WorldWideScience

Sample records for polar covalent pr-ru

  1. Template-directed self-assembly of dynamic covalent capsules with polar interiors.

    Science.gov (United States)

    Galán, Albano; Escudero-Adán, Eduardo C; Ballester, Pablo

    2017-11-01

    Chiral polyimine molecular capsules with polar interiors have been prepared through template covalent dynamic self-assembly. An aryl-extended tetraaldehyde calix[4]pyrrole scaffold was condensed with suitable diamines as linkers using templates for efficient self-assembly. The capsular complexes were characterized in solution, gas phase and the solid-state. Unprecedented transfer of asymmetry was observed from a chiral diamine linker to the resulting supramolecular capsular assembly.

  2. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  3. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  4. Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions

    NARCIS (Netherlands)

    Fiammengo, R.; Timmerman, P.; Huskens, Jurriaan; Versluis, Kees; Heck, Albert J.R.; Reinhoudt, David

    2002-01-01

    Non-covalent synthesis of calix[4]arene capped porphyrins can be achieved in polar solvents (up to 45% molar fraction of water) via ionic interaction. Thus tetracationic meso-tetrakis(N-alkylpyridinium-3-yl) porphyrins 1a–d and tetra anionic 25,26,27,28-tetrakis(2-ethoxyethoxy)-calix[4]arene

  5. On the Mott transition and the new metal-insulator transitions in doped covalent and polar crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Begimkulov, U.; Kurbanov, U.T.; Yavidov, B.Y.

    2001-10-01

    The Mott transition and new metal-insulator transitions (MIT's) and their distinctive features in doped covalent semiconductors and polar compounds are studied within the continuum model of extrinsic carrier self-trapping, the Hubbard impurity band model (with on-site Coulomb repulsion and screening effects) and the extrinsic (bi)polaronic band model (with short- and long-range carrier-impurity, impurity-phonon and carrier-phonon interactions and intercarrier correlation) using the appropriate tight-binding approximations and variational methods. We have shown the formation possibility of large-radius localized one- and two-carrier impurity (or defect) states and narrow impurity bands in the band gap and charge transfer gap of these carrier-doped systems. The extrinsic Mott-Hubbard and (bi)polaronic insulating gaps are calculated exactly. The proper criterions for Mott transition, extrinsic excitonic and (bi)polaronic MIT's are obtained. We have demonstrated that the Mott transition occurs in doped covalent semiconductors (i.e. Si and Ge) and some insulators with weak carrier-phonon coupling near the large-radius dopants. While, in doped polar compounds (e.g. oxide high-T c superconductors (HTSC) and related materials) the MIT's are new extrinsic (or intrinsic) (bi)polaronic MIT's. We have found that the anisotropy of the dielectric (or (bi)polaronic) properties of doped cuprate HTSC is responsible for smooth (or continuous) MIT's, stripe formation and suppression of high-T c superconductivity. Various experimental results on in-gap states, bands and MIT's in doped covalent semiconductors, oxide HTSC and related materials are in good agreement with the developed theory of Mott transition and new (bi)polaronic MIT's. (author)

  6. Covalent and non-covalent functionalization and solubilization of ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Double-walled carbon nanotubes (DWNTs) have been functionalized by both covalent and non-covalent means. Covalent functionalization has been carried out by attaching an aliphatic amide function to DWNTs which enable solubilization in non-polar solvents. Solubilization in non-polar sol- vents has also been ...

  7. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  8. Thermoelectric, electronic, optical and chemical bonding properties of Ba{sub 2}PrRuO{sub 6}: At temperature 7 K and 150 K

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, Kangar, Perlis 01007 Malaysia (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2015-01-15

    Highlights: • DFT-FPLAPW method used for calculating the electronic structure. • The Fermi surface of BPRO (7 K and 150 K) is also calculated. • The complex dielectric function has been calculated. • Thermoelectric properties were also calculated using BoltzTraP code. • Power factor shows that both compounds are good thermoelectric materials at 600 K. - Abstract: We present first principles calculations of the band structure, density of states, electronic charge density, Fermi surface and optical properties of Ba{sub 2}PrRuO{sub 6} single crystals at two different temperatures. The atomic positions were optimized by minimizing the forces acting on the atoms. We have employed the full potential linear augmented plane wave method within local density approximation, generalized gradient approximation and Engel–Vosko generalized gradient approximation to treat the exchange correlation potential. The calculation shows that the compound is superconductor with strong hybridization near the Fermi energy level. Fermi surface is composed of two sheets. The calculated electronic specific heat capacities indicate, very close agreement with the experimental one. The bonding features of the compounds are analyzed using the electronic charge density in the (1 0 0) and (0–10) crystallographic planes. The dispersion of the optical constants was calculated and discussed. The thermoelectric properties are also calculated using the BoltzTrap code.

  9. Covalent Organic

    DEFF Research Database (Denmark)

    Vutti, Surendra

    chemistry of silicon, InAs and GaAs materials, covalentsurface functionalization using organosilanes, liquid-phase, and vapor-phasefunctionalizations, diazo-transfer reaction, CuAAC click chemistry, different types ofbiorthogonal chemistries, SPAAC chemistry, and cellular interactions of chemically...... immobilization of D-amino acid adhesion peptideson azide functionalized silicon, GaAs and InAs materials by using CuAAC-click chemistry.The covalent immobilization of penetration peptide (TAT) on gold nanotips of InAs NWs isalso demonstrated.In chapter four, the covalent immobilization of GFP on silicon wafers......, GaAs wafers andGaAs NWs is demonstrated. Series of Fmoc-Pra-OH, NHS-PEG5-NHS and BCN-NHSfunctionalized silicon surfaces has been prepared, whereby GFP-N3 and GFP-bicyclononyneare immobilized by using CuAAC and SPAAC chemistry. The specific and covalentimmobilization of GFP-N3 on bicyclononyne...

  10. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  11. Covalent and non-covalent functionalization and solubilization of ...

    Indian Academy of Sciences (India)

    Non-covalent functionalization of DWNTs has been carried out by using polyethylene glycol (PEG) and polyoxyethylene(40)nonylphenyl ether (IGPAL), both of which enable solubilization in aqueous media. These functionalized DWNTs have been characterized by transmission electron microscopy, IR and Raman ...

  12. Chemistry of Covalent Organic Frameworks.

    Science.gov (United States)

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  13. Atomic Covalent Functionalization of Graphene

    Science.gov (United States)

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  14. Covalent magnetism and magnetic impurities.

    Science.gov (United States)

    Gruber, C; Bedolla, P O; Mohn, P

    2013-05-08

    We use the model of covalent magnetism and its application to magnetic insulators applied to the case of insulating carbon doped BaTiO3. Since the usual Stoner mechanism is not applicable we study the possibility of the formation of magnetic order based on a mechanism favoring singly occupied orbitals. On the basis of our model parameters we formulate a criterion similar to the Stoner criterion but also valid for insulators. We describe the model of covalent magnetism using a molecular orbital picture and determine the occupation numbers for spin-up and spin-down states. Our model allows a simulation of the results of our ab initio calculations for E(ℳ) which are found to be in very good agreement.

  15. Flavins as Covalent Catalysts: New Mechanisms Emerge.

    Science.gov (United States)

    Piano, Valentina; Palfey, Bruce A; Mattevi, Andrea

    2017-06-01

    With approximately 1% of proteins being flavoproteins, flavins are at the heart of a plethora of redox reactions in all areas of biology. Thanks to a series of fascinating recent discoveries, in addition to redox chemistry, covalent catalysis is now being recognized more frequently as a common strategy in flavoenzymes, with unprecedented mechanisms becoming apparent. Thus, noncanonical covalent reactions by flavins are emerging as a new pervasive concept in basic enzymology and biochemistry. These diverse enzymes are engaged in most biological processes, positioning the knowledge being gained from these new mechanisms to be translated into drugs that function through covalent mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Disorder phenomena in covalent semiconductors

    International Nuclear Information System (INIS)

    Popescu, M.A.

    1975-01-01

    The structure of the amorphous semiconductors has been investigated by means of X-ray diffraction and by computer simulation of random network models. Amorphous germanium contains mainly five and six-membered rings of atoms. In glassy state, the ternary compounds A 2 B 4 C 2 5 , such as CdGeAs 2 contain only even rings of atoms (six-membered and eight-membered rings). In the memory glasses of the type A 2 B 4 C 2 5 , such as GeAs 2 Te 7 , the valency state of every element is that from the crystal and important van der Waals forces are effective in the network. No Ge-Ge, Ge-As and As-As bonds are formed. The high pressure forms of the germanium have been simulated by computer. The force constants of the covalent bonds in Ge III and Ge IV differ from those in Ge I. The bond bending force constant decreases rapidly when the density of the crystal increases, a fact which has been imparted to a reduction of the sp 3 hybridization. The compressibility curve of the Ge I has been explained. The effect of the radial and uniaxial deformation on the non-crystalline networks has been studied. The compressibility of the amorphous germanium is by 1.5 per cent greater than that of crystalline germanium. The Poisson coefficient for a-Ge network is 0.233. The structure of the As 2 S 3 glass doped with different amounts of germanium (up to 40 at. per cent) and silver (up to 12 at. per cent) has been investigated. The As 2 S 3 Gesub(x) compositions are constituted from a disordered packing of structural units whose chemical composition and relative proportion in the glass essentially depends on the germanium content. (author)

  17. Covalency in Americium(III) Hexachloride.

    Science.gov (United States)

    Cross, Justin N; Su, Jing; Batista, Enrique R; Cary, Samantha K; Evans, William J; Kozimor, Stosh A; Mocko, Veronika; Scott, Brian L; Stein, Benjamin W; Windorff, Cory J; Yang, Ping

    2017-06-28

    Developing a better understanding of covalency (or orbital mixing) is of fundamental importance. Covalency occupies a central role in directing chemical and physical properties for almost any given compound or material. Hence, the concept of covalency has potential to generate broad and substantial scientific advances, ranging from biological applications to condensed matter physics. Given the importance of orbital mixing combined with the difficultly in measuring covalency, estimating or inferring covalency often leads to fiery debate. Consider the 60-year controversy sparked by Seaborg and co-workers ( Diamond, R. M.; Street, K., Jr.; Seaborg, G. T. J. Am. Chem. Soc. 1954 , 76 , 1461 ) when it was proposed that covalency from 5f-orbitals contributed to the unique behavior of americium in chloride matrixes. Herein, we describe the use of ligand K-edge X-ray absorption spectroscopy (XAS) and electronic structure calculations to quantify the extent of covalent bonding in-arguably-one of the most difficult systems to study, the Am-Cl interaction within AmCl 6 3- . We observed both 5f- and 6d-orbital mixing with the Cl-3p orbitals; however, contributions from the 6d-orbitals were more substantial. Comparisons with the isoelectronic EuCl 6 3- indicated that the amount of Cl 3p-mixing with Eu III 5d-orbitals was similar to that observed with the Am III 6d-orbitals. Meanwhile, the results confirmed Seaborg's 1954 hypothesis that Am III 5f-orbital covalency was more substantial than 4f-orbital mixing for Eu III .

  18. Covalent Surface Modifications of Carbon Nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Pavia Sanders, Adriana [Sandia National Lab. (SNL-CA), Livermore, CA (United States); O' Bryan, Greg [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

  19. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  20. Non covalent assembly of coordination superstructures

    CERN Document Server

    Khlobystov, A N

    2002-01-01

    The main topic of this work is the design of discrete and polymeric multi-component coordination structures using non-covalent interactions between organic and inorganic molecular components. All of the structures described herein are based on transition metal cations and N-donor heterocyclic bis-exodentate ligands with different geometries and various spacer functionalities. The predominant method used for the structural characterisation of the complexes was single crystal X-ray crystallography. X-ray powder diffraction, IR and NMR spectroscopies and TEM and AFM imaging were used to characterise the bulk products from the reactions. Chapter 1 is a comparative review of non-covalent interactions relevant to coordination superstructures and covers the latest developments in the area of crystal engineering and supramolecular chemistry. The nature, geometry and relative energy of the non-covalent interactions are considered in detail in order to reveal their influence on the structure and properties of complexes...

  1. Is there any fundamental difference between ionic, covalent, and others types of bond? A canonical perspective on the question.

    Science.gov (United States)

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2017-06-21

    The concept of chemical bonding is normally presented and simplified through two models: the covalent bond and the ionic bond. Expansion of the ideal covalent and ionic models leads chemists to the concepts of electronegativity and polarizability, and thus to the classification of polar and non-polar bonds. In addition, the intermolecular interactions are normally viewed as physical phenomena without direct correlation to the chemical bond in any simplistic model. Contrary to these traditional concepts of chemical bonding, recently developed canonical approaches demonstrate a unified perspective on the nature of binding in pairwise interatomic interactions. This new canonical model, which is a force-based approach with a basis in fundamental molecular quantum mechanics, confirms much earlier assertions that in fact there are no fundamental distinctions among covalent bonds, ionic bonds, and intermolecular interactions including the hydrogen bond, the halogen bond, and van der Waals interactions.

  2. Covalent labeling of the hepatic glucagon receptor

    International Nuclear Information System (INIS)

    Herberg, J.T.; Iyengar, R.

    1985-01-01

    The procedure for covalently labeling the hepatic glucagon receptor utilizes the light-sensitive heterobifunctional cross-linker hydroxysuccinimidyl-p-azidobenzoate (HSAB) to link the bound [ 125 I-Tyr 10 ]monoiodoglucagon ([ 125 I]MIG) to the receptor protein. The method involves first the binding of the labeled hormone to its receptor and the removal of the excess unbound label. This is followed by incubation with the cross-linker, in the dark and then under ultraviolet illumination to covalently couple the bound [ 125 I]MIG. HSAB contains an amino reactive group as well as an aryl azide which, upon light activation, is converted to an aryl nitrene that reacts in a chemically unspecific manner

  3. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi (New York Univ., NY (United States). Dept. of Chemistry); France, L.L.; Sutherland, J.D. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo(a)pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  4. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi [New York Univ., NY (United States). Dept. of Chemistry; France, L.L.; Sutherland, J.D. [Brookhaven National Lab., Upton, NY (United States)

    1992-04-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo[a]pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  5. Covalent modification of platelet proteins by palmitate

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    Covalent attachment of fatty acid to proteins plays an important role in association of certain proteins with hydrophobic membrane structures. In platelets, the structure of many membrane glycoproteins (GPs) has been examined in detail, but the question of fatty acid acylation of platelet proteins has not been addressed. In this study, we wished to determine (a) whether platelet proteins could be fatty acid acylated; and, if so, (b) whether these modified proteins were present in isolated platelet membranes and cytoskeletal fractions; and (c) if the pattern of fatty acid acylated proteins changed on stimulation of the platelets with the agonist thrombin. We observed that in platelets allowed to incorporate 3H-palmitate, a small percentage (1.37%) of radioactivity incorporated into the cells became covalently bound to protein. Selective cleavage of thioester, thioester plus O-ester, and amide-linked 3H-fatty acids from proteins, and their subsequent analysis by high-performance liquid chromatography (HPLC) indicated that the greatest part of 3H-fatty acid covalently bound to protein was thioester-linked 3H-palmitate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, at least ten major radiolabeled proteins were detected. Activation of platelets by thrombin greatly increased the quantity of 3H-palmitoylated proteins associated with the cytoskeleton. Nearly all radiolabeled proteins were recovered in the membrane fraction, indicating that these proteins are either integral or peripheral membrane proteins or proteins tightly associated to membrane constituents. Components of the GPIIb-IIIa complex were not palmitoylated. Thus, platelet proteins are significantly modified posttranslationally by 3H-palmitate, and incorporation of palmitoylated proteins into the cytoskeleton is a prominent component of the platelet response to thrombin stimulation

  6. Electrical properties of covalently functionalized graphene

    Directory of Open Access Journals (Sweden)

    Paul Plachinda

    2017-02-01

    Full Text Available We have employed first-principle calculations to study transformation of graphene’s electronic structure under functionalization by covalent bonds with di erent atomic and molecular groups - epoxies, amines, PFPA. It is shown that this functionalization leads to an opening in the graphene’s band gap on order of tens meV, but also leads to reduction of electrical conductivity. We also discuss the influence of charge exchange between the functionalizing molecule and graphene’s conjugated electrons on electron transport properties.

  7. Electrospinning covalently cross-linking biocompatible hydrogelators

    Science.gov (United States)

    Schultz, Kelly M.; Campo-Deaño, Laura; Baldwin, Aaron D.; Kiick, Kristi L.; Clasen, Christian; Furst, Eric M.

    2012-01-01

    Many hydrogel materials of interest are homogeneous on the micrometer scale. Electrospinning, the formation of sub-micrometer to micrometer diameter fibers by a jet of fluid formed under an electric field, is one process being explored to create rich microstructures. However, electrospinning a hydrogel system as it reacts requires an understanding of the gelation kinetics and corresponding rheology near the liquid-solid transition. In this study, we correlate the structure of electrospun fibers of a covalently cross-linked hydrogelator with the corresponding gelation transition and kinetics. Polyethylene oxide (PEO) is used as a carrier polymer in a chemically cross-linking poly(ethylene glycol)-high molecular weight heparin (PEG-HMWH) hydrogel. Using measurements of gelation kinetics from multiple particle tracking microrheology (MPT), we correlate the material rheology with the the formation of stable fibers. An equilibrated, cross-linked hydrogel is then spun and the PEO is dissolved. In both cases, microstructural features of the electrospun fibers are retained, confirming the covalent nature of the network. The ability to spin fibers of a cross-linking hydrogel system ultimately enables the engineering of materials and microstructural length scales suitable for biological applications. PMID:23459473

  8. Covalently functionalized carbon nanostructures and methods for their separation

    Science.gov (United States)

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  9. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... and the bands in the substrate which are bent under the influence of the strong electric field between the closely separated semiconductor substrate and STM tip. The polarity of the forward bias direction is determined by the alignment of the CdSe electronic states with the semiconductor bands. (C) 2003...

  10. Revisiting nitrogen species in covalent triazine frameworks

    KAUST Repository

    Osadchii, Dmitrii Yu.

    2017-11-28

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  11. DNA Linked To Single Wall Carbon Nanotubes: Covalent Versus Non-Covalent Approach

    Science.gov (United States)

    Chung, C.-L.; Nguyen, K.; Lyonnais, S.; Streiff, S.; Campidelli, S.; Goux-Capes, L.; Bourgoin, J.-P.; Filoramo, A.

    2008-10-01

    Nanometer-scale structures represent a novel and intriguing field, where scientists and engineers manipulate materials at the atomic and molecular scale levels to produce innovative materials. Carbon nanotubes constitute a relatively new class of materials exhibiting exceptional mechanical and electronic properties and were found to be promising candidates for molecular electronics, sensing or biomedical applications. Considering the bottom-up strategy in nanotechnology, the combination of the recognition properties of DNA with the electronic properties of single walled carbon nanotubes (SWNTs) seems to be a promising approach for the future of electronics. With the aim to assemble DNA with SWNTs, two complementary strategies have been envisioned: the covalent linkage of DNA on carboxylic groups of SWNTs under classical coupling condition and the non-covalent approach based on biotin-streptavidin molecular recognition properties. Here, we present and compare the results that we obtained with these two different methods; we want to objectively show the advantages and disadvantages of each approach.

  12. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    and acceptor atoms due to complex formation) and interaction energy, Eint for a large variety of the non- covalent dimers in the categories HB, DHB, and XB. The MESP based eDA concept proposed by Mohan and. Suresh has unified the HB, DHB, and XB non-covalent complexes in a single category, the eDA complex.61.

  13. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  14. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  15. Detection of HBV Covalently Closed Circular DNA

    Directory of Open Access Journals (Sweden)

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  16. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vi......Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform......, the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release......-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin...

  17. Covalently crosslinked diels-alder polymer networks.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  18. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  19. Covalent stabilization of a small molecule-RNA complex.

    Science.gov (United States)

    Peacock, Hayden; Bachu, Radhika; Beal, Peter A

    2011-09-01

    We demonstrate covalent bond formation between an RNA aptamer containing a cysteamine-tethered nucleobase and helix-threading peptides (HTPs) containing α-bromoacetamide N-termini. The reaction is high yielding and inhibited by a DNA strand Watson-Crick complementary to the aptamer sequence indicating covalent reaction is dependent on the high affinity HTP-binding site present in the folded aptamer. These results are important for future structural studies of HTP-RNA complexes and methods for the discovery of new high affinity analogs via covalent tethering strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  1. Hydrogels Based on Dynamic Covalent and Non Covalent Bonds: A Chemistry Perspective

    Directory of Open Access Journals (Sweden)

    Francesco Picchioni

    2018-03-01

    Full Text Available Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing. These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.

  2. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    Science.gov (United States)

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  3. Tuning the apparent formal potential of covalently attached ferrocene using SAM bearing ionizable -COOH groups

    International Nuclear Information System (INIS)

    Mukherjee, Sohini; Bandyopadhyay, Sabyasachi; Dey, Abhishek

    2013-01-01

    Highlights: • Covalent attachment of ethynylferrocene on the mixed SAM using “click” chemistry. • Control of redox potential at the plane of electron transfer by double layer effect. • Effect of pH of the medium on the redox potential of covalently attached ferrocene. • Change of redox potential of ethynylferrocene with variation of chain length of the diluent and the surface coverage. -- Abstract: A method of tuning the apparent formal potential at the interface between the electrode surface covered with carboxylate thiol self assembled monolayer (SAM) and the solution containing electrolytes is reported. Redox active ferrocene moiety has been covalently attached to the terminal azido groups in the SAM using “click” chemistry. Cyclic voltammetry experiments show that the reduction potential of this ferrocene moiety can be tuned easily from 0.345 V to 0.200 V, i.e. by 145 mV by varying the chain length of the thiol carboxylic acid diluents, changing the pH of the electrolytic solution and by changing the coverage of the surface. Using the (applying the theory of interfacial potential distribution by Smith and White and including the Stern layer effect on the potential of the redox species at the interface proposed by Fawcett) modified Nernst equation the shift of apparent formal potential of redox species at the interface has been analyzed when the chain length of the diluents, pH of the solution and coverage of the surface are changed. The data indicate that the phenomenon is governed by the ionizable polar head groups SAM, i.e. -COOH which changes the interfacial microenvironment around the redox active ferrocene centre

  4. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  5. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  6. Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability.

    Science.gov (United States)

    Gulkowska, Anna; Sander, Michael; Hollender, Juliane; Krauss, Martin

    2013-07-02

    Sulfonamide antibiotics form stable covalent bonds with quinone moieties in organic matter via nucleophilic addition reactions. In this work, we combined analytical electrochemistry with trace analytics to assess the catalytic role of the oxidoreductase laccase in the binding of sulfamethazine (SMZ) to Leonardite humic acid (LHA) and to four synthetic humic acids (SHAs) polymerized from low molecular weight precursors and to determine the stability of the formed bonds. In the absence of laccase, a significant portion of the added SMZ formed covalent bonds with LHA, but only a very small fraction (<0.4%) of the total quinone moieties in LHA reacted. Increasing absolute, but decreasing relative concentrations of SMZ-LHA covalent bonds with increasing initial SMZ concentration suggested that the quinone moieties in LHA covered a wide distribution in reactivity for the nucleophilic addition of SMZ. Laccase catalyzed the formation of covalent bonds by oxidizing unreactive hydroquinone moieties in LHA to reactive, electrophilic quinone moieties, of which a large fraction (5%) reacted with SMZ. Compared to LHA, the SHA showed enhanced covalent bond formation in the absence of laccase, suggesting a higher reactivity of their quinone moieties toward nucleophilic addition. This work supports that binding to soil organic matter (SOM) is an important process governing the fate, bioactivity, and extractability of sulfonamides in soils.

  7. Construction of covalently coupled, concatameric dimers of 7TM receptors

    DEFF Research Database (Denmark)

    Terpager, Marie; Scholl, D Jason; Kubale, Valentina

    2009-01-01

    -Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...... for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse...

  8. Assay of covalent intermediate of 5'-nucleotide phosphodiesterase

    International Nuclear Information System (INIS)

    Blytt, H.J.; Brotherton, J.E.; Butler, L.

    1985-01-01

    A new procedure is reported for isolating a covalent phosphoryl enzyme (diester) intermediate of bovine intestinal 5'-nucleotide phosphodiesterase. The convenience of the procedure makes it possible to determine effects of reaction conditions on the yield of covalent intermediate. Under optimum conditions, using [methyl- 3 H]deoxythymidine 5'-triphosphate as substrate, more than 50% of the enzyme is recovered as thymidylyl enzyme, a 10-fold increase in yield over the previous procedure. Yields of thymidylyl enzyme were maximal at pH 4, whereas optimum catalytic activity is observed at pH greater than 9

  9. Enhancement of the performance of covalently immobilized lipase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... FT-IR, fourier transform infrared. the enzyme towards organic media (Xie et al., ... characterized by FT-IR spectroscopy (Zeiss, Specord M 80) using. KBr method. Covalent immobilization of lipase in the ... and kcat, interpreted from the Lineweaver-Burk plots, were shown in Table 1. The data indicate that the ...

  10. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    Science.gov (United States)

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Covalent bindings in proteins following UV-C irradiation

    International Nuclear Information System (INIS)

    Diezel, W.; Meffert, H.; Soennichsen, N.; Reinicke, C.

    1980-01-01

    Following a UV-C irradiation of catalase cross-linked catalase subunits could be detected by sodium dodecylsulfate gel electrophoresis. The subunits of aldolase were not cross-linked. The origin of covalent bindings in the catalase molecule is suggested to be effected by a free radical chain reaction induced by the heme component of catalase after UV-C irradiation. (author)

  12. Factors Contributing to Students' Misconceptions in Learning Covalent Bonds

    Science.gov (United States)

    Erman, Erman

    2017-01-01

    This study aims to identify students' misconceptions regarding covalent bonds. Seventy-seven graduate students in the middle of Indonesia participated in the study. Data were collected in three stages. First, misconceptions were identified by using the Semi Open Diagnostic Test. Ten students who experienced the worst misconceptions were…

  13. Covalent microcontact printing of proteins fro cell patterning

    NARCIS (Netherlands)

    Rozkiewicz, D.I.; Kraan, Yvonne M.; Werten, Marc W.T.; de Wolf, Frits A.; Subramaniam, Vinod; Ravoo, B.J.; Reinhoudt, David

    2006-01-01

    We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An

  14. Hybridization characteristics of biomolecular adaptors, covalent DNA streptavidin conjugates

    NARCIS (Netherlands)

    Niemeyer, CM; Burger, W; Hoedemakers, RMJ

    1998-01-01

    Semisynthetic, covalent streptavidin-DNA adducts are versatile molecular connectors for the fabrication of both nano-and microstructured protein arrays by use of DNA hybridization. In this study, the hybridization characteristics of six adduct species, each containing a different DNA sequence of 21

  15. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available The proton exchange membrane was prepared by covalent cross-linking sulfonated-sulfinated polyetheretherketone. The cross-linked membrane showed high proton conductivity (0.04 S/cm) with suitable water uptake, low methanol permeability (2.21 × 10...

  16. Evidence for covalent binding of epicocconone with proteins from ...

    Indian Academy of Sciences (India)

    TECS

    Evidence for covalent binding of epicocconone with proteins from synchronous fluorescence spectra ... the interaction of epicocconone with human serum albumin is significantly different from its interaction with surfactant assemblies. .... at 620 nm is collected at right angles to the direction of the excitation beam, at magic ...

  17. Macrophage migration inhibitory factor covalently complexed with phenethyl isothiocyanate

    OpenAIRE

    Tyndall, Joel D. A.; Lue, Hongqi; Rutledge, Malcolm T.; Bernhagen, Jurgen; Hampton, Mark B.; Wilbanks, Sigurd M.

    2012-01-01

    Macrophage migration inhibitory factor undergoes a localized conformational shift in response to covalent modification by phenethyl isothiocyanate, a natural compound with anti-inflammatory and anticancer properties. The inhibitor sits within a deep hydrophobic pocket and defines a potential target for the development of improved inhibitors.

  18. Improved covalent functionalization of multi-walled carbon ...

    Indian Academy of Sciences (India)

    Abstract. Ascorbic acid has been covalently linked to multi-walled carbon nanotubes (MWCNTs). The structures of the functionalized MWCNTs were characterized with Fourier-transform infrared spectroscopy. Thermogravi- metric analysis results also demonstrated the presence of organic portions of the functionalized ...

  19. Preparation and properties of electro-conductive fabrics based on polypyrrole: covalent vs. non-covalent attachment

    Science.gov (United States)

    David, N. C.; Anavi, D.; Milanovich, M.; Popowski, Y.; Frid, L.; Amir, E.

    2017-10-01

    Electro-conductive fabrics were prepared via in situ oxidative polymerization of pyrrole (Py) in the presence of unmodified and chemically modified cotton fabrics. Chemical modification of cotton fabric was achieved by covalent attachment of a bifunctional linker molecule to the surface of the fabric, followed by incorporation of a monomer unit onto the linker. The fabrics were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron spectroscopy, and thermal analysis. Furthermore, the effect of Py concentration on the degree of polypyrrole (PPy) grafting, surface morphology, electrical resistivity, and laundering durability were studied for both types of cotton fabrics. Reductions of several orders of magnitude in surface and volume electrical resistivities were observed for both non-covalently and covalently linked cotton-PPy systems, whereas the effect of covalent pre-treatment of the fabric was stronger at low Py concentration. On the other hand, at higher monomer concentration, the electrical properties and laundering durability of the fabrics we comparable for both unmodified and chemically pre-treated cotton fabrics, indicating that only a small fraction of PPy chains were chemically grafted onto the fabric surface with the majority of the polymer being connected to the fabric through hydrogen bonds.

