage over the instrumental k-space is 0.35 {per cent} in the 3C196 field and 0.27 {per cent} in the NCP field, and it does not change significantly within the diameters of 15°, 9°, and 4°. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes I is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.

  3. Magnetic-field fluctuations from 0 to 26 Hz observed from a polar-orbiting satellite

    International Nuclear Information System (INIS)

    Erlandson, R.E.; Zanetti, L.J.; Potemra, T.A.

    1989-01-01

    The polar orbit of the Viking satellite provides a unique opportunity to obtain observations of magnetic fluctuations at mid-altitudes on the dayside of the magnetosphere and in the polar-cusp region. One type of magnetic-field fluctuation, observed in the dayside magnetosphere, was Pc 1 waves. Pc 1 waves are in the electromagnetic ion-cyclotron mode and are generated by anisotropies in energetic ion distributions. The waves are thought to be generated near the equator and to propagate large distances along magnetic-field lines. Most observations of Pc 1 waves have been obtained near the equator using geosynchronous satellites and on the surface of the earth. The Viking observations provide an opportunity to observe Pc 1 waves at mid-latitudes above the ionosphere and to determine the spectral structure and polarization of the waves. ULF/ELF broadband noise represents a second type of magnetic fluctuation acquired by Viking. This type of magnetic fluctuation was observed at high latitudes near the polar cusp and may be useful in the identification of polar-cusp boundaries. Thirdly, electromagnetic ion-cyclotron waves have also been observed in the polar-cusp region. These waves occur only during an unusually high level of magnetic activity and appear to be generated locally

  4. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  5. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  6. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  7. Estimation of polarization distribution on gold nanorods system from hierarchical features of optical near-field

    Science.gov (United States)

    Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu

    2018-02-01

    To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.

  8. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  9. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  10. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  11. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    Science.gov (United States)

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of-view (MFOV) secondary-polarization lidar signals are used to...use secondary polarization. A mathematical relation among the PSD, the lidar fields of view, the scattering angles, and the angular depolarization

  12. Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Ting-Yu; Zhang, Xiaobo; Zhong, Li-Xin; Chew, Khian-Hooi

    2015-01-01

    Based on a pair of coupled 2D nonlinear Schrödinger equations, the collapse dynamics of a vector field with hybrid states of polarization (SoP) in a Kerr medium is demonstrated. The critical power for an optical field to collapse is present, and the full vectorial numerical simulations provide detailed information about the evolution and partial collapse of the vector field in a Kerr medium. Our results reveal that the optical field prefers to collapse in linearly-polarization, as a result of the self-focusing effect difference in linearly, elliptically and circularly polarized components. The SoP in the field cross-section changes and propagates with a spiral trajectory when the vector beams are imposed with a vortex. The vectorial effect on the collapse of a vector optical field can prevail over the noise even though it reaches 10% amplitude of the optical field. The unique feature of these structured collapses of a vector optical field may lead to new phenomena in the interaction of light with matter. (paper)

  13. Lagrange and Noether analysis of polarization laws of conservation for electromagnetic field

    International Nuclear Information System (INIS)

    Krivskij, I.Yu.; Simulik, V.M.

    1988-01-01

    Both well-known Bessel-Hagen conservation laws and conservation laws of polarized character are derived for electromagnetic field in the Lagrange approach to electrodynamics in terms of intensities (without using the A μ potentials as variation variables). The laws mentioned are derived according to Noether theorem because symmetry to which such concervation laws correspond is lost during the transition from intensities to potentials. Based on Noether theorem (and its generalization for Naeik's symmetries) and Lagrange function scalar in relation to complete Poincare group in terms of intensity tensor, a convenient formula for calculating and values conserved for electromagnetic field is derived which sets up a physically adequate symmetry operator -conservation law correlation and thus links the presence of conservation laws of polarized character with symmetry properties of Maxwell equations. Adiabaticity of conservation laws of polarized character under the presence of interaction with currents and charges is indicated

  14. Theory of the photoelectric effect assisted by an elliptically polarized laser field

    International Nuclear Information System (INIS)

    Li Shumin; Jentschura, Ulrich D

    2009-01-01

    The laser-assisted photoelectric effect in atomic hydrogen is investigated for linear, circular and general elliptic polarizations. The perturbative dressed state of the atom in an elliptically polarized nonresonant laser field is derived in the velocity gauge. The continuum state of the ejected electron is described by a Coulomb-Volkov wavefunction. Numerical results show that the ionization cross section by a vacuum ultraviolet photon is enhanced at high laser field intensities and low frequencies. At small and extremely large scattering angles (measured with respect to the wave vector of the incoming vacuum ultraviolet photon), the process for emitting a laser photon is predominant, while at medium angles, the result favours the process without a laser photon exchange. The dependence of the results on the laser polarization and on various geometries is studied, and an interesting pattern is found for the dependence on the frequency of the dressing laser; an intuitive explanation is offered.

  15. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  16. Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3

    Science.gov (United States)

    Bordács, S.; Farkas, D. G.; White, J. S.; Cubitt, R.; DeBeer-Schmitt, L.; Ito, T.; Kézsmárki, I.

    2018-04-01

    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ˜5 T . In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization perpendicular to the rhombohedral axis.

  17. Variation of linear and circular polarization persistence for changing field of view and collection area in a forward scattering environment

    Science.gov (United States)

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; Kemme, Shanalyn A.; Dereniak, Eustace L.

    2016-05-01

    We present experimental and simulation results for a laboratory-based forward-scattering environment, where 1 μm diameter polystyrene spheres are suspended in water to model the optical scattering properties of fog. Circular polarization maintains its degree of polarization better than linear polarization as the optical thickness of the scattering environment increases. Both simulation and experiment quantify circular polarization's superior persistence, compared to that of linear polarization, and show that it is much less affected by variations in the field of view and collection area of the optical system. Our experimental environment's lateral extent was physically finite, causing a significant difference between measured and simulated degree of polarization values for incident linearly polarized light, but not for circularly polarized light. Through simulation we demonstrate that circular polarization is less susceptible to the finite environmental extent as well as the collection optic's limiting configuration.

  18. Photometry and Multipolar Magnetic Field Modeling of Polars: BY Camelopardalis and FL Ceti

    Directory of Open Access Journals (Sweden)

    P. A. Mason

    2015-02-01

    Full Text Available We present new broad band optical photometry of two magnetic cataclysmic variable stars, the asynchronous polar BY Camelopardalis and the short period polar FL Ceti. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald Observatory with 3s and 1s integration times respectively. In an attempt to understand the observed complex changes in accretion flow geometry observed in BY Cam, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures. We investigate fields with increasing complexity including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry at various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are broadly consistent with optical photometry. FL Ceti is observed to have two very small accretion regions at the foot-points of the white dwarf’s magnetic field. Both accretion regions are visible at the same time in the high state and are about 100 degrees apart. MHD modeling using a dipole plus quadrupole field structure yields quite similar accretion regions as those observed in FL Ceti. We conclude that accretion flows calculated from MHD modeling of multi-polar magnetic fields produce synthetic light curves consistent with photometry of these magnetic cataclysmic variables.

  19. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    Science.gov (United States)

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    Science.gov (United States)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  1. Electromagnetic near-field coupling induced polarization conversion and asymmetric transmission in plasmonic metasurfaces

    Science.gov (United States)

    Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang

    2018-04-01

    In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.

  2. Phases of a polar spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2007-01-01

    The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation

  3. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    Science.gov (United States)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  4. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  5. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  6. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  7. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  8. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  9. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Directory of Open Access Journals (Sweden)

    Zhu Shiming

    2018-01-01

    Full Text Available A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  10. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Science.gov (United States)

    Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune

    2018-04-01

    A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  11. Dielectric polarization and electric field distortion due to heavy ions impinging on silicon detectors

    International Nuclear Information System (INIS)

    Parlog, M.; Wieleczko, J.P.; Parlog, M.; Hamrita, H.; Borderie, B.; Lavergne, L.; Rivet, M.F.

    2003-01-01

    The polarization of the electron-hole pairs induced by 80 MeV 12 C in a silicon detector was considered and connected to the relative dielectric permittivity, locally increased. The exact coordinate dependence of the modified electric field - inside and outside the ion range - was found as the solution of the one dimension Poisson's equation for the electric potential in this inhomogeneous medium. The improvement of the signal simulation is encouraging, as compared to an undisturbed electric field case. (authors)

  12. Types of electric field distribution and corresponding types of convection in the polar ionosphere. Model

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1989-01-01

    All types of distributions, known due to the experiment, for Ee-m electric field evening-morning component along morning-evening meridian are reproduced and corresponding types of convection in polar ionosphere are calculated on the basis of model of continuous distribution of E large-scale electric fields. Two-, three- and four-whirl types of convection are realized depending on conditions in interplanetary medium

  13. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  14. Disturbing the coherent dynamics of an excitonic polarization with strong terahertz fields

    Science.gov (United States)

    Drexler, M. J.; Woscholski, R.; Lippert, S.; Stolz, W.; Rahimi-Iman, A.; Koch, M.

    2014-11-01

    We present a paper based on combining four-wave mixing and strong fields in the terahertz frequency range to monitor the time evolution of a disturbed excitonic polarization in a multiple quantum well system. Our findings not only confirm a lower field-dependent ionization threshold for higher excitonic states, but furthermore provide experimental evidence for intraexcitonic Rabi flopping in the time domain. These measurements correspond to the picture of a reversible and irreversible transfer as previously predicted by a microscopic theory.

  15. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  16. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped...

  17. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    Energy Technology Data Exchange (ETDEWEB)

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J. [Departement de Physique, Universite de Montreal and Centre de Recherche en Astrophysique du Quebec (CRAQ), C. P. 6128, succ. centre-ville, Montreal (Quebec) H3C 3J7 (Canada); Collaboration: MiMeS Collaboration

    2013-02-20

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  18. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    International Nuclear Information System (INIS)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.

    2013-01-01

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the ∼0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B ∼ 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  19. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    International Nuclear Information System (INIS)

    Arora, V; Parsai, E; Mathew, D; Tanny, S; Sperling, N

    2016-01-01

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements were made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.

  20. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Arora, V; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States); Mathew, D [University of Minnesota, Minneapolis, MN (United States); Tanny, S [SUNY Upstate Medical University, Syracuse NY (United States); Sperling, N [University of Toledo Medical Center, Sylvania, OH (United States)

    2016-06-15

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements were made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.

  1. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Finlay, Chris; Hesse, M.

    2017-01-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagneticmain field. Observations from...... the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine...

  2. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  3. Effect of nonlinearity of spin interaction with electromagnetic resonance field on characteristics of polarized nuclear target

    International Nuclear Information System (INIS)

    Vertij, A.A.; Gavrilov, S.P.; Shestopalov, V.P.

    1990-01-01

    Interaction of incident nuclear particle beam with J = 1/2 (neutrons) spin and (J = 1/2) protons with the target substance is considered. It is shown that neutron polarization at the target exit and neutron transparency (G) of the target depend significantly on incident wave amplitude level and physical parameter values which characterize the target, such as target temperature, resonator mirror reflection factor, number of spins interacting with the field, etc. Under interaction of neutrons with a target resonator which features a high mirror reflection factor and low losses for absorption which is not related to magnetic dipole absorption, a bistable response of neutron polarization and G manifests itself. 1 ref

  4. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  5. A rate-equation model for polarized laser-induced fluorescence to measure electric field in glow discharge He plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Watanabe, M.; Oda, T.

    1998-01-01

    Possibility of applying polarized laser-induced fluorescence (LIF) spectroscopy for measuring the electric field in a plasma with a large collisional depolarization has been investigated. A rate equation model including the depolarization process was employed to analyze the time evolution of LIF polarization components. The polarized LIF pulse shapes observed in the sheath of a He glow discharge plasma were successfully reproduced, and the electric field distribution was obtained with high accuracy. (author)

  6. Multiphoton processes in the field of two-frequency circularly polarized plane electromagnetic waves

    International Nuclear Information System (INIS)

    Yu, An

    1997-01-01

    The authors solve Dirac's equation for an electron in the field of a two-frequency plane electromagnetic wave, deriving general formulae for the probabilities of radiation of a photon by the electron, and for the probabilities for pair production by a photon when the two-frequency wave is circularly polarized. In contrast to the case of a monochromatic-plane electromagnetic wave, when an electron is in the field of a two-frequency circularly polarized wave, besides the absorption of multiphotons and emission of simple harmonics of the individual waves, stimulated multiphoton emission processes and various composite harmonic-photon emission processes are occurred: when a high-energy photon is in a such a field, multiphoton processes also follow the pair production processes

  7. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  8. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  9. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  10. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  11. L lines, C points and Chern numbers: understanding band structure topology using polarization fields

    Science.gov (United States)

    Fösel, Thomas; Peano, Vittorio; Marquardt, Florian

    2017-11-01

    Topology has appeared in different physical contexts. The most prominent application is topologically protected edge transport in condensed matter physics. The Chern number, the topological invariant of gapped Bloch Hamiltonians, is an important quantity in this field. Another example of topology, in polarization physics, are polarization singularities, called L lines and C points. By establishing a connection between these two theories, we develop a novel technique to visualize and potentially measure the Chern number: it can be expressed either as the winding of the polarization azimuth along L lines in reciprocal space, or in terms of the handedness and the index of the C points. For mechanical systems, this is directly connected to the visible motion patterns.

  12. Control of coercive field in lithium niobate crystals with repeated polarization reversal

    International Nuclear Information System (INIS)

    Ro, Jung Hoon; Jeong, Doun; Park, Taeyong; Kim, Chulhan; Kwon, Soon-Bok; Cha, Myoungsik; Choi, Byeong Cheol; Yu, Nanei; Kurimura, Sunao; Jeon, Gyerok

    2005-01-01

    In this study, the amount of decrease in coercive field of congruent lithium niobate during repeated poling and back-poling was measured. The polarization is reversed in 300 ms and then back-poled during the rest period. The coercive field can be decreased around 1 kV/mm with a repeated poling interval of 5 s. As the interval prolonged, the poling field decrease became smaller, and a stretched exponential function is suggested for the experimental fitting resulting in a set of meaningful parameters. These values are essential for the design of high quality domain engineering

  13. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  14. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  15. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rychetsky, Monir, E-mail: monir.rychetsky@physik.tu-berlin.de; Avinc, Baran; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Koslow, Ingrid; Rass, Jens; Kneissl, Michael [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Hoffmann, Veit; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Wild, Johannes; Zweck, Josef [Fakultät für Physik, University of Regensburg, Regensburg (Germany); Witzigmann, Bernd [Computational Electronics and Photonics Group and CINSaT, University of Kassel, Kassel (Germany)

    2016-03-07

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (−0.50 ± 0.07) MV/cm for In{sub 0.08}Ga{sub 0.92}N/GaN, (0.90 ± 0.13) MV/cm for Al{sub 0.18}Ga{sub 0.82}N/GaN, and (2.0 ± 0.3) MV/cm for Al{sub 0.31}Ga{sub 0.69}N/GaN heterostructures.

  16. Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA

    Science.gov (United States)

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Yen, Hsi-Wei; Su, Yu-Nung; Takakuwa, Shigehisa

    2018-03-01

    We present the first ALMA dust polarization observations toward the high-mass star-forming regions W51 e2, e8, and W51 North in Band 6 (230 GHz) with a resolution of about 0\\buildrel{\\prime\\prime}\\over{.} 26 (∼5 mpc). Polarized emission in all three sources is clearly detected and resolved. Measured relative polarization levels are between 0.1% and 10%. While the absolute polarization shows complicated structures, the relative polarization displays the typical anticorrelation with Stokes I, although with a large scatter. Inferred magnetic (B) field morphologies are organized and connected. Detailed substructures are resolved, revealing new features such as comet-shaped B-field morphologies in satellite cores, symmetrically converging B-field zones, and possibly streamlined morphologies. The local B-field dispersion shows some anticorrelation with the relative polarization. Moreover, the lowest polarization percentages together with largest dispersions coincide with B-field convergence zones. We put forward \\sin ω , where ω is the measurable angle between a local B-field orientation and local gravity, as a measure of how effectively the B field can oppose gravity. Maps of \\sin ω for all three sources show organized structures that suggest a locally varying role of the B field, with some regions where gravity can largely act unaffectedly, possibly in a network of narrow magnetic channels, and other regions where the B field can work maximally against gravity.

  17. Little Blue Dots in the Hubble Space Telescope Frontier Fields: Precursors to Globular Clusters?

    Science.gov (United States)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2017-12-01

    Galaxies with stellar masses {10}-7.4 yr‑1 were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved “Little Blue Dots” (LBDs). They are less massive and have higher specific star formation rates (sSFRs) than “blueberries” studied by Yang et al. and higher sSFRs than “Blue Nuggets” studied by Tacchella et al. We divided the LBDs into three redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point-spread function (PSF). Their radii were determined from PSF deconvolution to be ∼80 to ∼180 pc. The high sSFRs suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ∼100. Assuming that the star formation rate is {ε }{ff}{M}{gas}/{t}{ff} for efficiency {ε }{ff}, gas mass M gas, and free-fall time, t ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ∼5 even with a high {ε }{ff} of 0.1. We consider whether these regions are forming today’s globular clusters. With their observed stellar masses, the maximum likely cluster mass is ∼ {10}5 {M}ȯ , but if star formation continues at the current rate for ∼ 10{t}{ff}∼ 50 {Myr} before feedback and gas exhaustion stop it, then the maximum cluster mass could become ∼ {10}6 {M}ȯ .

  18. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  19. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  20. Extension of the VITESS polarized neutron suite towards the use of imported magnetic field distributions

    International Nuclear Information System (INIS)

    Manoshin, S; Rubtsov, A; Bodnarchuk, V; Mattauch, S; Ioffe, A

    2014-01-01

    Latest developments of the polarized neutron suite in the VITESS simulation package allowed for simulations of time-dependent spin handling devices (e.g. radio-frequency (RF) flippers, adiabatic gradient RF-flippers) and the instrumentation built upon them (NRSE, SESANS, MIEZE, etc.). However, till now the magnetic field distribution in such devices have been considered as 'ideal' (sinusoidal, triangular or rectangular), when the main practical interest is in the use of arbitrary magnetic field distributions (either obtained by the field mapping or by FEM calculations) that may significantly influence the performance of real polarized neutron instruments and is the key issue in the practical use of the simulation packages. Here we describe modified VITESS modules opening the possibility to load the magnetic field 3-dimensional space map from an external source (file). Such a map can be either obtained by direct measurements or calculated by dedicated FEM programs (such as ANSYS, MagNet, Maxwell or similar). The successful use of these new modules is demonstrated by a very good agreement of neutron polarimetric experiments with performance of the spin turner with rotating magnetic field and an adiabatic gradient RF-flipper simulated by VITESS using calculated 3-dimensional field maps (using MagNet) and magnetic field mapping, respectively.