  20. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  1. Generation of Multicomponent Molecular Cages using Simultaneous Dynamic Covalent Reactions.

    Science.gov (United States)

    Drożdż, Wojciech; Bouillon, Camille; Kotras, Clément; Richeter, Sébastien; Barboiu, Mihail; Clément, Sébastien; Stefankiewicz, Artur R; Ulrich, Sébastien

    2017-12-19

    Cage compounds are very attractive structures for a wide range of applications and there is ongoing interest in finding effective ways to access such kinds of complex structures, particularly those possessing dynamic adaptive features. Here we report the accessible synthesis of new type of organic cage architectures, possessing two different dynamic bonds within one structure: hydrazones and disulfides. Implementation of three distinct functional groups (thiols, aldehydes and hydrazides) in the structure of two simple building blocks resulted in their spontaneous and selective self-assembly into aromatic cage-type architectures. These organic cages contain up to ten components linked together by twelve reversible covalent bonds. The advantage provided by the presented approach is that these cage structures can adaptively self-sort from a complex virtual mixture of polymers or macrocycles and that dynamic covalent chemistry enables their deliberate disassembly through controlled component exchange. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Highly selective covalent organic functionalization of epitaxial graphene

    Science.gov (United States)

    Bueno, Rebeca A.; Martínez, José I.; Luccas, Roberto F.; Del Árbol, Nerea Ruiz; Munuera, Carmen; Palacio, Irene; Palomares, Francisco J.; Lauwaet, Koen; Thakur, Sangeeta; Baranowski, Jacek M.; Strupinski, Wlodek; López, María F.; Mompean, Federico; García-Hernández, Mar; Martín-Gago, José A.

    2017-05-01

    Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.

  3. Covalency in the f-element-chalcogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Kieran I.M. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Kaltsoyannis, Nikolas [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)], E-mail: n.kaltsoyannis@ucl.ac.uk; Gaunt, Andrew J.; Neu, Mary P. [Inorganic, Isotope and Actinide Chemistry (C-IIAC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-10-11

    The geometric and electronic structures of the title complexes have been studied using gradient corrected density functional theory. Excellent agreement is observed between computed r(M-E) and experimental values in analogous {sup i}Pr complexes. Natural charge analysis indicates that the M-E bond becomes less ionic in the order O>S>S> Te, and that this decrease is largest for U and smallest for La. Natural and Mulliken overlap populations suggest increasing M-E covalency as group 16 is descended, and also in the order Lacovalency down group 16 arises from increased metal d (and s) participation in the bonding, while that from La to Pu and U stems from larger 5f orbital involvement compared with 4f.

  4. Covalently Bound Nitroxyl Radicals in an Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Barbara K.; Braunecker, Wade A.; Bobela, David C.; Nanayakkara, Sanjini U.; Reid, Obadiah G.; Johnson, Justin C.

    2016-09-15

    A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied. The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.

  5. Applications of reversible covalent chemistry in analytical sample preparation.

    Science.gov (United States)

    Siegel, David

    2012-12-07

    Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.

  6. Covalent interactions of acetaldehyde with the actin/microfilament system.

    Science.gov (United States)

    Xu, D S; Jennett, R B; Smith, S L; Sorrell, M F; Tuma, D J

    1989-01-01

    The covalent binding of [14C]acetaldehyde to purified rabbit skeletal muscle actin was characterized. As we have found for other cytoskeletal proteins, actin formed stable covalent adducts under reductive and non-reductive conditions. Under non-reductive conditions, individual and competition binding studies versus albumin both showed that the G-form of actin is more reactive toward acetaldehyde than the F-form. When proteins were compared on an 'equi-lysine' basis under non-reducing conditions, G-actin was found to preferentially compete with albumin for binding to acetaldehyde. Time-course dialysis studies indicated that acetaldehyde-actin adducts become more stable with prolonged incubation at 37 degrees C. These data raise the possibility that actin could be a preferential target for adduct formation in cellular systems and will serve as the basis for ongoing studies aimed at defining the role of acetaldehyde-protein adducts in ethanol-induced cell injury.

  7. Covalent bond symmetry breaking and protein secondary structure

    OpenAIRE

    Lundgren, Martin; Niemi, Antti J.

    2011-01-01

    Both symmetry and organized breaking of symmetry have a pivotal r\\^ole in our understanding of structure and pattern formation in physical systems, including the origin of mass in the Universe and the chiral structure of biological macromolecules. Here we report on a new symmetry breaking phenomenon that takes place in all biologically active proteins, thus this symmetry breaking relates to the inception of life. The unbroken symmetry determines the covalent bond geometry of a sp3 hybridized ...

  8. Covalent binding of aniline to humic substances. 1. Kinetic studies

    Science.gov (United States)

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  9. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin

    Science.gov (United States)

    Staicu, Angela; Smarandache, Adriana; Pascu, Alexandru; Pascu, Mihail Lucian

    2017-09-01

    Covalently functionalized single wall carbon nanotubes (SWCNT) with the photosensitizer verteporfin (VP) were synthesized and studied. Photophysical properties of the obtained compounds like optical absorption, laser-induced fluorescence and generated singlet oxygen were investigated. In order to highlight the features of the conjugated compound, its photophysical characteristics were compared with those of the mixtures of the initial components. The optical absorption data evidenced a compound that combines features of the primary SWCNTs and VP. This is the also the case of the laser induced fluorescence of the synthesized product. Moreover, fluorescence quantum yield (Φf) of the compound (Φf = 2.4%) is smaller than for the mixture of SWCNT and VP in (Φf = 3.2%). The behavior is expected, because linked VP (carrying the fluorescent moiety) transfers easier a part of its excitation energy to the SWCNT in the covalent structure. Relative to the quantum yield of singlet oxygen generation (ΦΔ) by Methylene Blue, it was found that the ΦΔ for the conjugated VP-SWCNT is 51% while for the mixture ΦΔ is 23%. The results indicate covalently functionalized single walled carbon nanotubes with verteporfin as potential compounds of interest in targeted drug delivery and photodynamic therapy.

  10. Covalent assembly of gold nanoparticles for nonvolatile memory applications.

    Science.gov (United States)

    Gupta, Raju Kumar; Kusuma, Damar Yoga; Lee, P S; Srinivasan, M P

    2011-12-01

    This work reports a versatile approach for enhancing the stability of nonvolatile memory devices through covalent assembly of functionalized gold nanoparticles. 11-mercapto-1-undecanol functionalized gold nanoparticles (AuNPs) with a narrow size distribution and particle size of about 5 nm were synthesized. Then, the AuNPs were immobilized on a SiO(2) substrate using a functionalized polymer as a surface modifier. Microscopic and spectroscopic techniques were used to characterize the AuNPs and their morphology before and after immobilization. Finally, a metal-insulator-semiconductor (MIS) type memory device with such covalently anchored AuNPs as a charge trapping layer was fabricated. The MIS structure showed well-defined counterclockwise C-V hysteresis curves indicating a good memory effect. The flat band voltage shift was 1.64 V at a swapping voltage between ±7 V. Furthermore, the MIS structure showed a good retention characteristic up to 20,000 s. The present synthetic route to covalently immobilize gold nanoparticles system will be a step towards realization for the nanoparticle-based electronic devices and related applications. © 2011 American Chemical Society

  11. Hydrogen scrambling in non-covalent complexes of peptides.

    Science.gov (United States)

    Modzel, Maciej; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-15

    Mass spectrometry analysis combined with hydrogen-deuterium exchange (HDX-MS) is arising as a tool for quick analysis of native protein conformation. However, during collision-induced dissociation (CID) the spatial distribution of deuterium is not always conserved. It is therefore important to find out how hydrogen scrambling occurs--this study concentrates on the possibility of scrambling between amino acid residues spatially close together, but not connected by covalent bonds. Peptides used in this study were synthesized by Fmoc strategy. Deuteration occurred in ammonia formate solution in D(2)O. Non-covalent complexes consisting of a deuterated and a non-deuterated peptide were analyzed by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR-MS) with quadrupole mass filter. Low-energy CID was used for complex dissociation. The complexes were isolated on a quadrupole and subjected to CID to cause dissociation. The deuterium distribution before and after the dissociation of a non-covalent complex to its components was measured. The study revealed that no significant scrambling occurred between the constituents of the complexes--the degree of scrambling did not exceed 10%. The results obtained for the complexes should be similar to those for protein parts spatially close together--hydrogen scrambling between them should be negligible. The knowledge that almost all the scrambling occurs along peptide chains gives a better insight into the mechanism of HDX inside a protein. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  13. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  14. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study.

    Science.gov (United States)

    Habibizadeh, Mina; Rostamizadeh, Kobra; Dalali, Naser; Ramazani, Ali

    2017-05-01

    In this study, PEGylated multiwall carbon nanotubes (MWNTs)-based drug delivery system was developed. Ibuprofen as a model drug was loaded by physical and chemical method. The surface functionalization of nanotubes was carried out by enrichment of acylated groups. In order to synthesis PEGylated MWNTs, hydrophilic diamino-polyethylene glycol was covalently linked to the MWNTs surface via amidation reaction. Finally, ibuprofen was chemically and physically loaded on the PEGylated MWNTs. The resultants were characterized by FTIR, AFM, and DLS techniques. Cytotoxicity of PEGylated MWNTs were examined by MTT assay and the results revealed that PEG functionalized nanotubes did not show significant detrimental effects on the viability of L929 Cells. The percent of drug loading for chemically and physically drug payload carrier were determined to be 52.5% and 38%, respectively. The release of ibuprofen from covalently conjugated and non-covalent drug loaded PEGylated MWNTs at pH=7.4, and 5.3 were investigated, as well. From the results, it was found that chemically loaded MWNTs showed much sustained release behavior compared to the physically loaded one, especially at pH=5.3. The kinetic of drug release was also investigated. The results strongly suggest that the chemically conjugated PEGylated MWNTs could be used as controlled release system for various drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks

  16. Reaction mechanisms for on-surface synthesis of covalent nanostructures

    International Nuclear Information System (INIS)

    Björk, J

    2016-01-01

    In recent years, on-surface synthesis has become an increasingly popular strategy to form covalent nanostructures. The approach has great prospects for facilitating the manufacture of a range of fascinating materials with atomic precision. However, the on-surface reactions are enigmatic to control, currently restricting its bright perspectives and there is a great need to explore how the reactions are governed. The objective of this topical review is to summarize theoretical work that has focused on comprehending on-surface synthesis protocols through studies of reaction mechanisms. (topical review)

  17. Effect of photocurrent enhancement in porphyrin–graphene covalent hybrids

    International Nuclear Information System (INIS)

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A.

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH 2 TPP) by an amidation reaction between the amino group in NH 2 TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH 2 TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH 2 TPP-graphene-NH 2 TPP. Its UV–visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH 2 TPP and graphene oxide, because a 59 nm red shift of the strong graphene oxide absorption is observed from 238 to 297 nm, with significant spectral broadening between 300 and 700 nm. Fluorescence emission spectroscopy indicates efficient quenching of NH 2 TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH 2 TPP and GO. A reversible on/off photo-current density of 47 mA/cm 2 is observed when NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈ 1 eV, according to UV–visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84 eV for NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. - Highlights: • Porphyrins are covalently bound to sheets of graphene oxide via an amidation reaction. • The formed hetero-junction interface decreases the optical band gap of graphene oxide. • Cyclic voltammetry predicts a graphene oxide band gap of 0.84 eV, which is easily photo-excited. • Its on/off photo-current density of 46 μA/cm 2 is 5-fold larger than that for physically stacked hybrid

  18. Effect of photocurrent enhancement in porphyrin–graphene covalent hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jianguo, E-mail: jianguotangde@hotmail.com [Institute of Hybrid Materials―the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan [Institute of Hybrid Materials―the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Belfiore, Laurence A. [Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523 (United States)

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH{sub 2}TPP) by an amidation reaction between the amino group in NH{sub 2}TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH{sub 2}TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH{sub 2}TPP-graphene-NH{sub 2}TPP. Its UV–visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH{sub 2}TPP and graphene oxide, because a 59 nm red shift of the strong graphene oxide absorption is observed from 238 to 297 nm, with significant spectral broadening between 300 and 700 nm. Fluorescence emission spectroscopy indicates efficient quenching of NH{sub 2}TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH{sub 2}TPP and GO. A reversible on/off photo-current density of 47 mA/cm{sup 2} is observed when NH{sub 2}TPP-graphene-NH{sub 2}TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈ 1 eV, according to UV–visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84 eV for NH{sub 2}TPP-graphene-NH{sub 2}TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. - Highlights: • Porphyrins are covalently bound to sheets of graphene oxide via an amidation reaction. • The formed hetero-junction interface decreases the optical band gap of graphene oxide. • Cyclic voltammetry predicts a graphene oxide band gap of 0.84 eV, which is easily photo-excited. • Its on/off photo-current density of 46 μA/cm{sup 2} is 5-fold larger than that for physically stacked hybrid.

  19. The Search for Covalently Ligandable Proteins in Biological Systems

    Directory of Open Access Journals (Sweden)

    Syed Lal Badshah

    2016-09-01

    Full Text Available This commentary highlights the recent article published in Nature, June 2016, titled: “Proteome-wide covalent ligand discovery in native biological systems”. They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here.

  20. Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks

    International Nuclear Information System (INIS)

    Liang, Liangbo; Zhu, Pan; Meunier, Vincent

    2015-01-01

    Recently synthesized two-dimensional covalent organic frameworks (COFs) exhibit high surface area, large pore size, and unique structural architectures, making them promising materials for various energy applications. Here, a total of nine COFs structures, including two deposited on a hexagonal boron nitride substrate, are investigated using density functional theory, quasi-particle many-body theory within the GW approximation, and an image charge model. The structures considered belong to two major families (thiophene-based COF-n (T-COF-n) and tetrakis (4-aminophenyl) porphyrin-x (TAPP-x)) differing from the presence of B—O or C=N linkers. While T-COF-n structures are shown to constitute planar networks, TAPP-x systems can display non-negligible corrugation due to the out-of-plane rotation of phenyl rings. We find that the electronic properties do not differ significantly when altering the chain molecules within each family. Many-body effects are shown to lead to large band-gap increase while the presence of the substrate yields appreciable reductions of the gaps, due to substrate polarization effects

  1. Non-covalent interactions between thio-caffeine derivatives and water-soluble porphyrin in ethanol-water environment

    Science.gov (United States)

    Lipke, Agnieszka; Makarska-Bialokoz, Magdalena; Sierakowska, Arleta; Jasiewicz, Beata

    2018-03-01

    To determine the binding interactions and ability to form the non-covalent systems, the association process between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP) and a series of five structurally diverse thio-caffeine analogues has been studied in ethanol and ethanol-water solutions, analyzing its absorption and steady-state fluorescence spectra. The porphyrin fluorescence lifetimes in the systems studied were established as well. During the titration with thio-caffeine compounds the slight bathochromic effect and considerable hypochromicity of the porphyrin Soret band maximum can be noted. The fluorescence quenching effect observed for interactions in H2TTMePP - thio-caffeine derivative systems, as well as the order of binding and fluorescence quenching constants (of 105-103 mol- 1) suggest the existence of the mechanism of static quenching due to the formation of non-covalent and non-fluorescent stacking complexes. In all the systems studied the phenomenon of the fractional accessibility of the fluorophore for the quencher was observed as well. Additionally, the specific binding interactions, due to the changes in reaction environment polarity, can be observed. It was found that thio-caffeine compounds can quench the porphyrin fluorescence according to the structure of thio-substituent in caffeine molecule. The obtained results can be potentially useful from scientific, therapeutic or environmental points of view.

  2. Organogel-derived Covalent-Noncovalent Hybrid Polymers as Alkali Metal Ion Scavengers for Partial Deionization of Water.

    Science.gov (United States)

    Prathap, Annamalai; Raju, Cijil; Sureshan, Kana M

    2018-04-12

    We show that crown ethers (CEs) 1-5 congeal both polar and non-polar solvents via their self-assembly through weak non-covalent interactions (NCI) such as CH...O and CH...π interactions. Di-isopropylidene-mannitol (6) is a known gelator that self-assembles through stronger OH...O H-bonding. These two gelators together also congeal non-polar solvents via their individual self-assembly. The gelator 6 self-assembles swiftly to fibers, which act as templates and attract CE to their surface through H-bonding and thereby facilitate their self-assembly through weak NCI. Polymerization of styrene gels made from CE and 6 followed by the washing off of the sacrificial gelator 6 yields robust porous polystyrene-crown ether hybrid matrices (PCH), having pore-exposed CEs. These PCHs were not only efficient in sequestering alkali metal ions from aqueous solutions but also can be recycled. This novel use of organogels for making solid sorbents for metal ion scavenging might be of great interest.

  3. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  4. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  5. Identification of covalent active site inhibitors of dengue virus protease

    Directory of Open Access Journals (Sweden)

    Koh-Stenta X

    2015-12-01

    Full Text Available Xiaoying Koh-Stenta,1 Joma Joy,1 Si Fang Wang,1 Perlyn Zekui Kwek,1 John Liang Kuan Wee,1 Kah Fei Wan,2 Shovanlal Gayen,1 Angela Shuyi Chen,1 CongBao Kang,1 May Ann Lee,1 Anders Poulsen,1 Subhash G Vasudevan,3 Jeffrey Hill,1 Kassoum Nacro11Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR, Singapore; 2Novartis Institute for Tropical Diseases, Singapore; 3Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, SingaporeAbstract: Dengue virus (DENV protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.Keywords: flavivirus protease, small molecule optimization, covalent inhibitor, active site binding, pyrazole ester derivatives

  6. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  7. Solvent-free covalent functionalization of nanodiamond with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Santamaría-Bonfil, Adriana; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Alvares-Zauco, Edgar; Contreras-Torres, Flavio F.; Rizo, Juan; Zavala, Guadalupe; Basiuk, Vladimir A.

    2013-01-01

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  8. Covalent bonds against magnetism in transition metal compounds.

    Science.gov (United States)

    Streltsov, Sergey V; Khomskii, Daniel I

    2016-09-20

    Magnetism in transition metal compounds is usually considered starting from a description of isolated ions, as exact as possible, and treating their (exchange) interaction at a later stage. We show that this standard approach may break down in many cases, especially in 4d and 5d compounds. We argue that there is an important intersite effect-an orbital-selective formation of covalent metal-metal bonds that leads to an "exclusion" of corresponding electrons from the magnetic subsystem, and thus strongly affects magnetic properties of the system. This effect is especially prominent for noninteger electron number, when it results in suppression of the famous double exchange, the main mechanism of ferromagnetism in transition metal compounds. We study this mechanism analytically and numerically and show that it explains magnetic properties of not only several 4d-5d materials, including Nb2O2F3 and Ba5AlIr2O11, but can also be operative in 3d transition metal oxides, e.g., in CrO2 under pressure. We also discuss the role of spin-orbit coupling on the competition between covalency and magnetism. Our results demonstrate that strong intersite coupling may invalidate the standard single-site starting point for considering magnetism, and can lead to a qualitatively new behavior.

  9. Solvent-free covalent functionalization of nanodiamond with amines

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Santamaría-Bonfil, Adriana; Meza-Laguna, Victor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Gromovoy, Taras Yu. [Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Alvares-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Contreras-Torres, Flavio F.; Rizo, Juan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Zavala, Guadalupe [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos (Mexico); Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico)

    2013-06-15

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  10. Dynamic signaling cascades: reversible covalent reaction-coupled molecular switches.

    Science.gov (United States)

    Ren, Yulong; You, Lei

    2015-11-11

    The research of systems chemistry exploring complex mixtures of interacting synthetic molecules has been burgeoning recently. Herein we demonstrate for the first time the coupling of molecular switches with a dynamic covalent reaction (DCR) and the modulation of created chemical cascades with a variety of inputs, thus closely mimicking a biological signaling system. A novel Michael type DCR of 10-methylacridinium perchlorate and monothiols exhibiting excellent regioselectivity and tunable affinity was discovered. A delicate balance between the unique reactivity of the reactant and the stability of the adduct leads to the generation of a strong acid in a thermodynamically controlled system. The dynamic cascade was next created via coupling of the DCR and a protonation-induced configurational switch (E/Z isomerization) through a proton relay. Detailed examination of the interdependence of the equilibrium enabled us to rationally optimize the cascade and also shed light on the possible intermediate of the switching process. Furthermore, relative independence of the coupled reactions was verified by the identification of stimuli that are able to facilitate one reaction but suppress the other. To further enhance systematic complexity, a second DCR of electrophilic aldehydes and thiols was employed for the reversible inhibition of the binary system, thus achieving the interplay of multiple equilibria. Finally, a fluorescence switch was turned on through coupling with the DCR, showcasing the versatility of our strategy. The results described herein should pave the way for the exploitation of multifunctional dynamic covalent cascades.

  11. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  12. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Renny Edwin [Microelectronics and MEMS Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: rennyedwin@gmail.com; Bhattacharya, Enakshi [Microelectronics and MEMS Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: enakshi@ee.iitm.ac.in; Chadha, Anju [Department of Biotechnology, National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai (India)], E-mail: anjuc@iitm.ac.in

    2008-05-30

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C-V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  13. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Near universal support for covalent immobilisation of enzymes for biotechnology

    International Nuclear Information System (INIS)

    Elnashar, M.M.; Millner, P.A.; Gibson, T.D.

    2005-01-01

    Carrageenan [1], natural polymer, has been modified to be used as a universal/near universal support to immobilise enzymes, where the gel remained stable at 70 degree C for 24 h at a wide range of buffers and ph s and its mechanical strength was 400% greater than the unmodified gel. The new matrix successfully immobilised covalently eight commercially used enzymes including hydrolases, Upases, oxidoreductases, proteases and dehydrogenases. It also acted as a self buffering system in case of hydrolases and stopped enzyme's product inhibition. The apparent Km values of immobilised enzymes were found in many cases to be much less than those of the free enzymes. Another interesting correlation was observed where the great lowering of the apparent Km with immobilised enzymes was directly proportional to the substrate molecular weight. In economic terms, the new matrix is at least two orders of magnitude cheaper than supports such as Eupergit C

  15. Non-Covalent Organocatalyzed Domino Reactions Involving Oxindoles: Recent Advances

    Directory of Open Access Journals (Sweden)

    Tecla Gasperi

    2017-09-01

    Full Text Available The ubiquitous presence of spirooxindole architectures with several functionalities and stereogenic centers in bioactive molecules has been appealing for the development of novel methodologies seeking their preparation in high yields and selectivities. Expansion and refinement in the field of asymmetric organocatalysis have made possible the development of straightforward strategies that address these two requisites. In this review, we illustrate the current state-of-the-art in the field of spirooxindole synthesis through the use of non-covalent organocatalysis. We aim to provide a concise overview of very recent methods that allow to the isolation of unique, densely and diversified spirocyclic oxindole derivatives with high structural diversity via the use of cascade, tandem and domino processes.

  16. Prolonged and tunable residence time using reversible covalent kinase inhibitors.

    Science.gov (United States)

    Bradshaw, J Michael; McFarland, Jesse M; Paavilainen, Ville O; Bisconte, Angelina; Tam, Danny; Phan, Vernon T; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G; Nunn, Philip A; Karr, Dane E; Gerritsen, Mary E; Funk, Jens Oliver; Owens, Timothy D; Verner, Erik; Brameld, Ken A; Hill, Ronald J; Goldstein, David M; Taunton, Jack

    2015-07-01

    Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo.

  17. Spin Labeling ESR Investigation of Covalently Bound Residues in Soil

    Science.gov (United States)

    Aleksandrova, Olga; Steinhoff, Heinz-Juergen; Klasmeier, Joerg; Schulz, Marcus; Matthies, Michael

    2013-04-01

    Organic xenobiotic chemicals, such as pesticides, biocides and veterinary pharmaceuticals, interact with soil, which results in the simultaneous formations of metabolites, mineralization products, and bound or non-extractable residues (NER). Substances or metabolites with reactive functional groups, such as aniline or phenol, have a tendency to give a larger proportion of NER. Despite numerous studies on NER, the majority of their chemical structures is still unknown. Reversible sequestration and irreversible formation of NER were also observed for veterinary antibiotic pharmaceuticals, after their application to soil with and without manure. For this purpose, we hypothesized a key role of specific functional groups of soil contaminants, via which contaminants are covalently bound to soil constituents, and advance a method of spin labeling ESR investigation of reaction products using a membrane method. Spin labels (SL) represent chemically stable paramagnetic molecules used as molecular labels and molecular probes for testing the covalent binding, structural properties, and molecular mobility of different physical, chemical, and biological systems. In the case of covalent binding of SL, their ESR spectra become broadened. We used stable nitroxide radicals (NR) as SL. These radicals modeled organic chemical contaminants and differed only in one functional group. The paramagnetic SL 4-Amino Tempo (4-amino-2,2,6,6-tetramethyl-1-piperidinylox) differed from Tempo (2,2,6,6-Tetramethylpiperidinooxy) in a substituent at the para-position of the piperidine ring, whereas Aniline Tempo (1-Piperidinyloxy, 2,2,6,-tetramethyl, 6-Aniline) differed from Tempo in an Aniline substituting one CH3 functional group. Before experimental analysis, we tested temporal changes in the concentration of both NR incubated with soil and found that the life-times of them in soil exceeded 3 days. We contaminated and labeled soil samples with NR, adding to soil the aqueous solution, which already

  18. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon x irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 0 C/15 min) given prior to radiation dose not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 0 C. The DNA-protein crosslinks produced y 50-Gy x ray alone are removed after 2 hr at 37 0 C. However, if hyperthermia (43 0 C/15 min) is given prior to 100-Gy x ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding

  19. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  20. Covalently bound conjugates of albumin and heparin: Synthesis, fractionation and characterization

    NARCIS (Netherlands)

    Hennink, Wim E.; Feijen, Jan; Ebert, Charles D.; Kim, Sung Wan

    1983-01-01

    Covalently bound conjugates of human serum albumin and heparin were prepared as compounds which could improve the blood-compatibility of polymer surfaces either by preadsorption or by covalent coupling of the conjugates onto blood contacting surfaces. The conjugates (10–16 weight % of heparin) were

  1. Covalently Immobilised Cytochrome C Imaged by In Situ Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Olesen, Klaus G.; Danilov, Alexey I.

    1997-01-01

    In situ scanning tunnelling microscopy (STM) imaging of cytochrome c (cyt c) on polycrystalline Pt surfaces and on Au(lll) was achieved first by covalent immobilisation of 3-aminopropyltriethoxysilane (3-APTS) brought to react with oxide present on the Pt surfaces. Covalently bound 3-APTS forms...

  2. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-01

    Full Text Available In this paper, the proton exchange membrane prepared by covalent-ionically crosslinking water soluble sulfonated-sulfinated poly(oxa-p-phenylene-3,3-phthalido-pphenylene- oxa-p-phenylene-oxy-phenylene) (SsPEEK-WC) is reported. Compared with covalent...

  3. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry

    Science.gov (United States)

    Green, Malcolm L. H.; Parkin, Gerard

    2014-01-01

    The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…

  4. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  5. Comparison of covalent and noncovalent immobilization of Malatya apricot pectinesterase (Prunus armeniaca L.).

    Science.gov (United States)

    Karakuş, Emine; Pekyardımcı, Sule

    2012-02-01

    Pectinesterase isolated from Malatya apricot pulp was noncovalently and covalently immobilized onto bentonite and glutaraldehyde-containing amino group functionalized porous glass beads surface at pH 8.0 and pH 9.0, respectively. The effect of various parameters such as pH, temperature, activation energy, heat and storage stability on immobilized enzyme were investigated. The optimum temperature of covalently and noncovalently immobilized PE was 50°C. This value was 60°C for free PE. Although optimum pH of covalently-immobilized PE was 8.0, this parameter was 9.0 for free and covalently-immobilized PE. The noncovalently immobilized enzyme exhibited better thermostability than the free and covalently immobilized PE.

  6. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  7. Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks

    KAUST Repository

    Li, Huifang

    2018-01-30

    The stability of covalent organic frameworks (COFs) is essential to their applications. However, the common boronate ester-linked COFs are susceptible to attack by nucleophiles (such as water molecules) at the electron-deficient boron sites. To provide an understanding of the hydrolytic stability of the representative boronate ester-linked COF-5 and of the associated hydrolysis mechanisms, density functional theory (DFT) calculations were performed to characterize the hydrolysis reactions of the molecule formed by the condensation of 1,4-phenylenebis(boronic acid) (PBBA) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) monomers; two cases were considered, one dealing with the freestanding molecule and the other with the molecule interacting with COF layers. It was found that the boronate ester (B–O) bond dissociation, which requires one H2O molecule, has a relatively high energy barrier of 22.3 kcal mol−1. However, the presence of an additional H2O molecule significantly accelerates hydrolysis by reducing the energy barrier by a factor of 3. Importantly, the hydrolysis of boronate ester bonds situated in a COF environment follows reaction pathways that are different and have increased energy barriers. These results point to an enhanced hydrolytic stability of COF-5 crystals.

  8. Electrophilicities and Protein Covalent Binding of Demethylation Metabolites of Colchicine.

    Science.gov (United States)

    Guo, Xiucai; Lin, Dongju; Li, Weiwei; Wang, Kai; Peng, Ying; Zheng, Jiang

    2016-03-21

    Colchicine, an alkaloid existing in plants of Liliaceous colchicum, has been widely used in the treatment of gout and familial Mediterranean fever. The administration of colchicine was found to cause liver injury in humans. The mechanisms of colchicine-induced liver toxicity remain unknown. The objectives of this study were to determine the electrophilicities of demethylation metabolites of colchicine and investigate the protein adductions derived from the reactive metabolites of colchicine. Four demethylated colchicine (1-, 2-, 3-, and 10-DMCs), namely, M1-M4, were detected in colchicine-fortified microsomal incubations. Four N-acetyl cysteine (NAC) conjugates (M5-M8) derived from colchicine were detected in the microsomes in the presence of NAC. M5 and M6 were derived from 10-DMC. M7 resulted from the reaction of 2-DMC or 3-DMC with NAC, and M8 originated from 10-DMC. Microsomal protein covalent binding was observed after exposure to colchicine. Two cysteine adducts (CA-1 and CA-2) derived from 10-DMC were found in proteolytically digested microsomal protein samples after incubation with colchicine. The findings allow us to define the chemical property of demethylation metabolites of colchicine and the interaction between protein and the reactive metabolites of colchicine generated in situ.

  9. Functionalization of silicone rubber for the covalent immobilization of fibronectin.

    Science.gov (United States)

    Völcker, N; Klee, D; Höcker, H; Langefeld, S

    2001-02-01

    Surface modification techniques were employed in order to provide functionalized silicone rubber with enhanced cytocompatibility. Acrylic acid (AAc), methacrylic acid (MAAc) and glycidylmethacrylate (GMA) were graft-co-polymerized onto the surface of silicone induced by an argon plasma and thermal initiation. The polymerizations were carried out in solution, in the case of acrylic acid a vapor phase graft-co-polymerization subsequent to argon plasma activation was carried out as well. Human fibronectin (hFn), which acts as a cell adhesion mediator for fibroblasts, was immobilized by making use of the generated carboxylic or epoxy groups, respectively. Surface analysis was accomplished by means of X-ray photoelectron spectroscopy (XPS), infrared spectroscopy in attenuated total reflection mode (IR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle measurements using the Wilhelmy-plate method. The amount of immobilized active hFn was semiquantified by enzyme-linked immunosorbent assay (ELISA) using a structure-specific antibody against the cell-binding domain of hFn. In vitro testing showed a remarkable difference between surfaces exposing adsorbed-only and surfaces with covalently immobilized hFn. Copyright 2001 Kluwer Academic Publishers

  10. Graphene magnetism induced by covalent adsorption of aromatic radicals.

    Science.gov (United States)

    Lin, He; Fratesi, Guido; Brivio, Gian Paolo

    2015-01-21

    We report a computational study of adsorption of aromatic radicals onto graphene, with the aim of understanding the effect of covalent molecular functionalization on the magnetic and structural properties of graphene. Our results show that the adsorption of an aromatic radical like phenyl also functionalized with donor or acceptor groups generates a band gap and two spin-dependent midgap states, one located above and the other below the Fermi energy of pristine graphene, which cause a net magnetic moment. Due to the interaction between the radical and graphene, we find that the carbon atom on the adsorption site is lifted out of the graphene plane, and its pz orbital is removed from the π band system, leaving the electrons in the other sublattice unpaired, which results in nonzero magnetism. But the band gap of the full system is insensitive to the different attached species and the midgap states are independent of the alignment of the molecular orbitals, so that the magnetic moment is the same for the various radicals studied. The net result of the radical adsorption is to have almost the same aromatic species as those in the gas phase but anchored on a surface.

  11. Anion binding in covalent and self-assembled molecular capsules.

    Science.gov (United States)

    Ballester, Pablo

    2010-10-01

    This critical review describes selected examples extracted from the extensive literature generated during the past 42 years on the topic of anion binding in molecular capsules. The goal of including anions in molecular capsules emerges from the idea of incorporating the traits exhibited by biological receptors into synthetic ones. At the outset of this research area the capsules were unimolecular. The scaffold of the receptor was designed to covalently link a series of functional groups that could converge into a cavity and to avoid its collapse. The initial examples involved the encapsulation of one monoatomic spherical anion. With time, the cavity size of the receptor was increased and encapsulation of polyatomic anions and co-encapsulation became a reality. Synthetic economy fueled the use of aggregates of self-complementary molecules rather than one large molecule as capsules. The main purpose of this review is to give a general overview of the topic which might be of interest to supramolecular or non supramolecular chemists alike (149 references).

  12. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  13. COVALENT IMMOBILIZATION OF INVERTASE ON EPOXY-ACTIVATED POLYANILINE FILMS

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2013-08-01

    Full Text Available The growing interest in manufacturing and use of biosensors is their rapid and selective detection of the target analyte. The immobilization of the enzymes, onto the appropriate matrix is the key-step in the construction of biosensing devices, considerably affecting its performance. In this study, new polyaniline bearing epoxy groups was synthesized by electrochemical polymerization reactions, as adherent, green film deposited on electrode surface, and was further used as immobilization matrix for invertase enzyme. The immobilization was carried out by condensation reactions between the amino groups of the enzyme molecules and the epoxy groups of polyaniline film. The covalent attachment was achieved by simple immersing the epoxy-activated polyaniline in acetate buffer solution (10 mM, pH 6.0 containing 2mg/mL invertase, for 24 h at 4 ºC, by continuous stirring. The polyaniline films thus obtained were analyzed before and after the invertase attachment, by using FT-IR spectroscopy and SEM microscopy. The presence of the invertase was evaluated by measuring their activity, using UV-Vis spectroscopy, in the presence of a known amount of sucrose as a substrate. These tests, performed for three times under the same conditions, revealed that even after five washes of the polyaniline /invertase electrode to remove the unbounded enzyme, the enzyme remain attached on the polyaniline film, being able to hydrolyze the sucrose presented in the assay solutions.

  14. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  15. Extending density functional embedding theory for covalently bonded systems.

    Science.gov (United States)

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  16. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  17. The covalence effect of energy levels of ZnS:Mn2+

    International Nuclear Information System (INIS)

    Dong-Yang, Li; Mao-Lu, Du; Yi, Huang

    2013-01-01

    The contribution of the different covalence for t 2 and e orbitals must be considered in the investigation of the optical and magnetic properties of the transition metal ion in II–VI and III–V semiconductors. In present paper, two covalent parameters N t and N e associated with t 2 and e orbitals have been adopted to describe the covalence. The energy matrices considering the different covalence for t 2 and e orbitals have been provided for d 5 ions in crystal. These matrices show that the contribution from the Racah parameter A cannot be neglected in calculation of energy-level of d 5 ions in covalent crystal. The calculated results using the matrix show that the energy levels of 4 E and 4 A 1 states split, and the energy-level difference between 4 E and 4 A 1 states increases with increase of the different covalence between t 2 and e orbitals. These energy levels are always degenerate, when the different covalence for t 2 and e orbitals is neglected. By using the energy matrices, the energy-level of ZnS:Mn 2+ has been calculated. The calculated energy levels of ZnS:Mn 2+ are in good agreement with the experiments

  18. Role of covalent defects on phonon softening in metallic carbon nanotubes.

    Science.gov (United States)

    Nguyen, Khoi T; Shim, Moonsub

    2009-05-27

    We have examined how electrical characteristics and charging dependent Raman G-band phonon softening in individual metallic carbon nanotubes are influenced by covalent defects. In addition to decreasing electrical conductance with increasing on/off current ratio eventually leading to semiconducting behavior, adding covalent defects reduces the degree of softening and broadening of longitudinal optical (LO) phonon mode of the G-band near the charge neutrality point where the bands cross. On the other hand, the transverse optical (TO) mode softening is enhanced by defects. Implications on the interpretation of Raman G-band phonon softening and on utilizing Raman spectroscopy to examine covalent functionalization are discussed.

  19. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  20. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  1. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  2. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  3. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  4. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  5. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    Science.gov (United States)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  6. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  7. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces.

    Science.gov (United States)

    Costa, Fabíola; Carvalho, Isabel F; Montelaro, Ronald C; Gomes, P; Martins, M Cristina L

    2011-04-01

    Bacterial adhesion to biomaterials remains a major problem in the medical devices field. Antimicrobial peptides (AMPs) are well-known components of the innate immune system that can be applied to overcome biofilm-associated infections. Their relevance has been increasing as a practical alternative to conventional antibiotics, which are declining in effectiveness. The recent interest focused on these peptides can be explained by a group of special features, including a wide spectrum of activity, high efficacy at very low concentrations, target specificity, anti-endotoxin activity, synergistic action with classical antibiotics, and low propensity for developing resistance. Therefore, the development of an antimicrobial coating with such properties would be worthwhile. The immobilization of AMPs onto a biomaterial surface has further advantages as it also helps to circumvent AMPs' potential limitations, such as short half-life and cytotoxicity associated with higher concentrations of soluble peptides. The studies discussed in the current review report on the impact of covalent immobilization of AMPs onto surfaces through different chemical coupling strategies, length of spacers, and peptide orientation and concentration. The overall results suggest that immobilized AMPs may be effective in the prevention of biofilm formation by reduction of microorganism survival post-contact with the coated biomaterial. Minimal cytotoxicity and long-term stability profiles were obtained by optimizing immobilization parameters, indicating a promising potential for the use of immobilized AMPs in clinical applications. On the other hand, the effects of tethering on mechanisms of action of AMPs have not yet been fully elucidated. Therefore, further studies are recommended to explore the real potential of immobilized AMPs in health applications as antimicrobial coatings of medical devices. Copyright © 2010 Acta Materialia Inc. All rights reserved.

  8. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  9. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation.

    Science.gov (United States)

    Guan, Cui-Zhong; Wang, Dong; Wan, Li-Jun

    2012-03-21

    The construction of well-ordered 2D covalent networks via the dehydration of di-borate aromatic molecules was successfully realized through introducing a small amount of water into a closed reaction system to regulate the chemical equilibrium.

  10. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  11. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  12. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  13. SbcCD-Mediated Processing of Covalent Gyrase-DNA Complex in Escherichia coli

    OpenAIRE

    Aedo, Sandra; Tse-Dinh, Yuk-Ching

    2013-01-01

    Quinolones trap the covalent gyrase-DNA complex in Escherichia coli, leading to cell death. Processing activities for trapped covalent complex have not been characterized. A mutant strain lacking SbcCD nuclease activity was examined for both accumulation of gyrase-DNA complex and viability after quinolone treatment. Higher complex levels were found in ΔsbcCD cells than in wild-type cells after incubation with nalidixic acid and ciprofloxacin. However, SbcCD activity protected cells against th...

  14. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    OpenAIRE

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  15. Covalently Bonded Three-Dimensional Carbon Nanotube Solids via Boron Induced Nanojunctions

    Science.gov (United States)

    2012-04-13

    Novel Carbon Morphologies : From Covalent Y-Junctions to Sea - Urchin -Like Structures. Adv. Func. Mater. 19, 1193–1199 (2009). 15. Sumpter, B. G. et al...between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize...nitrogen or sulfur can also induce dramatic tubule morphology changes in CNTs, including covalent multi-junctions12–15, however never were these

  16. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  17. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  18. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  19. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  20. Dispersions of non-covalently functionalized graphene with minimal stabilizer

    Science.gov (United States)

    Parviz, Dorsa; Das, Sriya; Irin, Fahmida; Green, Micah

    2013-03-01

    Pyrene derivatives are promising substitutes of surfactants and polymers for stabilization of graphene in aqueous dispersions. We demonstrate that pyrene derivatives stabilize single- to few-layer graphene sheets, yielding exceptionally higher graphene/stabilizer ratio in comparison with conventional stabilizers. Parameters such as stabilizer concentration, initial graphite concentration, type and number of functional groups, counterions, the pH and the polarity of dispersion media were shown to affect the adsorption process and final graphene concentration. The effectiveness of pyrene derivatives is determined by the type, number and electronegativity of functional groups and counterion. It also depends on the distance between functional group and pyrene basal plan, the pH of the dispersion (as shown by zeta potential measurements) and the relative polarity between stabilizer and solvent. Stability of the dispersions against centrifugation, pH and temperature changes and lyophilization was investigated. These dispersions also show promise for applications to polymer nanocomposites, organic solar cells, conductive films, and inkjet-printed electronic devices.

  1. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  2. Cysteinome: The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors.

    Science.gov (United States)

    Wu, Sijin; Luo Howard, Huizhe; Wang, Haina; Zhao, Weijie; Hu, Qiwan; Yang, Yongliang

    2016-09-23

    The covalent modification of intrinsically nucleophilic cysteine in proteins is crucial for diverse biochemical events. Bioinformatics approaches may prove useful in the design and discovery of covalent molecules targeting the cysteine in proteins to tune their functions and activities. Herein, we describe the Cysteinome, the first online database that provides a rich resource for the display, search and analysis of structure, function and related annotation for proteins with targetable cysteine as well as their covalent modulators. To this end, Cysteinome compiles 462 proteins with targetable cysteine from 122 different species along with 1217 covalent modulators curated from existing literatures. Proteins are annotated with a detailed description of protein families, biological process and related diseases. In addition, covalent modulators are carefully annotated with chemical name, chemical structure, binding affinity, physicochemical properties, molecule type and related diseases etc. The Cysteinome database may serve as a useful platform for the identification of crucial proteins with targetable cysteine in certain cellular context. Furthermore, it may help biologists and chemists for the design and discovery of covalent chemical probes or inhibitors homing at functional cysteine of critical protein targets implicated in various physiological or disease process. The Cysteinome database is freely available to public at http://www.cysteinome.org/. Copyright © 2016. Published by Elsevier Inc.

  3. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  4. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  5. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  6. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  7. N-Epoxypropyl poly(p-phenylene terephthalamide) covalently and non-covalently coated multi-walled carbon nanotubes for PVC reinforcement

    Science.gov (United States)

    Pan, Fangwei; Qu, Rongjun; Jia, Xinhua; Sun, Changmei; Sun, Hushan; An, Kai; Mu, Yinglei; Ji, Chunnuan; Yin, Ping; Zhang, Ying

    2017-09-01

    Poly(p-phenylene terephthalamide) (PPTA) coated multi-walled carbon nanotubes (PPTA-MWNTs) showed an enhancement effect on the yield strength and Young's modulus of PVC composite films, but no improvement in toughness. In this paper, MWNTs were covalently and non-covalently coated by N-epoxypropyl PPTA (PPTA-ECH) to prepare PPTA-ECH-MWNTs-NH2-x and PPTA-ECH-MWNTs-x, which were used as additives to reinforce PVC composite films. It was found that the maximum yield strength, Young's modulus, and toughness of PPTA-ECH-MWNTs-NH2-x/PVC composite films increased by 227.84%, 201.56%, and 589.96%, respectively, in comparison to pure PVC, while those of PPTA-ECH-MWNTs-x/PVC composite films increased by 215.08%, 153.13%, and 540.81%, respectively. The maximum yield strength, maximum Young's modulus, and maximum toughness of both PPTA-ECH-MWNTs-NH2-x/PVC and PPTA-ECH-MWNTs-x/PVC showed significant improvement as compared to PPTA-MWNTs/PVC composite film and PPTA-MWNTs-NH2/PVC. This indicates that N-epoxypropyl PPTA covalently and non-covalently coated MWNTs are promising additives for reinforcing PVC.

  8. Polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  9. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  10. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  11. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  12. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  13. Polarization measurement in the COMPASS polarized target

    CERN Document Server

    Kondo, K; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Hasegawa, T; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Yu V; Koivuniemi, J H; Le Goff, J M; Magnon, A; Meyer, W; Reicherz, G; Matsuda, T

    2004-01-01

    Continuous wave nuclear magnetic resonance (NMR) is used to determine the target polarization in the COMPASS experiment. The system is made of the so-called Liverpool Q-meters, Yale-cards, and VME modules for data taking and system controlling. In 2001 the NMR coils were embedded in the target material, while in 2002 and 2003 the coils were mounted on the outer surface of the target cells to increase the packing factor of the material. Though the error of the measurement became larger with the outer coils than with the inner coils, we have performed stable measurements throughout the COMPASS run time for 3 years. The maximum polarization was +57% and -53% as the average in the target cells.

  14. Reversible Covalent Reaction of Levosimendan with Cardiac Troponin C in Vitro and in Situ.

    Science.gov (United States)

    Klein, Brittney A; Reiz, Béla; Robertson, Ian M; Irving, Malcolm; Li, Liang; Sun, Yin-Biao; Sykes, Brian D

    2018-04-17

    The development of calcium sensitizers for the treatment of systolic heart failure presents difficulties, including judging the optimal efficacy and the specificity to target cardiac muscle. The thin filament is an attractive target because cardiac troponin C (cTnC) is the site of calcium binding and the trigger for subsequent contraction. One widely studied calcium sensitizer is levosimendan. We have recently shown that when a covalent cTnC-levosimendan analogue is exchanged into cardiac muscle cells, they become constitutively active, demonstrating the potency of a covalent complex. We have also demonstrated that levosimendan reacts in vitro to form a reversible covalent thioimidate bond specifically with cysteine 84, unique to cTnC. In this study, we use mass spectrometry to show that the in vitro mechanism of action of levosimendan is consistent with an allosteric, reversible covalent inhibitor; to determine whether the presence of the cTnI switch peptide or changes in either Ca 2+ concentration or pH modify the reaction kinetics; and to determine whether the reaction can occur with cTnC in situ in cardiac myofibrils. Using the derived kinetic rate constants, we predict the degree of covalently modified cTnC in vivo under the conditions studied. We observe that covalent bond formation would be highest under the acidotic conditions resulting from ischemia and discuss whether the predicted level could be sufficient to have therapeutic value. Irrespective of the in vivo mechanism of action for levosimendan, our results provide a rationale and basis for the development of reversible covalent drugs to target the failing heart.

  15. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture

    KAUST Repository

    Zhao, Yunfeng

    2013-01-01

    We designed and synthesized a perfluorinated covalent triazine-based framework (FCTF-1) for selective CO2 capture. The incorporation of fluorine (F) groups played multiple roles in improving the framework\\'s CO 2 adsorption and separation capabilities. Thermodynamically, the strongly polar C-F bonds promoted CO2 adsorption via electrostatic interactions, especially at low pressures. FCTF-1\\'s CO2 uptake was 1.76 mmol g-1 at 273 K and 0.1 bar through equilibrium adsorption, exceeding the CO2 adsorption capacity of any reported porous organic polymers to date. In addition, incorporating F groups produced a significant amount of ultra-micropores (<0.5 nm), which offered not only high gas adsorption potential but also kinetic selectivity for CO2-N 2 separation. In mixed-gas breakthrough experiments, FCTF-1 exhibited an exceptional CO2-N2 selectivity of 77 under kinetic flow conditions, much higher than the selectivity (31) predicted from single-gas equilibrium adsorption data. Moreover, FCTF-1 proved to be tolerant to water and its CO2 capture performance remained excellent when there was moisture in the gas mixture, due to the hydrophobic nature of the C-F bonds. In addition, the moderate adsorbate-adsorbent interaction allowed it to be fully regenerated by pressure swing adsorption processes. These attributes make FCTF-1 a promising sorbent for CO2 capture from flue gas. © 2013 The Royal Society of Chemistry.

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  18. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  19. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  20. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  1. Hsp Polarization Verification

    Science.gov (United States)

    Bless, Robert

    1991-07-01

    This proposal defines the procedure for determining the instrumental polarization of the polarimetric IDT (IDT#1, POL) on the HSP. 1 of 2 unpolarized standard stars wil be observed using various filter-polarizer combinations. These observations will permit the instrumental polarization to be calibrated. The instrumental polarization must be determined to a high precision in order to vectoriallly remove it from HSP polarization observations to determine the actual astronomical polarization. Final run of proposal will look at one of 2 possible stars previously observed to get another look at the throughput. Revision History: Mark H. Slovak 8/30/88 Translated to V2 proposal instructions (RPSS V6.2) S. Laurent 1/20/89 Updated: Sally Laurent 2/24/89, 3/20/89, 4/13/89, 5/12/89 Modified: P. Stanley 1/15/90 - change to use CTA selected targets only; Fixes for aberration problem - SALM 7/30/90; Based on SV/HSP 1386. New submission changed targets and revised scheduling strategy. Revised: 26 Aug 92 J. Dolan, L. Walter, P. Reppert want to re-run the proposal (3985) one last time to bring down errors.

  2. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  3. The covalent effect on the energy levels of d2 ions in tetragonal crystal

    International Nuclear Information System (INIS)

    Li, Dong-yang; Du, Mao-lu

    2014-01-01

    In contrast to the traditional method which is unsuitable for the prediction of optical for the transition metal ion in covalence and low-symmetry crystal, this paper reports a new method to investigate the optical properties of d 2 ions in covalent and tetragonal crystals and provides a new energy matrix. By using the energy matrix, the variation of energy levels and of the energy-level splitting as the parameter ε are studied; the energy-levels calculated by energy matrix taking no account of crystal-field parameter B 00 0 and by energy matrix taking account of B 00 0 are compared. It was found that the effect of the difference of covalence factors N t and N e on the energy levels and the energy-level splitting is very important and cannot be neglected when the optical properties of d 2 ions in strong covalent crystals are investigated; B 00 0 has an important contribution to the energy levels and should not be neglected; the different covalence of t 2 and e orbitals should be considered not only in the electrostatic repulsions part of the energy matrix but also in the crystal-field potential part of the energy matrix. The complete matrix is applied to calculate the energy-levels of GaP:V 3+ semiconductor. The calculated results are in agreement with the experiment data

  4. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Science.gov (United States)

    Zhou, Jing; Zhang, Linjuan; Hu, Zhiwei; Kuo, Changyang; Liu, Hengjie; Lin, Xiao; Wang, Yu; Pi, Tun-Wen; Wang, Jianqiang; Zhang, Shuo

    2016-03-01

    To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS) at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole) components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II)-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  5. Signal transduction in a covalent post-assembly modification cascade

    Science.gov (United States)

    Pilgrim, Ben S.; Roberts, Derrick A.; Lohr, Thorsten G.; Ronson, Tanya K.; Nitschke, Jonathan R.

    2017-12-01

    Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels-Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels-Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes.

  6. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  7. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  8. Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds.

    Science.gov (United States)

    Beuerle, Florian; Gole, Bappaditya

    2017-12-05

    Porous organic materials are an emerging class of functional nanostructures with unprecedented properties. Dynamic covalent assembly of small organic building blocks under thermodynamic control is utilized for the intriguingly simple formation of complex molecular architectures in one-pot procedures. In this review, we aim to analyze the basic design principles that govern the formation of either covalent organic frameworks as crystalline porous polymers or covalent organic cage compounds as shape-persistent molecular objects. Common synthetic protocols and characterization techniques will be discussed besides more advanced strategies such as postsynthetic modification or self-sorting. When appropriate, healthy comparisons are drawn between polymeric frameworks and discrete organic cages considering their underlying properties. Furthermore, we highlight the potential of these materials for applications ranging from gas storage to catalysis or organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. How covalence breaks adsorption-energy scaling relations and solvation restores them

    DEFF Research Database (Denmark)

    Vallejo, Federico Calle; Krabbe, Alexander; García Lastra, Juan Maria

    2017-01-01

    of those adsorbates on the metal centers Cr, Mn, Fe, Co, Ni and Cu, using H, F, OH, NH2, CH3, and BH2 as ring ligands. We show that covalence systematically breaks scaling relations under vacuum by strengthening certain M-OOH bonds. However, covalence modifies adsorbate solvation in solution depending...... on the degree of covalence of the metal-adsorbate bonds. The two effects have similar magnitudes and opposite signs, such that scaling relations are restored in solution. Thus, solvation is a crucial ingredient that must be taken into account in studies aimed at breaking scaling relations in solution. Our...... findings suggest that the choice of metal and ligand determines the catalytic activity within the limits imposed by scaling relations, whereas the choice of an appropriate solvent can drive such activity beyond those limits....

  10. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  11. Aromatic Polyamines Covalent Triazine Polymer as Sorbent for CO2 Adsorption

    Science.gov (United States)

    Lee, Siew-Pei; Mellon, N.; Shariff, Azmi M.; Leveque, Jean-Marc

    2017-08-01

    A novel aromatic polyamine covalent triazine-based polymer, CPDA was obtained by the polymerization of amino group (1,4-phenylenediamine) and cyanuric chloride. CPDA was characterized with Fourier Transform Infra-red spectroscopy (FTIR) and the thermal behaviour was studied with thermal gravimetric analysis (TGA) and derivative thermal analysis (DTA). A comparison study for CO2 adsorption capacity on covalent organic polymer 1 (COP-1) and CPDA was performed. By introducing the aromatic ring into the nitrogen fertile triazine based system, the thermal stability of the network is enhanced. Polymer structure containing secondary amine functionality was observed in this study. Besides, the suggested chemical pathway is another approach to synthesis of covalent organic materials using economic monomers and absence of expensive catalyst.

  12. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  13. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  14. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  15. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    Science.gov (United States)

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-06

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  17. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  18. In-line Fiber Polarizer

    OpenAIRE

    Perumalsamy, Priya

    1998-01-01

    Polarizers and polarization devices are important components in fiber optic communication and sensor systems. There is a growing need for efficient low loss components that are compatible with optical fibers. An all fiber in-line polarizer is a more desirable alternative that could be placed at appropriate intervals along communication links. An in-line fiber polarizer was fabricated and tested. The in-line fiber polarizer operates by coupling optical energy propagatin...

  19. On the covalent character of rare gas bonding interactions: a new kind of weak interaction.

    Science.gov (United States)

    Zou, Wenli; Nori-Shargh, Davood; Boggs, James E

    2013-01-10

    At the averaged quadratic coupled-cluster (AQCC) level, a number of selected rare gas (Rg) containing systems have been studied using the quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), and several other analysis methods. According to the criteria for a covalent bond, most of the Rg-M (Rg = He, Ne, Ar, Kr, Xe; M = Be, Cu, Ag, Au, Pt) bonds in this study are assigned to weak interactions instead of van der Walls or covalent ones. Our results indicate that the rare gas bond is a new kind of weak interaction, like the hydrogen bond for example.

  20. Covalent cross-linking of single fibers from rabbit psoas increases oscillatory power

    OpenAIRE

    Tawada, K.; Kawai, M.

    1990-01-01

    Single fibers from chemically skinned rabbit psoas muscle were treated with 1-ethyl-3-[3-dimethyl-amino)proyl]-carbodiimide (EDC) at 20 degrees C after rigor was induced. A 22-min treatment resulted in 18% covalent cross-linking between myosin heads and the thin filament as determined by stiffness measurements. This treatment also results in covalent cross-linking among rod portions of myosin molecules in the backbone of the thick filament. The fibers thus prepared are stable and do not disso...

  1. Covalency effects on momentum distributions in compounds: Positron annihilation in Fe3O4

    International Nuclear Information System (INIS)

    Chiba, T.

    1976-01-01

    A simple method based on the LCAO--MO scheme is presented for the calculation of the momentum distribution in compounds for positron annihilation or Compton scattering. The method is applied to analyze the covalency structure from the spin-density distribution in Fe 3 O 4 measured by Mijnarends and Singru. The degree of covalency is found to be f/sub sigma/ 2 =10%, f/subs/ 2 =0.3%, and f/sub pi/ 2 =4% for the antibonding orbitals of Fe 2+ and Fe 3+ in octahedral sites

  2. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    Mussel-inspired hydrogels have drawn considerable attention. They can be based on either covalent crosslinking through catechol oxidation chemistry or on coordination chemistry through reversible catecholato–metal bonds, which incorporates self-healing properties.1-6 For practical applications......-healing abilities even at high pH but that can be stiffened at will by dialing in the required degree of covalent crosslinking. This dial-in method thus harnesses two aspects of catechol-type chemistries to yield double network hydrogels in a straightforward and highly controllable manner....

  3. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    Energy Technology Data Exchange (ETDEWEB)

    Uppalapati, Suji [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Kong, Na; Norberg, Oscar [KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden); Ramström, Olof, E-mail: ramstrom@kth.se [KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden); Yan, Mingdi, E-mail: Mingdi_Yan@uml.edu [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm (Sweden)

    2015-07-15

    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surfaces followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pK{sub a} value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.

  4. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signa...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice.......This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...

  5. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  6. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy...... and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...... between the two as well as different types of motivations filling in the gap between the two polar types, is urgently needed in the organizational science literature. By drawing on the research on intrinsic and extrinsic motivation conducted in social psychology and combining this with contributions from...

  7. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  8. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  9. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  10. Dark Polar Dunes

    Science.gov (United States)

    2005-01-01

    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  11. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  12. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  13. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  14. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  15. The physics of polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14

  16. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  17. On the Extremal Wiener Polarity Index of Hückel Graphs.

    Science.gov (United States)

    Wang, Hongzhuan

    2016-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. The Wiener polarity index W p (G) of a graph G is the number of unordered pairs of vertices u, v of G such that the distance between u and v is equal to 3. The trees and unicyclic graphs with perfect matching, of which all vertices have degrees not greater than three, are referred to as the Hückel trees and unicyclic Hückel graphs, respectively. In this paper, we first consider the smallest and the largest Wiener polarity index among all Hückel trees on 2n vertices and characterize the corresponding extremal graphs. Then we obtain an upper and lower bound for the Wiener polarity index of unicyclic Hückel graphs on 2n vertices.