  1. Nonadiabatic theory of strong-field atomic effects under elliptical polarization

    International Nuclear Information System (INIS)

    Wang Xu; Eberly, J. H.

    2012-01-01

    Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.

  2. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  3. NMR at earth's magnetic field using para-hydrogen induced polarization.

    Science.gov (United States)

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  5. Spin polarization of a non-magnetic high g-factor semiconductor at low magnetic field

    International Nuclear Information System (INIS)

    Lee, J.; Back, J.; Kim, K.H.; Kim, S.U.; Joo, S.; Rhie, K.; Hong, J.; Shin, K.; Lee, B.C.; Kim, T.

    2007-01-01

    We have studied the spin polarization of HgCdTe by measuring Shubnikov-de Haas oscillations. The magnetic field have been applied in parallel and perpendicular to the current. Relatively long spin relaxation time was observed since only spin conserved transition is allowed by selection rules. The electronic spin is completely polarized when the applied magnetic field is larger than 0.5 Tesla, which can be easily generated by micromagnets deposited on the surface of the specimen. Thus, the spin-manipulation such as spin up/down junction can be realized with this semiconductor. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Mean-field energy-level shifts and dielectric properties of strongly polarized Rydberg gases

    OpenAIRE

    Zhelyazkova, V.; Jirschik, R.; Hogan, S. D.

    2016-01-01

    Mean-field energy-level shifts arising as a result of strong electrostatic dipole interactions within dilute gases of polarized helium Rydberg atoms have been probed by microwave spectroscopy. The Rydberg states studied had principal quantum numbers n=70 and 72, and electric dipole moments of up to 14 050 D, and were prepared in pulsed supersonic beams at particle number densities on the order of 108 cm−3. Comparisons of the experimental data with the results of Monte Carlo calculations highl...

  7. Polarization of the interference field during reflection of electromagnetic waves from an intermedia boundary

    Science.gov (United States)

    Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.

    1996-10-01

    It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.

  8. Magnetic field configurations associated with polarity intrusion in a solar active region

    International Nuclear Information System (INIS)

    Low, B.C.

    1982-01-01

    This paper presents a new class of exact solutions describing the non-linear force-free-field above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation in all three Cartesian directions and this could not be modelled adequately with previously known symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the slow growth of a pair of spots on the photosphere. The acis connecting the spots executes roational motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly from the analytic solutions that the resulting reversal of the positions of the spots relative to the background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photospheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these highly stressed regions. The model relates theoretically for the first time these different magnetic field features that have been suggested by observation and theoretical considerations to be flare precursors. A general formula, based on the virial theorem, is also given for the free energy of a force-free field, strictly in terms of the field value at the photosphere. This formula has obvious practical application. (orig.)

  9. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  10. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  11. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  12. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    Science.gov (United States)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  13. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  14. Multiply charged negative ions of hydrogen in linearly polarized laser fields

    International Nuclear Information System (INIS)

    van Duijn, E.; Muller, H.G.

    1997-01-01

    Motivated by the prediction of the appearance of atomic multiply charged negative ions (AMCNI) of hydrogen, induced by a linearly polarized laser field, we present an analytical quantum mechanical treatment of the appearance and structure of AMCNI in a linearly polarized field, based on high-frequency Floquet theory (HFFT). For the simplest AMCNI of hydrogen, H 2- and H 3- , the values of α 0 at which the first bound state appears are α 0 =1.62x10 2 and α 0 =1.02x10 4 , where α 0 =I 1/2 /ω 2 is the amplitude of the oscillation of a free electron in the field with frequency ω and intensity I (unless stated otherwise, we use atomic units throughout this paper). Whereas in vacuum at least one of the electrons of an AMCNI autodetaches, an intense high-frequency field can change the character of the ion dramatically, such that bound states of AMCNI can appear. Due to the interaction with the field, the electrons of the AMCNI oscillate in phase along the polarization axis. This open-quotes quiverclose quotes motion enables the electrons to be spatially separated over distances of order α 0 , reducing the repulsive e-e interaction as α 0 increases. In other words, for α 0 large enough, the field enables a configuration in which the electrons, while widely separated, are bound to one proton. For the prediction of bound states of H N- with N>3, however, a relativistic description or low-frequency theory is required. copyright 1997 The American Physical Society

  15. Topological events on the lines of circular polarization in nonparaxial vector optical fields.

    Science.gov (United States)

    Freund, Isaac

    2017-02-01

    In nonparaxial vector optical fields, the following topological events are shown to occur in apparent violation of charge conservation: as one translates the observation plane along a line of circular polarization (a C line), the points on the line (C points) are seen to change not only the signs of their topological charges, but also their handedness, and, at turning points on the line, paired C points with the same topological charge and opposite handedness are seen to nucleate. These counter-intuitive events cannot occur in paraxial fields.

  16. Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field

    International Nuclear Information System (INIS)

    Maraghechi, B.; Willett, J.e.

    1979-01-01

    The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)

  17. Study of a permanent-magnet dipole with variable field strength and polarity

    International Nuclear Information System (INIS)

    Honma, Toshihiro

    1996-01-01

    A proto-type dipole magnet employing permanent-magnet rods has been designed and constructed. The magnet is able to change the magnetic field strength continuously as well as the polarity of the field direction by rotating the rods. The magnet has a special advantage of high-field production within a small open space available. The magnet of this type will be used for beam steering at an extraction channel for a planned negative-ion acceleration in our cyclotron. The first important objective at the exit channel is to steer the beam extracted from the cyclotron by some dipole magnet onto the optical axis of a new beam line to be constructed. This is not a trivial task because available open space is too small to install a coil-type magnet. One of the selections is to use a permanent-magnet dipole because such a magnet is expected to provide a very high field in a small space when compared with a coil-type magnet. A proto-type permanent-magnet dipole (PMD) with variable field strength and polarity has been designed and constructed for such a purpose. (J.P.N.)

  18. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  19. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  20. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  1. Two-color stabilization of atomic hydrogen in circularly polarized laser fields

    International Nuclear Information System (INIS)

    Bauer, D.; Ceccherini, F.

    2002-01-01

    The dynamic stabilization of atomic hydrogen against ionization in high-frequency single- and two-color, circularly polarized laser pulses is observed by numerically solving the three-dimensional, time-dependent Schroedinger equation. The single-color case is revisited and numerically determined ionization rates are compared with both, the exact and the approximate high-frequency Floquet rates. The positions of the peaks in the photoelectron spectra can be explained with the help of dressed initial states. In two-color laser fields of opposite circular polarization, the stabilized probability density may be shaped in various ways. For laser frequencies ω 1 and ω 2 =nω 1 , n=2,3,..., and sufficiently large excursion amplitudes (n+1) distinct probability density peaks are observed. This may be viewed as the generalization of the well-known 'dichotomy' in linearly polarized laser fields, i.e, as 'trichotomy', 'quatrochotomy', 'pentachotomy' etc. All those observed structures and their 'hula-hoop'-like dynamics can be understood with the help of high-frequency Floquet theory and the two-color Kramers-Henneberger transformation. The shaping of the probability density in the stabilization regime can be realized without additional loss in the survival probability, as compared to the corresponding single-color results

  2. MAGNETIC FIELD COMPONENTS ANALYSIS OF THE SCUPOL 850 μm POLARIZATION DATA CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [Department of Physics and Astronomy, University College London, Kathleen Lonsdale Building, Gower Place, London WC1E 6BT (United Kingdom); Falceta-Gonçalves, Diego [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Kowal, Grzegorz [Universidade de São Paulo, Escola de Artes, Ciências e Humanidades Rua Arlindo Béttio, No. 1000, Ermelino Matarazzo, São Paulo, SP 03828-000 (Brazil); De Gouveia Dal Pino, Elisabete; Magalhães, Antonio Mário, E-mail: poidevin@star.ucl.ac.uk, E-mail: dfalceta@usp.br, E-mail: kowal@astro.iag.usp.br, E-mail: dalpino@astro.iag.usp.br, E-mail: mario@astro.iag.usp.br [Universidade de São Paulo, Instituto de Astronomia, Geofísica e Cîenças Atmosféricas, Rua do Matão 1226, Butantã, São Paulo, SP 05508-900 (Brazil)

    2013-11-10

    We present an extensive analysis of the 850 μm polarization maps of the SCUBA Polarimeter Legacy (SCUPOL) Catalogue produced by Matthews et al., focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from two-dimensional synthetic maps of dust-emission polarization produced with three-dimensional magnetohydrodynamics (MHD) numerical simulations scaled to the S106, OMC-2/3, W49, and DR21 molecular cloud polarization maps. For these specific regions, the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfvén and Sonic Mach numbers, are consistent within a factor one to two with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher. Constraints on the values of the inclination angle α of the mean magnetic field with respect to the line of sight are also given. The values obtained from the comparison of the simulations with the SCUPOL data are consistent with the estimates made by using two observational methods provided by other authors. Our main conclusion is that simple, ideal, isothermal, and non-self-gravitating MHD simulations are sufficient in order to describe the large-scale observed physical properties of the envelopes of this set of regions.

  3. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, M. J., E-mail: Matthew.Cliffe@manchester.ac.uk; Rodak, A.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Jamison, S. P. [The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom)

    2014-11-10

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  4. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    Science.gov (United States)

    Cliffe, M. J.; Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-11-01

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  5. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    International Nuclear Information System (INIS)

    Cliffe, M. J.; Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-01-01

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm

  6. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  7. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    Science.gov (United States)

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  8. Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors

    International Nuclear Information System (INIS)

    Sakowicz, M.; Lusakowski, J.; Karpierz, K.; Grynberg, M.; Knap, W.; Gwarek, W.

    2008-01-01

    Detection of 100 GHz electromagnetic radiation by a GaAs/AlGaAs high electron mobility field-effect transistor was investigated at 300 K as a function of the angle α between the direction of linear polarization of the radiation and the symmetry axis of the transistor. The angular dependence of the detected signal was found to be A 0 cos 2 (α-α 0 )+C with A 0 , α 0 , and C dependent on the electrical polarization of the transistor gate. This dependence is interpreted as due to excitation of two crossed phase-shifted oscillators. A response of the transistor chip (including bonding wires and the substrate) to 100 GHz radiation was numerically simulated. Results of calculations confirmed experimentally observed dependencies and showed that the two oscillators result from an interplay of 100 GHz currents defined by the transistor impedance together with bonding wires and substrate related modes

  9. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  10. Photon polarization tensor in the light front field theory at zero and finite temperatures

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan

    2012-01-01

    Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)

  11. Polarization-Dependent Quasi-Far-Field Superfocusing Strategy of Nanoring-Based Plasmonic Lenses.

    Science.gov (United States)

    Sun, Hao; Zhu, Yechuan; Gao, Bo; Wang, Ping; Yu, Yiting

    2017-12-01

    The two-dimensional superfocusing of nanoring-based plasmonic lenses (NRPLs) beyond the diffraction limit in the far-field region remains a great challenge at optical wavelengths. In this paper, in addition to the modulation of structural parameters, we investigated the polarization-dependent focusing performance of a NRPL employing the finite-difference time-domain (FDTD) method. By utilizing the state of polarization (SOP) of incident light, we successfully realize the elliptical-, donut-, and circular-shape foci. The minimum full widths at half maximum (FWHMs) of these foci are ~0.32, ~0.34, and ~0.42 λ 0 in the total electric field, respectively, and the depth of focus (DOF) lies in 1.41~1.77 λ 0 . These sub-diffraction-limit foci are well controlled in the quasi-far-field region. The underlying physical mechanism on the focal shift and an effective way to control the focusing position are proposed. Furthermore, in the case of a high numerical aperture, the longitudinal component, which occupies over 80% of the electric-field energy, decides the focusing patterns of the foci. The achieved sub-diffraction-limit focusing can be widely used for many engineering applications, including the super-resolution imaging, particle acceleration, quantum optical information processing, and optical data storage.

  12. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  13. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  14. Atomically-resolved mapping of polarization and electric fields across ferroelectric-oxide interfaces by Z-contrast imaging

    Science.gov (United States)

    Borisevich, Albina; Chang, Hye Jung; Kalinin, Sergei; Morozovska, Anna; Chu, Ying-Hao; Yu, Pu; Ramesh, Ramamoorthy; Pennycook, Stephen

    2011-03-01

    Polarization, electric field, charge and potential across ferroelectric-oxide interfaces are obtained from direct atomic position mapping by aberration corrected scanning transmission electron microscopy combined with Ginsburg-Landau-Devonshire theory. We compare two antiparallel polarization orientations, which allows separation of the polarization and intrinsic interface charge contributions. Using the Born effective charges, the complete interface electrostatics is obtained in real space, providing an alternative method to holography. The results provide new microscopic insight into the thermodynamics of polarization distribution at the atomic level. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  15. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    Science.gov (United States)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  16. Field-induced magnetic phases and electric polarization in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one...... is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total...

  17. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  18. Influence of the channel electric field distribution on the polarization Coulomb field scattering in AlGaN/AlN/GaN heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yingxia Yu

    2013-09-01

    Full Text Available Using the Quasi-Two-Dimensional (quasi-2D model, the current-voltage (I-V characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs with different gate length were simulated based on the measured capacitance-voltage (C-V characteristics and I-V characteristics. By analyzing the simulation results, we found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field scattering, and the difference of the electron mobility mostly caused by the polarization Coulomb field scattering can reach up to 1829.9 cm2/V·s for the prepared AlGaN/AlN/GaN HFET. In addition, it was also found that when the two-dimension electron gas (2DEG sheet density is modulated by the drain-source bias, the electron mobility appears peak with the variation of the 2DEG sheet density, and the ratio of gate length to drain-source distance is smaller, the 2DEG sheet density corresponding to the peak point is higher.

  19. Exact analytic expressions for the evolution of polarization for radiation propagating in a plasma with non uniformly sheared magnetic field

    International Nuclear Information System (INIS)

    Segre, S. E.

    2001-01-01

    The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space [it

  20. Mapping of the solar wind electric field to the Earth's polar caps

    International Nuclear Information System (INIS)

    Toffoletto, F.R.; Hill, T.W.

    1989-01-01

    In this paper we describe a quantitative model of a magnetically interconnected (open) magnetosphere, developed as a perturbation to Voigt's closed magnetosphere model with a given magnetopause shape. The ''interconnection'' (perturbation) field is obtained as a solution to a Neumann boundary value problem, with the magnetopause normal component distribution as a boundary condition. The normal component at the magnetopause is required to be time independent and is specified in accordance with one of two hypotheses: the subsolar point merging hypothesis and Crooker's antiparallel merging hypothesis. The resulting open magnetospheric configuration is used to map the magnetopause electric field down to the polar cap ionosphere. We present ionospheric convection patterns derived from three representative interplanetary magnetic field (IMF) orientations for each of the two dayside merging geometries. Both merging geometries reproduce the observed convergence of convection streamlines near noon in a convection ''throat,'' and the east-west deflection of these streamlines in response to the east-west IMF component. The major difference between the two dayside merging geometries occurs for nonsouthward IMF, and consists of a Sun-aligned convection gap that bifurcates the polar cap in the case of the antiparallel merging geometry but not in the subsolar point merging geometry. This convection gap may plausibly be associated with the ''theta aurora'' structure observed when the IMF has a northward component. copyright American Geophysical Union 1989

  1. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  2. The inference of vector magnetic fields from polarization measurements with limited spectral resolution

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1985-01-01

    A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.

  3. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special......Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...

  4. Correlation between magnetocapacitance effect and polarization flop direction in a slanted magnetic field in multiferroic helimagnets

    International Nuclear Information System (INIS)

    Abe, Nobuyuki; Sagayama, Hajime; Arima, Taka-hisa; Taniguchi, Kouji

    2011-01-01

    The relationship between the magnetocapacitance effect and rotation direction of electric polarization (P) in a canted magnetic field has been investigated for multiferroic RMnO 3 (R = Tb 1-x Dy x and Eu 0.6 Y 0.4 ). We observed a clear correlation between the enhancement of the magnetocapacitance effect and the rotation direction of P in a P-flop transition. These results indicate that the mobility and the stability of the 90 deg. domain wall in a P-flop transition are dominated by its thickness.

  5. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  6. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  7. A home for science: The life and times of Tropical and Polar field stations.

    Science.gov (United States)

    Geissler, P Wenzel; Kelly, Ann H

    2016-12-01

    A 'halfway house' between the generic, purified space of the laboratory and the varied and particular spaces of the field, the field station is a controlled yet uncontained setting from which nature can be accessed and anchored. As living quarters for visiting scientists, field stations are also enmeshed in the routine and rhythms of everyday domestic life, and in longer cycles of habitation, wear, and repair. This introduction considers the empirical and conceptual significance of Polar and Tropical field stations as homes for scientific work and scientific lives. The field station's extra-territorial yet intimate character affects the credibility and circulation of knowledge along science's frontiers. The challenge of making a home in the (non-temperate) field and the mundane experiences of expatriation and appropriation establish particular political dynamics of knowledge-making in these locations. They bring into focus the imaginaries of nature and science that drive transnational research and put into relief the aesthetic and affective dimensions of work and life in these distant homes for science. All these themes are pursued and amplified in a different medium by the artists who contributed to our research and are also featured in this special issue.

  8. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields

    Science.gov (United States)

    Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-05-01

    We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite

  9. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  10. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Directory of Open Access Journals (Sweden)

    Viola Pavlova

    Full Text Available Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus. Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB congener, 2,2',4,4',55-hexaCB (CB153 in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  11. Development of accurate techniques for controlling polarization of a long wavelength neutron beam in very low magnetic fields. I

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Tasaki, Seiji; Akiyoshi, Tsunekazu; Eguchi, Yoshiaki; Hino, Masahiro; Achiwa, Norio.