  18. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    An efficient strategy for the preparation of water-dispersible hybrid material containing graphene oxide and polyglycerol for the first time is demonstrated. Pristine graphite was firstly oxidized to obtain graphene oxide with hydroxyl functional groups. Then, the covalent grafting of polyglycerol

  19. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization

    NARCIS (Netherlands)

    Huang, N.; Chen, X.; Krishna, R.; Jiang, D.

    2015-01-01

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a

  20. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 2

    NARCIS (Netherlands)

    Keppler, Julia K.; Steffen-Heins, Anja; Berton-Carabin, Claire C.; Ropers, Marie Hélène; Schwarz, Karin

    2018-01-01

    Allyl isothiocyanate (AITC) is a small electrophilic molecule which can be found in cabbage after degradation of glucosinolates. The covalent attachment of AITC to whey protein isolate (WPI) was previously reported to increase their hydrophobicity and structural flexibility at acidic pH values. It

  1. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Lim, Kwon Taek; Jeong, Yeon Tae

    2011-01-01

    Amino - functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with

  2. Regio- and Stereospecific Conversion of 4-Alkylphenols by the Covalent Flavoprotein Vanillyl-Alcohol Oxidase

    NARCIS (Netherlands)

    Heuvel, Robert H.H. van den; Fraaije, Marco W.; Laane, Colja; Berkel, Willem J.H. van

    1998-01-01

    The regio- and stereospecific conversion of prochiral 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase was investigated. The enzyme was active, with 4-alkylphenols bearing aliphatic side chains of up to seven carbon atoms. Optimal catalytic efficiency occurred with 4-ethylphenol

  3. Targeting of naproxen covalently linked to HSA to sinusoidal cell types of the liver

    NARCIS (Netherlands)

    Melgert, BN; Lebbe, C; Wartna, E; Molema, G; Poelstra, K; Albrecht, C; Reichen, J; Meijer, DKF; Wisse, E; Knook, DL; Balabaud, C

    1997-01-01

    We have coupled the anti-inflammatory drug naproxen (Nap) covalently to human serum albumin (HSA) to deliver this drug selectively to non parenchymal cell types of the liver during endotoxin induced hepatic inflammation. Liver endothelial cells and Kupffer cells play an important role in the

  4. Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening

    NARCIS (Netherlands)

    Huang, N.; Krishna, R.; Jiang, D.

    2015-01-01

    Imine-linked covalent organic frameworks (COFs) were synthesized to bear content-tunable, accessible, and reactive ethynyl groups on the walls of one-dimensional pores. These COFs offer an ideal platform for pore-wall surface engineering aimed at anchoring diverse functional groups ranging from

  5. Carbohydrate as covalent crosslink in human inter-alpha-trypsin inhibitor

    DEFF Research Database (Denmark)

    Jessen, T E; Faarvang, K L; Ploug, M

    1988-01-01

    The primary structure of inter-alpha-trypsin inhibitor is partially elucidated, but controversy about the construction of the polypeptide backbone still exists. We present evidence suggesting that inter-alpha-trypsin inhibitor represents a novel plasma protein structure with two separate polypept...... polypeptide chains covalently crosslinked only by carbohydrate (chondroitin sulphate)....

  6. Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: adodji@gmail.com [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)

    2014-11-30

    Highlights: • Natural metal-oxides, hydroxides are detected on the top surface of steel substrates we tested. • Polysilazane reacts with hydroxide functional groups on steel substrates to form Cr–O–Si and Fe–O–Si covalent bonds. • Covalent bonding between steel and polysilazane at the interface was probed using spectroscopic techniques. - Abstract: In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se{sub 2} (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me–O–Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr–O–Si and Fe–O–Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  7. Methionine Sulfoxides on PrPSc: A Prion-Specific Covalent Signature

    NARCIS (Netherlands)

    Canello, T.; Engelstein, R.; Moshel, O.; Xanthopoulos, K.; Langeveld, J.P.M.; Sklaviadis, T.; Gasset, M.; Gabizon, R.

    2008-01-01

    Prion diseases are fatal neurodegenerative disorders believed to be transmitted by PrPSc, an aberrant form of the membrane protein PrPC. In the absence of an established form-specific covalent difference, the infectious properties of PrPSc were uniquely ascribed to the self-perpetuation properties

  8. Stabilization of 5A1 urease by covalent attachement to wool | Ahmed ...

    African Journals Online (AJOL)

    The investigation of five bacterial strains for urease production referred that Bacillus licheniformis 5A1 had the highest urease activity (10.3U/ml/min) after 24h. The enzyme was covalently coupled to different carriers via glutaraldehyde, and wool gave the highest immobilization yield (76.4%) and retained 85% of the original ...

  9. Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization.

    Science.gov (United States)

    Wang, Heping; Jiao, Fenglong; Gao, Fangyuan; Zhao, Xinyuan; Zhao, Yan; Shen, Yehua; Zhang, Yangjun; Qian, Xiaohong

    2017-03-01

    Deep and efficient proteolysis is the critical premise in mass spectrometry-based bottom-up proteomics. It is difficult for traditional in-solution digestion to meet the requirement unless prolonged digestion time and enhanced enzyme dosage are employed, which makes the whole workflow time-consuming and costly. The abovementioned problems could be effectively ameliorated by anchoring many proteases on solid supports. In this work, covalent organic framework-coated magnetic graphene (MG@TpPa-1) was designed and prepared as a novel enzyme carrier for the covalent immobilization of trypsin with a high degree of loading (up to 268 μg mg -1 ). Profiting from the advantages of magnetic graphene and covalent organic frameworks, the novel trypsin bioreactor was successfully applied for the enzymatic digestion of a model protein with dramatically improved digestion efficiency, stability, and reusability. Complete digestion could be achieved in a time period as short as 2 min. For the digestion of proteins extracted from Amygdalus pedunculata, a total of 2833 protein groups were identified, which was slightly more than those obtained by 12 h of in-solution digestion (2739 protein groups). All of the results demonstrate that MG@TpPa-1-trypsin is an excellent candidate for sample preparation in a high-throughput proteomics analysis. Graphical abstract Covalent organic frameworks-coated magnetic graphene was prepared as novel carrier for highly efficient tryptic immobilization.

  10. Liquid chromatography/tandem mass spectrometry detection of covalent binding of acetaminophen to human serum albumin

    NARCIS (Netherlands)

    Damsten, Micaela C.; Commandeur, Jan N. M.; Fidder, Alex; Hulst, Albert G.; Touw, Daan; Noort, Daan; Vermeulen, Nico P. E.

    2007-01-01

    Covalent binding of reactive electrophilic intermediates to proteins is considered to play an important role in the processes leading to adverse drug reactions and idiosyncratic drug reactions. Consequently, both for the discovery and the development of new drugs, there is a great interest in

  11. Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jansen, R.

    2002-01-01

    Covalent binding of various clinically important nitrogen mustards to the cysteine-34 residue of human serum albumin, in vitro and in vivo, is demonstrated. A rapid method for detection of these adducts is presented, based on liquid chromatography-tandem mass spectrometry analysis of the adducted

  12. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  13. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Li, Hua; Li, Ziyu; Lukasczyk, Ulrike; Choi, Yong-Mi; Han, Zuoning; Prisco, Joy; Fordham, Jeremy; Tsay, Joseph T.; Reiling, Stephan; Vaz, Roy J.; Li, Yi; (Sanofi)

    2010-10-28

    Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.

  14. Improved Performance of Pseudomonas fluorescens lipase by covalent immobilization onto Amberzyme

    NARCIS (Netherlands)

    Aslan, Yakup; Handayani, Nurrahmi; Stavila, Erythrina; Loos, Katja

    2013-01-01

    Objective: In this study, the conditions of covalent immobilization of Pseudomonas fluorescens lipase onto an oxirane-activated support (Amberzyme) were optimized to obtain a high activity yield. Furthermore, the operational and storage stabilities of immobilized lipase were tested. Methods: Optimum

  15. Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rathouský, Jiří; Fattakhova-Rohlfing, D.

    2014-01-01

    Roč. 116, JAN 2014 (2014), s. 1-8 ISSN 0013-4686 R&D Projects: GA ČR GA104/08/0435 Institutional support: RVO:61388955 Keywords : Covalent immobilization * Porous electrodes * Redox proteins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.504, year: 2014

  16. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens Honore; Koumoutsakos, Petros

    2016-01-01

    , we demonstrate, through transient heat-dissipation simulations, that a covalently bonded graphene-carbon nanotube (G-CNT) hybrid immersed in water is a promising solution for the ultrafast cooling of such high-temperature and high heat-flux surfaces. The G-CNT hybrid offers a unique platform...

  17. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Czech Academy of Sciences Publication Activity Database

    Melnichuk, I.; Choukourov, A.; Bilek, M.; Weiss, A.; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, J.; Kousal, J.; Shelemin, A.; Solař, P.; Slavínská, D.; Biederman, H.

    2015-01-01

    Roč. 351, Oct 1 (2015), s. 537-545 ISSN 0169-4332 R&D Projects: GA MZd(CZ) NT13297 Institutional support: RVO:67985823 Keywords : covalent binding * plasma polymers * MG-63 osteoblasts Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.150, year: 2015

  18. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2015-01-01

    their applications as effective thermal interface materials (TIMs). Here, a covalently bonded graphene–CNT (G-CNT) hybrid is presented that multiplies the axial heat transfer capability of individual CNTs through their parallel arrangement, while at the same time it provides a large contact area for efficient heat...

  19. Recent advances in covalent, site-specific protein immobilization [version 1; referees

    DEFF Research Database (Denmark)

    Meldal, Morten Peter; Schoffelen, Sanne

    2016-01-01

    The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control...

  20. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  1. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    Directory of Open Access Journals (Sweden)

    Alexey V. Kondyurin

    2012-01-01

    Full Text Available The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers.

  2. Lobbying and political polarization

    OpenAIRE

    Ursprung, Heinrich W.

    2002-01-01

    Standard spatial models of political competition give rise to equilibria in which the competing political parties or candidates converge to a common position. In this paper I show how political polarization can be generated in models that focus on the nexus between pre-election interest group lobbying and electoral competition.

  3. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  4. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  5. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  6. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  7. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  8. Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I

    Science.gov (United States)

    Zhang, Zhongtao; Cheng, Bokun; Tse-Dinh, Yuk-Ching

    2011-01-01

    DNA topoisomerases control DNA topology by breaking and rejoining DNA strands via covalent complexes with cleaved DNA substrate as catalytic intermediates. Here we report the structure of Escherichia coli topoisomerase I catalytic domain (residues 2–695) in covalent complex with a cleaved single-stranded oligonucleotide substrate, refined to 2.3-Å resolution. The enzyme-substrate intermediate formed after strand cleavage was captured due to the presence of the D111N mutation. This structure of the covalent topoisomerase-DNA intermediate, previously elusive for type IA topoisomerases, shows distinct conformational changes from the structure of the enzyme without bound DNA and provides detailed understanding of the covalent catalysis required for strand cleavage to take place. The portion of cleaved DNA 5′ to the site of cleavage is anchored tightly with extensive noncovalent protein–DNA interactions as predicted by the “enzyme-bridged” model. Distortion of the scissile strand at the -4 position 5′ to the cleavage site allows specific selectivity of a cytosine base in the binding pocket. Many antibacterial and anticancer drugs initiate cell killing by trapping the covalent complexes formed by topoisomerases. We have demonstrated in previous mutagenesis studies that accumulation of the covalent complex of bacterial topoisomerase I is bactericidal. This structure of the covalent intermediate provides the basis for the design of novel antibiotics that can trap the enzyme after formation of the covalent complex. PMID:21482796

  9. Covalent attachment of antagonists to the a7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides

    DEFF Research Database (Denmark)

    Ambrus, Joseph I; Halliday, Jill I; Kanizaj, Nicholas

    2012-01-01

    The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR).......The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR)....

  10. Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins

    NARCIS (Netherlands)

    Rozhko, E.; Bavykina, A.V.; Osadchii, D.; Makkee, M.; Gascon Sabate, J.

    2017-01-01

    The use of two different classes of covalent organic frameworks (covalent triazine and imine linked frameworks) as supports for molecular Ni2+ catalysts is presented. For COFs, a large concentration of N heteroatoms, either in the form of quasi bipyridine or as diiminopyridine

  11. Characteristics of volume polarization holography with linear polarization light

    Science.gov (United States)

    Zang, Jinliang; Wu, An'an; Liu, Ying; Wang, Jue; Lin, Xiao; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    2015-10-01

    Volume polarization holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) (PQ-PMMA) photopolymer with linear polarized light is obtained. The characteristics of the volume polarization hologram are experimentally investigated. It is found that beyond the paraxial approximation the polarization states of the holographic reconstruction light are generally different from the signal light. Based on vector wave theoretical analyses and material properties, the special exposure condition for correctly holographic reconstruction is obtained and experimentally demonstrated.

  12. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    Science.gov (United States)

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  13. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    Science.gov (United States)

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.

  14. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  15. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  16. Geomagnetic polarity transitions

    Science.gov (United States)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem

  17. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  18. Analytical polarization calculations beyond SLIM

    International Nuclear Information System (INIS)

    Barber, D.P.

    1989-01-01

    A comparison is made between the theories of Bell and Leinaas and of Derbenev and Kondratenko for the spin polarization in electron storage rings. A calculation of polarization in HERA using the program SMILE of Mane is presented

  19. On Determinants of Political Polarization

    OpenAIRE

    Grechyna, Daryna

    2015-01-01

    Political polarization has been shown to significantly influence a country's economic performance. However, little is known about the drivers of political polarization. In this article, we aim to identify the main determinants of political polarization using Bayesian Model Averaging to overcome the problem of model uncertainty. We find that the level of trust within a country and the degree of income inequality are the most robust determinants of political polarization.

  20. Polarized electrogowdy spacetimes censored

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2010-05-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  1. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  2. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  3. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  4. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  5. On polarization in biomembranes

    DEFF Research Database (Denmark)

    Zecchi, Karis Amata

    close to physiological conditions, making these effects biologically relevant. In this work, we consider the case of asymmetric membranes which can display spontaneous polarization in the absence of a field. Close to the phase transition, we find that the membrane displays piezoelectric, flexoelectric...... on different geometries point in the direction of a flexoelectric mechanism behind current rectification in lipid bilayers. Finally, we suggest that our updated equivalent circuit should be included in the interpretation of elctrophysiological data....

  6. Multifrequency Behaviour of Polars

    Directory of Open Access Journals (Sweden)

    K. Reinsch

    2015-02-01

    Full Text Available Cataclysmic variables emit over a wide range of the electromagnetic spectrum. In this paper I will review observations of polars in relevant passbands obtained during the last decade and will discuss their diagnostical potential to access the physics of the main components within the binary systems. This will include a discussion of intrinsic source variability and the quest for simultaneous multi-frequency observations.

  7. Polar Business Design

    Directory of Open Access Journals (Sweden)

    Sébastien Caisse

    2014-02-01

    Full Text Available Polar business design aims to enable entrepreneurs, managers, consultants, researchers, and business students to better tackle model-based analysis, creation, and transformation of businesses, ventures, and, more generically, collective endeavors of any size and purpose. It is based on a systems-thinking approach that builds on a few interrelated core concepts to create holistic visual frameworks. These core concepts act as poles linked by meaningful dyads, flows, and faces arranged in geometric shapes. The article presents two such polar frameworks as key findings in an ongoing analytic autoethnography: the three-pole Value−Activity−Stakeholder (VAS triquetra and the four-pole Offer−Creation−Character−Stakeholder (OCCS tetrahedron. The VAS triquetra is a more aggregated model of collective endeavors. The OCCS tetrahedron makes a trade-off between a steeper learning curve and deeper, richer representation potential. This article discusses how to use these two frameworks as well as their limits, and explores the potential that polar business design offers for future research.

  8. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates.

    Science.gov (United States)

    Egea, Pascal F; Muller-Steffner, Hélène; Kuhn, Isabelle; Cakir-Kiefer, Céline; Oppenheimer, Norman J; Stroud, Robert M; Kellenberger, Esther; Schuber, Francis

    2012-01-01

    Bovine CD38/NAD(+)glycohydrolase (bCD38) catalyses the hydrolysis of NAD(+) into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2'-fluorinated analogs of NAD(+). Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1' of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2'-OH of the substrate NAD(+). Based on our structural analysis and data on active site

  9. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications

    Science.gov (United States)

    Setaro, Antonio; Adeli, Mohsen; Glaeske, Mareen; Przyrembel, Daniel; Bisswanger, Timo; Gordeev, Georgy; Maschietto, Federica; Faghani, Abbas; Paulus, Beate; Weinelt, Martin; Arenal, Raul; Haag, Rainer; Reich, Stephanie

    2017-01-01

    Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp2 network and destroying the tubes electronic and optoelectronic features. Here we present a non-destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new [2+1] cycloaddition. The reaction rebuilds the extended π-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission.

  10. New technology for regiospecific covalent coupling of polysaccharide antigens in ELISA for serological detection

    DEFF Research Database (Denmark)

    Jauho, E.S.; Boas, Ulrik; Wiuff, Camilla

    2000-01-01

    plates and avoids cross-reactivity due to conserved domains in the lipid A. Furthermore, the covalent binding of the polysaccharide antigens are compatible with harsh assay conditions, such as extensive washing procedures and buffers with high salt concentrations with no risk of antigen leakage. Here we......In this study we demonstrate a new UV irradiation technique for covalent coupling of bacterial polysaccharides derived from lipopolysaccharides to microtiter plates and the use of such plates in an enzyme linked immunosorbent assay (ELISA). Lipopolysaccharides were cleaved by mild acid hydrolysis...... into the lipid A part and the polysaccharide part. The polysaccharide was conjugated regiospecifically to a photochemically active compound, anthraquinone, resulting in a polysaccharide-anthraquinone conjugate. Anthraquinones forms active radicals when exposed to soft UV irradiation (350 nm) permitting...

  11. Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates

    DEFF Research Database (Denmark)

    León, John Jairo Castillo; Rindzevicius, Tomas; Wu, Kaiyu

    2014-01-01

    Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The sur......Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA...... performed on a large area silver-capped (diameter of 62 nm) silicon nanopillars with an approximate height of 400 nm and a width of 200 nm. The results showed that the PNT-FA synthesis procedure preserves the molecular structure of FA. The PNT-FA conjugate presented in this study is a promising candidate...

  12. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  13. High-quality covalently grafting hemoglobin on gold electrodes: characterization, redox thermodynamics and bio-electrocatalysis.

    Science.gov (United States)

    Tian, Yuan; Ran, Qin; Xu, Jingjing; Xian, Yuezhong; Peng, Ru; Jin, Litong

    2009-12-07

    Herein, we report a versatile surface chemistry methodology to covalently immobilize ligands and proteins to self-assembled monolayers (SAMs) on gold electrode. The strategy is based on two steps: 1) the coupling of soluble azido-PEG-amimo ligand with an alkynyl-terminated monolayer via click reaction and 2) covalent immobilization hemoglobin (Hb) to the amine-terminated ligand via carbodiimide reaction. Surface-enhanced Raman scattering spectroscopy (SERS), atomic force microscopy (AFM), reflection absorption infrared spectroscopy (RAIR) and cyclic voltammetry are used to characterize the model interfacial reactions. We also demonstrate the excellent biocompatibility of the interface for Hb immobilization and reliable application of the proposed method for H(2)O(2) biosensing. Moreover, the redox thermodynamics of the Fe(3+)/Fe(2+) couple in Hb is also investigated.

  14. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  15. Modeling the role of covalent enzyme modification in Escherichia coli nitrogen metabolism

    International Nuclear Information System (INIS)

    Kidd, Philip B; Wingreen, Ned S

    2010-01-01

    In the bacterium Escherichia coli, the enzyme glutamine synthetase (GS) converts ammonium into the amino acid glutamine. GS is principally active when the cell is experiencing nitrogen limitation, and its activity is regulated by a bicyclic covalent modification cascade. The advantages of this bicyclic-cascade architecture are poorly understood. We analyze a simple model of the GS cascade in comparison to other regulatory schemes and conclude that the bicyclic cascade is suboptimal for maintaining metabolic homeostasis of the free glutamine pool. Instead, we argue that the lag inherent in the covalent modification of GS slows the response to an ammonium shock and thereby allows GS to transiently detoxify the cell, while maintaining homeostasis over longer times

  16. Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs).

    Science.gov (United States)

    Mitra, Shouvik; Kandambeth, Sharath; Biswal, Bishnu P; Khayum M, Abdul; Choudhury, Chandan K; Mehta, Mihir; Kaur, Gagandeep; Banerjee, Subhrashis; Prabhune, Asmita; Verma, Sandeep; Roy, Sudip; Kharul, Ulhas K; Banerjee, Rahul

    2016-03-02

    Covalent organic nanosheets (CONs) have emerged as functional two-dimensional materials for versatile applications. Although π-π stacking between layers, hydrolytic instability, possible restacking prevents their exfoliation on to few thin layered CONs from crystalline porous polymers. We anticipated rational designing of a structure by intrinsic ionic linker could be the solution to produce self-exfoliated CONs without external stimuli. In an attempt to address this issue, we have synthesized three self-exfoliated guanidinium halide based ionic covalent organic nanosheets (iCONs) with antimicrobial property. Self-exfoliation phenomenon has been supported by molecular dynamics (MD) simulation as well. Intrinsic ionic guanidinium unit plays the pivotal role for both self-exfoliation and antibacterial property against both Gram-positive and Gram-negative bacteria. Using such iCONs, we have devised a mixed matrix membrane which could be useful for antimicrobial coatings with plausible medical benefits.

  17. Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds.

    Science.gov (United States)

    Klotzbach, Stefanie; Beuerle, Florian

    2015-08-24

    The directional bonding approach is a powerful tool to rationally control both shape and stoichiometry of three-dimensional objects built from rigid building blocks under dynamic covalent conditions. Co-condensation of catechol-functionalized tribenzotriquinacene derivatives which have 90° angles between the reactive sites and diboronic acids with bite angles of 60°, 120°, and 180°, led to the efficient formation of, respectively, bipyramidal, tetrahedral, or cubic covalent organic cage compounds in a predictable manner. Investigations on the self-sorting of ternary mixtures containing two competitive boronic acids revealed either narcissistic or social self-sorting depending on the stability of the segregated cages relative to feasible three-component assemblies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Essential motions in a fungal lipase with bound substrate, covalently attached inhibitor and product

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Bywater, R.P.

    2002-01-01

    As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition-state mi......As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition...... flexibility suggesting that these processes occur along rough energy surfaces with only a few minima. Detailed energetic analyses along the trajectories indicated that in all cases binding is dominated by van der Waals interactions. The carboxylate form of the product is stabilized by a tight hydrogen bond...

  19. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    Science.gov (United States)

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  20. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M.; Wang, Hui; Guo, Zhanhu; Wang, Wenchuan; Cao, Dapeng; Haranczyk, Maciej; Smit, Berend

    2015-10-21

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer–Emmett–Teller (BET) specific surface areas of 430–3624 m2 g–1, and a broad range of pore volumes of 0.24–3.50 cm3 g–1, all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal–organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance

  1. Description of Non-Covalent Interactions in SCC-DFTB Methods

    Czech Academy of Sciences Publication Activity Database

    Miriyala, Vijay Madhav; Řezáč, Jan

    2017-01-01

    Roč. 38, č. 10 (2017), s. 688-697 ISSN 0192-8651 R&D Projects: GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : density functional tight binding * DFTB3 * non-covalent interactions * dispersion correction * hydrogen bonding correction Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.229, year: 2016

  2. Nanomolar hydrogen peroxide detection using horseradish peroxidase covalently linked to undoped nanocrystalline diamond surfaces

    Czech Academy of Sciences Publication Activity Database

    Wang, Q.; Kromka, Alexander; Houdková, Jana; Babchenko, Oleg; Rezek, Bohuslav; Li, M.; Boukherroub, R.; Szunerits, S.

    2012-01-01

    Roč. 28, č. 1 (2012), s. 587-592 ISSN 0743-7463 R&D Projects: GA AV ČR KAN400100701; GA AV ČR(CZ) IAAX00100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : intrinsic diamond * large area growth * optical biosensor * covalent * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.187, year: 2012

  3. A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid.

    Science.gov (United States)

    Bhunia, Prasenjit; Hwang, Eunhee; Min, Misook; Lee, Junghyun; Seo, Sohyeon; Some, Surajit; Lee, Hyoyoung

    2012-01-21

    We introduce non-volatile resistive crossbar memory based on ionic liquid covalently functionalized on a partially reduced graphene oxide (PrGO). The write-read-erase-read (WRER) cycles were very stable after several hundred cycles and the retention time of both the ON and OFF states was stable for over 1000 s, indicating that the device we developed can function as a non-volatile memory device. This journal is © The Royal Society of Chemistry 2012

  4. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Mosinger, Jiří; Wagnerová, Dana Marie

    2004-01-01

    Roč. 248, 3-4 (2004), s. 321-350 ISSN 0010-8545 R&D Projects: GA ČR GA203/01/0634; GA ČR GA203/02/0420; GA ČR GA203/02/1483 Institutional research plan: CEZ:AV0Z4032918 Keywords : non-covalent binding * porphyrin * excited states Subject RIV: CA - Inorganic Chemistry Impact factor: 6.446, year: 2004

  5. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    Science.gov (United States)

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  6. Non-covalent O⋅⋅⋅O interactions among isopolyanions using a cis ...

    Indian Academy of Sciences (India)

    WINTEC

    2008-05-09

    May 9, 2008 ... N–H⋅⋅⋅O and C–H⋅⋅⋅O hydrogen bonds, in which the protonated organic cation plays a significant role. The crystal structure also reveals an unusual cluster–cluster (non-covalent O⋅⋅⋅O) interaction using cis-. (MoO2} moieties of the isopolyanion. N–H⋅⋅⋅O hydrogen bonds, originated from ...

  7. Sequence-targeted chemical modifications of nucleic acids by complementary oligonucleotides covalently linked to porphyrins.

    OpenAIRE

    Trung Le Doan; Perrouault, L; Chassignol, M; Nguyen, T T; Hélène, C

    1987-01-01

    Oligo-heptathymidylates covalently linked to porphyrins bind to complementary sequences and can induce local damages on the target molecule. In dark reactions, iron porphyrin derivatives exhibited various chemical reactivities resulting in base oxidation, crosslinking and chain scission reactions. Reactions induced by reductants, such as ascorbic acid, dithiothreitol or mercapto-propionic acid, led to very localised reactions. A single base was the target for more than 50% of the damages. Oxi...

  8. Designing Porphyrinic Covalent Organic Frameworks for the Photodynamic Inactivation of Bacteria

    Czech Academy of Sciences Publication Activity Database

    Hynek, Jan; Zelenka, J.; Rathouský, Jiří; Kubát, Pavel; Ruml, T.; Demel, Jan; Lang, Kamil

    2018-01-01

    Roč. 10, č. 10 (2018), s. 8527-8535 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : antibacterial coating * biofilm * covalent organic framework * photodynamic * porphyrin * singlet oxygen Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W) Impact factor: 7.504, year: 2016

  9. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates

    OpenAIRE

    Homa Torabizadeh; Asieh Mahmoudi

    2018-01-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe3O4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it ...

  10. Nuclear matrix proteins are covalently linked to DNA after ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.

    1985-01-01

    The authors investigated the production of covalent DNA protein crosslinks (DPC) with ionizing radiation. A particular class of nonhistone chromosomal proteins becomes covalently bound to the DNA after 5,000 rads of X-ray. They partially purified these complexes by CsCl density gradient sedimentation. The incorporation of /sup 35/S-met and one dimensional SDS polyacrylimide gel electrophoresis reveals that the proteins involved in the DPC correspond in MW, solubility and predominance to a subset of the nuclear matrix proteins. The DPC are removed after the repair of double and single-stranded scissions is complete as judged by neutral and alkaline elutions. The removal process of the DPC is independent of RNA and protein synthesis inhibition. These data are interesting since these proteins have similar characteristics to the proposed nuclear attachment sites of DNA loops involved in the organization of the genome. The authors are presently using ''Western'' blotting and two dimensional electrophoresis to further identify the specific proteins involved in the DPC. Their current working hypothesis is that the protein involved in the DPC consists primarily of structural nuclear proteins which become covalently crosslinked after ionizing radiation

  11. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite.

    Science.gov (United States)

    Zou, Zhanan; Zhu, Chengpu; Li, Yan; Lei, Xingfeng; Zhang, Wei; Xiao, Jianliang

    2018-02-01

    Electronic skin (e-skin) mimicking functionalities and mechanical properties of natural skin can find broad applications. We report the first dynamic covalent thermoset-based e-skin, which is connected through robust covalent bonds, rendering the resulting devices good chemical and thermal stability at service condition. By doping the dynamic covalent thermoset with conductive silver nanoparticles, we demonstrate a robust yet rehealable, fully recyclable, and malleable e-skin. Tactile, temperature, flow, and humidity sensing capabilities are realized. The e-skin can be rehealed when it is damaged and can be fully recycled at room temperature, which has rarely, if at all, been demonstrated for e-skin. After rehealing or recycling, the e-skin regains mechanical and electrical properties comparable to the original e-skin. In addition, malleability enables the e-skin to permanently conform to complex, curved surfaces without introducing excessive interfacial stresses. These properties of the e-skin yield an economical and eco-friendly technology that can find broad applications in robotics, prosthetics, health care, and human-computer interface.

  12. Kinetic Selectivity and Thermodynamic Features of Competitive Imine Formation in Dynamic Covalent Chemistry.

    Science.gov (United States)

    Kulchat, Sirinan; Chaur, Manuel N; Lehn, Jean-Marie

    2017-08-16

    The kinetic and thermodynamic selectivities of imine formation have been investigated for several dynamic covalent libraries of aldehydes and amines. Two systems were examined, involving the reaction of different types of primary amino groups (aliphatic amines, alkoxy-amines, hydrazides and hydrazines) with two types of aldehydes, sulfobenzaldehyde and pyridoxal phosphate in aqueous solution at different pD (5.0, 8.5, 11.4) on one hand, 2-pyridinecarboxaldehyde and salicylaldehyde in organic solvents on the other hand. The reactions were performed separately for given amine/aldehyde pairs as well as in competitive conditions between an aldehyde and a mixture of amines. In the latter case, the time evolution of the dynamic covalent libraries generated was followed, taking into consideration the operation of both kinetic and thermodynamic selectivities. The results showed that, in aqueous solution, the imine of the aliphatic amine was not stable, but oxime and hydrazone formed well in a pH dependent way. On the other hand, in organic solvents, the kinetic product was the imine derived from an aliphatic amine and the thermodynamic products were oxime and hydrazone. The insights gained from these experiments provide a basis for the implementation of imine formation in selective derivatization of mono-amines in mixtures as well as of polyfunctional compounds presenting different types of amino groups. They may in principle be extended to other dynamic covalent chemistry systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stabilization of enzymes by multipoint covalent immobilization on supports activated with glyoxyl groups.

    Science.gov (United States)

    López-Gallego, Fernando; Fernandez-Lorente, Gloria; Rocha-Martin, Javier; Bolivar, Juan M; Mateo, Cesar; Guisan, Jose M

    2013-01-01

    Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization has to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff's bases with amino groups and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of Lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme-support multipoint covalent attachments are here described.

  14. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    Science.gov (United States)

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  15. Waterborne Polyurethane Coatings with Covalently Linked Black Dye Sudan Black B

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-10-01

    Full Text Available Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles, and coatings. Here, a series of black waterborne polyurethanes (WPUs with different ratios of black dye, Sudan Black B (SDB, were prepared by step-growth polymerization. WPU emulsions as obtained exhibit low particle sizes and remarkable storage stability at the same time. At different dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier transform infrared spectra indicate that SDB is covalently linked into waterborne polyurethane chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently with different polymeric diols, polytetramethylene ether glycol (PTMG, polypropylene glycol (PPG, poly-1, 4-butylene adipate glycol (PBA and polycaprolactone glycol (PCL, were prepared to obtain different properties to cater to a variety of practical demands. By a spraying method, the black WPUs can be directly used as metal coatings without complex dyeing process by simply mixing coating additive and other waterborne resins, which exhibit excellent coating performance.

  16. Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability

    International Nuclear Information System (INIS)

    Kong, Deyang; Xia, Qing; Liu, Guoqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Covalent coupling to natural humic constituents comprises an important transformation pathway for anilinic pollutants in the environment. We systematically investigated the reactions of chlorine substituted anilines with catechol and syringic acid in horseradish peroxidase (HRP) catalyzed systems. It was demonstrated that although nucleophilic addition was the mechanism of covalent bonding to both catechol and syringic acid, chloroanilines coupled to the 2 humic constituents via slightly different pathways. 1,4-addition and 1,2-addition are involved to catechol and syringic acid, respectively. 1,4-addition showed empirical 2nd order kinetics and this pathway seemed to be more permanent than 1,2-addition. Stability experiments demonstrated that cross-coupling products with syringic acid could be easily released in acidic conditions. However, cross-coupling with catechol was relatively stable at similar conditions. Thus, the environmental behavior and bioavailability of the coupling products should be carefully assessed. -- Highlights: •Chloroanilines covalently coupled to humic constituents in HRP catalyzed processes, which facilitated their transformation. •MS technique was employed to analyze the coupling products and therefore elucidate the reaction pathways. •Chloroanilines couple to catechol and syringic acid via 1,4- and 1,2-nucleophilic addition pathways, respectively. •Cross-coupling products formed via 1,4-nucleophilic addition pathway were more stable than those via 1,2-addition pathway. -- Bound residues of chloroanilines formed via 1,2- and 1,4-nucleophilic addition pathways showed different stability

  17. Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte.

    Science.gov (United States)

    Garner, Logan E; Steirer, K Xerxes; Young, James L; Anderson, Nicholas C; Miller, Elisa M; Tinkham, Jonathan S; Deutsch, Todd G; Sellinger, Alan; Turner, John A; Neale, Nathan R

    2017-02-22

    Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m -2 ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm -2 within -0.5 V of the reversible hydrogen electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Wei-Wei; Li, Hang [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Shi, Ling-Ying, E-mail: shilingying@scu.edu.cn [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Diao, Yong-Fu; Zhang, Yu-Lin; Ran, Rong [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200 (China)

    2017-05-15

    Highlights: • The graphene oxide (GO) was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. • Through the vacuum filtration method, the GO, RGO and PDMS-modified graphene membranes were successfully prepared respectively. • The morphology of membranes had smooth surface and well-stacked structure indicated by SEM and EDS mapping results. • The contact angle of GO-g-PDMS membrane was high to be 129.5° indicating a great enhancement of hydrophobicity. - Abstract: In this study, the graphene oxide was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. And the membranes of the graphene oxide (GO), reduced graphene oxide (RGO) and PDMS-covalently modified graphene were prepared respectively by a vacuum filtration method, and the wettability of these membranes were investigated. Infrared spectroscopy, Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetry analysis combined with dispersion ability indicated that PDMS chains were successfully grafted on the surface of graphene oxide sheets. The morphology of the prepared membranes had smooth surface and well-stacked structure in the cross-section indicated by the scanning electron microscope and EDS-mapping. The contact angle measurements indicated that the PDMS-modified graphene membrane with water contact angle 129.5° showed increased hydrophobicity compared with GO and RGO membranes.

  19. Overall conformation of covalently stabilized domain-swapped dimer of human cystatin C in solution

    Science.gov (United States)

    Murawska, Magdalena; Szymańska, Aneta; Grubb, Anders; Kozak, Maciej

    2017-11-01

    Human cystatin C (HCC), a small protein, plays a crucial role in inhibition of cysteine proteases. The most common structural form of human cystatin C in crystals is a dimer, which has been evidenced both for the native protein and its mutants. In these structures, HCC dimers were formed through the mechanism of domain swapping. The structure of the monomeric form of human cystatin C was determined for V57N mutant and the mutant with the engineered disulfide bond (L47C)-(G69C) (known as stab1-HCC). On the basis of stab1-HCC, a number of covalently stabilized oligomers, including also dimers have been obtained. The aim of this study was to analyze the structure of the covalently stabilized dimer HCC in solution by the small angle X-ray scattering (SAXS) technique and synchrotron radiation. Experimental data confirmed that in solution this protein forms a dimer, which is characterized by the radius of gyration RG = 3.1 nm and maximum intramolecular distance Dmax = 10.3 nm. Using the ab initio method and program DAMMIN, we propose a low resolution structure of stabilized covalently cystatin C in solution. Stab-HCC dimer adopts in solution an elongated conformation, which is well reconstructed by the ab initio model.

  20. On-surface covalent linking of organic building blocks on a bulk insulator.

    Science.gov (United States)

    Kittelmann, Markus; Rahe, Philipp; Nimmrich, Markus; Hauke, Christopher M; Gourdon, André; Kühnle, Angelika

    2011-10-25

    On-surface synthesis in ultrahigh vacuum provides a promising strategy for creating thermally and chemically stable molecular structures at surfaces. The two-dimensional confinement of the educts, the possibility of working at higher (or lower) temperatures in the absence of solvent, and the templating effect of the surface bear the potential of preparing compounds that cannot be obtained in solution. Moreover, covalently linked conjugated molecules allow for efficient electron transport and are, thus, particularly interesting for future molecular electronics applications. When having these applications in mind, electrically insulating substrates are mandatory to provide sufficient decoupling of the molecular structure from the substrate surface. So far, however, on-surface synthesis has been achieved only on metallic substrates. Here we demonstrate the covalent linking of organic molecules on a bulk insulator, namely, calcite. We deliberately employ the strong electrostatic interaction between the carboxylate groups of halide-substituted benzoic acids and the surface calcium cations to prevent molecular desorption and to reach homolytic cleavage temperatures. This allows for the formation of aryl radicals and intermolecular coupling. By varying the number and position of the halide substitution, we rationally design the resulting structures, revealing straight lines, zigzag structures, and dimers, thus providing clear evidence for the covalent linking. Our results constitute an important step toward exploiting on-surface synthesis for molecular electronics and optics applications, which require electrically insulating rather than metallic supporting substrates.

  1. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    Science.gov (United States)

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  2. Competition between Dehydrogenative Organometallic Bonding and Covalent Coupling of an Unfunctionalized Porphyrin on Cu(111).

    Science.gov (United States)

    Xiang, Feifei; Gemeinhardt, Anja; Schneider, M Alexander

    2018-02-27

    We studied the formation of linked porphyrin oligomers from 5,15-diphenylporphyrin (2H-DPP) by thermal, substrate-assisted organometallic and dehydrogenation coupling on Cu(111) by scanning tunneling microscopy. In the range of 300-620 K, we find three distinct stages, at 300 K, the intact 2H-DPP molecules self-assemble into linear structures held together by van der Waals forces. Increasing the substrate temperature, self-metalation and intramolecular ring-closing reactions result in planar and isolated DPP species on the surface. By C-H cleavage, porphyrin oligomers bonded by organometallic and covalent bonds between the modified DPP are formed. The amount of covalently bonded DPP oligomers increases strongly with annealing time and temperature, and they become the dominant species at 570 K. In contrast, the number of organometallically bonded DPP oligomers increases moderately even up to 620 K, indicating that in this case the organometallic bond is no precursor of the covalent bond.

  3. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  4. Plasma polarization spectroscopy

    CERN Document Server

    Iwamae, Atsushi

    2008-01-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment.

  5. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  6. Noncovalent Interaction Energies in Covalent Complexes: TEM-1 beta-Lactamase and beta-Lactams

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K. (NWU)

    2010-03-08

    The class A {beta}-lactamase TEM-1 is a key bacterial resistance enzyme against {beta}-lactam antibiotics, but little is known about the energetic bases for complementarity between TEM-1 and its inhibitors. Most inhibitors form a covalent adduct with the catalytic Ser70, making the measurement of equilibriumconstants, and hence interaction energies, technically difficult. This study evaluates noncovalent interactions withincovalent complexes by examining the differential stability of TEM-1 and its inhibitor adducts. The thermal denaturation of TEM-1 follows a two-state, reversible model with a melting temperature (T{sub m}) of 51.6 C and a van't Hoff enthalpy of unfolding ({Delta}H{sub VH}) of 146.2 kcal/mol at pH 7.0. The stability of the enzyme changes on forming an inhibitor adduct. As expected, some inhibitors stabilize TEM-1; transition-state analogues increase the T{sub m} by up to 3.7 C(1.7 kcal/mol). Surprisingly, all {beta}-lactam covalent acyl-enzyme complexes tested destabilize TEM-1 significantly relative to the apoenzyme. For instance, the clinically used inhibitor clavulanic acid and the {beta}-lactamase-resistant {beta}-lactams moxalactam and imipenem destabilize TEM-1 by over 2.6 C (1.2 kcal/mol) in their covalent adducts. Based on the structure of the TEM-1/imipenem complex (Maveyraud et al., J Am Chem Soc 1998;120:9748-52), destabilization by moxalactam and imipenem is thought to be caused by a steric clash between the side-chain of Asn132 and the 6(7)-{alpha} group of these {beta}-lactams. To test this hypothesis, the mutant enzyme N132A was made. In contrast with wild-type, the covalent complexes between N132A and both imipenem and moxalactam stabilize the enzyme, consistent with the hypothesis. To investigate the structural bases of this dramatic change instability, the structure of N132A/imipenem was determined by X-ray crystallography. In the complex with N132A, imipenemadopts a very different conformation from that observed in the wild

  7. Polar drive on OMEGA

    Directory of Open Access Journals (Sweden)

    Radha P.B.

    2013-11-01

    Full Text Available High-convergence polar-drive experiments are being conducted on OMEGA [T. R. Boehly et al., Opt. Commum. 133, 495 (1997] using triple-picket laser pulses. The goal of OMEGA experiments is to validate modeling of oblique laser deposition, heat conduction in the presence of nonradial thermal gradients in the corona, and implosion energetics in the presence of laser–plasma interactions such as crossed-beam energy transfer. Simulated shock velocities near the equator, where the beams are obliquely incident, are within 5% of experimentally inferred values in warm plastic shells, well within the required accuracy for ignition. High, near-one-dimensional areal density is obtained in warm-plastic-shell implosions. Simulated backlit images of the compressing core are in good agreement with measured images. Outstanding questions that will be addressed in the future relate to the role of cross-beam transfer in polar drive irradiation and increasing the energy coupled into the target by decreasing beam obliquity.

  8. Covalent immobilization of oligonucleotides on p-aminophenyl-modified carbon screen-printed electrodes for viral DNA sensing.

    Science.gov (United States)

    Ruffien, Audrey; Dequaire, Murielle; Brossier, Pierre

    2003-04-07

    DNA-sensing platforms were prepared by covalently attaching oligonucleotide capture probes onto p-aminophenyl-functionalized carbon surfaces and applied to the determination of an amplified herpes virus DNA sequence in an electrochemical hybridization assay.

  9. 4fn-15d centroid shift in lanthanides and relation with anion polarizability, covalency, and cation electronegativity

    International Nuclear Information System (INIS)

    Dorenbos, P.; Andriessen, J.; Eijk, C.W.E. van

    2003-01-01

    Data collected on the centroid shift of the 5d-configuration of Ce 3+ in oxide and fluoride compounds were recently analyzed with a model involving the correlated motion between 5d-electron and ligand electrons. The correlation effects are proportional to the polarizability of the anion ligands and it leads, like covalency, to lowering of the 5d-orbital energies. By means of ab initio Hartree-Fock-LCAO calculations including configuration interaction the contribution from covalency and correlated motion to the centroid shift are determined separately for Ce 3+ in various compounds. It will be shown that in fluoride compounds, covalency provides an insignificant contribution. In oxides, polarizability appears to be of comparable importance as covalency

  10. Covalent Linkage of HIV-1 Trimers to Synthetic Liposomes Elicits Improved B Cell and Antibody Responses.

    Science.gov (United States)

    Bale, Shridhar; Goebrecht, Geraldine; Stano, Armando; Wilson, Richard; Ota, Takayuki; Tran, Karen; Ingale, Jidnyasa; Zwick, Michael B; Wyatt, Richard T

    2017-08-15

    We have demonstrated that a liposomal array of well-ordered trimers enhances B cell activation, germinal center formation, and the elicitation of tier-2 autologous neutralizing antibodies. Previously, we coupled well-ordered cleavage-independent NFL trimers via their C-terminal polyhistidine tails to nickel lipids integrated into the lipid bilayer. Despite favorable in vivo effects, concern remained over the potentially longer-term in vivo instability of noncovalent linkage of the trimers to the liposomes. Accordingly, we tested both cobalt coupling and covalent linkage of the trimers to the liposomes by reengineering the polyhistidine tail to include a free cysteine on each protomer of model BG505 NFL trimers to allow covalent linkage. Both cobalt and cysteine coupling resulted in a high-density array of NFL trimers that was stable in both 20% mouse serum and 100 mM EDTA, whereas the nickel-conjugated trimers were not stable under these conditions. Binding analysis and calcium flux with anti-Env-specific B cells confirmed that the trimers maintained conformational integrity following coupling. Following immunization of mice, serologic analysis demonstrated that the covalently coupled trimers elicited Env-directed antibodies in a manner statistically significantly improved compared to soluble trimers and nickel-conjugated trimers. Importantly, the covalent coupling not only enhanced gp120-directed responses compared to soluble trimers, it also completely eliminated antibodies directed to the C-terminal His tag located at the "bottom" of the spike. In contrast, soluble and noncovalent formats efficiently elicited anti-His tag antibodies. These data indicate that covalent linkage of well-ordered trimers to liposomes in high-density array displays multiple advantages in vitro and in vivo IMPORTANCE Enveloped viruses typically encode a surface-bound glycoprotein that mediates viral entry into host cells and is a primary target for vaccine design. Liposomes with

  11. Polarized proton collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W. E-mail: mackay@bnl.govhttp://www.rhichome.bnl.gov/People/waldowaldo@bnl.gov; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to {radical}s=500 GeV.

  12. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  13. Linear polarization of BY Draconis

    International Nuclear Information System (INIS)

    Koch, R.H.; Pfeiffer, R.J.

    1976-01-01

    Linear polarization measurements are reported in four bandpasses for the flare star BY Dra. The red polarization is intrinsically variable at a confidence level greater than 99 percent. On a time scale of many months, the variability is not phase-locked to either a rotational or a Keplerian ephemeris. The observations of the three other bandpasses are useful principally to indicate a polarization spectrum rising toward shorter wavelengths

  14. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  15. In vitro covalent binding of the pyrethroids cismethrin, cypermethrin and deltamethrin to rat liver homogenate and microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Catinot, R.; Hoellinger, H.; Sonnier, M.; Do-Cao-Thang; Pichon, J.; Nguyen-Hoang-Nam

    1989-05-01

    Phenobarbital-induced rat liver homogenate and microsomes were used to study covalent binding of /sup 14/C-labelled (at the alcohol moiety) cismethrin, /sup 14/C-labelled (at the alcohol and acid moieties) cypermethrin, and /sup 14/C-labelled (at the alcohol and acid moieties) deltamethrin. Covalent binding was dependent on pyrethroid concentration. With liver homogenate, inhibition of esterases by tetraethylpyrophosphate and of mitochondrial respiration by rotenone or potassium cyanide only slightly altered the covalent binding level. With microsomes, inhibition of cytochrome P-450 and mixed function oxidases by carbon monoxide and piperonyl butoxide reduced the covalent binding so far as to be nearly absent. Eighty percent inhibition of epoxide hydrolase decreased the covalent binding by 50%. The comparison of data between alcohol and acid labelling of the same pyrethroid suggested that, in vitro, the whole molecule is bound to proteins and that hydrolysis can occur afterwards. The experiments stress the role of cytochrome P-450-dependent monoxygenases in the covalent binding process. (orig.).

  16. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  17. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  18. Possible sequestration of polar gas molecules by superhalogen supported aluminum nitride nanoflakes.

    Science.gov (United States)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2016-11-01

    The feasibility of having MF 3 (where M = Rh, Ir, Pd, Pt, Ag, Au) supported AlN nanoflakes (AlNF) was investigated through density functional theory based calculations. The thermodynamic analysis reveals that the superhalogen MF 3 molecules can bind with the host AlNF in a thermodynamically favorable way. The nature of interaction in between the metal centers and the host is of partly covalent type whereas the F centers bind with the host in a non-covalent fashion as vindicated by natural bond orbital and atoms-in a-molecule analyses. An ab initio molecular dynamics study carried out at 298 K temperature confirms the stability of the MF 3 @AlNF moieties in a dynamical context. The MF 3 guests can reduce the HOMO-LUMO gaps of the host nanoflakes. In general, the MF 3 @AlNF complexes can sequestrate polar adsorbates such as CO, NO, and H 2 O in a thermodynamically favorable way in most of the cases. An ab initio molecular dynamics calculation illustrates that the MF 3 @AlNF can adsorb the chosen representative polar molecules in a more favorable way as compared to the corresponding adsorption scenario in the case of pristine AlNF.

  19. Polar Biomedical Research - An Assessment.

    Science.gov (United States)

    1982-10-01

    to grow more crops in subpolar Alaska. The severity of the polar conditions in Antarctica allow no practical method for providing volumes of plant food...for an expanded population. Any experiments in polar regions in food production involving geothermal heat, solar energy, hydroponics , or aquaculture

  20. Create a Polarized Light Show.

    Science.gov (United States)

    Conrad, William H.

    1992-01-01

    Presents a lesson that introduces students to polarized light using a problem-solving approach. After illustrating the concept using a slinky and poster board with a vertical slot, students solve the problem of creating a polarized light show using Polya's problem-solving methods. (MDH)

  1. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  2. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  3. Polarized Scintillating Targets at Psi

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2001-02-01

    Scintillating polarized targets are now routinely available: blocks of 18×18×5 mm scintillating organic polymer, doped with TEMPO, polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  4. UV Coatings, Polarization, and Coronagraphy

    Science.gov (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  5. Polarization Imaging and Insect Vision

    Science.gov (United States)

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  6. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  7. Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5

    KAUST Repository

    Li, Haoyuan

    2017-10-24

    The preparation of two-dimensional covalent organic frameworks (2D COFs) with large crystalline domains and controlled morphology is necessary for realizing the full potential of their atomically precise structures and uniform, tailorable porosity. Currently 2D COF syntheses are developed empirically, and most materials are isolated as insoluble and unprocessable powders with typical crystalline domain sizes smaller than 50 nm. Little is known about their nucleation and growth processes, which involve a combination of covalent bond formation, degenerate exchange, and non-covalent stacking processes. A deeper understanding of the chemical processes that lead to COF polymerization and crystallization is key to achieving improved materials quality and control. Here, we report a kinetic Monte Carlo (KMC) model that describes the formation of a prototypical boronate-ester linked 2D COF known as COF-5 from its 2,3,6,7,10,11-hexahydroxytriphenylene and 1,4-phenylene bis(boronic acid) monomers in solution. The key rate parameters for the KMC model were derived from experimental measurements when possible and complemented with reaction pathway analyses, molecular dynamics simulations, and binding free-energy calculations. The essential features of experimentally measured COF-5 growth kinetics are reproduced well by the KMC simulations. In particular, the simulations successfully captured a nucleation process followed by a subsequent growth process. The nucleating species are found to be multi-layer structures that form through multiple pathways. During the growth of COF-5, extensions in the lateral (in-plane) and vertical (stacking) directions are both seen to be linear with respect to time and are dominated by monomer addition and oligomer association, respectively. Finally, we show that the experimental observations of increased average crystallite size with the addition of water are modeled accurately by the simulations. These results will inform the rational development

  8. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chuacharoen, Thanida [Suan Sunandha Rajabhat University, Faculty of Science and Technology (Thailand); Sabliov, Cristina M., E-mail: CSabliov@agcenter.lsu.edu [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States)

    2017-02-15

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  9. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenzhi, E-mail: zhangwz@xatu.edu.cn [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2016-03-30

    Graphical abstract: A chemical bonding approach was proposed to prepare the PANI film covalently bonded to ITO substrate and the film exhibited high electrochemical activities and stability compared with that obtained by conventional film-forming approach. - Highlights: • The PANI film covalently bonded to ITO substrate was prepared using ABPA as modifier. • The oxidative potentials of the obtained PANI film were decreased. • The obtained PANI film exhibits high electrochemical activities and stability. - Abstract: Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV–vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C{sub 4}H{sub 9}){sub 4}N{sup +} under the positive and negative potentials as comparison with the small Li{sup +} ion.

  10. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    Science.gov (United States)

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  11. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    International Nuclear Information System (INIS)

    Assali, Mohyeddin; Leal, Manuel Pernía; Khiar, Noureddine; Fernández, Inmaculada

    2013-01-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar–supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane. (paper)

  12. Synthesis, characterisation and optical studies of new tetraethyl- rubyrin-graphene oxide covalent adducts

    Science.gov (United States)

    Garg, Kavita; Shanmugam, Ramakrishanan; Ramamurthy, Praveen C.

    2018-02-01

    Tetrathia-rubyrin and graphene oxide (GO) covalent adduct was synthesized, characterised and optical properties were studied. GO-Rubyrin adducts showed fluorescence quenching of rubyrin due to electron or energy transfer from rubyrin to graphene oxide, which also reflected in UV-vis absorbance spectroscopy. The non-linear optical responses were measured through Z scan technique in nano-second regime. The enhanced optical non-linearity was observed after attachment of GO with rubyrin, can be ascribed to the photo-induced electron or energy transfer from the electron rich rubyrin moiety to the electron deficient GO.

  13. Correlations of acute toxicity of metal ions and the covalent/ionic character of their bonds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Williams, M.W.; Jacobson, K.B.; Hingerty, B.E.

    1984-01-01

    We have investigated correlations between physicochemical properties of 24 metal ions and their acute toxicity in mice and Drosophila. A high correlation for a softness parameter suggests that the relative covalent/ionic character of the bonds formed by the metal ions may be important in determining their toxicity. This hypothesis is reinforced by model calculations of metal binding to dinucleotides in water. Since the nature of bonds depends on ligand electronegativity, we searched for correlations involving this parameter. Although electronegativity is useful for interpreting some aspects of metal-ion behavior related to toxicity, it does not yield improved correlations. 8 refs., 3 figs., 1 tab.

  14. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  15. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea

    DEFF Research Database (Denmark)

    Jensen, Malene H; Mirza, Osman Asghar; Albenne, Cecile

    2004-01-01

    be used for trapping the reaction intermediate for crystallographic studies. In this paper, the crystal structure of the acid/base catalyst mutant, E328Q, with a covalently bound glucopyranosyl moiety is presented. Sucrose cocrystallized crystals were soaked with alpha-D-glucopyranosyl fluoride, which...... for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen...

  16. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    Science.gov (United States)

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Covalent functionalization of carbon nanotube forests grown in situ on a metal-silicon chip

    KAUST Repository

    Johansson, Johan R.

    2012-03-12

    We report on the successful covalent functionalization of carbon nanotube (CNT) forests, in situ grown on a silicon chip with thin metal contact film as the buffer layer between the CNT forests and the substrate. The CNT forests were successfully functionalized with active amine and azide groups, which can be used for further chemical reactions. The morphology of the CNT forests was maintained after the functionalization. We thus provide a promising foundation for a miniaturized biosensor arrays system that can be easily integrated with Complementary Metal-Oxide Semiconductor (CMOS) technology.

  18. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen

    2011-01-01

    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....

  19. New technology for regiospecific covalent coupling of polysaccharide antigens in ELISA for serological detection

    DEFF Research Database (Denmark)

    Jauho, E.S.; Boas, Ulrik; Wiuff, Camilla

    2000-01-01

    into the lipid A part and the polysaccharide part. The polysaccharide was conjugated regiospecifically to a photochemically active compound, anthraquinone, resulting in a polysaccharide-anthraquinone conjugate. Anthraquinones forms active radicals when exposed to soft UV irradiation (350 nm) permitting...... the formation of stable covalent bonds to polymers e.g, microtiter plates. By this technique the polysaccharides are bound through the anthraquinone part of the polysaccharide-anthraquinone conjugates to the microtiter plates. This minimizes denaturation of O-antigen epitopes during binding to the microtiter...

  20. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    International Nuclear Information System (INIS)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  1. Self-assembly of bridged silsesquioxanes: modulating structural evolution via cooperative covalent and noncovalent interactions.

    Science.gov (United States)

    Creff, Gaelle; Pichon, Benoît P; Blanc, Christophe; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Roy, Pascale; Bartlett, John R; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2013-05-07

    The self-assembly of a bis-urea phenylene-bridged silsesquioxane precursor during sol-gel synthesis has been investigated by in situ infrared spectroscopy, optical microscopy, and light scattering. In particular, the evolution of the system as a function of processing time was correlated with covalent interactions associated with increasing polycondensation and noncovalent interactions such as hydrogen bonding. A comprehensive mechanism based on the hydrolysis of the phenylene-bridged organosilane precursor prior to the crystallization of the corresponding bridged silsesquioxane via H-bonding and subsequent irreversible polycondensation is proposed.

  2. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  3. Hyperon polarization: An experimental overview

    International Nuclear Information System (INIS)

    Lach, J.

    1992-12-01

    The fact that inclusively produced hyperons are produced with significant polarization was first discovered at Fermilab about seventeen years ago. This and subsequent experiments showed that Λ degree were produced polarized while bar Λ degree had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex than previously thought and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments and hyperon β-decay. Recently, hyperon radiative decays have been studied and magnetic moment precession of channeled particles in bent crystals has been observed

  4. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  5. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  6. Fischer carbene mediated covalent grafting of a peptide nucleic acid on gold surfaces and IR optical detection of DNA hybridization with a transition metalcarbonyl label

    Science.gov (United States)

    Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle

    2016-11-01

    Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.