    1995-01-01

    The purpose of our study is to develop accurate techniques for controlling polarization of a long wavelength neutron beam and to make a thin-film dynamical spin-flip device operated in magnetizing fields less than 100 gauss and in a shorter switching time up to 20 kHz. The device would work as a chopper for a polarized neutron beam and as a magnetic switching device for a multilayer neutron interferometer. We have started to develop multilayer polarizing mirrors functioning under magnetizing fields less than 100 gauss. The multilayers of Permalloy-Ge and Fe-Ge have been produced using the evaporation method under magnetizing fields of about 100 gauss parallel to the Si-wafer substrate surface. The hysteresis loop for in-plane magnetization of the multilayers were measured to discuss their feasibilities for the polarizing device functioning under very low magnetizing fields. The polarizing efficiencies of Fe-Ge and Permalloy-Ge multilayers were 95 % and 91 % with reflectivities of 50 % and 66 % respectively under magnetizing fields of 80 gauss. The report also discusses problems in applying these multilayer polarizing mirrors to ultracold neutrons. (author)

  12. Scattering Fields Control by Metamaterial Device Based on Ultra-Broadband Polarization Converters

    Directory of Open Access Journals (Sweden)

    Si-Jia Li

    2016-12-01

    Full Text Available We proposed a novel ultra-broadband meta¬material screen with controlling the electromagnetic scat¬tering fields based on the three layers wideband polariza¬tion converter (TLW-PC. The unit cell of TLW-PC was composed of a three layers substrate loaded with double metallic split-rings structure and a metal ground plane. We observed that the polarization converter primarily per¬formed ultra-broadband cross polarization conversion from 5.71 GHz to 14.91 GHz. Furthermore, a metamaterial screen, which contributed to the low scattering charac¬teristics, had been exploited with the orthogonal array based on TLW-PC. The near scattering electronic fields are controlled due to the change of phase and amplitude for incident wave. The metamaterial screen significantly exhibited low scattering characteristics from 5.81 GHz to 15.06 GHz. To demonstrate design, a metamaterial device easily implemented by the common printed circuit board method has been fabricated and measured. Experimental results agreed well with the simulated results.

  13. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  14. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  15. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing.

    Science.gov (United States)

    Dai, Daoxin; Wu, Hao; Zhang, Wei

    2015-10-09

    Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.

  16. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2015-10-01

    Full Text Available Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.

  17. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br

    Science.gov (United States)

    Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun

    2017-12-01

    Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.

  18. Nanomagnetic behavior of fullerene thin films in Earth magnetic field in dark and under polarization light influences.

    Science.gov (United States)

    Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija

    2005-10-01

    In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.

  19. Transient-field strength measurements for 52Cr traversing Fe hosts at high velocity and polarization transfer mechanisms

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Doran, C.E.; Byrne, A.P.; Bolotin, H.H.; Dracoulis, G.D.

    1986-12-01

    Transient-field strengths were measured for 52 Cr ions traversing polarized Fe hosts at velocities up to 12v>=o (v>=o = c/137 = Bohr velocity). The results are compared with predictions of various transient field parametrizations and discussed in terms of possible mechanisms by which polarization might be transferred from the Fe host to inner vacancies of the moving Cr ions. The g-factor of the first 2 + state of 52 Cr was also measured by the transient field technique and found to be in accord with shell-model calculations

  20. Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer

    International Nuclear Information System (INIS)

    Paschmann, G.; Haerendel, G.; Sckopke, N.; Rosenbauer, H.; Hedgecock, P.C.

    1976-01-01

    Heos 2 plasma and magnetic field measurements in the distant polar cusp region reveal the existence of a plasma layer on day side field lines just inside the magnetopause. Density and temperature in this layer are nearly the same as they are in the adjacent magnetosheath, but the flow lacks the order existing both in the magnetosheath and in the plasma mantle. Flow directions toward and away from the sun but, in general, parallel to the field lines have been found. The magnetopause (as defined by a sudden rotation of the magnetic field vector) mostly coincides with the transition to ordered magnetosheath flow. The inner boundary of the layer is located just within the outer boundary of the hot ring current plasma. In the region of overlap the hot electrons have the signature of trapped particles, though often at reduced intensity. The magnetic field is strongly fluctuating in magnitude, while its orientation is more stable, consistent with a connection to the earth, but is systematically distorted out of the meridian plane. The layer is thought to be a consequence of the entry of magnetosheath plasma, which does not appear to be unobstructed, as has been claimed in the concept of a magnetospheric cleft. The magnetopause has a cusplike indentation which is elongated in local time. The existence of field-aligned currents (total strength approx. =10 6 A) and their location of flow in the inner part of the entry layer (into the ionosphere before noon and out of it after noon) are inferred from the systematic bending of field lines. It is proposed that the dynamo of the related current system is provided by the transfer of perpendicular momentum resulting from the plasma entry into the layer. The essential features of the entry layer might be compatible with the model of plasma flow through the magnetopause of Levy et al. (1964) if a 'dam' effect caused by the cusp geometry were added

  1. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    International Nuclear Information System (INIS)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  2. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  3. A Polar Rover for Large-Scale Scientific Surveys: Design, Implementation and Field Test Results

    Directory of Open Access Journals (Sweden)

    Yuqing He

    2015-10-01

    Full Text Available Exploration of polar regions is of great importance to scientific research. Unfortunately, due to the harsh environment, most of the regions on the Antarctic continent are still unreachable for humankind. Therefore, in 2011, the Chinese National Antarctic Research Expedition (CHINARE launched a project to design a rover to conduct large-scale scientific surveys on the Antarctic. The main challenges for the rover are twofold: one is the mobility, i.e., how to make a rover that could survive the harsh environment and safely move on the uneven, icy and snowy terrain; the other is the autonomy, in that the robot should be able to move at a relatively high speed with little or no human intervention so that it can explore a large region in a limit time interval under the communication constraints. In this paper, the corresponding techniques, especially the polar rover's design and autonomous navigation algorithms, are introduced in detail. Subsequently, an experimental report of the fields tests on the Antarctic is given to show some preliminary evaluation of the rover. Finally, experiences and existing challenging problems are summarized.

  4. Dipole field measurement technique utilizing the Faraday rotation effect in polarization preserving optical fibers

    International Nuclear Information System (INIS)

    Haddock, C.; Tong, M.Y.M.

    1989-10-01

    TRIUMF is presently in the project definition stage of its proposed KAON factory. The facility will require approximately 300 dipole magnets. The rapid measurement of representative parameters of these magnets, in particular effective length, is one of the challenges to be met. As well as the commissioning of a.c magnetic field measurement systems based on established techniques a project is underway to investigate an alternative method utilizing the Faraday Rotation effect in polarization preserving optical fibers. It is shown that a fiber equivalent to a Faraday cell can be constructed by winding a fiber in a such a way that the induced beat length L p is equal to (2n+1) times the bending circumference, with n integer. Background to the subject and preliminary results of the measurements are reported in this paper

  5. Vacuum polarization of the electromagnetic field near a rotating black hole

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-01-01

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor gives a result which coincides at the event horizon with the exact value of /sup ren/. .AE

  6. Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials.

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín-Vázquez

    Full Text Available Fluctuations in successive waves of oscillatory local field potentials (LFPs reflect the ongoing processing of neuron populations. However, their amplitude, polarity and synaptic origin are uncertain due to the blending of electric fields produced by multiple converging inputs, and the lack of a baseline in standard AC-coupled recordings. Consequently, the estimation of underlying currents by laminar analysis yields spurious sequences of inward and outward currents. We devised a combined analytical/experimental approach that is suitable to study laminated structures. The approach was essayed on an experimental oscillatory LFP as the Schaffer-CA1 gamma input in anesthetized rats, and it was verified by parallel processing of model LFPs obtained through a realistic CA1 aggregate of compartmental units. This approach requires laminar LFP recordings and the isolation of the oscillatory input from other converging pathways, which was achieved through an independent component analysis. It also allows the spatial and temporal components of pathway-specific LFPs to be separated. While reconstructed Schaffer-specific LFPs still show spurious inward/outward current sequences, these were clearly stratified into distinct subcellular domains. These spatial bands guided the localized delivery of neurotransmitter blockers in experiments. As expected, only Glutamate but not GABA blockers abolished Schaffer LFPs when applied to the active but not passive subcellular domains of pyramidal cells. The known chemical nature of the oscillatory LFP allowed an empirical offset of the temporal component of Schaffer LFPs, such that following reconstruction they yield only sinks or sources at the appropriate sites. In terms of number and polarity, some waves increased and others decreased proportional to the concomitant inputs in native multisynaptic LFPs. Interestingly, the processing also retrieved the initiation time for each wave, which can be used to discriminate

  7. Configurational entropy of polar glass formers and the effect of electric field on glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  8. Configurational entropy of polar glass formers and the effect of electric field on glass transition.

    Science.gov (United States)

    Matyushov, Dmitry V

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ(γ)/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  9. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  10. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  11. Random-field Potts model for the polar domains of lead magnesium niobate and lead scandium tantalate

    Energy Technology Data Exchange (ETDEWEB)

    Qian, H.; Bursill, L.A

    1997-06-01

    A random filed Potts model is used to establish the spatial relationship between the nanoscale distribution of charges chemical defects and nanoscale polar domains for the perovskite-based relaxor materials lead magnesium niobate (PMN) and lead scandium tantalate (PST). The random fields are not set stochastically but are determined initially by the distribution of B-site cations (Mg, Nb) or (Sc, Ta) generated by Monte Carlo NNNI-model simulations for the chemical defects. An appropriate random field Potts model is derived and algorithms developed for a 2D lattice. It is shown that the local fields are strongly correlated with the chemical domain walls and that polar domains as a function of decreasing temperature is simulated for the two cases of PMN and PST. The dynamics of the polar clusters is also discussed. 33 refs., 9 figs.

  12. Wide-field LOFAR-LBA power-spectra analyses: Impact of calibration, polarization leakage and ionosphere

    Science.gov (United States)

    Gehlot, Bharat K.; Koopmans, Léon V. E.

    2018-05-01

    Contamination due to foregrounds, calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a study of a field centered on 3C196 using LOFAR Low Band observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon. We show that this structure arises due to strong instrumental polarization leakage (~30%) towards Cas A which is far away from primary field of view. We measure a small ionospheric diffractive scale towards CasA resembling pure Kolmogorov turbulence. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations.

  13. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  14. States of maximum polarization for a quantum light field and states of a maximum sensitivity in quantum interferometry

    International Nuclear Information System (INIS)

    Peřinová, Vlasta; Lukš, Antonín

    2015-01-01

    The SU(2) group is used in two different fields of quantum optics, the quantum polarization and quantum interferometry. Quantum degrees of polarization may be based on distances of a polarization state from the set of unpolarized states. The maximum polarization is achieved in the case where the state is pure and then the distribution of the photon-number sums is optimized. In quantum interferometry, the SU(2) intelligent states have also the property that the Fisher measure of information is equal to the inverse minimum detectable phase shift on the usual simplifying condition. Previously, the optimization of the Fisher information under a constraint was studied. Now, in the framework of constraint optimization, states similar to the SU(2) intelligent states are treated. (paper)

  15. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity.

    The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours.

    We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  16. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity. The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours. We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  17. Interdisciplinary Graduate Training in Polar Environmental Change: Field-based learning in Greenland

    Science.gov (United States)

    Virginia, R. A.; Holm, K.; Whitecloud, S.; Levy, L.; Kelly, M. A.; Feng, X.; Grenoble, L.

    2009-12-01

    The objective of the NSF-funded Integrative Graduate Education Research Traineeship (IGERT) program at Dartmouth College is to develop a new cohort of environmental scientists and engineers with an interdisciplinary understanding of polar regions and their importance to global environmental change. The Dartmouth IGERT challenges Ph.D. students to consider the broader dimensions of their research and to collaborate with scientists from other disciplines, educators, and policy makers. IGERT students will focus on research questions that are relevant to the needs of local people experiencing climate change and on understanding the ethical responsibilities and benefits of conducting research in partnership with northern residents and institutions. Seven Ph.D. students from the departments of Earth Sciences, Engineering, and Ecology and Evolutionary Biology at Dartmouth College make up the first IGERT cohort for the five-year program. The Dartmouth IGERT curriculum will focus on three main components of polar systems responding to recent climate change: the cryosphere, terrestrial ecosystems, and biogeochemical cycles. The integrating experience of the core curriculum is the Greenland Field Seminar that will take place in Kangerlussuaq (terrestrial and aquatic systems), Summit Camp (snow and ice) and Nuuk, Greenland (human dimensions of change). In Nuuk, IGERT students will share their science and develop partnerships with students, educators, and policy makers at the University of Greenland, the Inuit Circumpolar Council (ICC), and other Greenlandic institutions. In summer 2009 the authors conducted preliminary fieldwork near Kangerlussuaq, Greenland to develop aspects of the science curriculum for the 2010 Greenland Field Seminar and to explore research topics for IGERT Fellows (Levy and Whitecloud). Examples of results presented here are designed to develop field-based learning activities. These include soil and vegetation relationships as a function of aspect

  18. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    Science.gov (United States)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  19. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  20. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  1. Internal electric fields due to piezoelectric and spontaneous polarizations in CdZnO/MgZnO quantum well with various applied electric field effects

    International Nuclear Information System (INIS)

    Jeon, H.C.; Lee, S.J.; Kang, T.W.; Park, S.H.

    2012-01-01

    The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.

  2. Internal electric fields due to piezoelectric and spontaneous polarizations in CdZnO/MgZnO quantum well with various applied electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H.C. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, S.J., E-mail: leesj@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Kang, T.W. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Park, S.H. [Department of Electronics Engineering, Catholic University of Daegu, Kyeongbuk 712-702 (Korea, Republic of)

    2012-05-15

    The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.

  3. Origin of the magnetic-field controlled polarization reversal in multiferroic TbMn2 O 5

    Science.gov (United States)

    Leo, N.; Meier, D.; Pisarev, R. V.; Park, S.; Cheong, S.-W.; Fiebig, M.

    2011-03-01

    The interplay of multi-dimensional complex magnetic order parameters leads to interesting effects like magnetically induced ferroelectricity. A particular interesting example is TbMn 2 O5 because of the associated magnetic-field controllable electric polarization. By optical second harmonic generation we show that the gigantic magnetoelectric effect originates in three independent ferroelectric contributions. Two of these are manganese-generated. The third contribution is related to the magnetism of the Tb 3+ sublattice and has not been identified so far. It mediates the remarkable magnetic-field induced polarization reversal. This model is verified by experiments on the isostructural YMn 2 O5 where Y3+ ions are nonmagnetic and only two polarization contributions are present and no magnetoelectric coupling is observed. These results underline the importance of the 3 d - 4 f -interaction for the intricate magnetoelectric coupling in the class of isostructural RMn 2 O5 compounds. This work was supported by the DFG through SFB 608.

  4. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  5. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  6. Distilling two-center-interference information during tunneling of aligned molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.

    2017-12-01

    When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.

  7. The Sommerfeld precursor in photonic crystals

    NARCIS (Netherlands)

    Uitham, R; Hoenders, BJ

    2006-01-01

    We calculate the Sommerfeld precursor that results after transmission of a generic electromagnetic plane wave pulse with transverse electric polarization, through a one-dimensional rectangular N-layer photonic crystal with two slabs per layer. The shape of this precursor equals the shape of the

  8. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  9. Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo, E-mail: hubo2011@semi.ac.cn

    2015-03-15

    The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.

  10. Polarization-induced transport in organic field-effect transistors: the role of ferroelectric dielectrics

    Science.gov (United States)

    Guha, Suchismita; Laudari, Amrit

    2017-08-01

    The ferroelectric nature of polymer ferroelectrics such as poly(vinylidene fluoride) (PVDF) has been known for over 45 years. However, its role in interfacial transport in organic/polymeric field-effect transistors (FETs) is not that well understood. Dielectrics based on PVDF and its copolymers are a perfect test-bed for conducting transport studies where a systematic tuning of the dielectric constant with temperature may be achieved. The charge transport mechanism in an organic semiconductor often occurs at the intersection of band-like coherent motion and incoherent hopping through localized states. By choosing two small molecule organic semiconductors - pentacene and 6,13 bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) - along with a copolymer of PVDF (PVDF-TrFe) as the dielectric layer, the transistor characteristics are monitored as a function of temperature. A negative coefficient of carrier mobility is observed in TIPS-pentacene upwards of 200 K with the ferroelectric dielectric. In contrast, TIPS-pentacene FETs show an activated transport with non-ferroelectric dielectrics. Pentacene FETs, on the other hand, show a weak temperature dependence of the charge carrier mobility in the ferroelectric phase of PVDF-TrFE, which is attributed to polarization fluctuation driven transport resulting from a coupling of the charge carriers to the surface phonons of the dielectric layer. Further, we show that there is a strong correlation between the nature of traps in the organic semiconductor and interfacial transport in organic FETs, especially in the presence of a ferroelectric dielectric.

  11. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    Science.gov (United States)

    2013-09-30

    by studying a homogeneous turbid medium. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative...polarization manipulation experiments revealed that polarization reflectance in Atlantic needlefish is controlled at the periphery (Fig 28). 6 19...with camouflage researchers on isopod and kelp crab camouflage against algae and seagrasses at several different west coast universities (Dierssen

  12. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  13. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  14. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  15. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  16. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  17. M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule

    Science.gov (United States)

    Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.

    2016-03-01

    The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.

  18. Long-term O3–precursor relationships in Hong Kong: field observation and model simulation

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-09-01

    Full Text Available Over the past 10 years (2005–2014, ground-level O3 in Hong Kong has consistently increased in all seasons except winter, despite the yearly reduction of its precursors, i.e. nitrogen oxides (NOx =  NO + NO2, total volatile organic compounds (TVOCs, and carbon monoxide (CO. To explain the contradictory phenomena, an observation-based box model (OBM coupled with CB05 mechanism was applied in order to understand the influence of both locally produced O3 and regional transport. The simulation of locally produced O3 showed an increasing trend in spring, a decreasing trend in autumn, and no changes in summer and winter. The O3 increase in spring was caused by the net effect of more rapid decrease in NO titration and unchanged TVOC reactivity despite decreased TVOC mixing ratios, while the decreased local O3 formation in autumn was mainly due to the reduction of aromatic VOC mixing ratios and the TVOC reactivity and much slower decrease in NO titration. However, the decreased in situ O3 formation in autumn was overridden by the regional contribution, resulting in elevated O3 observations. Furthermore, the OBM-derived relative incremental reactivity indicated that the O3 formation was VOC-limited in all seasons, and that the long-term O3 formation was more sensitive to VOCs and less to NOx and CO in the past 10 years. In addition, the OBM results found that the contributions of aromatics to O3 formation decreased in all seasons of these years, particularly in autumn, probably due to the effective control of solvent-related sources. In contrast, the contributions of alkenes increased, suggesting a continuing need to reduce traffic emissions. The findings provide updated information on photochemical pollution and its impact in Hong Kong.