  7. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. POLARIZED LIGHT IN PHYSIOTHERAPY

    Directory of Open Access Journals (Sweden)

    L. D. Tondiy

    2015-12-01

    Full Text Available The data on polarized light (PS - a new promising treatment, rehabilitation and prevention, which took its deserved place among the known therapeutic physical factors and may even compete with laser radiation of low and LED therapy. It is reflected the significant contribution of domestic scientists in the study of aircraft action on the body, its introduction in the treatment, rehabilitation and prevention of grippe, ARI. These action's mechanisms of the aircraft on the electro-physiological processes in the body that have the leading role in the regulation of its life. The new moment in the study of aircraft on the body is the evidence of its positive impact on the mechanisms of self body - its different units: the disease's banning - a revitalization of the stress-protective, stress-limiting system antioxidial, detoxification and other protection systems, the formation by the body antiviral and antimicrobial specific substances (interferon and lysozyme, activation of the immune system, phagocytosis, protective functions of skin. The protective and mobilizing role of the second link is studied: which is triggered in case of occurrence of disease or preexisting diseases: PL mobilized processes of restitution, reparations, compensation, immunity and microcirculation. The authors studied the possibility of aircraft's using to enhance performance, reduce side effects of physical factors, which are often used in the treatment (electric methods, treatment by sound, fresh and mineral water, etc..

  9. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  10. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  11. Stereodynamic tetrahydrobiisoindole “NU-BIPHEP(O”s: functionalization, rotational barriers and non-covalent interactions

    Directory of Open Access Journals (Sweden)

    Golo Storch

    2016-07-01

    Full Text Available Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC allowed for the determination of rotational barriers of ΔG‡298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(Os”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.

  12. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    Science.gov (United States)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  13. A Covalent Linker Allows for Membrane Targeting of An Oxylipin Biosynthetic Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, N.C.; Niebuhr, M.; Tsuruta, H.; Bordelon, T.; Ridderbusch, O.; Dassey, A.; Brash, A.R.; Bartlett, S.G.; Newcomer, M.E.

    2009-05-18

    A naturally occurring bifunctional protein from Plexaura homomalla links sequential catalytic activities in an oxylipin biosynthetic pathway. The C-terminal lipoxygenase (LOX) portion of the molecule catalyzes the transformation of arachidonic acid (AA) to the corresponding 8R-hydroperoxide, and the N-terminal allene oxide synthase (AOS) domain promotes the conversion of the hydroperoxide intermediate to the product allene oxide (AO). Small-angle X-ray scattering data indicate that in the absence of a covalent linkage the two catalytic domains that transform AA to AO associate to form a complex that recapitulates the structure of the bifunctional protein. The SAXS data also support a model for LOX and AOS domain orientation in the fusion protein inferred from a low-resolution crystal structure. However, results of membrane binding experiments indicate that covalent linkage of the domains is required for Ca2+-dependent membrane targeting of the sequential activities, despite the noncovalent domain association. Furthermore, membrane targeting is accompanied by a conformational change as monitored by specific proteolysis of the linker that joins the AOS and LOX domains. Our data are consistent with a model in which Ca2+-dependent membrane binding relieves the noncovalent interactions between the AOS and LOX domains and suggests that the C2-like domain of LOX mediates both protein-protein and protein-membrane interactions.

  14. Surface modification of polypropylene nonwoven fabrics via covalent immobilization of nonionic sugar-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Zhirong, E-mail: xinzhirong2012@126.com; Yan, Shunjie; Ding, Jiaotong; Yang, Zongfeng; Du, Binbin; Du, Shanshan

    2014-05-01

    Graphical abstract: - Highlights: • Amphiphilic N-alkyl-1-amino-1-deoxy-D-glucitol were prepared. • The pGMA-grafted membranes were obtained via photo-grafting of glycidyl methacrylate. • Amphiphilic C{sub n}AG were covalent immobilized onto the pGMA-grafted membranes. • The C{sub n}AG-grafted membranes obviously suppressed protein adsorption and platelet adhesion. - Abstract: Amphiphilic N-alkyl-1-amino-1-deoxy-D-glucitol (C{sub n}AG, n = 8, 12) were successfully prepared. Polypropylene nonwoven fabrics (PP{sub NWF}) were grafted with glycidyl methacrylate (GMA) via a technique of UV-induced graft polymerization combined with plasma pre-treatment, and then PP{sub NWF}-g-GMA was used for the covalent immobilization of C{sub n}AG. The surface graft polymerization was confirmed by ATR-FTIR and XPS, respectively. Effect of grafting parameters, e.g., acetone content, monomer concentration and UV irradiation time on the grafting density of GMA was investigated. And the hemocompatibility of the modified PP{sub NWF} was evaluated by protein adsorption and platelet adhesion. It was founded that the C{sub n}AG-modified substrates greatly suppressed protein adsorption and platelet adhesion compared with the native and pGMA-grafted PP{sub NWF}.

  15. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin

    Science.gov (United States)

    Rodriguez, Carlos; Papanastasiou, Emilios; Juba, Melanie; Bishop, Barney

    2014-09-01

    The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs) and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms. Here, we’ve explored design parameters for engineering CAMPs conjugated to small molecules with favorable physicochemical and antibacterial properties by covalently affixing a fluoroquinolone antibiotic, levofloxacin, to the ten-residue CAMP Pep-4. Relative to the unmodified Pep-4, the conjugate was found to demonstrate substantially increased antibacterial potency under high salt concentrations. Historically, it has been observed that most CAMPs lose antibacterial effectiveness in such high ionic strength environments, a fact that has presented a challenge to their development as therapeutics. Physicochemical studies revealed that P4LC was more hydrophobic than Pep-4, while mechanistic findings indicated that the conjugate was more effective at disrupting bacterial membrane integrity. Although the inherent antibacterial effect of the incorporated levofloxacin molecules did not appear to be substantially realized in this conjugate, these findings nevertheless suggest that covalent attachment of small molecule antibiotics with favorable physicochemical properties to CAMPs could be a promising strategy for enhancing peptide performance and overall therapeutic potential. These results have broader applicability to the development of future CAMP-antibiotic conjugates for potential therapeutic applications.

  16. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    International Nuclear Information System (INIS)

    Wysocka-Zolopa, Monika; Winkler, Krzysztof; Caballero, Ruben; Langa, Fernando

    2011-01-01

    Highlights: → Formation of redox active films of ferrocene derivatives of C 60 and palladium. → Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. → Electrochemical activity at both positive and negative potentials. → Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C 60 (Fc-C 60 and bis-Fc-C 60 ). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C 60 /Pd and bis-Fc-C 60 /Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C 60 moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  17. Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations

    Science.gov (United States)

    Liu, J. Q.; Xiao, T.; Liao, K.; Wu, P.

    2007-04-01

    Homogeneous dispersion of carbon nanotubes (CNTs) throughout the polymer matrix and their adequate interfacial bonding are critical for load transfer in CNT-polymer composites. However, both cannot be realized simultaneously by either covalent or noncovalent functionalization. A hybrid system integrating both covalent and noncovalent functionalizations is presented for interfacial design of CNT-polymer composites. To investigate the feasibility of this system, examples of the epoxidized single-walled carbon nanotube (SWNT) subsequently wrapped by poly(m-phenylenevinylene- co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV) are studied by means of molecular dynamics simulations. It is shown by our results that PmPV molecules are miscible with epoxy resin and tend to wrap around the epoxidized SWNT, which could be used to weaken the interaction between SWNTs and consequently improve the dispersion of SWNTs into the matrix. The interfacial shear strength of CNT-polymer composites can be improved significantly by properly designed functionalizations, especially the hybrid system.

  18. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungwook; Connelly, Stephen; Reixach, Natàlia; Wilson, Ian A.; Kelly, Jeffery W. (Scripps)

    2010-02-19

    A small molecule that could bind selectively to and then react chemoselectively with a non-enzyme protein in a complex biological fluid, such as blood, could have numerous practical applications. Herein, we report a family of designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin in preference to more than 4,000 other human plasma proteins. They react chemoselectively with only one of eight lysine {epsilon}-amino groups within transthyretin. The crystal structure confirms the expected binding orientation of the stilbene substructure and the anticipated conjugating amide bond. These covalent transthyretin kinetic stabilizers exhibit superior amyloid inhibition potency compared to their noncovalent counterparts, and they prevent cytotoxicity associated with amyloidogenesis. Though there are a few prodrugs that, upon metabolic activation, react with a cysteine residue inactivating a specific non-enzyme, we are unaware of designed small molecules that react with one lysine {epsilon}-amine within a specific non-enzyme protein in a complex biological fluid.

  19. Electron beam controlled covalent attachment of small organic molecules to graphene.

    Science.gov (United States)

    Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N; Kaiser, Ute; Besley, Elena

    2016-02-07

    The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C=C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The "standing up" molecules, covalently anchored to graphene, exhibit two types of oscillatory motion--bending and twisting--caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.

  20. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  1. A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase.

    Science.gov (United States)

    Morgan, Hugh P; Walsh, Martin J; Blackburn, Elizabeth A; Wear, Martin A; Boxer, Matthew B; Shen, Min; Veith, Henrike; McNae, Iain W; Nowicki, Matthew W; Michels, Paul A M; Auld, Douglas S; Fothergill-Gilmore, Linda A; Walkinshaw, Malcolm D

    2012-11-15

    PYK (pyruvate kinase) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small-molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit LmPYK (Leishmania mexicana PYK) activity in a time- (and dose-) dependent manner, a characteristic of irreversible inhibition. The crystal structure of DBS {4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid} complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS-binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors.

  2. A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action

    Science.gov (United States)

    Campaner, Elena; Rustighi, Alessandra; Zannini, Alessandro; Cristiani, Alberto; Piazza, Silvano; Ciani, Yari; Kalid, Ori; Golan, Gali; Baloglu, Erkan; Shacham, Sharon; Valsasina, Barbara; Cucchi, Ulisse; Pippione, Agnese Chiara; Lolli, Marco Lucio; Giabbai, Barbara; Storici, Paola; Carloni, Paolo; Rossetti, Giulia; Benvenuti, Federica; Bello, Ezia; D'Incalci, Maurizio; Cappuzzello, Elisa; Rosato, Antonio; Del Sal, Giannino

    2017-06-01

    The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.

  3. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.

    Science.gov (United States)

    Lei, Zhendong; Yang, Qinsi; Xu, Yi; Guo, Siyu; Sun, Weiwei; Liu, Hao; Lv, Li-Ping; Zhang, Yong; Wang, Yong

    2018-02-08

    Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g -1 and can sustain 500 cycles at 100 mA g -1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

  4. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration

    Science.gov (United States)

    Pandele, A. M.; Neacsu, P.; Cimpean, A.; Staras, A. I.; Miculescu, F.; Iordache, A.; Voicu, S. I.; Thakur, V. K.; Toader, O. D.

    2018-04-01

    Covalent immobilization of resveratrol onto cellulose acetate polymeric membranes used as coating on a Mg-1Ca-0.2Mn-0.6Zr alloy is presented for potential application in the improvement of osseointegration processes. For this purpose, cellulose acetate membrane is hydrolysed in the presence of potassium hydroxide, followed by covalent immobilization of aminopropyl triethoxy silane. Resveratrol was immobilized onto membranes using glutaraldehyde as linker. The newly synthesised functional membranes were thoroughly characterized for their structural characteristics determination employing X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM) techniques. Subsequently, in vitro cellular tests were performed for evaluating the cytotoxicity biocompatibility of synthesized materials and also the osseointegration potential of obtained derivatised membrane material. It was demonstrated that both polymeric membranes support viability and proliferation of the pre-osteoblastic MC3T3-E1 cells, thus providing a good protection against the potential harmful effects of the compounds released from coated alloys. Furthermore, cellulose acetate membrane functionalized with resveratrol exhibits a significant increase in alkaline phosphatase activity and extracellular matrix mineralization, suggesting its suitability to function as an implant surface coating for guided bone regeneration.

  5. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    Directory of Open Access Journals (Sweden)

    Martin Hartmann

    2010-02-01

    Full Text Available Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3 aminopropyltrimethoxysilane (ATS, 3-glycidoxypropyltrimethoxysilane (GTS and with 3 aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO and glucose oxidase (GOx and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions.

  6. Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface.

    Science.gov (United States)

    Hafizi, Akram; Malboobi, Mohamad Ali; Jalali-Javaran, Mokhtar; Maliga, Pal; Alizadeh, Houshang

    2017-11-01

    To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes. Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA. Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.

  7. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  8. New highly luminescent hybrid materials: terbium pyridine-picolinate covalently grafted on kaolinite.

    Science.gov (United States)

    de Faria, Emerson H; Nassar, Eduardo J; Ciuffi, Katia J; Vicente, Miguel A; Trujillano, Raquel; Rives, Vicente; Calefi, Paulo S

    2011-04-01

    Luminescent hybrid materials derived from kaolinite appear as promising materials for optical applications due to their specific properties. The spectroscopic behavior of terbium picolinate complexes covalently grafted on kaolinite and the influence of the secondary ligand and thermal treatment on luminescence are reported. The resulting materials were characterized by thermal analysis, element analysis, X-ray diffraction, infrared absorption spectroscopy, and photoluminescence. The thermogravimetric curves indicated an enhancement in the thermal stability up to 300 °C for the lanthanide complexes covalently grafted on kaolinite, with respect to the isolated complexes. The increase in the basal spacing observed by X-ray diffraction confirmed the insertion of the organic ligands into the basal space of kaolinite, involving the formation of a bond between Al-OH and the carboxylate groups, as evidenced by infrared spectroscopy. The luminescent hybrid material exhibited a stronger characteristic emission of Tb(3+) compared to the isolated complex. The excitation spectra displayed a broad band at 277 nm, assigned to a ligand-to-metal charge transfer, while the emission spectra presented bands related to the electronic transitions characteristic of the Tb(3+) ion from the excited state (5)D(4) to the states (7)F(J) (J=5, 4, and 3), with the 4→5 transition having high intensity with green emission. © 2011 American Chemical Society

  9. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores.

    Directory of Open Access Journals (Sweden)

    Thomas Kirmeier

    Full Text Available The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT, norepinephrine (NET, and dopamine (DAT. The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes.

  10. Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach

    Science.gov (United States)

    Tóth, Ildikó Y.; Nesztor, Dániel; Novák, Levente; Illés, Erzsébet; Szekeres, Márta; Szabó, Tamás; Tombácz, Etelka

    2017-04-01

    Carboxylated magnetite nanoparticles (MNPs) are frequently used to develop materials with enhanced properties for MRI and hyperthermia. The controlled clustering of MNPs via covalent or electrostatic approaches provides opportunity to prepare high quality materials. MNPs were prepared by co-precipitation and coated by poly(acrylic acid-co-maleic acid) (PAM@MNP). The clusters were synthesized from purified PAM@MNPs and polyethylenimine (PEI) solution via electrostatic interaction and covalent bond formation (ES-cluster and CB-cluster, respectively). The electrostatic adhesion (-NH3+ and -COO-) and the formed amide bond were confirmed by ATR-FTIR. The averaged area of CB-clusters was about twice as large as that of ES-cluster, based on TEM. The SAXS results showed that the surface of MNPs was smooth and the nanoparticles were close packed in both clusters. The pH-dependent aggregation state and zeta potential of clusters were characterized by DLS and electrophoresis measurements, the clusters were colloidally stable at pH>5. In hyperthermia experiments, the values of SAR were about two times larger for the chemically bonded cluster. The MRI studies showed exceptionally high transversion relaxivities, the r2 values are 457 mM-1 s-1 and 691 mM-1 s-1 for ES-cluster and CB-cluster, respectively. Based on these results, the chemically clustered product shows greater potential for feasible biomedical applications.

  11. Covalent magnetism, exchange interactions and anisotropy of the high temperature layered antiferromagnet MnB₂.

    Science.gov (United States)

    Khmelevskyi, S; Mohn, P

    2012-01-11

    The investigation of the electronic structure and magnetism for the compound MnB(2) with crystal structure type AlB(2) has been revisited to resolve contradictions between various experimental and theoretical results present in the literature. We find that MnB(2) exhibits an interesting example of a Kübler's covalent magnetism (Williams et al 1981 J. Appl. Phys. 52 2069). The covalent magnetism also appears to be the source of some disagreement between the calculated values of the magnetic moments and those given by neutron diffraction experiments. We show that this shortcoming is due to the atomic sphere approximation applied in earlier calculations. The application of the disordered local moment approach and the calculation of the inter-atomic exchange interactions within the Liechtenstein formalism reveal strong local moment antiferromagnetism with a high Néel temperature predicted from Monte Carlo simulations. A fully relativistic band structure calculation and then the application of the torque method yields a strong in-plane anisotropy of the Mn magnetic moments. The agreement of these results with neutron diffraction studies rules out any possible weak itinerant electron magnetism scenarios as proposed earlier for MnB(2).

  12. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide.

    Science.gov (United States)

    Cui, Peng; Seo, Sohyeon; Lee, Junghyun; Wang, Luyang; Lee, Eunkyo; Min, Misook; Lee, Hyoyoung

    2011-09-27

    Nonvolatile memory devices using gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) sheets were fabricated in both horizontal and vertical structures. The horizontal memory device, in which a singly and doubly overlayered semiconducting rGO channel was formed by simply using a spin-casting technique to connect two gold electrodes, was designed for understanding the origin of charging effects. AuNPs were chemically bound to the rGO channel through a π-conjugated molecular linker. The π-conjugated bifunctional molecular linker, 4-mercapto-benzenediazonium tetrafluoroborate (MBDT) salt, was newly synthesized and used as a molecular bridge to connect the AuNPs and rGOs. By using a self-assembly technique, the diazonium functional group of the MBDT molecular linker was spontaneously immobilized on the rGOs. Then, the monolayered AuNPs working as capacitors were covalently connected to the thiol groups of the MBDT molecules, which were attached to rGOs (AuNP-frGO). These covalent bonds were confirmed by XPS analyses. The current-voltage characteristics of both the horizontal and vertical AuNP-frGO memory devices showed noticeable nonlinear hysteresis, stable write-multiple read-erase-multiple read cycles over 1000 s, and a long retention time over 700 s. In addition, the vertical AuNP-frGO memory device showed a large current ON/OFF ratio and high stability. © 2011 American Chemical Society

  13. Highly Elastic and Ultratough Hybrid Ionic-Covalent Hydrogels with Tunable Structures and Mechanics.

    Science.gov (United States)

    Yang, Yanyu; Wang, Xing; Yang, Fei; Wang, Luning; Wu, Decheng

    2018-03-25

    Hybrid ionically-covalently crosslinked double-network (DN) hydrogels are attracting increasing attention on account of their self-recovery ability and fatigue resistance, but their relative low mechanical strength and tedious performance adjustment severely limit their applications. Herein, a new strategy to concurrently fabricate hybrid ionic-covalent DN hydrogels and modulate their structures and mechanics is reported, in which an in situ formed chitosan ionic network is incorporated by post-crosslinking the chitosan-based composite hydrogel using multivalent anions solutions. The obtained hybrid DN hydrogels exhibit predominant mechanical properties including superior elastic modulus, high tensile strength, and ultrahigh fracture energy because of the more efficient energy dissipation of rigid short-chain chitosan network. Notably, the swollen hydrogels still remain mechanically strong and tough even after immersion in water for 24 h. More significantly, simply changing the post-crosslinking time can vary the compactness and rigidity of the chitosan network in situ, achieving flexible and efficient modulation of the structures and mechanics of the hybrid DN hydrogels. This study opens up a new horizon in the preparation and regulation of DN hydrogels for promising applications in tissue scaffolds, actuators, and wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In vitro covalent binding of 3-[14C]methylindole metabolites in goat tissues

    International Nuclear Information System (INIS)

    Bray, T.M.; Carlson, J.R.; Nocerini, M.R.

    1984-01-01

    Covalent binding of 3-[ 14 C]methylindole (3[ 14 C]MI) in crude microsomal preparations of goat lung, liver, and kidney was measured to determine if a reactive intermediate was formed during the in vitro metabolism of 3-methylindole (3MI). The bound radioactivity was highest in lung compared to liver and kidney. The amount of bound radioactivity per nanomole of cytochrome P-450 was approximately 10 times higher in the lung compared to the liver. No detectable bound radioactivity was found when 3-[ 3 H]methyloxindole was used as the substrate. Cofactor requirements and the effects of inhibitors indicate that a mixed function oxidase (MFO) system is involved in formation of a reactive intermediate. Inhibitors and conjugating agents that are known to reduce the severity of 3MI-induced lung injury such as piperonyl butoxide (MFO inhibitor) and glutathione (conjugating agent) significantly decreased the in vitro binding of 3[ 14 C]MI. The results indicate that a reactive intermediate is produced during the metabolism of 3MI by the MFO system. The organ specificity in binding suggests that covalent binding by lung microsomes may be related to the mechanism of 3MI-induced lung injury

  15. Synthesis of Covalently Cross-Linked Colloidosomes from Peroxidized Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Nadiya Popadyuk

    2016-10-01

    Full Text Available A new approach to the formation of cross-linked colloidosomes was developed on the basis of Pickering emulsions that were stabilized exclusively by peroxidized colloidal particles. Free radical polymerization and a soft template technique were used to convert droplets of a Pickering emulsion into colloidosomes. The peroxidized latex particles were synthesized in the emulsion polymerization process using amphiphilic polyperoxide copolymers poly(2-tert-butylperoxy-2-methyl-5-hexen-3-ine-co-maleic acid (PM-1-MAc or poly[N-(tert-butylperoxymethylacrylamide]-co-maleic acid (PM-2-MAc, which were applied as both initiators and surfactants (inisurfs. The polymerization in the presence of the inisurfs results in latexes with a controllable amount of peroxide and carboxyl groups at the particle surface. Peroxidized polystyrene latex particles with a covalently grafted layer of inisurf PM-1-MAc or PM-2-MAc were used as Pickering stabilizers to form Pickering emulsions. A mixture of styrene and/or butyl acrylate with divinylbenzene and hexadecane was applied as a template for the synthesis of colloidosomes. Peroxidized latex particles located at the interface are involved in the radical reactions of colloidosomes formation. As a result, covalently cross-linked colloidosomes were obtained. It was demonstrated that the structure of the synthesized (using peroxidized latex particles colloidosomes depends on the amount of functional groups and pH during the synthesis. Therefore, the size and morphology of colloidosomes can be controlled by latex particle surface properties.

  16. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Mei; Lu, Jia; Li, Lianbo; Feru, Frederic; Quan, Chunshan; Gero, Thomas W.; Ficarro, Scott B.; Xiong, Yuan; Ambrogio, Chiara; Paranal, Raymond M.; Catalano, Marco; Shao, Jay; Wong, Kwok-Kin; Marto, Jarrod A.; Fischer, Eric S.; Jänne, Pasi A.; Scott, David A.; Westover, Kenneth D.; Gray, Nathanael S. (DFCI); (UTSMC); (Harvard-Med); (NYUSM)

    2017-08-01

    Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.

  17. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuang-Kai; Wang, Chi-Ching; Chao, Jui-I [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan (China); Zheng, Wen-Wei; Lo, Yu-Shiu; Chen, Chinpiao [Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (China); Chiu, Yu-Chung; Cheng, Chia-Liang, E-mail: clcheng@mail.ndhu.edu.tw, E-mail: chinpiao@mail.ndhu.edu.tw, E-mail: jichao@faculty.nctu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2010-08-06

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 {mu}g ml{sup -1} ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  18. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  19. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures.

    Science.gov (United States)

    Fan, Qitang; Wang, Tao; Liu, Liming; Zhao, Jin; Zhu, Junfa; Gottfried, J Michael

    2015-03-14

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ∼140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C-Br bonds and formation of C-Cu-C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  20. Surface modification of polypropylene nonwoven fabrics via covalent immobilization of nonionic sugar-based surfactants

    International Nuclear Information System (INIS)

    Xin, Zhirong; Yan, Shunjie; Ding, Jiaotong; Yang, Zongfeng; Du, Binbin; Du, Shanshan

    2014-01-01

    Graphical abstract: - Highlights: • Amphiphilic N-alkyl-1-amino-1-deoxy-D-glucitol were prepared. • The pGMA-grafted membranes were obtained via photo-grafting of glycidyl methacrylate. • Amphiphilic C n AG were covalent immobilized onto the pGMA-grafted membranes. • The C n AG-grafted membranes obviously suppressed protein adsorption and platelet adhesion. - Abstract: Amphiphilic N-alkyl-1-amino-1-deoxy-D-glucitol (C n AG, n = 8, 12) were successfully prepared. Polypropylene nonwoven fabrics (PP NWF ) were grafted with glycidyl methacrylate (GMA) via a technique of UV-induced graft polymerization combined with plasma pre-treatment, and then PP NWF -g-GMA was used for the covalent immobilization of C n AG. The surface graft polymerization was confirmed by ATR-FTIR and XPS, respectively. Effect of grafting parameters, e.g., acetone content, monomer concentration and UV irradiation time on the grafting density of GMA was investigated. And the hemocompatibility of the modified PP NWF was evaluated by protein adsorption and platelet adhesion. It was founded that the C n AG-modified substrates greatly suppressed protein adsorption and platelet adhesion compared with the native and pGMA-grafted PP NWF

  1. Covalent immobilization of xylanase produced from Bacillus pumilus SV-85S on electrospun polymethyl methacrylate nanofiber membrane.

    Science.gov (United States)

    Kumar, Pankaj; Gupta, Ashish; Dhakate, Sanjay R; Mathur, Rakesh B; Nagar, Sushil; Gupta, Vijay K

    2013-01-01

    Polymethyl methacrylate (PMMA) nanofiber membrane (NFM) was synthesized by an electrospinning technique. These membranes were utilized as a support for immobilization of xylanase enzyme to study its pH stability, thermal stability, and reusability. The morphology of aligned NFM was studied by optical microscopy and scanning electron microscopy. The PMMA NFM was functionalized with phenylenediamine and activated with glutaraldehyde to yield an aldehyde group on its surface for covalent immobilization of xylanase. The Fourier transform infrared analysis of the covalently immobilized xylanase confirmed that the enzyme was immobilized on PMMA NFM via amide linkages. The immobilization efficiency of covalently bound xylanase was found experimentally to be 90%. A forward shift in pH optima from 6.0-7.0 (soluble enzyme) to 7.0-9.0 (immobilized enzyme) was observed after xylanase immobilization. The pH and temperature stability of xylanase were enhanced upon its covalent immobilization. The immobilized enzyme was active on repeated use and retained ∼80% of its initial activity after 11 reaction cycles. The improved thermal and operational stability of the covalently immobilized enzyme on PMMA NFM might be advantageous for industrial applications. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  2. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  3. Elite Polarization and Public Opinion

    DEFF Research Database (Denmark)

    Robison, Joshua; Mullinix, Kevin

    2016-01-01

    Elite polarization has reshaped American politics and is an increasingly salient aspect of news coverage within the United States. As a consequence, a burgeoning body of research attempts to unravel the effects of elite polarization on the mass public. However, we know very little about how...... attitudes. In our first study, we show that criticism of polarization leads partisans to more positively evaluate the argument offered by their non-preferred party, increases support for bi-partisanship, but ultimately does not change the extent to which partisans follow their party’s policy endorsements...

  4. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  5. Polarimetry with azimuthally polarized light

    Science.gov (United States)

    de Sande, Juan Carlos González; Piquero, Gemma; Santarsiero, Massimo

    2018-03-01

    Nonuniformly polarized light can be used for Mueller polarimetry of homogeneous linear samples. In this work, a set up based on using azimuthally polarized input light and a modified commercial light polarimeter is proposed and developed. With this set up, a Mueller submatrix of a sample can be obtained by measuring the Stokes parameters at only three different positions across the output beam section. Symmetry constraints for linear deterministic samples allow the complete Mueller matrix to be deduced for this kind of specimens. The experimental results obtained for phase plates and for a linear polarizer confirm the validity of the proposed method.

  6. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  7. PolarHub: A Global Hub for Polar Data Discovery

    Science.gov (United States)

    Li, W.

    2014-12-01

    This paper reports the outcome of a NSF project in developing a large-scale web crawler PolarHub to discover automatically the distributed polar dataset in the format of OGC web services (OWS) in the cyberspace. PolarHub is a machine robot; its goal is to visit as many webpages as possible to find those containing information about polar OWS, extract this information and store it into the backend data repository. This is a very challenging task given huge data volume of webpages on the Web. Three unique features was introduced in PolarHub to make it distinctive from earlier crawler solutions: (1) a multi-task, multi-user, multi-thread support to the crawling tasks; (2) an extensive use of thread pool and Data Access Object (DAO) design patterns to separate persistent data storage and business logic to achieve high extendibility of the crawler tool; (3) a pattern-matching based customizable crawling algorithm to support discovery of multi-type geospatial web services; and (4) a universal and portable client-server communication mechanism combining a server-push and client pull strategies for enhanced asynchronous processing. A series of experiments were conducted to identify the impact of crawling parameters to the overall system performance. The geographical distribution pattern of all PolarHub identified services is also demonstrated. We expect this work to make a major contribution to the field of geospatial information retrieval and geospatial interoperability, to bridge the gap between data provider and data consumer, and to accelerate polar science by enhancing the accessibility and reusability of adequate polar data.

  8. Polar source analysis : technical memorandum

    Science.gov (United States)

    2017-09-29

    The following technical memorandum describes the development, testing and analysis of various polar source data sets. The memorandum also includes recommendation for potential inclusion in future releases of AEDT. This memorandum is the final deliver...

  9. Anodic Concentration Polarization in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Williford, Rick E.; Chick, Lawrence A.; Maupin, Gary D.; Simner, Steve P.; Stevenson, Jeffry W.; Khaleel, Mohammad A.; Wachsman, ED, et al

    2003-08-01

    Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. High tortuosities (bulk diffusion resistances) are often assumed to explain this behavior. However, recent experiments show that anodic concentration polarization originates in the immediate vicinity of the reactive triple phase boundary (TPB) sites near the anode/electrolyte interface. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface.