  19. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front

    Science.gov (United States)

    Smetacek, Victor; Klaas, Christine; Menden-Deuer, Susanne; Rynearson, Tatiana A.

    The quantitative distribution of dominant phytoplankton species was mapped at high spatial resolution (15 km spacing) during a quasi-synoptic, mesoscale survey of hydrographical, chemical, pigment, and zooplankton fields carried out along the Antarctic Polar Front within a grid 140×130 km 2 during austral summer. A rapid assessment method for quantifying phytoplankton species by microscopy in concentrated samples on board enabled estimation of total biomass and that of dominant species at hourly sampling intervals. The biomass distribution pattern derived from this method was remarkably coherent and correlated very well with chlorophyll concentrations and the location of different water masses covered by the grid. A "background" chlorophyll concentration of 0.5 mg m -3 in the grid could be assigned to the uniformly distributed pico- and nanophytoplankton; all higher values (up to 2.0 mg m -3) were contributed by large diatoms. Three species complexes ( Chaetoceros atlanticus/dichaeta, Pseudo-nitzschia cf. Lineola, and Thalassiothrix antarctica) contributed about one-third each to the biomass. Although all species were found throughout the study area, distinct patterns in abundance emerged: The Thalassiothrix maximum was located north of the frontal jet, Chaetoceros biomass was highest along the jet, and Pseudo-nitzschia was the most uniformly distributed of the three taxa. Since the meridional pattern of biomass and species composition persisted for about 5 weeks, despite heavy grazing pressure of small copepods, we hypothesize that the dominant species reflect the highest degree of grazer protection in the assemblage. This is accomplished by large size, needle-shaped cells, and long spines armed with barbs. We suggest that these persistent species sequester the limiting nutrient—iron—from the assemblage of smaller, less-defended species that must hence have higher turn-over rates.

  20. On the role of IMF By in generating the electric field responsible for the flow across the polar cap

    International Nuclear Information System (INIS)

    Vennerstroem, S.; Friis-Christensen, E.

    1987-01-01

    During periods of southward interplanetary magnetic field (IMF) the authors have examined the relationship between magnetic variations in the central polar cap and the IMF B y and B z components. The geomagnetic polar cap index PC that can be used as a measure of the flow across the polar cap has been derived using data from Thule in the IMS period. The results have been compared with IMP 8 measurements of the IMF and the solar wind velocity. The statistical analysis shows that the absolute value of the azimuthal component |B y | contributes to the cross-polar cap flow in the same manner as the southward component B s . The relative contributions of |B y | and B z have been examined and compared with the theoretical expression υB T sin 2 θ/2 for the merging electric field. It is found that the contribution of |B y | compared to B z is only half as big in the observations as in the theoretical expression. The B y effect on PC is compared to an earlier reported effect of B y on the geomagnetic index AL (Murayama et al., 1980) and found to be quite different from this. This is discussed in relation to interpretations in terms of merging site asymmetry

  1. Ferroelectric glass of spheroidal dipoles with impurities: polar nanoregions, response to applied electric field, and ergodicity breakdown

    International Nuclear Information System (INIS)

    Takae, Kyohei; Onuki, Akira

    2017-01-01

    Using molecular dynamics simulation, we study dipolar glass in crystals composed of slightly spheroidal, polar particles and spherical, apolar impurities between metal walls. We present physical pictures of ferroelectric glass, which have been observed in relaxors, mixed crystals (such as KCN x KBr 1−x ), and polymers. Our systems undergo a diffuse transition in a wide temperature range, where we visualize polar nanoregions (PNRs) surrounded by impurities. In our simulation, the impurities form clusters and their space distribution is heterogeneous. The polarization fluctuations are enhanced at relatively high T depending on the size of the dipole moment. They then form frozen PNRs as T is further lowered into the nonergodic regime. As a result, the dielectric permittivity exhibits the characteristic features of relaxor ferroelectrics. We also examine nonlinear response to cyclic applied electric field and nonergodic response to cyclic temperature changes (ZFC/FC), where the polarization and the strain change collectively and heterogeneously. We also study antiferroelectric glass arising from molecular shape asymmetry. We use an Ewald scheme of calculating the dipolar interaction in applied electric field. (paper)

  2. A novel autonomous real-time position method based on polarized light and geomagnetic field

    OpenAIRE

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-01-01

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we...

  3. Thermoset precursor

    International Nuclear Information System (INIS)

    Yamamoto, Y.

    1983-04-01

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  4. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  5. Low-frequency (0.7-7.4 mHz geomagnetic field fluctuations at high latitude: frequency dependence of the polarization pattern

    Directory of Open Access Journals (Sweden)

    L. Cafarella

    2001-06-01

    Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  6. Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field

    International Nuclear Information System (INIS)

    Yao Jinping; Zeng Bin; Fu Yuxi; Chu Wei; Ni Jielei; Li Yao; Xiong Hui; Xu Han; Cheng Ya; Xu Zhizhan; Liu Xiaojun; Chen, J.

    2010-01-01

    We theoretically investigate the high-order harmonic generation (HHG) in helium using a two-color laser field synthesized by an intense 25-fs laser pulse at 800 nm and a relatively weak ∼43-fs laser pulse at 1400 nm. When the polarization between the two pulses is arranged at an angle of ∼73 deg., supercontinuum spectra are dramatically broadened to 180 eV, which is sufficient to support an isolated ∼73-as pulse without any phase compensation. The physical mechanisms behind the phenomenon are well explained in terms of quantum and classical analyses. Furthermore, in the long-pulse regime, this method of extending the supercontinuum spectrum shows the significant advantage over previous two-color HHG schemes.

  7. Magnetic field-dependent polarization of (111)-oriented PZT–Co ferrite nanobilayer: Effect of Co ferrite composition

    Energy Technology Data Exchange (ETDEWEB)

    Khodaei, M. [Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Seyyed Ebrahimi, S.A., E-mail: saseyyed@ut.ac.ir [Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jun Park, Yong [Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Son, Junwoo; Baik, Sunggi [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2015-05-15

    The perfect (111)-oriented PZT/CFO (CFO=CoFe{sub 2}O{sub 4}, Co{sub 0.8}Fe{sub 2.2}O{sub 4} and Co{sub 0.6}Mn{sub 0.2}Fe{sub 2.2}O{sub 4}) bilayer multiferroic thin films were grown on Pt(111)/Si substrate at 600 °C using pulsed laser deposition technique. The precision X-ray diffraction analysis (avoiding the shift of peak due to the sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and deposition of PZT top layer led to more increase in the out-of-plane contraction, i.e. increase in the residual stresses. The PZT and CFO layers have significant effects on magnetic and ferroelectric properties of PZT/CFO bilayer films, respectively, leading to an enhanced in-plane magnetic anisotropy as well as increased and asymmetric polarization. The effect of composition of CFO layer on magnetic field-dependent polarization of PZT/CFO bilayer films was investigated by applying the magnetic field during P-E measurement. The polarization of PZT films were increased by applying the magnetic field as a result of strain transferred from magnetostrictive CFO underlayer. This increase in polarization for PZT/Co{sub 0.6}Mn{sub 0.2}Fe{sub 2.2}O{sub 4} was higher than that for PZT/Co{sub 0.8}Fe{sub 2.2}O{sub 4} and both of them were significantly higher than that for PZT/CoFe{sub 2}O{sub 4} bilayer film, which was discussed based on their magnetostriction properties. - Highlights: • The effect of composition of CFO on P–E characteristics of PZT/CFO films was investigated. • The polarization of PZT films were increased by applying the magnetic field. • The increasing polarization was a result of strain from magnetostrictive CFO underlayer.

  8. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    Science.gov (United States)

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  9. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Science.gov (United States)

    Petrie, Gordon; McMaken, Tyler C.

    2017-08-01

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  10. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    Science.gov (United States)

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  11. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  12. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  13. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  14. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  15. Magnetic field calculation of variably polarizing undulator (APPLE-type) for SX beamline in the SPring-8

    International Nuclear Information System (INIS)

    Kobayashi, Hideki; Sasaki, Shigemi; Shimada, Taihei; Takao, Masaru; Yokoya, Akinori; Miyahara, Yoshikazu

    1996-03-01

    This paper describes the design of a variably polarizing undulator (APPLE-type) to be installed in soft X-ray beamline in the SPring-8 facility. The magnetic field distribution and radiation spectrum expected from this undulator were calculated. The magnetic field strength is varied by changing the gap distance of upper and lower jaws, so it changes the photon energy in soft X-ray range. By moving the relative position of pairs of magnet rows (phase shift), the polarization of radiation is varied circularly, elliptically and linearly in the horizontal and vertical direction. We expect that right and left handed circular polarizations are obtained alternately at a rate of 1 Hz by high speed phase shifting. The repulsive and attractive magnetic force working on the magnet rows were calculated which interfere in phase shifting at high speed. The magnetic force changes with gap distance and phase shift position, and the magnetic force working on a row in the direction of phase shift becomes up to 500 kgf. The construction of this undulator is started in 1996, that will be inserted in the storage ring in 1997. (author)

  16. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime

    Science.gov (United States)

    Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.

    2018-01-01

    We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.

  17. Electric field measurements in a hollow cathode discharge by two-photon polarization spectroscopy of atomic deuterium

    International Nuclear Information System (INIS)

    Rosa, M I de la; Perez, C; Gruetzmacher, K; Gonzalo, A B; Steiger, A

    2006-01-01

    The local electric field strength (E-field) is an important parameter to be known in low pressure plasmas such as glow discharges, RF and microwave discharges, plasma boundaries in tokamaks etc. In this paper, we demonstrate, for the first time, the potential of two-photon polarization spectroscopy measuring the E-field in the cathode fall region of a hollow cathode discharge, via Doppler-free spectra of the Stark splitting of the 2S level of atomic deuterium. Electric field strength is determined in the range from 2 to 5 kV cm -1 . Compared with LIF, this method has several advantages: it is not affected by background radiation, it can be applied without limitation at elevated pressure and it allows simultaneous measurement of absolute local atomic ground state densities of hydrogen isotopes

  18. Selective control of vortex polarities by microwave field in two robustly synchronized spin-torque nano-oscillators

    Science.gov (United States)

    Li, Yi; de Milly, Xavier; Klein, Olivier; Cros, Vincent; Grollier, Julie; de Loubens, Grégoire

    2018-01-01

    Manipulating operation states of coupled spin-torque nano-oscillators (STNOs), including their synchronization, is essential for applications such as complex oscillator networks. In this work, we experimentally demonstrate selective control of two coupled vortex STNOs through microwave-assisted switching of their vortex core polarities. First, the two oscillators are shown to synchronize due to the dipolar interaction in a broad frequency range tuned by an external biasing field. Coherent output is demonstrated along with strong linewidth reduction. Then, we show individual vortex polarity control of each oscillator, which leads to synchronization/desynchronization due to accompanied frequency shift. Our methods can be easily extended to multiple-element coupled oscillator networks.

  19. Evidence for lattice-polarization-enhanced field effects at the SrTiO3-based heterointerface

    DEFF Research Database (Denmark)

    Li, Y.; R. Zhang, H.; Lei, Y.

    2016-01-01

    Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensionalelectron liquid between two insulating oxides. For the LaAlO3/SrTiO3 (LAO/STO) interface, suchgating effect could be further enhanced by a strong lattice polarization of STO caused by simultaneousappl......Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensionalelectron liquid between two insulating oxides. For the LaAlO3/SrTiO3 (LAO/STO) interface, suchgating effect could be further enhanced by a strong lattice polarization of STO caused...... expansion of the out-of-plane lattice of STO. Photo excitation affects the polarizationprocess by accelerating the field-induced lattice expansion. The present work demonstrates the greatpotential of combined stimuli in exploring emergent phenomenon at complex oxide interfaces....

  20. Optical absorption of carbon nanotube diodes: Strength of the electronic transitions and sensitivity to the electric field polarization

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Rozzi, Tullio

    2008-03-01

    Aim of this work is to model electrostatically doped carbon nanotubes (CNT), which have recently proved to perform as ideal PN diodes, also showing photovoltaic properties. The new model is able to predict the optical absorption of semiconducting CNT as function of size and chirality. We justify theoretically, for the first time, the experimentally observed capability of CNTs to detect and select not only a well defined set of frequencies, as resulting from their discrete band structure, but also the polarization of the incident radiation. The analysis develops from an approach proposed in a recent contribution. The periodic structure of CNTs is formally modeled as a photonic crystal, that is characterized by means of numerical simulators. Longitudinal and transverse components of the electric field are shown to excite distinct interband transitions between well defined energy levels. Equivalently, for a given energy of the incident radiation, absorption may show polarization ratios strongly exceeding unity.

  1. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  2. Magnetic shielding for a transversely polarized target in the longitudinal field of the PANDA solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold; Ahmed, Samer; Dbeyssi, Alaa; Mora Espi, Maria Carmen; Gerz, Kathrin; Lin, Dexu; Maas, Frank; Martinez, Ana Penuelas; Morales, Cristina; Wang, Yadi [Helmholtz Institut Mainz (Germany); Aguar Bartolome, Patricia [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A transversely polarized target in PANDA would allow for the first time access to the imaginary part of the time like electromagnetic proton form factors, namely the phase angle in the imaginary plane between electric and magnetic form factors. Moreover it would allow for a number of other target single spin asymmetries revealing nucleon structure observables connected with the transverse spin structure of the proton. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present experimental results on intense magnetic flux shielding using a BSCCO-2212 high temperature superconducting hollow cylinder at liquid helium temperature.

  3. Giant enhancement in the ferroelectric field effect using a polarization gradient

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zongquan [Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Islam, Mohammad A. [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, State University of New York at Oswego, Oswego, New York 13126 (United States); Spanier, Jonathan E., E-mail: spanier@drexel.edu [Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-19

    Coupling of switchable ferroelectric polarization with the carrier transport in an adjacent semiconductor enables a robust, non-volatile manipulation of the conductance in a host of low-dimensional systems, including the two-dimensional electron liquid that forms at the LaAlO{sub 3} (LAO)-SrTiO{sub 3} (STO) interface. However, strength of the gate-channel coupling is relatively weak, limited in part by the electrostatic potential difference across a ferroelectric gate. Here, through application of phenomenological Landau-Ginzburg-Devonshire theory and self-consistent Poisson-Schrödinger model calculations, we show how compositional grading of PbZr{sub 1−x}Ti{sub x}O{sub 3} ferroelectric gates enables a more than twenty-five-fold increase in the LAO/STO channel conductance on/off ratios. Incorporation of polarization gradients in ferroelectric gates can enable breakthrough performance of ferroelectric non-volatile memories.

  4. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2009-05-21

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  5. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    International Nuclear Information System (INIS)

    Nungesser, Ernesto; Rendall, Alan D

    2009-01-01

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  6. Signatures of the high-altitude polar cusp and dayside auroral regions as seen by the Viking electric field experiment

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Faelthammar, C.G.; Erlandson, R.E.; Potemra, T.A.

    1990-01-01

    Electric field and satellite potential observations along 42 Viking orbits in the high-altitude (2R E ) polar cusp and dayside auroral region have been examined. Within the cusp the plasma density usually reaches a maximum, and it is typically very homogeneous, in contrast to the irregular and lower density in the cleft and dayside auroral regions. The maxima in the plasma density are sometimes anticorrelated with the magnetic field strength, indicating a diamagnetic effect. The entire cusp and dayside auroral regions are characterized by irregular and burstlike electric fields, comprising field reversals on various scales (up to 3 min or 500 km), the larger scales, however, being rare in the cusp. Another common feature in these regions is the high correlation between mutually orthogonal components of the electric and magnetic fields, both for large-scale variations across spatial structures and for wave and pulsations in the ULF frequency range. The electric field signatures in the cusp (in the 1100-1300 MLT sector) are, however, characteristically different from the cleft and oval field signatures in that the electric field is usually less intense and less structured and not correlated with the substorm activity level

  7. Polarized radial magnetic fields and outward plasma fluxes during shallow-reversal discharges in the ZT-40M reversed-field pinch

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.

    1984-01-01

    The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )

  8. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Energy Technology Data Exchange (ETDEWEB)

    McMaken, Tyler C. [National Solar Observatory REU Program, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States); Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu [National Solar Observatory, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States)

    2017-05-10

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  9. Effect of electric field on the performance of soil electro-bioremediation with a periodic polarity reversal strategy.

    Science.gov (United States)

    Mena, E; Villaseñor, J; Cañizares, P; Rodrigo, M A

    2016-03-01

    In this work, it is studied the effect of the electric fields (within the range 0.0-1.5 V cm(-1)) on the performance of electrobioremediation with polarity reversal, using a bench scale plant with diesel-spiked kaolinite with 14-d long tests. Results obtained show that the periodic changes in the polarity of the electric field results in a more efficient treatment as compared with the single electro-bioremediation process, and it does not require the addition of a buffer to keep the pH within a suitable range. The soil heating was not very important and it did not cause a change in the temperature of the soil up to values incompatible with the life of microorganisms. Low values of water transported by the electro-osmosis process were attained with this strategy. After only 14 d of treatment, by using the highest electric field studied in this work (1.5 V cm(-1)), up to 35.40% of the diesel added at the beginning of the test was removed, value much higher than the 10.5% obtained by the single bioremediation technology in the same period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  11. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  12. Zero-field spin transfer oscillators based on magnetic tunnel junction having perpendicular polarizer and planar free layer

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2016-12-01

    Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.

  13. Evidence for non-radial fields in the Sun's photosphere and a possible explanation of the polar magnetic signal

    International Nuclear Information System (INIS)

    Pope, T.

    1975-01-01

    The appearance of the Hα fibrils suggests the presence of magnetic fields inclined at noticeably non-radial angles in the Sun's chromosphere. Evidence is presented to suggest that these angles continue into the photosphere. The presence even of small non-radial inclinations can significantly affect the appearance of regions observed by a longitudinal mangetograph. In particular, a simple bipolar loop can appear unbalanced when viewed near the limb. It is suggested that the observed polar signal may be nothing more than a geometric effect arising when a balanced but systematically aligned array of bipolar pairs is viewed at an angle. (Auth.)

  14. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD.

    Science.gov (United States)

    Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

    2016-12-01

    The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

  15. The polarization of the decimeter radiation and the magnetic field of jupiter

    International Nuclear Information System (INIS)

    Neidhoefer, J.

    1977-01-01

    In the frame of polarization measurements with the newly developed Double-Channel-Korrelation-System, there were measurements conducted of the decimeter radiation of Jupiter at wavelengths of 11 and 18cm with the 100m telescope of the MPIFR. The operating mode, the construction, influences of errors and their elimination during operation described in such a receiving system. The most important particular components are investigated including their limits of performance. Measurement of antenna properties of the Effelsberg-telescope are presented at three wavelengths (18, 11 and 3.3 cm) including high-sensitivity antenna diagrams for all Stokes-parameter. (orig./WL) [de

  16. Drifting field-aligned density structures in the night-side polar cap

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Persoon, A. M.; Gurnett, D. A.; Décréau, P. M. E.; Pickett, J. S.; Maršálek, O.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2005-01-01

    Roč. 32, - (2005), L06106-1 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA202/03/0832; GA MŠk ME 650; GA MŠk 1P05ME811 Grant - others: NASA (US) NAG5-9974; NASA (US) NNG04GB98G; NSF(US) 0307319; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric Physics * Plasma convection * Plasma waves and instabilities * Polar cap phenomena * Magnetospheric configuration and dynamics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005

  17. Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.; ); Rodionov, V.N.

    2003-01-01

    The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru

  18. Toward a theory of precursors

    International Nuclear Information System (INIS)

    Freivogel, Ben; Giddings, Steven B.; Lippert, Matthew

    2002-01-01

    To better understand the possible breakdown of locality in quantum gravitational systems, we pursue the identity of precursors in the context of the anti-de Sitter/conformal field theory correspondence. Holography implies a breakdown of standard bulk locality which we expect to occur only at extremely high energy. We consider precursors that encode bulk information causally disconnected from the boundary and whose measurement involves nonlocal bulk processes. We construct a toy model of holography which encapsulates the expected properties of precursors and compare it with previous such discussions. If these precursors can be identified in the gauge theory, they are almost certainly Wilson loops, perhaps with decorations, but the relevant information is encoded in the high-energy sector of the theory and should not be observable by low energy measurements. This would be in accord with the locality bound, which serves as a criterion for situations where breakdown of bulk locality is expected

  19. Calculated Hanle transmission and absorption spectra of the 87Rb D1 line with residual magnetic field for arbitrarily polarized light

    International Nuclear Information System (INIS)

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-01-01

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  20. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    Science.gov (United States)

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  1. Boron nitride ceramics from molecular precursors: synthesis, properties and applications.

    Science.gov (United States)

    Bernard, Samuel; Salameh, Chrystelle; Miele, Philippe

    2016-01-21

    Hexagonal boron nitride (h-BN) attracts considerable interest because its structure is similar to that of carbon graphite while it displays different properties which are of interest for environmental and green technologies. The polar nature of the B-N bond in sp(2)-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission. It is chemically inert and nontoxic and has good environmental compatibility. h-BN also has enhanced physisorption properties due to the dipolar fields near its surface. Such properties are closely dependent on the processing method. Bottom-up approaches consist of transforming molecular precursors into non-oxide ceramics with retention of the structural units inherent to the precursor molecule. The purpose of the present review is to give an up-to-date overview on the most recent achievements in the preparation of h-BN from borazine-based molecular single-source precursors including borazine and 2,4,6-trichloroborazine through both vapor phase syntheses and methods in the liquid/solid state involving polymeric intermediates, called the Polymer-Derived Ceramics (PDCs) route. In particular, the effect of the chemistry, composition and architecture of the borazine-based precursors and derived polymers on the shaping ability as well as the properties of h-BN is particularly highlighted.

  2. Possible influence of the polarity reversal of the solar magnetic field on the various types of arrhythmias

    International Nuclear Information System (INIS)

    Giannaropoulou, E; Papailiou, M; Mavromichalaki, H; Preka-Papadema, P; Gigolashvili, M; Tvildiani, L; Janashia, K; Papadima, Th

    2013-01-01

    Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data concerning the number of incidents of different types of cardiac arrhythmias for the time period 1983 – 1992 which refer to 1902 patients in Tbilisi, Georgia were used. The smoothing method and the Pearson r-coefficients were used to examine the possible effect of different solar and geomagnetic activity parameters and cosmic ray intensity variations on the different types of arrhythmias. The time interval under examination was separated into two different time periods which coincided with the polarity reversal of the solar magnetic field that occurred in the years 1989-1990 and as a result a different behavior of all the above mentioned parameters as well as of the different types of arrhythmias was noticed during the two time intervals. In addition, changing of polarity sign of the solar magnetic field was found to affect the sign of correlation between the incidence of arrhythmias and the aforementioned parameters. The primary and secondary maxima observed in the solar parameters during the solar cycle 22, also appeared in several types of arrhythmias with a time lag of about five months.

  3. Field-aligned currents and convection patterns in the Southern Polar Cap during stable northward, southward, and azimuthal IMF

    International Nuclear Information System (INIS)

    Papitashvili, V.O.; Belov, B.A.; Gromova, L.I.

    1989-01-01

    Equivalent ionospheric current patterns are derived from ground-based geomagnetic observations for events on 11-12 November 1979 (B/sub z/ >> 0), 24 November 1981 (B/sub z/ > 0) (B/sub y/ >> 0), and 25-26 November 1979 (B/sub y/ 0 . Due to stable external conditions, it is possible to calculate the field-aligned current (FAC) density within cells formed by two adjacent stations by taking into account the uniform conductivity of the summer polar ionosphere. These results completely correspond to regressional analysis of interplanetary magnetic fields (IMF) and ground-based geomagnetic data, and also to satellite observations of the NBZ current system. During stable southward IMF a new result was obtained, a reversal of antisunward convection flow is identified, and an NBZ-like FAC system is restored in the central part of the southern polar cap. The authors conclude that there may be an additional NBZ-like FAC system poleward of -85 0 , which is independent of the IMF and is generated by the quasi-viscous interaction between solar-wind plasma and high-latitude lobes of the magnetospheric tail

  4. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  5. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    Science.gov (United States)

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  6. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    Science.gov (United States)

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl

  7. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    Science.gov (United States)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower

  8. Electron traps in polar liquids. An application of the formalism of the random field theory

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1992-01-01

    The potential energy surface in a disordered medium is described, using the concepts of the mathematical theory of random fields. The statistics of trapping sites (the regions of an excursion of the random field) is obtained for liquid methanol as a numerical example of the theory. (author). 15 refs, 4 figs

  9. Principles of nuclear magnetic resonance imaging using an inhomogeneous polarizing field

    International Nuclear Information System (INIS)

    Briguet, A.; Chaillout, J.; Goldman, M.

    1985-01-01

    In this paper, it is indicated how to reconstruct nuclear magnetic resonance images acquired in an inhomogeneous static magnetic field without the previous knowledge of its spatial distribution. The method provides also the map of the static magnetic field through the sample volume; furthermore it allows the use of non uniform but spatially controlled encoding gradients [fr

  10. Temporal and spectral studies of high-order harmonics generated by polarization-modulated infrared fields

    International Nuclear Information System (INIS)

    Sola, I. J.; Zaier, A.; Cormier, E.; Mevel, E.; Constant, E.; Lopez-Martens, R.; Johnsson, P.; Varju, K.; Mauritsson, J.; L'Huillier, A.; Strelkov, V.

    2006-01-01

    The temporal confinement of high harmonic generation (HHG) via modulation of the polarization of the fundamental pulse is studied in both temporal and spectral domains. In the temporal domain, a collinear cross-correlation setup using a 40 fs IR pump for the HHG and a 9 fs IR pulse to probe the generated emission is used to measure the XUV pulse duration. The observed temporal confinement is found to be consistent with theoretical predictions. An increased confinement is observed when a 9 fs pulse is used to generate the harmonics. An important spectral broadening, including a continuum background, is also measured. Theoretical calculations show that with 10 fs driving pulses, either one or two main attosecond pulses are created depending on the value of the carrier envelope phase

  11. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    Science.gov (United States)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  12. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    International Nuclear Information System (INIS)

    Yuan, MingHu; Xin, PeiPei; Liu, HongPing; Chu, TianShu

    2017-01-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system. (paper)

  13. Spherical polar co-ordinate calculations of induced fields in the retina and head for applied magnetic fields at 50 Hz.

    Science.gov (United States)

    Dimbylow, Peter

    2011-07-21

    This paper sets out to explore the effects of voxel resolution, from 2 mm down to 0.1 mm for Cartesian co-ordinates and the differences between Cartesian and spherical polar co-ordinates for a standardized test-bed model of the eye. This model was taken from the work of Yoriyaz et al (2005 Radiat. Prot. Dosim. 115 316-9) who have developed a detailed geometric description of the eye including choroid, retina, sclera, lens, cornea, anterior chamber, vitreous humour and optic nerve for ophthalmic brachytherapy. The spherical co-ordinate model has radial and angular steplengths of 0.1 mm and 0.25°, respectively. The current density averaged over 1 cm(2) and the 99th percentile value of the induced electric field have been calculated in the retina and central nervous system for uniform magnetic fields. The Cartesian co-ordinate calculations proceed in a sequence of grids at 2, 1, 0.5, 0.2 and 0.1 mm resolution with the potentials from the previous calculation at a coarser grid providing the boundary conditions on the finer grid. The 0.2 mm grid provides the boundary conditions for the spherical polar calculations. Comparisons are made with the International Commission on Non-Ionizing Radiation Protection reference levels.

  14. Spherical polar co-ordinate calculations of induced fields in the retina and head for applied magnetic fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2011-01-01

    This paper sets out to explore the effects of voxel resolution, from 2 mm down to 0.1 mm for Cartesian co-ordinates and the differences between Cartesian and spherical polar co-ordinates for a standardized test-bed model of the eye. This model was taken from the work of Yoriyaz et al (2005 Radiat. Prot. Dosim. 115 316-9) who have developed a detailed geometric description of the eye including choroid, retina, sclera, lens, cornea, anterior chamber, vitreous humour and optic nerve for ophthalmic brachytherapy. The spherical co-ordinate model has radial and angular steplengths of 0.1 mm and 0.25 0 , respectively. The current density averaged over 1 cm 2 and the 99th percentile value of the induced electric field have been calculated in the retina and central nervous system for uniform magnetic fields. The Cartesian co-ordinate calculations proceed in a sequence of grids at 2, 1, 0.5, 0.2 and 0.1 mm resolution with the potentials from the previous calculation at a coarser grid providing the boundary conditions on the finer grid. The 0.2 mm grid provides the boundary conditions for the spherical polar calculations. Comparisons are made with the International Commission on Non-Ionizing Radiation Protection reference levels.

  15. The influence of the AlN barrier thickness on the polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Lv, Yuanjie; Feng, Zhihong; Gu, Guodong; Han, Tingting; Yin, Jiayun; Liu, Bo; Cai, Shujun; Lin, Zhaojun; Ji, Ziwu; Zhao, Jingtao

    2014-01-01

    The electron mobility scattering mechanisms in AlN/GaN heterostuctures with 3 nm and 6 nm AlN barrier thicknesses were investigated by temperature-dependent Hall measurements. The effect of interface roughness (IFR) scattering on the electron mobility was found to be enhanced by increasing AlN barrier thickness. Moreover, using the measured capacitance-voltage and current-voltage characteristics of the fabricated heterostructure field-effect transistors (HFETs) with different Schottky areas on the two heterostuctures, the variations of electron mobility with different gate biases were investigated. Due to enhanced IFR scattering, the influence of polarization Coulomb field (PCF) scattering on electron mobility was found to decrease with increasing AlN barrier layer thickness. However, the PCF scattering remained an important scattering mechanism in the AlN/GaN HFETs.

  16. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  17. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    Science.gov (United States)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which

  18. Modelling earth current precursors in earthquake prediction

    Directory of Open Access Journals (Sweden)

    R. Di Maio

    1997-06-01

    Full Text Available This paper deals with the theory of earth current precursors of earthquake. A dilatancy-diffusion-polarization model is proposed to explain the anomalies of the electric potential, which are observed on the ground surface prior to some earthquakes. The electric polarization is believed to be the electrokinetic effect due to the invasion of fluids into new pores, which are opened inside a stressed-dilated rock body. The time and space variation of the distribution of the electric potential in a layered earth as well as in a faulted half-space is studied in detail. It results that the surface response depends on the underground conductivity distribution and on the relative disposition of the measuring dipole with respect to the buried bipole source. A field procedure based on the use of an areal layout of the recording sites is proposed, in order to obtain the most complete information on the time and space evolution of the precursory phenomena in any given seismic region.

  19. Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Yu Ying-Xia; Lin Zhao-Jun; Luan Chong-Biao; Yang Ming; Wang Yu-Tang; Lü Yuan-Jie; Feng Zhi-Hong

    2014-01-01

    By making use of the quasi-two-dimensional (quasi-2D) model, the current–voltage (I–V) characteristics of In 0.18 Al 0.82 N/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance–voltage (C–V) characteristics and I–V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm 2 /V·s for the prepared In 0.18 Al 0.82 N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain–source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization

    Science.gov (United States)

    Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.

    2018-06-01

    We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.

  1. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  2. Effect of electric field distribution on the morphologies of laser-induced damage in hafnia-silica multilayer polarizers

    International Nuclear Information System (INIS)

    Genin, F.Y.; Stolz, C.J.; Reitter, T.; Kozlowski, M.R.; Bevis, R.P.; vonGunten, M.K.

    1997-01-01

    Hafnia-silica multilayer polarizers were deposited by e-beam evaporation onto BK7 glass substrates. The polarizers were designed to operate at 1064 nm at Brewster's angle (56 degree). They were tested with a 3-ns laser pulse at 45, 56, and 65 degree incidence angle in order to vary the electric field distribution in the multilayer, study their effects on damage morphology, and investigate possible advantages of off-use angle laser conditioning. Morphology of the laser-induced damage was characterized by optical and scanning electron microscopy. Four distinct damage morphologies (pit, flat bottom pit, scald, outer layer delamination) were observed; they depend strongly on incident angle of the laser beam. Massive delamination observed at 45 and 56 degree incidence, did not occur at 65 degree; instead, large and deep pits were found at 65 degree. Electric field distribution, temperature rise, and change in stress in the multilayer were calculated to attempt to better understand the relation between damage morphology, electric field peak locations, and maximum thermal stress gradients. The calculations showed a twofold increase in stress change in the hafnia top layers depending on incident angle. Stress gradient in the first hafnia-silica interface was found to be highest for 45, 56, and 65 degree, respectively. Finally, the maximum stress was deeper in the multilayer at 65 degree. Although the limitations of such simple thermal mechanical model are obvious, the results can explain that outer layer delamination is more likely at 45 and 56 degree than 65 degree and that damage sites are expected to be deeper at 65 degree

  3. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    Science.gov (United States)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites

  4. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    Science.gov (United States)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  5. Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan; Bonetti, S; Zha, C L; Akerman, Johan [Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden)], E-mail: zhouyan@kth.se

    2009-10-15

    Using nonlinear system theory and numerical simulations, we map out the static and dynamic phase diagrams in the zero applied field of a spin torque nano device with a tilted polarizer (TP). We find that for sufficiently large currents, even very small tilt angles ({beta}>1 deg.) will lead to steady free layer precession in zero field. Within a rather large range of tilt angles, 1 deg. <{beta}<19 deg., we find coexisting static states and hysteretic switching between these using only current. In a more narrow window (1 deg. <{beta}<5 deg.) one of the static states turns into a limit cycle (precession). The coexistence of current-driven static and dynamic states in the zero magnetic field is unique to the TP device and leads to large hysteresis in the upper and lower threshold currents for its operation. The nano device with TP can facilitate the generation of large amplitude mode of spin torque signals without the need for cumbersome magnetic field sources and thus should be very important for future telecommunication applications based on spin transfer torque effects.

  6. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  7. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  8. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Woch, J.; Lundin, R.

    1992-01-01

    Magnetosheath particle precipitation in the polar cusp region is studied based on Viking hot plasma data obtained on meridional cusp crossings. Two distinctively different regions are commonly encountered on a typical pass. One region is characterized by high-density particle precipitation, with an ion population characterized by a convecting Maxwellian distribution. Typical magnetosheath parameters are inferred for the spectrum of the source population. The spectral shape of the ion population encountered in the second region suggests that here the magnetosheath ions have been energized by about 1 keV, corresponding to an ion velocity gain of about twice the magnetosheath Alfven velocity. The location of the region containing the accelerated plasma is dependent on the IMF B z component. For southward IMF the acceleration region is bounded by the ring current population on the equatorward side and by the unaccelerated magnetosheath plasma precipitation on the poleward side. For northward IMF the region is located at the poleward edge of the region with unaccelerated precipitation. The accelerated ion population is obviously transported duskward (dawnward) for a dawnward (duskward) directed IMF. These observations are interpreted as evidence for plasma acceleration due to magnetopause current sheet disruptions/merging of magnetospheric and interplanetary magnetic flux tubes

  9. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  10. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Vanzyl, Jakob J.

    1991-01-01

    Polarimetric signatures from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert show systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright 'spokes', which seems to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripple on the relatively vegetationless fields. A Late Pleistocene/Holocene sand bar deposit, which can be identified in the radar images, is probably responsible for the failure of three fields to match the age sequence patterns in roughness and peak shift.

  11. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  12. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  13. Polar cap magnetic field reversals during solar grand minima: could pores play a role?

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Brun, A.S.; Roudier, T.; Jouve, L.