  10. The definition of cross polarization

    DEFF Research Database (Denmark)

    Ludwig, Arthur

    1973-01-01

    There are at least three different definitions of cross polarization used in the literature. The alternative definitions are discussed with respect to several applications, and the definition which corresponds to one standard measurement practice is proposed as the best choice....

  11. Dynamic elections and ideological polarization

    Czech Academy of Sciences Publication Activity Database

    Nunnari, S.; Zápal, Jan

    2017-01-01

    Roč. 25, č. 4 (2017), s. 505-534 ISSN 1047-1987 Institutional support: Progres-Q24 Keywords : elections * political polarization Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 3.361, year: 2016

  12. Dynamic elections and ideological polarization

    Czech Academy of Sciences Publication Activity Database

    Nunnari, S.; Zápal, Jan

    2017-01-01

    Roč. 25, č. 4 (2017), s. 505-534 ISSN 1047-1987 Institutional support: RVO:67985998 Keywords : elections * political polarization Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 3.361, year: 2016

  13. Polarization at LEP. Vol. 2

    International Nuclear Information System (INIS)

    Alexander, G.; Altarelli, G.; Blondel, A.; Coignet, G.; Keil, E.; Plane, D.E.; Treille, D.

    1988-01-01

    This report contains a collection of papers covering the most important part of studies carried out by five study groups in view of a programme of experiments with polarized beams at LEP, the Large Electron-Positron collider under construction at CERN. The emphasis is on precision measurements at the Z peak. Such measurements are shown to be of considerable theoretical interest as well as very clean from the point of view of theoretical and experimental uncertainties. The measurement of the beam polarization can certainly be performed with sufficient accuracy, thanks to the availability of both e + and e - beam polarization. The normalization of the data taken with different beam helicities poses certain constraints that are described. Substantial progress has been made in understanding the possibility of providing longitudinally polarized beams in the LEP machine: The design of new wigglers and spin rotators, the study of correction procedures and results of numerical simulations are presented. (orig.)

  14. Mechanical writing of ferroelectric polarization.

    Science.gov (United States)

    Lu, H; Bark, C-W; Esque de los Ojos, D; Alcala, J; Eom, C B; Catalan, G; Gruverman, A

    2012-04-06

    Ferroelectric materials are characterized by a permanent electric dipole that can be reversed through the application of an external voltage, but a strong intrinsic coupling between polarization and deformation also causes all ferroelectrics to be piezoelectric, leading to applications in sensors and high-displacement actuators. A less explored property is flexoelectricity, the coupling between polarization and a strain gradient. We demonstrate that the stress gradient generated by the tip of an atomic force microscope can mechanically switch the polarization in the nanoscale volume of a ferroelectric film. Pure mechanical force can therefore be used as a dynamic tool for polarization control and may enable applications in which memory bits are written mechanically and read electrically.

  15. Mechanical Writing of Ferroelectric Polarization

    Science.gov (United States)

    Lu, H.; Bark, C.-W.; Esque de los Ojos, D.; Alcala, J.; Eom, C. B.; Catalan, G.; Gruverman, A.

    2012-04-01

    Ferroelectric materials are characterized by a permanent electric dipole that can be reversed through the application of an external voltage, but a strong intrinsic coupling between polarization and deformation also causes all ferroelectrics to be piezoelectric, leading to applications in sensors and high-displacement actuators. A less explored property is flexoelectricity, the coupling between polarization and a strain gradient. We demonstrate that the stress gradient generated by the tip of an atomic force microscope can mechanically switch the polarization in the nanoscale volume of a ferroelectric film. Pure mechanical force can therefore be used as a dynamic tool for polarization control and may enable applications in which memory bits are written mechanically and read electrically.

  16. Evaluation of the release characteristics of covalently attached or electrostatically bound biocidal polymers utilizing SERS and UV-Vis absorption

    Directory of Open Access Journals (Sweden)

    G. N. Mathioudakis

    2016-09-01

    Full Text Available In this work, biocidal polymers with antimicrobial quaternized ammonium groups introduced in the polymer biocidal chains either through covalent attachment or electrostatic interaction have been separately incorporated in a poly (methyl methacrylate polymer matrix. The objective of present study was to highlight the release characteristics of biocidal polymers, primarily in saline but also in water ethanol solutions, utilizing UV-Vis absorption and Surface Enhanced Raman Scattering (SERS. It is shown that through the combination of UV-Vis and SERS techniques, upon the release process, it is possible the discrimination of the polymeric backbone and the electrostatically bound biocidal species. Moreover, it is found that electrostatically bound and covalently attached biocidal species show different SERS patterns. The long term aim is the development of antimicrobial polymeric materials containing both ionically bound and covalently attached quaternary ammonium thus achieving a dual functionality in a single component polymeric design.

  17. Probing covalency in halogen bonds through donor K-edge X-ray absorption spectroscopy: polyhalides as coordination complexes.

    Science.gov (United States)

    Mustoe, Chantal L; Gunabalasingam, Mathusan; Yu, Darren; Patrick, Brian O; Kennepohl, Pierre

    2017-10-13

    The properties of halogen bonds (XBs) in solid-state I 2 X - and I 4 X - materials (where X = Cl, Br) are explored using donor K-edge X-ray absorption spectroscopy (XAS) to experimentally determine the degree of charge transfer in such XB interactions. The degree of covalency in these bonds is substantial, even in cases where significantly weaker secondary interactions are observed. These data, in concert with previous work in this area, suggests that certain halogen bonds have covalent contributions to bonding that are similar to, and even exceed, those observed in transition metal coordinate bonds. For this reason, we suggest that XB interactions of this type be denoted in a similar way to coordination bonds (X → Y) as opposed to using a representation that is the same as for significantly less covalent hydrogen bonds (XY).

  18. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  19. Solid Polarized Targets and Applications

    International Nuclear Information System (INIS)

    Crabb, D. G.

    2008-01-01

    Examples are given of dynamically polarized targets in use today and how the subsystems have changed to meet the needs of todays experiments. Particular emphasis is placed on target materials such as ammonia and lithium deuteride. Recent polarization studies of irradiated materials such as butanol, deuterated butanol, polyethylene, and deuterated polyethylene are presented. The operation of two non-DNP target systems as well as applications of traditional DNP targets are briefly discussed

  20. Artificial anisotropy and polarizing filters.

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Lazaridès, Basile

    2002-06-01

    The calculated spectral transmittance of a multilayer laser mirror is used to determine the effective index of the single layer equivalent to the multilayer stack. We measure the artificial anisotropy of photoresist thin films whose structure is a one-dimensional, subwavelength grating obtained from interference fringes. The limitation of the theory of the first-order effective index homogenization is discussed. We designed normal-incidence, polarizing coating and a polarization rotator by embedding anisotropic films in simple multilayer structures.

  1. Polarization bremsstrahlung in α decay

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Zon, B. A.; Kretinin, I. Yu.

    2007-01-01

    A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay

  2. Coherent states with elliptical polarization

    OpenAIRE

    Colavita, E.; Hacyan, S.

    2004-01-01

    Coherent states of the two dimensional harmonic oscillator are constructed as superpositions of energy and angular momentum eigenstates. It is shown that these states are Gaussian wave-packets moving along a classical trajectory, with a well defined elliptical polarization. They are coherent correlated states with respect to the usual cartesian position and momentum operators. A set of creation and annihilation operators is defined in polar coordinates, and it is shown that these same states ...

  3. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  4. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  5. S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity.

    Science.gov (United States)

    Hartmanová, Tereza; Tambor, Vojtěch; Lenčo, Juraj; Staab-Weijnitz, Claudia A; Maser, Edmund; Wsól, Vladimír

    2013-02-25

    Carbonyl reductase 1 (CBR1 or SDR21C1) is a ubiquitously-expressed, cytosolic, monomeric, and NADPH-dependent enzyme. CBR1 participates in apoptosis, carcinogenesis and drug resistance, and has a protective role in oxidative stress, cancer and neurodegeneration. S-Nitrosoglutathione (GSNO) represents the newest addition to its diverse substrate spectrum, which includes a wide range of xenobiotics and endogenous substances. GSNO has also been shown to covalently modify and inhibit CBR1. The aim of the present study was to quantify and characterize the resulting modifications. Of five candidate cysteines for modification by 2 mM GSNO (positions 26, 122, 150, 226, 227), the last four were analyzed using MALDI-TOF/TOF mass spectrometry and then quantified using the Selected Reaction Monitoring Approach on hyphenated HPLC with a triple quadrupole mass spectrometer. The analysis confirmed GSNO concentration-dependent S-glutathionylation of cysteines at positions 122, 150, 226, 227 which was 2-700 times higher compared to wild-type CBR1 (WT-CBR1). Moreover, a disulfide bond between neighboring Cys-226 and Cys-227 was detected. We suggest a role of these two cysteines as a redox-sensitive cysteine pair. The catalytic properties of wild-type and enzyme modified with 2 mM GSNO were also investigated by steady state kinetic experiments with various substrates. GSNO treatment of CBR1 resulted in a 2-5-fold decrease in kcat with menadione, 4-benzoylpyridine, 2,3-hexanedione, daunorubicin and 1,4-naphthoquinone. In contrast, the same treatment increased kcat for substrates containing a 1,2-diketo group in a ring structure (1,2-naphthoquinone, 9,10-phenanthrenequinone, isatin). Except for 9,10-phenanthrenequinone, all changes in kcat were at least in part compensated for by a similar change in Km, overall yielding no drastic changes in catalytic efficiency. The findings indicate that GSNO-induced covalent modification of cysteine residues affects the kinetic mechanism of CBR1

  6. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudifard, Matin [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Soudi, Sara [Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Soleimani, Masoud [Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hosseinzadeh, Simzar [Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Esmaeili, Elaheh [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vossoughi, Manouchehr, E-mail: vosoughi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2016-01-01

    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O{sub 2} plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. - Highlights: • Introduction of novel strategy for antibody immobilization using high surface area electrospun

  7. Superconducting polarizing magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for the JINR (Dubna) movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T in the centre with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet contains a main solenoidal winding 558 mm long and 206/144 mm in diameters, and compensating and correcting winding placed at its ends. The windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat. The diameter of the 'warm' aperture of the magnet cryostat is 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements, using a NMR-magnetometer are given. A similar magnet constructed at DAPNIA, CEA/Saclay (France), represented a model for the present development. The MPT array is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the synchrophasotron of the Laboratory of High Energies (LHE), JINR (Dubna)

  8. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  9. Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions.

    Science.gov (United States)

    Huang, Ning; Zhai, Lipeng; Xu, Hong; Jiang, Donglin

    2017-02-15

    The pre-designable porous structures found in covalent organic frameworks (COFs) render them attractive as a molecular platform for addressing environmental issues such as removal of toxic heavy metal ions from water. However, a rational structural design of COFs in this aspect has not been explored. Here we report the rational design of stable COFs for Hg(II) removal through elaborate structural design and control over skeleton, pore size, and pore walls. The resulting framework is stable under strong acid and base conditions, possesses high surface area, has large mesopores, and contains dense sulfide functional termini on the pore walls. These structural features work together in removing Hg(II) from water and achieve a benchmark system that combines capacity, efficiency, effectivity, applicability, selectivity, and reusability. These results suggest that COFs offer a powerful platform for tailor-made structural design to cope with various types of pollution.

  10. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor.

    Science.gov (United States)

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J; Carretero, Julian; Al-Shahrour, Fatima; Zhang, Tinghu; Chipumuro, Edmond; Herter-Sprie, Grit S; Akbay, Esra A; Altabef, Abigail; Zhang, Jianming; Shimamura, Takeshi; Capelletti, Marzia; Reibel, Jakob B; Cavanaugh, Jillian D; Gao, Peng; Liu, Yan; Michaelsen, Signe R; Poulsen, Hans S; Aref, Amir R; Barbie, David A; Bradner, James E; George, Rani E; Gray, Nathanael S; Young, Richard A; Wong, Kwok-Kin

    2014-12-08

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  12. Preparation of Immobilized Recombinant Tubulin Beta(TuBb on Chitosan Nanoparticles by Covalent Binding Method

    Directory of Open Access Journals (Sweden)

    Yan Qingfang

    2016-01-01

    Full Text Available Objective In order to screen TuBb inhibitors, this paper describes the preparation of immobilized TuBb on chitosan nanoparticles. Methods TuBb was immobilized onto chitosan nanoparticles by covalent binding method. Results The results of the univariate test indicated that the highest immobilized yield can be obtained when the optimal immobilization condition was 1 mg of TuBb, 0.5 mol/L of buffer solution with pH 6.5, immobilization 30 min and immobilization at 0-4 °C. Conclusions The authors conclude that the immobilized TuBb maintain the catalysis properties and can be used as the screening of TuBb inhibitors.

  13. Site-selective protein immobilization by covalent modification of GST fusion proteins.

    Science.gov (United States)

    Zhou, Yiqing; Guo, Tianlin; Tang, Guanghui; Wu, Hui; Wong, Nai-Kei; Pan, Zhengying

    2014-11-19

    The immobilization of functional proteins onto solid supports using affinity tags is an attractive approach in recent development of protein microarray technologies. Among the commonly used fusion protein tags, glutathione S-transferase (GST) proteins have been indispensable tools for protein-protein interaction studies and have extensive applications in recombinant protein purification and reversible protein immobilization. Here, by utilizing pyrimidine-based small-molecule probes with a sulfonyl fluoride reactive group, we report a novel and general approach for site-selective immobilization of Schistosoma japonicum GST (sjGST) fusion proteins through irreversible and specific covalent modification of the tyrosine-111 residue of the sjGST tag. As demonstrated by sjGST-tagged eGFP and sjGST-tagged kinase activity assays, this immobilization approach offers the advantages of high immobilization efficiency and excellent retention of protein structure and activity.

  14. Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening.

    Science.gov (United States)

    Huang, Ning; Krishna, Rajamani; Jiang, Donglin

    2015-06-10

    Imine-linked covalent organic frameworks (COFs) were synthesized to bear content-tunable, accessible, and reactive ethynyl groups on the walls of one-dimensional pores. These COFs offer an ideal platform for pore-wall surface engineering aimed at anchoring diverse functional groups ranging from hydrophobic to hydrophilic units and from basic to acidic moieties with controllable loading contents. This approach enables the development of various tailor-made COFs with systematically tuned porosities and functionalities while retaining the crystallinity. We demonstrate that this strategy can be used to efficiently screen for suitable pore structures for use as CO2 adsorbents. The pore-surface-engineered walls exhibit an enhanced affinity for CO2, resulting in COFs that can capture and separate CO2 with high performance.

  15. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage.

    Science.gov (United States)

    DeBlase, Catherine R; Silberstein, Katharine E; Truong, Thanh-Tam; Abruña, Héctor D; Dichtel, William R

    2013-11-13

    Two-dimensional covalent organic frameworks (2D COFs) are candidate materials for charge storage devices because of their micro- or mesoporosity, high surface area, and ability to predictably organize redox-active groups. The limited chemical and oxidative stability of established COF linkages, such as boroxines and boronate esters, precludes these applications, and no 2D COF has demonstrated reversible redox behavior. Here we describe a β-ketoenamine-linked 2D COF that exhibits reversible electrochemical processes of its anthraquinone subunits, excellent chemical stability to a strongly acidic electrolyte, and one of the highest surface areas of the imine- or enamine-linked 2D COFs. Electrodes modified with the redox-active COF show higher capacitance than those modified with a similar non-redox-active COF, even after 5000 charge-discharge cycles. These findings demonstrate the promise of using 2D COFs for capacitive storage.

  16. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    Science.gov (United States)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan; Wang, Jun

    2017-05-01

    Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3-30 μg L-1) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  17. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

     The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...... are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...

  18. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Directory of Open Access Journals (Sweden)

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  19. Improved immobilization of laccase on a glassy carbon electrode by oriented covalent attachment

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2014-01-01

    Full Text Available A laccase from Thermus thermophilus HB27 was reported to be potentially useful in the design of a temperature controlled biofuel cell. For enhancing its application in different thermal conditions, we engineered a laccase-oriented immobilized electrode. A site-directed mutant N323C of the laccase was constructed. A photometric assay was employed in order to compare the catalytic properties of wild-type laccase and mutant. The mutant was attached to a glass carbon electrode by covalent cross-linking. The electrochemical properties of the immobilized laccase were investigated by cyclic voltammetry. This immobilization allowed the active electrode to function at temperatures up to 95°C. The thermal and pH dependence profiles were similar to those of the soluble enzyme investigated by spectrophotometry.

  20. Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2013-01-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found...... that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead......-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter...

  1. Characteristics of enzyme hydrolyzing natural covalent bond between RNA and protein VPg of encephalomyocarditis virus

    International Nuclear Information System (INIS)

    Drygin, Yu.F.; Siyanova, E.Yu.

    1986-01-01

    The isolation and a preliminary characterization of the enzyme specifically hydrolyzing the phosphodiester bond between protein VPg and the RNA of encephalomyocarditis virus was the goal of the present investigation. The enzyme was isolated from a salt extract of Krebs II mouse ascites carcinoma cells by ion-exchange and affinity chromatography. It was found that the enzyme actually specifically cleaves the covalent bond between the RNA and protein, however, the isolation procedure does not free the enzyme from impurities which partially inhibit it. The enzyme cleaves the RNA-protein VPg complex of polio virus at a high rate, it is completely inactivated at 55 0 C, and is partially inhibited by EDTA

  2. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion

    Science.gov (United States)

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-10-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al12W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  3. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  4. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage.

    Science.gov (United States)

    Li, Yajuan; Zheng, Shuanghao; Liu, Xue; Li, Pan; Sun, Lei; Yang, Ruixia; Wang, Sen; Wu, Zhong-Shuai; Bao, Xinhe; Deng, Wei-Qiao

    2017-11-14

    Nitrogen-enriched porous nanocarbon, graphene, and conductive polymers attract increasing attention for application in supercapacitors. However, electrode materials with a large specific surface area (SSA) and a high nitrogen doping concentration, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane-derived conductive microporous covalent triazine-based frameworks (TCNQ-CTFs) with both high nitrogen content (>8 %) and large SSA (>3600 m 2  g -1 ). These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g -1 , considerable energy density of 42.8 Wh kg -1 , and remarkable cycling stability without any capacitance degradation after 10 000 cycles. This class of CTFs should hold a great potential as high-performance electrode material for electrochemical energy-storage systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  6. Covalent dimers of 1,3-diphenylisobenzofuran for singlet fission: synthesis and electrochemistry.

    Science.gov (United States)

    Akdag, Akin; Wahab, Abdul; Beran, Pavel; Rulíšek, Lubomír; Dron, Paul I; Ludvík, Jiří; Michl, Josef

    2015-01-02

    The synthesis of covalent dimers in which two 1,3-diphenylisobenzofuran units are connected through one phenyl substituent on each is reported. In three of the dimers, the subunits are linked directly, and in three others, they are linked via an alkane chain. A seventh new compound in which two 1,3-diphenylisobenzofuran units share a phenyl substituent is also described. These materials are needed for investigations of the singlet fission process, which promises to increase the efficiency of solar cells. The electrochemical oxidation and reduction of the monomer, two previously known dimers, and the seven new compounds have been examined, and reversible redox potentials have been compared with results obtained from density functional theory. Although the overall agreement is satisfactory, some discrepancies are noted and discussed.

  7. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  8. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  9. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...... radical attack to the otherwise flexible SO(2) PBI membranes. Steady phosphoric acid doping of the cross-linked membranes was achieved at elevated temperatures with little swelling. The acid-doped membranes exhibited increased mechanical strength compared to both pristine SO(2) PBI and poly[2,2'-(m......-phenylene)-5,5'-bibenzimidazole] (mPBI). The superior characteristics of the cross-linked SO(2) PBI membranes allowed higher acid doping levels and, therefore, higher proton conductivity. Fuel-cell tests with the cross-linked membranes demonstrated a high open circuit voltage and improved power performance...

  11. Non-Covalent Binding of DNA to Carbon Nanotubes Controlled by Biological Recognition Complex

    Science.gov (United States)

    Goux-Capes, Laurence; Filoramo, Arianna; Cote, Denis; Valentin, Emmanuel; Bourgoin, Jean-Philippe; Patillon, Jean-Nöel

    2004-09-01

    Single wall carbon nanotubes (SWNTs) occupy a special place within molecular electronics. Indeed, they exist as semiconducting or metallic wires and have been used to demonstrate molecular devices like transistors, diodes or SET (single electron transistor). However, the future of this class of SWNT-based devices is strictly related to the development of a bottom-up self-assembly technique. The exceptional recognition properties of DNA molecule make it an ideal candidate for this task. Here, we describe a non-covalent method to connect carbon nanotubes to DNA strands using the streptavidin/biotin complex. Control experiments show that in absence of biotin, the DNA strand do not bind to SWNT. The binding of SWNT to DNA strand has also been carefully checked by washing experiments, showing the strength of the DNA anchorage on SWNTs. Combining this approach with molecular combing enable us to align nanotubes on substrate.

  12. [Preparation of chiral monolithic column with covalently bonded cellulose and their application to rapid enantioseparation].

    Science.gov (United States)

    Wang, Jiabin; Wang, Xiao; Li, Jianhua; Lü, Haixia; Lin, Xucong; Xie, Zenghong; Zhang, Qiqing

    2011-12-01

    A chiral monolithic capillary column for rapid enantioseparation was prepared by covalently bonding of cellulose tris(4-methylbenzoate) (CTMB) on N-acryloxysuccinimide-based monolith. The preparation and derivatization conditions of the monolithic column were optimized. The successful grafting of CTMB was confirmed on the characterizations of the infrared spectrum and the cathodic electroosmotic flow (EOF). The effects of acetic acid concentration and methanol content on the enantioseparation were studied. The solvent resistance, reproducibility and stability of the monolithic column have also been investigated. The rapid enantioseparation of the five solutes (phenylalanine, tyrosine, tryptophan, propranolol and phenylethanol) with resolution (R(s)) values up to 1.31 was achieved within 1.2 min on the prepared chiral capillary monolithic column by capillary electrochromatography.

  13. Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling.

    Science.gov (United States)

    Kumagai, Hidetoshi; Ikeda, Yuichi; Motozawa, Yoshihiro; Fujishiro, Mitsuhiro; Okamura, Tomohisa; Fujio, Keishi; Okazaki, Hiroaki; Nomura, Seitaro; Takeda, Norifumi; Harada, Mutsuo; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Yamamoto, Kazuhiko; Komuro, Issei; Yanagisawa, Masashi

    2015-01-01

    G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.

  14. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jintao [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guan, Mingyuan; Huang, Guoyin; Qiu, Hengming; Chen, Zhengcheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Huang, Yong, E-mail: huangyong503@126.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China)

    2016-06-01

    A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V) = 0.00714C{sub hIgG} (μg/mL)–0.0147 with a correlation coefficient of 0.9968 over a range 0–150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications. - Highlights: • A novel structured light-addressable potentiometric sensor (LAPS) based on covalently functionalized membrane was designed. • The composition of the surface of LAPS chip was investigated by X-ray photoelectron spectroscopy (XPS). • hIgG dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of LAPS.

  15. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces.

    Science.gov (United States)

    Kleber, Carolin; Bruns, Michael; Lienkamp, Karen; Rühe, Jürgen; Asplund, Maria

    2017-08-01

    This study presents a new conducting polymer hydrogel (CPH) system, consisting of the synthetic hydrogel P(DMAA-co-5%MABP-co-2,5%SSNa) and the conducting polymer (CP) poly(3,4-ethylenedioxythiophene) (PEDOT), intended as coating material for neural interfaces. The composite material can be covalently attached to the surface electrode, can be patterned by a photolithographic process to influence selected electrode sites only and forms an interpenetrating network. The hybrid material was characterized using cyclic voltammetry (CV), impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS), which confirmed a homogeneous distribution of PEDOT throughout all CPH layers. The CPH exhibited a 2,5 times higher charge storage capacity (CSC) and a reduced impedance when compared to the bare hydrogel. Electrochemical stability was proven over at least 1000 redox cycles. Non-toxicity was confirmed using an elution toxicity test together with a neuroblastoma cell-line. The described material shows great promise for surface modification of neural probes making it possible to combine the beneficial properties of the hydrogel with the excellent electronic properties necessary for high quality neural microelectrodes. Conductive polymer hydrogels have emerged as a promising new class of materials to functionalize electrode surfaces for enhanced neural interfaces and drug delivery. Common weaknesses of such systems are delamination from the connection surface, and the lack of suitable patterning methods for confining the gel to the selected electrode site. Various studies have reported on conductive polymer hydrogels addressing one of these challenges. In this study we present a new composite material which offers, for the first time, the unique combination of properties: it can be covalently attached to the substrate, forms an interpenetrating network, shows excellent electrical properties and can be patterned via UV-irradiation through a structured mask. Copyright

  17. Catalytic mechanism and inhibition of tRNA (Uracil-5-)methyltransferase: evidence for covalent catalysis

    International Nuclear Information System (INIS)

    Santi, D.V.; Hardy, L.W.

    1987-01-01

    tRNA (Ura-5-) methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the 5-carbon of a specific Urd residue in tRNA. This results in stoichiometric release of tritium from [5- 3 H] Urd-labeled substrate tRNA isolated from methyltransferase-deficient Escherichia coli. The enzyme also catalyzes an AdoMet-independent exchange reaction between [5- 3 H]-Urd-labeled substrate tRNA and protons of water at a rate that is about 1% that of the normal methylation reaction, but with identical stoichiometry. S-Adenosylhomocysteine inhibits the rate of the exchange reaction by 2-3-fold, whereas an analog having the sulfur of AdoMet replaced by nitrogen accelerates the exchange reaction 9-fold. In the presence (but not absence) of AdoMet, 5-fluorouracil-substituted tRNA (FUra-tRNA) leads to the first-order inactivation of the enzyme. This is accompanied by the formation of a stable covalent complex containing the enzyme, FUra-tRNA, and the methyl group AdoMet. A mechanism for catalysis is proposed that explains both the 5-H exchange reaction and the inhibition by FUra-tRNA: the enzyme forms a covalent Michael adduct with substrate or inhibitor tRNA by attack of a nucleophilic group of the enzyme at carbon 6 of the pyrimidine residue to be modified. As a result, an anion equivalent is generated at carbon 5 that is sufficiently reactive to be methylated by AdoMet. Preliminary experiments and precedents suggest that the nucleophilic catalyst of the enzyme is a thiol group of cysteine. The potent irreversible inhibition by FUra-tRNA suggest that a mechanism for the RNA effects of FUra may also involve irreversible inhibition of RNA-modifying enzymes

  18. Step-by-step build-up of covalent poly(ethylene oxide) nanogel films.

    Science.gov (United States)

    Zahouani, S; Hurman, L; De Giorgi, M; Vigier-Carrière, C; Boulmedais, F; Senger, B; Frisch, B; Schaaf, P; Lavalle, P; Jierry, L

    2017-11-30

    Hydrogels based on poly(ethylene glycol) (PEG) are commonly used for studies related to cell fate and tissue engineering. Here we present a new covalent layer-by-layer build-up process leading to PEG coatings of nanometer size called "nanogel films". Compared to macroscopic hydrogels, such nanogels should provide a fine control over the structure and the thickness of the coating. Alternated deposition of bifunctional and tetra functional PEG molecules reacting through thiol/maleimide click chemistry is evaluated by quartz crystal microbalance. We first study parameters influencing the build-up process of such coatings and demonstrate the importance of (i) the nature of the first deposited layer, (ii) the PEG concentrations and (iii) the length of the PEG chains that appears to be the most significant parameter influencing film growth. The build-up process can be extended to a large variety of substrates like SiO 2 or polymers by using an appropriate anchoring layer. Covalent functionalization of these nanogel films by proteins or enzymes is suited by modifying the biomolecules with thiol or maleimide groups and immobilizing them during the build-up process. Activity of the embedded enzymes can be maintained. Moreover ligands like biotin can be incorporated into the film and recognition by streptavidin can be modulated by playing with the number of PEG layers covering biotin. Compared to well-known PEG hydrogels, these new coatings are promising as they allow to (i) build thin nanometric coatings, (ii) finely control the amount of deposited PEG and (iii) organize the position of the embedded biomolecules inside the film layers.

  19. Comparative methods for analysis of protein covalent modification by electrophilic quinoids formed from xenobiotics

    Science.gov (United States)

    Yu, Bolan; Qin, Zhihui; Wijewickrama, Gihani T.; Edirisinghe, Praneeth; Bolton, Judy L.; Thatcher, Gregory R. J.