    2016-01-01

    Roč. 586, February (2016), A123/1-A123/11 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-04338S Institutional support: RVO:67985815 Keywords : dynamo * Sun * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  14. Saturne II: characteristics of the proton beam, field qualities and corrections, acceleration of the polarized protons

    International Nuclear Information System (INIS)

    Laclare, J.-L.

    1978-01-01

    Indicated specifications of Saturne II are summed up: performance of the injection system, quality of the guidance field (magnetic measurements and multipolar corrections), transverse and longitudinal instabilities, characteristics of the beam stored in the machine and of the extracted beam. The problem of depolarization along the acceleration cycle is briefly discussed (1 or 2% between injection and 3 GeV) [fr

  15. A 60 GHz Dual-Polarized Probe for Spherical Near-Field Measurements

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Breinbjerg, Olav

    2017-01-01

    to waveguide adapters up to 67 GHz for OMT-switch connection. A 27 dBi gain conical horn is designed by using WIPL-D software and in-house manufactured. The 60 GHz probe system is being assembled and tested in planar near-field (PNF) setup at DTU. The results are validated by comparison with WIPL-D simulations...

  16. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields

    International Nuclear Information System (INIS)

    Wei Qi; Kais, Sabre; Moiseyev, Nimrod

    2006-01-01

    Singly charged negative atomic ions exist in the gas phase and are of fundamental importance in atomic and molecular physics. However, theoretical calculations and experimental results clearly exclude the existence of any stable doubly-negatively-charged atomic ion in the gas phase, only one electron can be added to a free atom in the gas phase. In this report, using the high-frequency Floquet theory, we predict that in a linear superintense laser field one can stabilize multiply charged negative atomic ions in the gas phase. We present self-consistent field calculations for the linear superintense laser fields needed to bind extra one and two electrons to form He - , He 2- , and Li 2- , with detachment energies dependent on the laser intensity and maximal values of 1.2, 0.12, and 0.13 eV, respectively. The fields and frequencies needed for binding extra electrons are within experimental reach. This method of stabilization is general and can be used to predict stability of larger multiply charged negative atomic ions

  17. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...

  18. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  19. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  20. The effect of colloidal stabilization upon ferrimagnetic resonance in magnetic fluids in the presence of a polarizing magnetic field

    CERN Document Server

    Fannin, P C; Socoliuc, V; Istratuca, G M; Giannitsis, A T

    2003-01-01

    The complex magnetic susceptibility of two magnetic fluids, with different degrees of colloidal stabilization, has been measured over the frequency range 100 MHz to 6 GHz. The colloidal stabilization of the magnetic fluids has been investigated using magneto-optical measurements. Based on complex magnetic susceptibility measurements, chi(omega) chi'(omega)-i chi''(omega), the dependence of the maximum absorption frequency at resonance, f sub m sub a sub x , and of line width, DELTA f, on an external magnetic polarizing field, H, over the range 0-1.45 kOe, has been examined for both magnetic fluids. The experimental results have been interpreted in terms of magnetic interparticle interactions and particle agglomeration.

  1. Methodological developments of low field MRI: Elasto-graphy, MRI-ultrasound interaction and dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Madelin, Guillaume

    2005-01-01

    This thesis deals with two aspects of low field (0.2 T) Magnetic Resonance Imaging (MRI): the research of new contrasts due to the interaction between Nuclear Magnetic Resonance (NMR) and acoustics (elasto-graphy, spin-phonon interaction) and enhancement of the signal-to-noise ratio by Dynamic Nuclear Polarization (DNP). Magnetic Resonance Elasto-graphy (MRE) allows to assess some viscoelastic properties of tissues by visualization of the propagation of low frequency acoustic strain waves. A review on MRE is given, as well as a study on local measurement of the acoustic absorption coefficient. The next part is dedicated to MRI-ultrasound interaction. First, the ultrasonic transducer was calibrated for power and acoustic field using the comparison of two methods: the radiation force method (balance method) and laser interferometry. Then, we tried to modify the T1 contrast of tissues by spin-phonon interaction due to the application of ultrasound at the resonance frequency at 0.2 T, which is about 8.25 MHz. No modification of T1 contrast has been obtained, but the acoustic streaming phenomenon has been observed in liquids. MRI visualization of this streaming could make possible to calibrate transducers as well as to assess some mechanical properties of viscous fluids. The goal of the last part was to set up DNP experiments at 0.2 T in order to enhance the NMR signal. This double resonance method is based on the polarization transfer of unpaired electrons of free radicals to the surrounding protons of water. This transfer occurs by cross relaxation during the saturation of an electronic transition using Electronic Paramagnetic Resonance (EPR). Two EPR cavities operating at 5.43 GHz have been tested on oxo-TEMPO free radicals (nitroxide). An enhancement of the NMR signal by a factor 30 was obtained during these preliminary experiments. (author)

  2. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  3. Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    of the filaments and therefore to provide insight into the structure of their magnetic field (B). We present the polarization maps of three nearby (several parsecs long) star-forming filaments of moderate column density (N-H about 1022 cm-2): Musca, B211, and L1506. These three filaments are detected above...... angles in the three filaments (ψfil) are coherent along their lengths and not the same as in their backgrounds (ψbg). The differences between ψfil and ψbg are 12 degrees and 54 degrees for Musca and L1506, respectively, and only 6 degrees in the case of B211. These differences for Musca and L1506...... (by, e. g., radiative torques) and the structure of the B-field in causing variations in p, but we argue that the decrease in p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of the B-field: both its orientation in the POS and with respect...

  4. Tuning Valley Polarization in a WSe_{2} Monolayer with a Tiny Magnetic Field

    Directory of Open Access Journals (Sweden)

    T. Smoleński

    2016-05-01

    Full Text Available In monolayers of semiconducting transition metal dichalcogenides, the light helicity (σ^{+} or σ^{-} is locked to the valley degree of freedom, leading to the possibility of optical initialization of distinct valley populations. However, an extremely rapid valley pseudospin relaxation (at the time scale of picoseconds occurring for optically bright (electric-dipole active excitons imposes some limitations on the development of opto-valleytronics. Here, we show that valley pseudospin relaxation of excitons can be significantly suppressed in a WSe_{2} monolayer, a direct-gap two-dimensional semiconductor with the exciton ground state being optically dark. We demonstrate that the already inefficient relaxation of the exciton pseudospin in such a system can be suppressed even further by the application of a tiny magnetic field of about 100 mT. Time-resolved spectroscopy reveals the pseudospin dynamics to be a two-step relaxation process. An initial decay of the pseudospin occurs at the level of dark excitons on a time scale of 100 ps, which is tunable with a magnetic field. This decay is followed by even longer decay (>1  ns, once the dark excitons form more complex pseudo-particles allowing for their radiative recombination. Our findings of slow valley pseudospin relaxation easily manipulated by the magnetic field open new prospects for engineering the dynamics of the valley pseudospin in transition metal dichalcogenides.

  5. CHANGE OF MAGNETIC FIELD-GAS ALIGNMENT AT THE GRAVITY-DRIVEN ALFVÉNIC TRANSITION IN MOLECULAR CLOUDS: IMPLICATIONS FOR DUST POLARIZATION OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22901 (United States)

    2016-10-01

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicular to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.

  6. Near field of an oscillating electric dipole and cross-polarization of a collimated beam of light: Two sides of the same coin

    Science.gov (United States)

    Aiello, Andrea; Ornigotti, Marco

    2014-09-01

    We address the question of whether there exists a hidden relationship between the near-field distribution generated by an oscillating electric dipole and the so-called cross-polarization of a collimated beam of light. We find that the answer is affirmative by showing that the complex field distributions occurring in both cases have a common physical origin: the requirement that the electromagnetic fields must be transverse.

  7. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Choudhuri, Arnab Rai [Department of Physics, Indian Institute of Science, Bangalore, 560012 (India); Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States)

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  8. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  9. Political Polarization in Social Media: Analysis of the "Twitter Political Field" in Japan

    OpenAIRE

    Takikawa, Hiroki; Nagayoshi, Kikuko

    2017-01-01

    There is an ongoing debate about whether the Internet is like a public sphere or an echo chamber. Among many forms of social media, Twitter is one of the most crucial online places for political debate. Most of the previous studies focus on the formal structure of the Twitter political field, such as its homophilic tendency, or otherwise limit the analysis to a few topics. In order to explore whether Twitter functions as an echo chamber in general, however, we have to investigate not only the...

  10. Field and polarity dependence of time-to-resistance increase in Fe-O films studied by constant voltage stress method

    International Nuclear Information System (INIS)

    Eriguchi, Koji; Ohta, Hiroaki; Ono, Kouichi; Wei Zhiqiang; Takagi, Takeshi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe-O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (t r ) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. From a polarity-dependent resistance increase determined by a time-zero measurement, the voltage and polarity-dependent t r were discussed on the basis of field- and structure-enhanced thermochemical reaction mechanisms

  11. The anxieties of a science diplomat: field coproduction of climate knowledge and the rise and fall of Hans Ahlmann's polar warming".

    Science.gov (United States)

    Sörlin, Sverker

    2011-01-01

    In the decades between the world wars there were several attempts to document and explain perceived tendencies of atmospheric warming. Hans Ahlmann, a seminal figure in modern glaciology and a science policy adviser and diplomat, constructed a theory of "polar warming" using field results from glacier melting in the Arctic. This article aims to link the rise and fall of "polar warming" with Ahlmann's style of fieldwork. In Ahlmann's view, fieldwork should (1) enhance credibility of polar climate science by emulating laboratory methods and (2) secure knowledge in remote places through collaboration with local residents and fieldworkers. The bodily nature of this style of knowledge production turned out to be an asset in establishing Ahlmann's theory of polar warming but ultimately proved nonresilient to theories of anthropogenic climate change, which became influential from the 1950s onward.

  12. Instantaneous current and field structure of a gun-driven spheromak for two gun polarities

    International Nuclear Information System (INIS)

    Woodruff, S; Nagata, M

    2002-01-01

    The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters

  13. Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: Sources and diel variations

    Directory of Open Access Journals (Sweden)

    A. C. Ion

    2005-01-01

    Full Text Available In the present study, we examined PM2.5 continental rural background aerosols, which were collected during a summer field campaign at K-puszta, Hungary (4 June-10 July 2003, a mixed coniferous/deciduous forest site characterized by intense solar radiation during summer. Emphasis was placed on polar oxygenated organic compounds that provide information on aerosol sources and source processes. The major components detected at significant atmospheric concentrations were: (a photo-oxidation products of isoprene including the 2-methyltetrols (2-methylthreitol and 2-methylerythritol and 2-methylglyceric acid, (b levoglucosan, a marker for biomass burning, (c malic acid, an intermediate in the oxidation of unsaturated fatty acids, and (d the sugar alcohols, arabitol and mannitol, markers for fungal spores. Diel patterns with highest concentrations during day-time were observed for the 2-methyltetrols, which can be regarded as supporting evidence for their fast photochemical formation from locally emitted isoprene. In addition, a diel pattern with highest concentrations during day-time was observed for the fungal markers, suggesting that the release of fungal fragments that are associated with the PM2.5 aerosol is enhanced during that time. Furthermore, a diel pattern was also found for levoglucosan with the highest concentrations at night when wood burning may take place in the settlements around the sampling site. In contrast, malic acid did not show day/night differences but was found to follow quite closely the particulate and organic carbon mass. This is interpreted as an indication that malic acid is formed in photochemical reactions which have a much longer overall time-scale than that of isoprene photo-oxidation, and the sources of its precursors are manifold, including both anthropogenic and natural emissions. On the basis of the high concentrations found for the isoprene oxidation products during day-time, it can be concluded that rapid photo

  14. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  15. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    Catapano, F.; Zimbardo, G.; Artemyev, A. V.; Vasko, I. Y.

    2015-01-01

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  16. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  17. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  18. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  19. Investigation of the Surface Properties of an Oxide of Interest in the Field of a Conductive Oxide System: Influence of Precursor and Purification

    Directory of Open Access Journals (Sweden)

    Gomes Gilmar de Almeida

    1999-01-01

    Full Text Available The surface properties of commercial TiO2 and samples synthesized by the thermal decomposition procedure using several precursor salts were investigated by a microelectrophoresis technique. The iep was determined as a function of the ionic strength which was controlled with KNO3 or KCl. The experimental results showed: 1 The commercial sample and the ones synthesized from the chloride salt dissolved in HCl 1:1 (v/v show low iep?s due to chloride inclusion; 2 The purification methods explored (oxide suspension at pH~12 and dialysis are inefficient; 3 TiO2 samples synthesized from an organic precursor salt under totally chloride-free conditions furnished an iep of 5.9 in excellent agreement with literature data; 4 Chloride specific adsorption on TiO2 is weak.

  20. Comparative analysis of electric field influence on the quantum wells with different boundary conditions.: I. Energy spectrum, quantum information entropy and polarization.

    Science.gov (United States)

    Olendski, Oleg

    2015-04-01

    Analytical solutions of the Schrödinger equation for the one-dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field [Formula: see text] are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small [Formula: see text], the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC-dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two-level approximation elementary explains the negative polarizations as a result of the field-induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann-Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero-voltage position entropies [Formula: see text] are BC independent and for all states but the ground Neumann level (which has [Formula: see text]) are equal to [Formula: see text] while the momentum entropies [Formula: see text] depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC-dependent zero-energy and zero-polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.

  1. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    International Nuclear Information System (INIS)

    Gao Yu

    2013-01-01

    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field. As of now, observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field. The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current. We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region, however, the net current is found to be an order-of-magnitude less than the mean absolute magnitude and has a preferred sign. In particular, we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere, but during the solar minimum this tendency is reversed over time at some latitudes. The result indicates that there is weak net electric current in areas of solar active regions with opposite polarity, thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  2. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  3. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  4. Effects of polarization field on vertical transport in GaN/AlGaN resonant tunneling diodes

    International Nuclear Information System (INIS)

    Park, Seoung-Hwan; Shim, Jong-In

    2012-01-01

    Polarization-field effects on the vertical transport in GaN/AlGaN resonant tunneling diodes (RTDs) were theoretically investigated by using the transfer matrix formalism. The self-consistent model shows that the resonant peaks are shifted toward higher energies with increasing Al composition in the AlGaN barrier, and the transmission probability values are shown to decrease rapidly. In the case of the flat-band model, on the other hand, the shift of the resonant peaks is smaller than it is for the self-consistent model and the variation of transmission probability values with increasing Al composition is relatively smaller than that of the self-consistent model. The current voltage characteristics of the self-consistent model are asymmetric while those of the flat-band model are symmetric for positive and negative current directions. The peak-to-valley ratio (PVR) of the self-consistent model is shown to be slightly smaller than that of the flat-band model for Al = 0.3.

  5. Calibration and field evaluation of polar organic chemical integrative sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater

    International Nuclear Information System (INIS)

    Bailly, Emilie; Levi, Yves; Karolak, Sara

    2013-01-01

    The Polar Organic Chemical Integrative Sampler (POCIS) is a new tool for the sampling of organic pollutants in water. We tested this device for the monitoring of pharmaceuticals in hospital wastewater. After calibration, a field application was carried out in a French hospital for six pharmaceutical compounds (Atenolol, Prednisolone, Methylprednisolone, Sulfamethoxazole, Ofloxacin, Ketoprofen). POCIS were calibrated in tap water and wastewater in laboratory conditions close to relevant environmental conditions (temperature, flow velocity). Sampling rates (R s ) were determined and we observed a significant increase with flow velocity and temperature. Whatever the compound, the R s value was lower in wastewater and the linear phase of uptake was shorter. POCIS were deployed in a hospital sewage pipe during four days and the estimated water concentrations were close to those obtained with twenty-four hour composite samples. -- Highlights: ► Calibration of POCIS for the monitoring of pharmaceuticals in hospital wastewater. ► Uptake profile presents a shorter linear phase in wastewater than in tap water. ► Influence of R s values by temperature, flow velocity and bio-fouling. ► Correlation between concentrations estimated from POCIS or measured in TWA samples. ► Deployment period should be no longer than five days. -- After calibration in tap water and hospital wastewater, POCIS were used to monitor pharmaceuticals in hospital sewage and were compared to TWA sampling

  6. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  7. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  8. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  9. Toward 3-D E-field visualization in laser-produced plasma by polarization-spectroscopic imaging

    International Nuclear Information System (INIS)

    Kim, Yong W.

    2004-01-01

    A 3-D volume radiator such as laser-produced plasma (LPP) plumes is observed in the form of a 2-D projection of its radiative structure. The traditional approach to 3-D structure reconstruction relies on multiple projections but is not suitable as a general method for unsteady radiating objects. We have developed a general method for 3-D structure reconstruction for LPP plumes in stages of increasing complexity. We have chosen neutral gas-confined LPP plumes from an aluminum target immersed in high-density argon because the plasma experiences Rayleigh-Taylor instability. We make use of two time-resolved, mutually orthogonal side views of a LPP plume and a front-view snapshot. No symmetry assumptions are needed. Two scaling relations are invoked that connects the plasma temperature and pressure to local specific intensity at selected wavelength(s). Two mutually-orthogonal lateral luminosity views of the plume at each known distance from the target surface are compared with those computed from the trial specific intensity profiles and the scaling relations. The luminosity error signals are minimized to find the structure. The front-view snapshot is used to select the initial trial profile and as a weighting function for allocation of the error signal into corrections for specific intensities from the plasma cells along the line of sight. Full Saha equilibrium for multiple stages of ionization is treated, together with the self-absorption, in the computation of the luminosity. We show the necessary optics for determination of local electric fields through polarization-resolved imaging. (author)

  10. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  11. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  12. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  13. Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures

    International Nuclear Information System (INIS)

    Ji, Xu; Zhu, Yuan; Chen, Mingming; Su, Longxing; Chen, Anqi; Zhao, Chengchun; Gui, Xuchun; Xiang, Rong; Huang, Feng; Tang, Zikang

    2014-01-01

    Surface water molecules induced grain boundaries (GBs) barrier modification was investigated in ZnO and ZnMgO/ZnO films. Tunable electronic transport properties of the samples by water were characterized via a field effect transistor (FET) device structure. The FETs fabricated from polar C-plane ZnO and ZnMgO/ZnO films that have lots of GBs exhibited obvious double Schottky-like current-voltage property, whereas that fabricated from nonpolar M-plane samples with GBs and ZnO bulk single-crystal had no obvious conduction modulation effects. Physically, these hallmark properties are supposed to be caused by the electrostatical coupling effect of crystal polar field and molecular dipole on GBs barrier.

  14. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  15. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  16. A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua

    2014-01-01

    In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  18. Analysis and application of impedance polar diagram and zstrike rose diagram of magnetotellurics data in southern part of the Wayang Windu geothermal field

    Science.gov (United States)

    Rohayat, O. R.; Wicaksono, R. A.; Daud, Y.

    2018-03-01

    In this study, we determined the main direction of geoelectric strike in the southern part of the Wayang Windu geothermal field using magnetotellurics (MT) data. The strike direction was obtained by analyzing data using impedance polar and Zstrike rose diagram. We investigated 51 MT data at different sites of the southern part of the Wayang Windu geothermal field. Determination of geoelectric strike direction is important since the strike is the rotation references in MT data processing. Our findings had pointed out that the geoelectric strike direction in this study area is in accordance with the direction of geological structure and has a good correlation with structures delineated from 3D MT inversion model.

  19. Dynamic Precursors of Flares in Active Region NOAA 10486

    Science.gov (United States)

    Korsós, M. B.; Gyenge, N.; Baranyi, T.; Ludmány, A.

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted hori- zontal gradient W G M , is the generalized form of the horizontal gradient of the magnetic field, G M ; the other is the sum of the horizontal gradient of the magnetic field, G S , for all sunspot pairs). W G M is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S l- f , considers the overall morphology. Further, G S and S l- f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  20. Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual.

    Science.gov (United States)

    Liu, Guo-Chin; Lee, Seokcheon; Ng, Kin-Wang

    2006-10-20

    We present the full set of power spectra of cosmic microwave background (CMB) temperature and polarization anisotropies due to the coupling between quintessence and pseudoscalar of electromagnetism. This coupling induces a rotation of the polarization plane of the CMB, thus resulting in a nonvanishing B mode and parity-violating TB and EB modes. Using the BOOMERANG data from the flight of 2003, we derive the most stringent constraint on the coupling strength. We find that in some cases the rotation-induced B mode can confuse the hunting for the gravitational lensing-induced B mode.

  1. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  2. Concentration polarization effects on the macromolecular transport in the presence of non-uniform magnetic field: A numerical study using a lumen-wall model

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourfard, M., E-mail: Mohammadpour@azaruniv.edu [Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379 (Iran, Islamic Republic of); Aminfar, H., E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Khajeh, K., E-mail: khajeh.k.2005@gmail.com [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-04-01

    In this paper, the concentration polarization phenomena in a two dimensional tube under steady state conditions containing ferrofluid (blood and 4 vol% Fe{sub 3}O{sub 4}) is reported in the presence of non-uniform magnetic field. Lumen-wall model has been used for solving the mass transport equation. Hemodynamics parameters such as flow rate, viscosity, wall shear stress (WSS) and the macromolecules surface concentration which accumulate on the blood vessel wall, influenced the formation and progression of atherosclerosis disease. Effective parameters on the low density lipoprotein (LDL) surface concentration (LSC) such as: the wall filtration velocity, inlet Reynolds number and WSS under applied non-uniform magnetic field have been examined. Numerical solution of governing equations of the flow field have been obtained by using the single-phase model and the control volume technique. Magnetic field is generated by an electric current going through a thin and straight wire oriented perpendicular to the tube. Results show WSS in the vicinity of magnetic field source increased and LSC decreased along the wall. - Highlights: • In this paper the concentration polarization phenomena of blood flow is reported in the presence of non-uniform magnetic field. • In presence of non-uniform magnetic field LSC will decrease along the wall due to the increasing the velocity gradients near the magnetic source. • When non-uniform magnetic field intensity increases, LSC along the wall becomes lower. • Non-uniform magnetic field can affects the flow more in low Reynolds numbers.

  3. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  4. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire

    International Nuclear Information System (INIS)

    Rezaei, G.; Mousavi, S.; Sadeghi, E.

    2012-01-01

    Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.

  5. Studying the Representation Accuracy of the Earth's Gravity Field in the Polar Regions Based on the Global Geopotential Models

    Science.gov (United States)

    Koneshov, V. N.; Nepoklonov, V. B.

    2018-05-01

    The development of studies on estimating the accuracy of the Earth's modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.

  6. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DEFF Research Database (Denmark)

    Aghanim, N.; Alves, M. I R; Arzoumanian, D.

    2016-01-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the...

  7. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    Science.gov (United States)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  8. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  9. Sidereal semi-diurnal variation observed at high zenith angles at Mawson, 1968-1984, and the polarity of the solar main field

    International Nuclear Information System (INIS)

    Jacklyn, R.M.; Duldig, M.L.

    1985-01-01

    High zenith-angle North/South telescopes viewing equatorially and at midlatitudes through 40 MWE of atmosphere have been operating at Mawson since early 1968. It is evident that a sidereal semi-diurnal component of galactic origin has been observed, over and above a possible spurious component proposed by Nagashima, arising from a bi-directional component of the solar anisotropy. Although a very pronounced reduction in the semi-diurnal galactic response followed the reversal of polarity of the solar main field during 1969 to 1971, so far the observations indicate that there has been no recurrence of a larger galactic response following the reversal of polarity around 1981. The possible role of the latitudional extent lambda omicron of the wavy neutral sheet is discussed

  10. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  11. Photoelectron reflection and scattering at Venus: an upper limit on the "polar wind" ambipolar electric field, and a new source of top-side ionospheric heating

    Science.gov (United States)

    Collinson, Glyn; Glocer, Alex; Grebowsky, Joe; Peterson, William; Frahm, Rudy; Moore, Thomas; Gilbert, Lin; Coates, Andrew

    2015-04-01

    An important mechanism in the generation of Earth's polar wind is the ambipolar potential generated by the outflow along open field lines of superthermal electrons. This ≈20V electric potential assists ions in overcoming the gravitational potential, and is a key mechanism for Terrestrial ionospheric escape. At Venus, except in rare circumstances, every field line is open, and a similar outflow of ionospheric electrons is observed. It is thus hypothesized that a similar electric potential may be present at Venus, contributing to global ionospheric loss. However, a very sensitive electric field instrument would be required to directly measure this potential, and no such instrument has yet been flown to Venus. In this pilot study, we examine photoelectron spectra measured by the ASPERA-ELS instrument on the Venus Express to put an initial upper bound on the total potential drop above 350km of Φ current understanding, a "polar wind" like ambipolar electric field may not be as important a mechanism for atmospheric escape as previously suspected. Additionally, we find our spectra are consistent with the scattering of photoelectrons, the heating from which which we hypothesize may act as a source of top-side ionospheric heating, and may play a role in influencing the scale height of the ionosphere.

  12. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  13. Wide-field synovial fluid imaging using polarized lens-free on-chip microscopy for point-of-care diagnostics of gout (Conference Presentation)

    Science.gov (United States)

    Zhang, Yibo; Lee, Seung Yoon; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-03-01

    Gout and pseudogout are forms of crystal arthropathy caused by monosodium urate (MSU) and calcium pyrophosphate dehydrate (CPPD) crystals in the joint, respectively, that can result in painful joints. Detecting the unique-shaped, birefringent MSU/CPPD crystals in a synovial fluid sample using a compensated polarizing microscope has been the gold-standard for diagnosis since the 1960's. However, this can be time-consuming and inaccurate, especially if there are only few crystals in the fluid. The high-cost and bulkiness of conventional microscopes can also be limiting for point-of-care diagnosis. Lens-free on-chip microscopy based on digital holography routinely achieves high-throughput and high-resolution imaging in a cost-effective and field-portable design. Here we demonstrate, for the first time, polarized lens-free on-chip imaging of MSU and CPPD crystals over a wide field-of-view (FOV ~ 20.5 mm2, i.e., gout and pseudogout. Circularly polarizer partially-coherent light is used to illuminate the synovial fluid sample on a glass slide, after which a quarter-wave-plate and an angle-mismatched linear polarizer are used to analyze the transmitted light. Two lens-free holograms of the MSU/CPPD sample are taken, with the sample rotated by 90°, to rule out any non-birefringent objects within the specimen. A phase-recovery algorithm is also used to improve the reconstruction quality, and digital pseudo-coloring is utilized to match the color and contrast of the lens-free image to that of a gold-standard microscope image to ease the examination by a rheumatologist or a laboratory technician, and to facilitate computerized analysis.

  14. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    International Nuclear Information System (INIS)

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  15. Effect of polarized radiative transfer on the Hanle magnetic field determination in prominences: Analysis of hydrogen H alpha line observations at Pic-du-Midi

    Science.gov (United States)

    Bommier, V.; Deglinnocenti, E. L.; Leroy, J. L.; Sahal-Brechot, S.

    1985-01-01

    The linear polarization of the Hydrogen H alpha line of prominences has been computed, taking into account the effect of a magnetic field (Hanle effect), of the radiative transfer in the prominence, and of the depolarization due to collisions with the surrounding electrons and protons. The corresponding formalisms are developed in a forthcoming series of papers. In this paper, the main features of the computation method are summarized. The results of computation have been used for interpretation in terms of magnetic field vector measurements from H alpha polarimetric observations in prominences performed at Pic-du-Midi coronagraph-polarimeter. Simultaneous observations in one optically thin line (He I D(3)) and one optically thick line (H alpha) give an opportunity for solving the ambiguity on the field vector determination.

  16. Far field photoluminescence imaging of single AlGaN nanowire in the sub-wavelength scale using confinement of polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Sivadasan, A.K.; Dhara, Sandip [Nanomaterials and Sensors Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam (India); Sardar, Manas [Theoretical Studies Section, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-03-15

    Till now the nanoscale focusing and imaging in the sub-diffraction limit is achieved mainly with the help of plasmonic field enhancement by confining the light assisted with noble metal nanostructures. Using far field imaging technique, we have recorded polarized spectroscopic photoluminescence (PL) imaging of a single AlGaN nanowire (NW) of diameter ∝100 nm using confinement of polarized light. It is found that the PL from a single NW is influenced by the proximity to other NWs. The PL intensity is proportional to 1/(l x d), where l and d are the average NW length and separation between the NWs, respectively. We suggest that the proximity induced PL intensity enhancement can be understood by assuming the existence of reasonably long lived photons in the intervening space between the NWs. A nonzero non-equilibrium population of such photons may cause stimulated emission leading to the enhancement of PL emission with the intensity proportional to 1/(l x d). The enhancement of PL emission facilitates far field spectroscopic imaging of a single semiconductor AlGaN NW of sub-wavelength dimension. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Dynamics of a quasiparticle in the α-T3 model: role of pseudospin polarization and transverse magnetic field on zitterbewegung

    Science.gov (United States)

    Biswas, Tutul; Kanti Ghosh, Tarun

    2018-02-01

    We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for 0gets exactly half of that corresponding to the α=0 case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.

  18. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-07-01

    Full Text Available To investigate the origins of hydroxyl groups in a polymeric dielectric and its applications in organic field-effect transistors (OFETs, a polar polymer layer was inserted between two polymethyl methacrylate (PMMA dielectric layers, and its effect on the performance as an organic field-effect transistor (OFET was studied. The OFETs with a sandwiched dielectric layer of poly(vinyl alcohol (PVA or poly(4-vinylphenol (PVP containing hydroxyl groups had shown enhanced characteristics compared to those with only PMMA layers. The field-effect mobility had been raised more than 10 times in n-type devices (three times in the p-type one, and the threshold voltage had been lowered almost eight times in p-type devices (two times in the n-type. The on-off ratio of two kinds of devices had been enhanced by almost two orders of magnitude. This was attributed to the orientation of hydroxyl groups from disordered to perpendicular to the substrate under gate-applied voltage bias, and additional charges would be induced by this polarization at the interface between the semiconductor and dielectrics, contributing to the accumulation of charge transfer.

  19. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling.

    Science.gov (United States)

    Li, Q; Nelson, C T; Hsu, S-L; Damodaran, A R; Li, L-L; Yadav, A K; McCarter, M; Martin, L W; Ramesh, R; Kalinin, S V

    2017-11-13

    Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO 3 /SrTiO 3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO 3 and SrTiO 3 . Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.

  20. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    Science.gov (United States)

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  1. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration

    Science.gov (United States)

    Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.

  2. Electronic simulation of the supported liquid membrane in electromembrane extraction systems: Improvement of the extraction by precise periodical reversing of the field polarity

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny

    2014-01-01

    Highlights: • A simple equivalent circuit has been proposed for a supported liquid membrane. • A dual charge transfer mechanism was proposed for electromembrane extraction. • An improvement was observed by precise periodical reversing of the field polarity. - Abstract: In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has

  3. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Fabbian, D. [Max-Planck-Institut für Sonnensytemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rezaei, R. [Instituto de Astrofísica de Canarias, C/Vía Láctea S/N, E-38205 La Laguna, Tenerife (Spain); Puschmann, K. G., E-mail: cbeck@nso.edu [Alzenau (Germany)

    2017-06-10

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.

  4. Design and performance verification of a wideband scalable dual-polarized probe for spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Nielsen, Jeppe Majlund

    2012-01-01

    A wideband scalable dual-polarized probe designed by the Electromagnetic Systems group at the Technical University of Denmark is presented. The design was scaled and two probes were manufactured for the frequency bands 1-3 GHz and 0.4-1.2 GHz. The results of the acceptance tests of the 0.4-1.2 GHz...... probe are briefly discussed. Since these probes represent so-called higher-order antennas, applicability of the recently developed higher-order probe correction technique [3] for these probes was investigated. Extensive tests were carried out for two representative antennas under test using...

  5. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    Science.gov (United States)

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  6. Modelling of a plasma column sustained by a travelling circularly polarized electromagnetic wave (m=1 mode) in the presence of a constant axial magnetic field

    International Nuclear Information System (INIS)

    Benova, E.; Staikov, P.; Zhelyazkov, I.

    1992-01-01

    A set of equations modelling a low-pressure plasma column sustained by a travelling electromagnetic wave in the dipolar mode in the presence of a constant external magnetic field is presented. It is shown that, from a practical point of view, only the m = 1 mode (the right-hand-polarized wave) can sustain plasma columns in a wide region of gas-discharge conditions: plasma radius R, wave frequency ω, magnetic field B 0 and low pressures, irrespective of the nature of the gas. The main result of this study is that the magnetic field makes it possible to sustain a plasma column for values of σ smaller than σ cr = 0.3726, below which, in the absence of a magnetic field, the dipolar wave cannot produce a plasma. Moreover, at a fixed wave power, the magnetic field - in contrast with the case of plasma columns sustained by azimuthally symmetric waves - increases the plasma density and its axial gradient. The limit of an infinite external magnetic field (Ω → ∞) is also considered. A three-dimensional wave structure is obtained, and it indicates that the wave can be a generalized surface mode, a pure surface or a pseudosurface one. (author)

  7. Methodology and design synthesis of source of the magnetic fields with complicated energy-frequency and polarization structure

    Directory of Open Access Journals (Sweden)

    Zhitnik N. E.

    2008-12-01

    Full Text Available The method of synthesis of the rotating magnetic fields, created by combination of three mutually perpendicular solenoidal contours power supplied by an alternating current, is discussed. Possibility of construction of the magnetoforming system with changing direction of the magnetic field rotation, allowing in practical realization to take into account the chiral dissymmetry of molecules of matters, subject to treatment by the magnetic field, is shown.

  8. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  9. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  10. Effects of polar field-aligned currents on the distribution of the electric field and current in the middle and low latitudes ionosphere

    International Nuclear Information System (INIS)

    Maekawa, Koichiro

    1978-01-01

    According to the analysis of the magnetic records from the Triad satellite, it has been found that there are two regions of the field-aligned current of magnetospheric origin along the auroral oval; Region 1 in higher latitude and Region 2 in lower latitude. These currents seem to have important effect on the distribution of electric field and current in the ionosphere, in addition to the Sq electric field and current of ionospheric origin. The global current systems generated by the field-aligned current were calculated, using some simplified ionospheric models. The effect of the field-aligned current on the distribution of electric field and current of the ionosphere at middle and low latitudes was investigated. (Yoshimori, M.)

  11. Types of distribution of electric fields and the types of convection corresponding to them in the polar ionosphere. A model.

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1989-06-01

    All types of distributions known from experiment of the evening-morning component of the electric field Ee-m along the morning-evening meridian are reproduced on the basis of a model of the continuous distribution of largescale electric fields E, and the convection patterns corresponding to them, which differ appreciably from the known speculative concepts, are calculated. Two-, three-, and four-vortex convection patterns are realized, depending on the conditions in the interplanetary medium.

  12. Types of electric-field distribution and corresponding types of convection in the polar ionosphere - A model

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1989-08-01

    A model for the continuous distribution of large-scale electric fields is used to reproduce all the experimentally known types of distributions of the evening-morning electric field component along the morning-evening meridian. The corresponding convection patterns are then calculated, which are shown to diverge significantly from previous theoretical considerations. Depending on conditions in the interplanetary medium, two-, three-, or four-vortex convection patterns occur.

  13. Dynamics of a quasiparticle in the α-T3 model: Role of pseudospin polarization and transverse magnetic field on zitterbewegung.

    Science.gov (United States)

    Biswas, Tutul; Ghosh, Tarun Kanti

    2018-01-09

    We consider the $\\alpha$-$T_3$ model which provides a smooth crossover between the honeycomb lattice with pseudospin $1/2$ and the dice lattice with pseudospin $1$ through the variation of a parameter $\\alpha$. We study the dynamics of a wave packet representing a quasiparticle in the $\\alpha$-T$_3$ model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient $zitterbewegung$ (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter $\\alpha$ i.e. for $0<\\alpha<1$ the resulting ZB consists of two distinct frequencies when the wave packet was located initially in $rim$ site. However, the wave packet exhibits single frequency ZB for $\\alpha=0$ and $\\alpha=1$. It is also unveiled that the frequency of ZB corresponding to $\\alpha=1$ gets exactly half of that corresponding to the $\\alpha=0$ case. On the other hand, when the initial wave packet was in $hub$ site, the ZB consists of only one frequency for all values of $\\alpha$. Using stationary phase approximation we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of large number of Landau energy levels the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter $\\alpha$. © 2018 IOP Publishing Ltd.

  14. Dynamics of a quasiparticle in the α-T3 model: role of pseudospin polarization and transverse magnetic field on zitterbewegung.

    Science.gov (United States)

    Biswas, Tutul; Kanti Ghosh, Tarun

    2018-01-22

    We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T 3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for [Formula: see text] the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for [Formula: see text] and [Formula: see text]. It is also unveiled that the frequency of ZB corresponding to [Formula: see text] gets exactly half of that corresponding to the [Formula: see text] case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.

  15. Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in Koyna-Warna seismoactive region, West India

    Directory of Open Access Journals (Sweden)

    F. Dudkin

    2010-07-01

    Full Text Available A new approach is developed to find the source azimuth of the ultra low frequency (ULF electromagnetic (EM signals believed to be emanating from well defined seismic zone. The method is test applied on magnetic data procured from the seismoactive region of Koyna-Warna, known for prolonged reservoir triggered seismicity. Extremely low-noise, high-sensitivity LEMI-30 search coil magnetometers were used to measure simultaneously the vector magnetic field in the frequency range 0.001–32 Hz at two stations, the one located within and another ~100 km away from the seismic active zone. During the observation campaign extending from 15 March to 30 June 2006 two earthquakes (EQs of magnitude (ML>4 occurred, which are searched for the presence of precursory EM signals.

    Comparison of polarization ellipses (PE parameters formed by the magnetic field components at the measurement stations, in select frequency bands, allows discrimination of seismo-EM signals from the natural background ULF signals of magnetospheric/ionospheric origin. The magnetic field components corresponding to spectral bands dominated by seismo-EM fields define the PE plane which at any instant contains the source of the EM fields. Intersection lines of such defined PE planes for distant observation stations clutter in to the source region. Approximating the magnetic-dipole configuration for the source, the magnetic field components along the intersection lines suggest that azimuth of the EM source align in the NNW-SSE direction. This direction well coincides with the orientation of nodal plane of normal fault plane mechanism for the two largest EQs recorded during the campaign. More significantly the correspondence of this direction with the tectonic controlled trend in local seismicity, it has been surmised that high pressure fluid flow along the fault that facilitate EQs in the region may also be the source mechanism for EM fields by electrokinetic effect.

  16. Lessons learned on probabilistic methodology for precursor analyses

    International Nuclear Information System (INIS)

    Babst, Siegfried; Wielenberg, Andreas; Gaenssmantel, Gerhard

    2016-01-01

    Based on its experience in precursor assessment of operating experience from German NPP and related international activities in the field, GRS has identified areas for enhancing probabilistic methodology. These are related to improving the completeness of PSA models, to insufficiencies in probabilistic assessment approaches, and to enhancements of precursor assessment methods. Three examples from the recent practice in precursor assessments illustrating relevant methodological insights are provided and discussed in more detail. Our experience reinforces the importance of having full scope, current PSA models up to Level 2 PSA and including hazard scenarios for precursor analysis. Our lessons learned include that PSA models should be regularly updated regarding CCF data and inclusion of newly discovered CCF mechanisms or groups. Moreover, precursor classification schemes should be extended to degradations and unavailabilities of the containment function. Finally, PSA and precursor assessments should put more emphasis on the consideration of passive provisions for safety, e. g. by sensitivity cases.

  17. Lessons learned on probabilistic methodology for precursor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Babst, Siegfried [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Berlin (Germany); Wielenberg, Andreas; Gaenssmantel, Gerhard [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    Based on its experience in precursor assessment of operating experience from German NPP and related international activities in the field, GRS has identified areas for enhancing probabilistic methodology. These are related to improving the completeness of PSA models, to insufficiencies in probabilistic assessment approaches, and to enhancements of precursor assessment methods. Three examples from the recent practice in precursor assessments illustrating relevant methodological insights are provided and discussed in more detail. Our experience reinforces the importance of having full scope, current PSA models up to Level 2 PSA and including hazard scenarios for precursor analysis. Our lessons learned include that PSA models should be regularly updated regarding CCF data and inclusion of newly discovered CCF mechanisms or groups. Moreover, precursor classification schemes should be extended to degradations and unavailabilities of the containment function. Finally, PSA and precursor assessments should put more emphasis on the consideration of passive provisions for safety, e. g. by sensitivity cases.

  18. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    Energy Technology Data Exchange (ETDEWEB)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J. [Centre de Recherche en Astrophysique du Québec (CRAQ), Département de physique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  19. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  20. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  1. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert - Can polarimetric SAR detect desertification?

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Radar backscatter from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert shows systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright spokes, which seem to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripples on the relatively vegetationless fields.

  2. The search for inner polar disks with integral field spectroscopy : the case of NGC 2855 and NGC 7049

    NARCIS (Netherlands)

    Coccato, L.; Corsini, E. M.; Pizzella, A.; Bertola, F.

    Context. The presence of non-circular and off-plane gas motion is frequently observed in the inner regions of disk galaxies. Aims. With integral-field spectroscopy we have measured the surface-brightness distribution and kinematics of the ionized gas in NGC 2855 and NGC 7049. These two early-type

  3. Magnetic reconnection and precursor effect in coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.

    1988-01-01

    A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities

  4. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  5. USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ming; Feng, Xueshang; Liu, Ying D. [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [Rutherford-Appleton Laboratory (RAL) Space, Harwell Oxford (United Kingdom); Owens, Mathew J.; Davis, Chris J., E-mail: mxiong@spacweather.ac.cn [Reading University, Reading (United Kingdom)

    2013-11-01

    Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B{sub ∥} and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression I∝r {sup –3}. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r{sub sheath} and the mass of plasma at that position M{sub sheath} can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B{sub ∥sheath} at r{sub sheath} can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

  6. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  7. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  8. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  9. Electric field and substrate–induced modulation of spin-polarized transport in graphene nanoribbons on A3B5 semiconductors

    International Nuclear Information System (INIS)

    Ilyasov, Victor V.; Nguyen, Chuong V.; Ershov, Igor V.; Hieu, Nguyen N.

    2015-01-01

    In this work, we present the density functional theory calculations of the effect of an oriented electric field on the electronic structure and spin-polarized transport in a one dimensional (1D) zigzag graphene nanoribbon (ZGNR) channel placed on a wide bandgap semiconductor of the A3B5 type. Our calculations show that carrier mobility in the 1D semiconductor channel of the ZGNR/A3B5(0001) type is in the range from 1.7×10 4 to 30.5×10 4 cm 2 /Vs and can be controlled by an electric field. In particular, at the critical value of the positive potential, even though hole mobility in an one-dimensional 8-ZGNR/h-BN semiconductor channel for spin down electron subsystems is equal to zero, hole mobility can be increased to 4.1×10 5 cm 2 /Vs for spin up electron subsystems. We found that band gap and carrier mobility in a 1D semiconductor channel of the ZGNR/A3B5(0001) type depend strongly on an external electric field. With these extraordinary properties, ZGNR/A3B5(0001) can become a promising materials for application in nanospintronic devices

  10. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability

    Science.gov (United States)

    Lamarche, Leslie J.; Makarevich, Roman A.

    2017-03-01

    We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.

  11. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  12. Effects of atmospheric oscillations on the field-aligned ion motions in the polar F-region

    Directory of Open Access Journals (Sweden)

    S. Oyama

    Full Text Available The field-aligned neutral oscillations in the F-region (altitudes between 165 and 275 km were compared using data obtained simultaneously with two independent instruments: the European Incoherent Scatter (EISCAT UHF radar and a scanning Fabry-Perot interferometer (FPI. During the night of February 8, 1997, simultaneous observations with these instruments were conducted at Tromsø, Norway. Theoretically, the field-aligned neutral wind velocity can be obtained from the field-aligned ion velocity and by diffusion and ambipolar diffusion velocities. We thus derived field-aligned neutral wind velocities from the plasma velocities in EISCAT radar data. They were compared with those observed with the FPI (λ=630.0 nm, which are assumed to be weighted height averages of the actual neutral wind. The weighting function is the normalized height dependent emission rate. We used two model weighting functions to derive the neutral wind from EISCAT data. One was that the neutral wind velocity observed with the FPI is velocity integrated over the entire emission layer and multiplied by the theoretical normalized emission rate. The other was that the neutral wind velocity observed with the FPI corresponds to the velocity only around an altitude where the emission rate has a peak. Differences between the two methods were identified, but not completely clarified. However, the neutral wind velocities from both instruments had peak-to-peak correspondences at oscillation periods of about 10–40 min, shorter than that for the momentum transfer from ions to neutrals, but longer than from neutrals to ions. The synchronizing motions in the neutral wind velocities suggest that the momentum transfer from neutrals to ions was thought to be dominant for the observed field-aligned oscillations rather than the transfer from ions to neutrals. It is concluded that during the observation, the plasma oscillations observed with the EISCAT radar at different altitudes

  13. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  14. Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence

    Science.gov (United States)

    Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel

    2018-02-01

    Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.

  15. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  16. Analysis of a Permo-Triassic polarity transition in different absolute reconstructions of Pangaea, considering a model with features of the present Earth magnetic field

    Directory of Open Access Journals (Sweden)

    M. A. Van Zele

    2007-06-01

    Full Text Available The main objective of this paper is to show that the distribution of transitional palaeomagnetic data recorded at 250 Ma are in agreement with simulated data that depend on the sampling site, using a model that considers features of the Present Earth magnetic field. The analysis was performed comparing simulated reversals with the Permo-Triassic polarity transition recorded in the Siberian Trap Basalts. The palaeomagnetic data were corrected according to the Palaeo-latitude and Palaeo-longitude of Siberia (absolute reconstruction at 250 Ma using hotspot tracks. To obtain the motion of Siberia relative to hotspots from the Present time back to 250 Ma, three different Pangaea models were considered (Pangaea A, Pangaea A2, Pangaea B. In spite of the uncertainties associated with the use of hotspot frameworks and Pangaea configurations, both the modelled and recorded data show a remarkable fit when absolute reconstructions of Pangaea A and A2 configurations are performed. The agreement between both simulated and recorded data suggests that similar features to that of the Present Earth magnetic field could have been involved in reversals since the Permo-Triassic.

  17. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    Science.gov (United States)

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  18. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  19. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  20. Analytical characterization of wine and its precursors by capillary electrophoresis.

    Science.gov (United States)

    Gomez, Federico J V; Monasterio, Romina P; Vargas, Verónica Carolina Soto; Silva, María F

    2012-08-01

    The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polarized line formation with J-state interference in the presence of magnetic fields: A Heuristic treatment of collisional frequency redistribution

    International Nuclear Information System (INIS)

    Smitha, H.N.; Nagendra, K.N.; Sampoorna, M.; Stenflo, J.O.

    2013-01-01

    An expression for the partial frequency redistribution (PRD) matrix for line scattering in a two-term atom, which includes the J-state interference between its fine structure line components is derived. The influence of collisions (both elastic and inelastic) and an external magnetic field on the scattering process is taken into account. The lower term is assumed to be unpolarized and infinitely sharp. The linear Zeeman regime in which the Zeeman splitting is much smaller than the fine structure splitting is considered. The inelastic collision rates between the different levels are included in our treatment. We account for the depolarization caused by the collisions coupling the fine structure states of the upper term, but neglect the polarization transfer between the fine structure states. When the fine structure splitting goes to zero, we recover the redistribution matrix that represents the scattering on a two-level atom (which exhibits only m-state interference—namely the Hanle effect). The way in which the multipolar index of the scattering atom enters into the expression for the redistribution matrix through the collisional branching ratios is discussed. The properties of the redistribution matrix are explored for a single scattering process for a L=0→1→0 scattering transition with S=1/2 (a hypothetical doublet centered at 5000 Å and 5001 Å). Further, a method for solving the Hanle radiative transfer equation for a two-term atom in the presence of collisions, PRD, and J-state interference is developed. The Stokes profiles emerging from an isothermal constant property medium are computed. -- Highlights: ► Polarized partial frequency redistribution matrix (PRDM) for two-term atom is derived. ► PRDM includes collisions heuristically and magnetic fields in linear Zeeman regime. ► A method to include this PRDM into the radiative transfer equation is presented. ► The transfer equation is solved both for the magnetic and non-magnetic cases. ► The

  2. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Peng Zhaohong; Zhao Wei; Shen Jin; Hu Jihong; Li Zhaopeng; Wang Tao

    2009-01-01

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  3. Dynamic nuclear polarization tests in some polymers for polarized targets

    International Nuclear Information System (INIS)

    Brandt, B. van den; Hautle, P.; Konter, J.A.; Mango, S.; Bunyatova, E.I.

    1998-01-01

    The results of dynamic polarization tests in polyethylene (PE) and ethylene propylene copolymer (EPC), doped with the stable free radical 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), are presented. Sizable proton polarizations have been achieved in a magnetic field of 2.5 T at a temperature below 0.3 K and 5T at 1 K

  4. Polarization: A must for fusion

    Directory of Open Access Journals (Sweden)

    Didelez J.-P.

    2013-11-01

    Full Text Available The complete polarization of DT fuel would increase the fusion reactivity by 50% in magnetic as well as in inertial confinements. The persistence of polarization in a fusion process could be tested, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the emitted neutrons and the change in the corresponding total Cross Section (CS can sign the polarization persistence. The polarization of solid H2, D2 or T2 Hydrogen isotopes is very difficult. However, it has been possible to polarize HD, a hetero-molecular form of Hydrogen, by static polarization, at very low temperature and very high field. The radioactivity of DT molecules forbids there high polarization by the static method, therefore one has to develop the Dynamic Nuclear Polarization (DNP by RF transitions. The DNP of HD has been investigated in the past. The magnetic properties of HD and DT molecules are very similar, it is therefore expected that any polarization result obtained with HD could be extrapolated to DT.

  5. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  6. The effect of Nb doping on ferroelectric properties of PZT thin films prepared from polymeric precursors

    International Nuclear Information System (INIS)

    Souza, E.C.F.; Simoes, A.Z.; Cilense, M.; Longo, E.; Varela, J.A.

    2004-01-01

    Pure and Nb doped PbZr 0.4 Ti 0.6 O 3 thin films was prepared by the polymeric precursor method and deposited by spin coating on Pt/Ti/SiO 2 /Si (100) substrates and annealed at 700 deg. C. The films are oriented in (1 1 0) and (1 0 0) direction. The electric properties of PZT thin films show strong dependence of the crystallographic orientation. The P-E hysteresis loops for the thin film with composition PbZr 0.39 Ti 0.6 Nb 0.1 O 3 showed good saturation, with values for coercive field (E c ) equal to 60 KV cm -1 and for remanent polarization (P r ) equal to 20 μC cm -2 . The measured dielectric constant (ε) is 1084 for this film. These results show good potential for application in FERAM

  7. Understanding Animal Detection of Precursor Earthquake Sounds.

    Science.gov (United States)

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  8. The polarized EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  9. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  10. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  11. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  12. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  13. Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Schmidt, Marcus [MPI CPfS, Dresden (Germany); Wilhelm, Heribert [Diamond Light Source Ltd., Chilton (United Kingdom); Roessler, Ulrich K.; Bogdanov, Alexei N.; Leonov, Andrey A. [IFW Dresden (Germany)

    2011-07-01

    We report on detailed magnetic measurements on the cubic helimagnet FeGe in external magnetic fields parallel to the direction and temperatures in the vicinity of the onset of long-range magnetic order at T{sub c}{approx}278 K. Depending on the temperature and field, a helical state (Hfield-polarized state occurs. Precursor phenomena found above T{sub c} display a complex succession of temperature-driven cross-overs and phase transitions. The A-phase pocket is split in at least two distinct areas, A{sub 1} and A{sub 2}. The area A{sub 1} at lower fields shows clear lines of transitions into the conical phase at lower temperature and into the A{sub 2} area at higher fields. The area A{sub 2} appears to transform continuously into the conical phase. Relying on a modified phenomenology for chiral magnets, the A{sub 1} phase could indicate existence of a +{pi} Skyrmion lattice, however, the A{sub 2} phase seems related to helicoids propagating in directions perpendicular to the applied field. We suggest that the observation of this A{sub 2}-phase can be explained by hexagonal arrays of spiral domains consisting essentially of helicoids.

  14. Bringing Experience from the Field into the Classroom with the NOAA Teacher at Sea and PolarTREC Teacher Research Experience Programs

    Science.gov (United States)

    Eubanks, E. D.; Kohin, S.; Oberbauer, S.

    2008-12-01

    As a participant of the National Oceanic and Atmospheric Administration (NOAA), Teacher at Sea (2007) and the Arctic Research Consortium of the U.S., PolarTREC (2008) programs, I have had the opportunity to participate in hands-on research with leading scientific researchers from the tropics to the Arctic. These Teacher Researcher Experiences (TRE's) and the resulting relationships that have developed with the scientific community have been an asset to my professional development and have greatly enhanced my students' learning. The opportunity to participate in data collection and hands-on research with a NOAA researcher, Dr. Kohin, helped me bring shark, ocean, and ship science from my expedition onboard the NOAA Ship David Starr Jordan in the Channel Island region into my classroom. The new knowledge, experiences, and resources that I brought back allowed me to create lesson plans and host Shark Month--an activity that involved all 300 students in my school. My students were able to link real data regarding the location of sharks to practical application and still meet state standards. Likewise, the scientist from my PolarTREC expedition, Dr. Oberbauer, is assisting me in a long-term plan to incorporate his data into my classroom curricula. Already, my experiences from Barrow, Alaska, have been shared through webinars with my community and as a keynote speaker to over 600 Palm Beach County science teachers. We are also working together to develop a yearlong curriculum, in which my entire school of 300 students will discover interdisciplinary polar science. Participation in TRE's has been beneficial for my students and my community, but what is the return on the investment for the scientists who invited me to participate in their research? Both scientists have transferred their knowledge out of the laboratory and made a link between their research and a different generation--our future scientists. They become instrumental science leaders in a community of young

  15. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  16. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  17. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  18. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.

  19. Field and polarity dependence of time-to-resistance increase in Fe–O films studied by constant voltage stress method

    OpenAIRE

    Eriguchi, Koji; Wei, Zhiqiang; Takagi, Takeshi; Ohta, Hiroaki; Ono, Kouichi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe–O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (tr) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. Fro...

  20. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...