    2010-01-01

    Conjugation of biotin and fluorophore tags is useful for assaying covalent protein modification. Oxidative bioactivation of selective estrogen receptor modulators (SERMs) yields reactive quinoid electrophiles that covalently modify proteins; bioactivation is associated with carcinogenic and chemopreventive effects. Identification of the protein targets of electrophilic metabolites is of general important for xenobiotics. Four methodologies, using SERM derivatives and biotin/fluorophore tags, were compared for purification and quantification: (1) covert oxidatively activated tags (COATags; SERM conjugated to biotin); (2) dansylTags (SERM conjugated to fluorophore); and azidoTags (SERM azide derivatives) in a 2-step conjugation to biotin, either using (3) Staudinger ligation; or (4) click chemistry. All synthetic derivatives retained the estrogen receptor ligand characteristics of the parent SERMs. Model proteins with bioactivation by tyrosinase in buffer or cell lysates and liver proteins with in situ bioactivation in rat primary hepatocytes were studied by immunoassay and fluorescence. Comparison showed: the azidoTag/Staudinger method was sensitive but nonspecific; the azidoTag/click methodology had low sensitivity; and, the dansylTag methodology failed to detect modified proteins in hepatocytes. The COATag methodology was adjudged superior, detecting 5 ng of modified protein in vitro and identifying protein targets in hepatocytes. In metabolism studies in rat liver microsomes, the azide group was metabolically labile, one contributing factor in not selecting an azidoTag methodology in the highly oxidative environments required for bioactivation. For study of the protein targets of electrophilic metabolites formed by in situ oxidative bioactivation, the COATag is both sensitive and specific, and does not appear to suffer from poor cell permeability. PMID:19301905

  20. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9.

    Science.gov (United States)

    Bryson, Alexandra L; Hwang, Young; Sherrill-Mix, Scott; Wu, Gary D; Lewis, James D; Black, Lindsay; Clark, Tyson A; Bushman, Frederic D

    2015-06-16

    The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and enzymatic probing. We then designed CRISPR spacer sequences targeting T4 and found that wild-type T4 containing glc-HMC was insensitive to attack by CRISPR-Cas9 but mutants with unmodified cytosine were sensitive. Phage with HMC showed only intermediate sensitivity. While this work was in progress, another group reported examples of heavily engineered CRISRP-Cas9 complexes that could, in fact, overcome the effects of T4 DNA modification, indicating that modifications can inhibit but do not always fully block attack. Bacteria were recently found to have a form of adaptive immunity, the CRISPR-Cas systems, which use nucleic acid pairing to recognize and cleave genomic DNA of invaders such as bacteriophage. Historic work with tailed phages has shown that phage DNA is often modified by covalent attachment of large chemical groups. Here we demonstrate that DNA modification in phage T4 inhibits attack by the CRISPR-Cas9 system. This finding provides insight into mechanisms of host-virus competition and also a new set of tools that may be useful in modulating the activity of CRISPR-Cas9 in genome engineering applications. Copyright © 2015 Bryson et al.

  1. Microsolvation and the Effects of Non-Covalent Interactions on Intramolecular Dynamics

    Science.gov (United States)

    Foguel, Lidor; Vealey, Zachary; Vaccaro, Patrick

    2017-06-01

    Physicochemical processes brought about by non-covalent interactions between neighboring molecules are undeniably of crucial importance in the world around us, being responsible for effects ranging from the subtle (yet precise) control of biomolecular recognition events to the very existence of condensed phases. Of particular interest is the differential ability of distinct non-covalent forces, such as those mediated by dispersion-dominated aryl (π-π) coupling and electrostatically-driven hydrogen bonding, to affect unimolecular transformations by altering potential surface topographies and the nature of reaction coordinates. A concerted experimental and computational investigation of "microsolvation" (solvation at the molecular level) has been undertaken to elucidate the site-specific coupling between solute and solvent degrees of freedom, as well as attendant consequences for the efficiency and pathway of intrinsic proton-transfer dynamics. Targeted species have been synthesized in situ under "cold" supersonic free-jet expansion conditions (T_{rot} ≈ 1-2K) by complexing an active (proton-transfer) substrate with various ligands (e.g., water isotopologs and benzene derivatives) for which competing interaction mechanisms can lead to unique binding motifs. A series of fluorescence-based spectroscopic measurements have been performed on binary adducts formed with the prototypical 6-hydroxy-2-formylfulvene (HFF) system, where a quasi-linear intramolecular O-H...O bond and a zero-point energy that straddles the proton-transfer barrier crest synergistically yield the largest tunneling-induced splitting ever reported for the ground electronic state of an isolated neutral molecule. Such characteristics afford a localized metric for unraveling incipient changes in unimolecular reactivity, with comparison of experimentally observed and quantum-chemical predicted rovibronic landscapes serving to discriminate complexes built upon electrostatic (hydrogen-bonding) and

  2. Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Nesztor, Dániel [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Novák, Levente [Department of Colloid and Environmental Chemistry, University of Debrecen, Egyetem square 1, Debrecen (Hungary); Illés, Erzsébet; Szekeres, Márta; Szabó, Tamás [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary)

    2017-04-01

    Carboxylated magnetite nanoparticles (MNPs) are frequently used to develop materials with enhanced properties for MRI and hyperthermia. The controlled clustering of MNPs via covalent or electrostatic approaches provides opportunity to prepare high quality materials. MNPs were prepared by co-precipitation and coated by poly(acrylic acid-co-maleic acid) (PAM@MNP). The clusters were synthesized from purified PAM@MNPs and polyethylenimine (PEI) solution via electrostatic interaction and covalent bond formation (ES-cluster and CB-cluster, respectively). The electrostatic adhesion (–NH{sub 3}{sup +} and –COO{sup –}) and the formed amide bond were confirmed by ATR-FTIR. The averaged area of CB-clusters was about twice as large as that of ES-cluster, based on TEM. The SAXS results showed that the surface of MNPs was smooth and the nanoparticles were close packed in both clusters. The pH-dependent aggregation state and zeta potential of clusters were characterized by DLS and electrophoresis measurements, the clusters were colloidally stable at pH>5. In hyperthermia experiments, the values of SAR were about two times larger for the chemically bonded cluster. The MRI studies showed exceptionally high transversion relaxivities, the r{sub 2} values are 457 mM{sup −1} s{sup −1} and 691 mM{sup −1} s{sup −1} for ES-cluster and CB-cluster, respectively. Based on these results, the chemically clustered product shows greater potential for feasible biomedical applications. - Highlights: • Chemically bonded clusters (CB-cluster) were prepared from PEI and PAM-coated MNPs. • The electrostatically clustered units (ES-cluster) are smaller and more compact. • The electrostatic adhesion and the amide bond formation were confirmed by ATR-FTIR. • CB-cluster dispersions are colloidally stable under physiological conditions. • CB-cluster shows great potential for application in MRI and hyperthermia.

  3. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy.

    Directory of Open Access Journals (Sweden)

    Dagmar Fichtner

    Full Text Available E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM of thiols carrying benzylguanine (BG head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF and single-molecule (SMSF force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2 is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5 efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5-11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.

  4. Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications.

    Science.gov (United States)

    Guex, A G; Hegemann, D; Giraud, M N; Tevaearai, H T; Popa, A M; Rossi, R M; Fortunato, G

    2014-11-01

    Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells*

    Science.gov (United States)

    Federspiel, Joel D.; Codreanu, Simona G.; Goyal, Sandeep; Albertolle, Matthew E.; Lowe, Eric; Teague, Juli; Wong, Hansen; Guengerich, F. Peter; Liebler, Daniel C.

    2016-01-01

    Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the β5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics. PMID:27503896

  6. Polarization fluctuations in stationary light beams

    International Nuclear Information System (INIS)

    Shevchenko, A.; Setaelae, T.; Kaivola, M.; Friberg, A.T.; Royal Institute of Technology , Department of Microelectronics and Applied Physics; Sweden)

    2009-01-01

    For stationary beams the degree of polarization contains only limited information on time dependent polarization. Two approaches towards assessing a beams polarization dynamics, one based on Poincare and the other on Jones vector formalism, are described leading to the notion of polarization time. Specific examples of partially temporally coherent electromagnetic beams are discussed. (Author)

  7. FIRST POLARIZED PROTON COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; ALESSI, J.; BAI, M.; BEEBE-WANG, J.; BRENNAN, J.M.; BROWN, K.A.; BUNCE, G.; CAMERON, P.; COURANT, E.D.; DREES, A.; FISCHER, W.; FLILLER, R. III; GLENN, W.; HUANG, H.; LUCCIO, A.U.; MACKAY, W.W.; MAKDISI, Y.; MONTAG, C.; PILAT, F.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180 o about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV

  8. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs ...

  9. Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Universidad de Granada (Spain). Dept. de Fisica Moderna]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Caballero, J.A. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia]|[Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Moya de Guerra, E. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia

    1996-12-23

    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to {sup 39}K. Results are presented using two models for the ejected nucleon - when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon`s momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed. (orig.).

  10. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  11. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  12. Performance of the SLC polarized electron source with high polarization

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.K.; Aoyagi, H.

    1993-04-01

    For the 1992 operating cycle of the SLAC Linear Collider (SLC), the polarized electron source (PES) during its maiden run successfully met the pulse intensity and overall efficiency requirements of the SLC. However, the polarization of the bulk GaAs cathode was low (∼27%) and the pulse-to-pulse stability was marginal. We have shown that adequate charge for the SLC can be extracted from a strained layer cathode having P e ∼80% even though the quantum efficiency (QE) is - beam stability. The performance of the PES during the 1993 SLC operating cycle with these and other improvements is discussed

  13. PIPER: Primordial Inflation Polarization Explorer

    Science.gov (United States)

    Lazear, Justin; Benford, D.; Chuss, D.; Fixsen, D.; Hinderks, J.; Hinshaw, G.; Jhabvala, C.; Johnson, B.; Kogut, A.; Mirel, P.; Mosely, H.; Staguhn, J.; Wollack, E.; Weston, A.; Vlahacos, K.; Bennett, C.; Eimer, J.; Halpern, M.; Irwin, K.; Dotson, J.; Ade, P.; Tucker, C.

    2011-05-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the polarization of the cosmic microwave background in search of the expected signature of primordial gravity waves excited during an inflationary epoch shortly after the Big Bang. PIPER consists of two co-aligned telescopes, one sensitive to the Q Stokes parameter and the other to U. Sky signals will be detected with 5120 transition edge sensor (TES) bolometers distributed in four rectangular close-packed arrays maintained at 100 mK. To maximize the sensitivity of the instrument, both telescopes are mounted within a single open bucket dewar and are maintained at 1.5 K throughout flight, with no ambient-temperature windows between the sky and the detectors. To mitigate the effects of systematic errors, the polarized sky signals will be modulated using a variable-delay polarization modulator. PIPER will observe at frequencies 200, 270, 350, and 600 GHz to separate the CMB from polarized dust emission within the Galaxy. A series of flights alternating between northern and southern hemisphere launch sites will produce nearly full-sky maps in Stokes I, Q, U, and V. I will discuss the current status and potential science returns from the PIPER project.

  14. Polar metals by geometric design

    Science.gov (United States)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  15. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  16. Polarization in electron and proton beams

    International Nuclear Information System (INIS)

    Buon, J.

    1986-03-01

    One first introduces the concept of polarization for spin 1/2 particle beams and discusses properties of spin kinetics in a stationary magnetic field. Then the acceleration of polarized protons in synchrotrons is studied with emphasis on depolarization when resonances are crossed and on the cures for reducing it. Finally, transverse polarization of electrons in storage rings is discussed as an equilibrium between polarizing and depolarizing effects of synchrotron radiation. Means for obtaining longitudinal polarization are also treated

  17. Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable non-covalently bound anionic FAD semiquinone

    NARCIS (Netherlands)

    Gygli, G.A.; Berkel, van W.J.H.

    2017-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum is a covalent flavoprotein that has emerged as a promising biocatalyst for the production of aromatic fine chemicals such as vanillin, coniferyl alcohol and enantiopure 1-(4’-hydroxyphenyl) alcohols. The largescale production of this

  18. Convenient Preparation of Bactericidal Hydrogels by Covalent Attachment of Stabilized Antimicrobial Peptides Using Thiol-ene Click Chemistry

    NARCIS (Netherlands)

    Cleophas, Rik T. C.; Riool, Martijn; van Ufford, H. C. Quarles; Zaat, Sebastian A. J.; Kruijtzer, John A. W.; Liskamp, Rob M. J.

    2014-01-01

    This report describes the design and synthesis of a bactericidal poly(ethylene glycol)-based (PEG) hydrogel coating with covalently attached antimicrobial peptides (AMP) stabilized against proteolytic degradation. As such, mimics of the highly active AMP HHC10 (H-KRWWKWIRW-NH2) were designed for

  19. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta p...

  20. Moving beyond Definitions: What Student-Generated Models Reveal about Their Understanding of Covalent Bonding and Ionic Bonding

    Science.gov (United States)

    Luxford, Cynthia J.; Bretz, Stacey Lowery

    2013-01-01

    Chemistry students encounter a variety of terms, definitions, and classification schemes that many instructors expect students to memorize and be able to use. This research investigated students' descriptions of ionic and covalent bonding beyond definitions in order to explore students' knowledge about chemical bonding. Using Johnstone's Multiple…

  1. Engineering covalent oligomers of the mechanosensitive channel of large conductance from Escherichia coli with native conductance and gating characteristics

    NARCIS (Netherlands)

    Folgering, JHA; Wolters, JC; Poolman, B

    2005-01-01

    To obtain a gene construct for making single substitutions per channel and to determine the quaternary structure of the mechanosensitive channel MscL from Escherichia coli, covalent oligomers (monomer to hexamer) were engineered by gene fusion; up to six copies of the mscL gene were fused in tandem.

  2. Towards a biocompatible artificial lung: Covalent functionalization of poly(4-methylpent-1-ene (TPX with cRGD pentapeptide

    Directory of Open Access Journals (Sweden)

    Lena Möller

    2013-02-01

    Full Text Available Covalent multistep coating of poly(methylpentene, the membrane material in lung ventilators, by using a copper-free “click” approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells.

  3. Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor

    DEFF Research Database (Denmark)

    Absalom, Nathan L; Quek, Gracia; Lewis, Trevor M

    2013-01-01

    containing an α4(D204C) mutation predicted by homology modeling to be within reach of the reactive probe. We demonstrate that covalent trapping results in irreversible reduction of ACh-elicited currents in the (α4)3(β2)2 stoichiometry, indicating that MLA binds to the α4-α4 interface of the (α4)3(β2...

  4. A QUANTUM MECHANICAL STUDY OF THE PROTONATION AND COVALENT HYDRATION OF QUINAZOLINE IN THE PRESENCE OF METAL CATIONS

    Science.gov (United States)

    We have investigated the protonation and reversible covalent hydration of quinazoline in the presence of Li+, Na+, and Ca2+ ions using ab initio quantum mechanical calculations at the MP2/6-31G**//HF/6-31G*level of theory. Proton affinities, enthalpies of hydration at 298.15K (DH...

  5. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark

    2014-01-01

    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation of ...... importance for improved wood coating adhesion....

  6. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L.; Rajagopalan, K.V. (Duke Univ. Medical Center, Durham, NC (USA)); London, R.E. (National Institute of Environmental Health Science, Research Triangle Park, NC (USA))

    1989-09-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and {sup 31}P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well.

  7. Are Orbital-Resolved Shared-Electron Distribution Indices and Cioslowski Covalent Bond Orders Useful for Molecules?

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert; Kohout, M.

    2015-01-01

    Roč. 113, 13-14 (2015), s. 1682-1689 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : domain averaged fermi holes * shared electron-distribution indices * Cioslowski covalent bond orders Subject RIV: CC - Organic Chemistry Impact factor: 1.837, year: 2015

  8. Frequency dependent polarization in blazars

    International Nuclear Information System (INIS)

    Bjoernsson, C.I.

    1984-10-01

    It is argued that the intrinsic frequency dependent polarization in blazars finds its most straightforward explanations in terms of a single rather than a multicomponent sourcemodel. In order to reproduce the observations, under the assumption that the emission mechanism is optically thin synchrotron radiation, both a well ordered magnetic field and an electron distribution with a sharp break or cuttoff are necessary. Non-uniform pitch angle distribution and/or environments where synchrotron losses are important are both conducive to producing strong frequency dependent polarization. Reasons are put forth as to why such conditions ar expected to occur in blazars. Two specific models are discussed in detail and it is shown that they are both able to produce strong frequency dependent polarization, even when the spectral index changes by a small amount only. (orig.)

  9. Report of the polarization group

    International Nuclear Information System (INIS)

    Ford, W.; Kondo, K.; Martin, F.; Manning, G.; Miller, D.; Prescott, C.

    1975-01-01

    The use of longitudinal polarization in the reaction e + e - → μ + μ - was studied. Modifications of the magnetic insertion which could reduce synchrotron radiation by two or more were considered. In addition, a specific design is suggested which incorporates the optimized magnetic configuration; it is assumed that no particle detection is necessary near the interaction vertex and the synchrotron radiation is ''dumped'' up - and downstream. Also considered were vacuum chambers in which the synchrotron radiation is absorbed locally so that shielded regions are provided for detectors near the interaction vertex. A scheme for rotating the polarization outside the experiment areas is detailed; in this way the design of experiments is greatly simplified. Local intense ionization of residual gas in the interaction region due to synchrotron radiation at the insertion was studied. Finally, some general considerations in the production and measurement of beam polarization are summarized. 2 figures

  10. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  11. Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-09-01

    Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.

  12. Covalent interactions of 1,2,3-trichloropropane with hepatic macromolecules: studies in the male F-344 rat.

    Science.gov (United States)

    Weber, G L; Sipes, I G

    1990-07-01

    Preliminary investigations into the role of biotransformation in 1,2,3-trichloropropane (TCP)-induced tumor formation have been undertaken. Male F-344 rats were administered 30 mg/kg [14C]TCP (100 microCi/kg) ip and killed 4 hr later. The extent of covalent binding to hepatic protein, DNA, and RNA was 418, 244, and 432 pmol [14C]TCP equivalents/mg, respectively. An in vivo covalent binding time course showed no significant change in [14C]TCP equivalents bound to hepatic DNA (1-48 hr), while binding to protein was maximal by 4 hr and decreased significantly by 48 hr. The binding of TCP-associated radioactivity to hepatic protein and DNA was shown to be cumulative for two and three doses when given 24 hr apart. Pretreatment of animals with phenobarbital caused a decrease while pretreatment with SKF 525-A caused an increase in covalent binding of [14C]TCP equivalents to protein and DNA. Pretreatment of rats with beta-naphthoflavone did not alter the covalent binding of [14C]TCP equivalents to protein or DNA. However, glutathione depletion with L-buthionine-(R,S)-sulfoximine increased binding to protein by 342% while it decreased binding to DNA by 56%. Intraperitoneal administration of TCP also depleted hepatic GSH by 41 and 61% 2 hr after doses of 30 and 100 mg/kg. The in vivo binding data suggest a dual role for GSH in the bioactivation of TCP. It may, in part, be that GSH is involved in the bioactivation and covalent binding of TCP to hepatic DNA. However, it also appears to detoxify a reactive intermediate(s) that binds to protein.

  13. Polarized electroluminescence from silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, Nikolay; Danilovsky, Eduard; Gets, Dmitry; Klyachkin, Leonid; Kudryavtsev, Andrey; Kuzmin, Roman; Malyarenko, Anna [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Mashkov, Vladimir [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation)

    2012-05-15

    We present the first findings of the circularly polarized electroluminescence (CPEL) from silicon nanostructures which are the p-type ultra-narrow silicon quantum well (Si-QW) confined by {delta}-barriers heavily doped with boron. The CPEL dependences on the forward current and lateral electric field show the circularly polarized light emission which appears to be caused by the exciton recombination through the negative-U dipole boron centers at the Si-QW-{delta}-barriers interface with the assistance of phosphorus donors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  15. The sensitivity of income polarization

    DEFF Research Database (Denmark)

    Hussain, Azhar

    2009-01-01

    This study looks at polarization and its components' sensitivity to assumptions about equivalence scales, income definition, ethical income distribution parameters, and the income accounting period. A representative sample of Danish individual incomes from 1984 to 2002 is utilised. Results show...... that polarization has increased over time, regardless of the applied measure, when the last part of the period is compared to the first part of the period; primary causes being increased inequality (alienation) and faster income growth among high incomes relative to those in the middle of the distribution...

  16. Graphics of polar figure; Graficado de figura polar

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R

    1991-11-15

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  17. VIIRS/J1 polarization narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith R.; Young, James B.; Fest, Eric; Butler, James; Wang, Tung R.; Monroy, Eslim O.; Turpie, Kevin; Meister, Gerhard; Thome, Kurtis J.

    2015-09-01

    The polarization sensitivity of the Visible/NearIR (VISNIR) bands in the Joint Polar Satellite Sensor 1 (J1) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5 %, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4 %, 4.4 %, 3.1 %, and 4.3 %, respectively with a polarization characterization uncertainty of less than 0.38%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands is mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at the National Aeronautics and Space Administration's (NASA) Goddard center and at the National Institute of Science and Technology (NIST) facility and the use of NIST's Traveling Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (T-SIRCUS) for polarization testing and associated analyses and results.

  18. VIIRS-J1 Polarization Narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith; Butler, James; Meister, Gerhard; Thome, Kurtis J.

    2015-01-01

    The VIS/NIR bands polarization sensitivity of Joint Polar Satellite Sensor 1 (JPSS1) Visible/Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5%, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4%, 4.4%, 3.1%, and 4.3%, respectively with a polarization characterization uncertainty of less than 0.3%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands was mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the instruments two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at Goddard and NIST and the use of NIST's T-SIRCUS for polarization testing and associated analyses and results.

  19. Magnetic and transport properties of PrRu.sub.2./sub.Si.sub.2./sub. single crystal under high pressure

    Czech Academy of Sciences Publication Activity Database

    Vejpravová, J.; Kamarád, Jiří; Prchal, J.; Sechovsky, V.

    2007-01-01

    Roč. 76, suppl. A (2007), s. 49-50 ISSN 0031-9015 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * magnetic properties * transport properties * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.212, year: 2007

  20. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  1. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  2. Hyperon polarization: theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, J.; Simao, F.R.A.

    1996-01-01

    We give a brief review of the experimental situation concerning hyperon polarization. We mention also the current models developed to understand the experimental results and make some comments on some theoretical aspects contained in the Thomas precession model. (author). 8 ref.

  3. Tau physics with polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Daoudi, M.

    1995-11-01

    We present the first results on tau physics using polarized beams. These include measurements of the {tau} Michel parameters {xi} and {xi}{delta} and the {tau} neutrino helicity h{sub {nu}}. The measurements were performed using the SLD detector at the Stanford Linear Collider (SLC).

  4. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  5. Verum focus and polar questions

    Directory of Open Access Journals (Sweden)

    Ion Giurgea

    2012-11-01

    Full Text Available We argue that some word order phenomena in Romanian and Sardinian are the result of a checking operation in the left periphery involving verum focus (i.e. focus on the polarity component of the sentence. In particular, this operation accounts for some word order patterns found in polar questions. In Romanian, polarity fronting is realized as head-movement of (V+T to a higher peripheral head which bears a Focus-probe. This licenses VS orders for predications in which VS is not allowed as a neutral order (i-level predicates, iteratives, generics. In Sardinian, an entire phrase headed by the lexical predicate (verbal non-finite form or non-verbal predicate is fronted before the auxiliary. We argue that this order is obtained by two movement operations, head-raising of Aux to Foc and movement of the predicate phrase to SpecFoc. We also present the semantics of polarity focus, distinguishing several types of focus (informational, emphatic, contrastive.

  6. Free radicals and polarized targets

    Science.gov (United States)

    Bunyatova, E. I.

    2004-06-01

    Many free radicals were added to organic compounds in search of high proton and deuteron polarizations. Few found practical application. A short review is presented, and special attention is given to some stable nitroxyl radicals which have lately been admixed to organic compounds solid at room temperature, in particular to scintillators.

  7. Free radicals and polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I. E-mail: bunyatel@nusun.jinr.ru

    2004-06-21

    Many free radicals were added to organic compounds in search of high proton and deuteron polarizations. Few found practical application. A short review is presented, and special attention is given to some stable nitroxyl radicals which have lately been admixed to organic compounds solid at room temperature, in particular to scintillators.

  8. History of the polarized beam

    Energy Technology Data Exchange (ETDEWEB)

    Parker, E F

    1979-01-01

    In 1973, the first high energy polarized proton beam was developed at the Argonne Zero Gradient Synchrotron (ZGS). It operated very successfully and productively until 1979 when the ZGS was shut down permanently. This report describes the development, characteristics, and operations of this facility.

  9. TREC Dynamic Domain: Polar Science

    Science.gov (United States)

    2015-11-20

    similarity. However, not all teams that submitted web crawls to this dataset applied their jaccard- similarity algorithms . 4.2 Data Format ...analysis. These algorithms were focused then on allowing better answers to the below representative science queries of our Polar data: 1. What...

  10. Bacteriophage in polar inland waters

    Science.gov (United States)

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  11. High current polarized proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1988-01-01

    Polarized proton sources are now being used more frequently on linacs. In pulsed operation up to 10 mA of /rvec H//sup +/ and 0.4 mA of /rvec H//sup /minus// have been produced. The present status of these sources, and developments to reach even higher intensities, are reviewed. 39 refs., 1 tab.

  12. the effect of surface polarity

    Indian Academy of Sciences (India)

    Abstract. An implant material when comes in contact with blood fluids (e.g., blood and lymph), adsorb proteins spontaneously on its surface. Notably, blood coagulation is influenced by many factors, including mainly chemical structure and polarity (charge) of the material. The present study describes the methodology to ...

  13. Verum focus and polar questions

    Directory of Open Access Journals (Sweden)

    Ion Giurgea

    2012-01-01

    Full Text Available We argue that some word order phenomena in Romanian and Sardinian are the result of a checkingoperation in the left periphery involving verum focus (i.e. focus on the polarity component of the sentence.In particular, this operation accounts for some word order patterns found in polar questions. In Romanian,polarity fronting is realized as head-movement of (V+T to a higher peripheral head which bears a Focusprobe.This licenses VS orders for predications in which VS is not allowed as a neutral order (i-levelpredicates, iteratives, generics. In Sardinian, an entire phrase headed by the lexical predicate (verbal nonfiniteform or non-verbal predicate is fronted before the auxiliary. We argue that this order is obtained bytwo movement operations, head-raising of Aux to Foc and movement of the predicate phrase to SpecFoc. Wealso present the semantics of polarity focus, distinguishing several types of focus (informational, emphatic,contrastive.

  14. The SLC polarized electron source

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1990-10-01

    A polarized electron source consisting of a 3-electrode photocathode gun and a flashlamp-pumped dye laser has been designed and built for the SLC and is currently undergoing commissioning. The source is described, and the operating configuration is discussed. The present status of the source and future plans are briefly indicated. 7 refs., 4 figs

  15. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  16. Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes

    Science.gov (United States)

    Law, Ga-Lai; Andolina, Christopher M.; Xu, Jide; Luu, Vinh; Rutkowski, Philip X.; Muller, Gilles; Shuh, David K.; Gibson, John K.; Raymond, Kenneth N.

    2012-01-01

    A key distinction between the lanthanide (4f) and actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, the spectra of the highly luminescent complexes showed significant emission peak-shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra. PMID:22920726

  17. Reactions between aromatic hydrocarbons and heterocycles: covalent and proton-bound dimer cations of benzene/pyridine.

    Science.gov (United States)

    El-Shall, M Samy; Ibrahim, Yehia M; Alsharaeh, Edreese H; Meot-Ner Mautner, Michael; Watson, Simon P

    2009-07-29

    Despite the fact that benzene (Bz) and pyridine (Py) are probably the most common and extensively studied organic molecules, the observation of a covalent adduct in the ionized benzene/pyridine system has never been reported. This Article reports the first experimental and theoretical evidence of a covalent (Bz x Py)(*+) adduct that results from the reaction of Bz(*+) with pyridine or Py(*+) with benzene. These reactions are studied using mass-selected ion mobility, chemical reactivity, collisional dissociation, and ab initio calculations. The (Bz x Py)(*+) adduct does not exchange ligands with Bz to form Bz(2)(*+) or with Py to form (Py)(2)H(+) despite the strong bonds in these homodimers. The thermochemistry then suggests that the (Bz x Py)(*+) heterodimer is bonded covalently with a bonding energy of >33 kcal/mol. Correspondingly, ab initio calculations identify covalently bonded propeller-shaped isomers of (Bz x Py)(*+) with bonding energies of 31-38 kcal/mol, containing a C-N bond. The mobility of the (Bz x Py)(*+) adduct in helium is consistent with these covalent dimers. As to noncovalent adducts, the computations identify novel distonic hydrogen-bonded complexes (C(5)H(5)NH(+) x C(6)H(5)(*)) where the charge resides on one component (PyH(+)), while the radical site resides on the other component (C(6)H(5)(*)). Collisional dissociation suggests that the covalent and distonic dimers may interconvert at high energies. The most stable distonic (C(5)H(5)NH(+) x C(6)H(5)(*)) complex contains a hydrogen bond to the phenyl radical carbon site with a calculated dissociation energy of 16.6 kcal/mol. This bond is somewhat stronger than the NH(+) x pi hydrogen bonds of PyH(+) to the pi system of the phenyl radical and of the benzene molecule. For this NH(+) x pi bond in the PyH(+) x Bz dimer, the measured binding energy is 13.4 kcal/mol, and ab initio calculations identify two T-shaped isomers with the NH(+) pointing to the center of the benzene ring or to the

  18. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel.

    Science.gov (United States)

    Xu, Zhiyuan; Wang, Song; Li, Yongjun; Wang, Mingwei; Shi, Ping; Huang, Xiaoyu

    2014-10-08

    Graphene oxide (GO), a novel 2D nanomaterial prepared by the oxidation of natural graphite, has been paid much attention in the area of drug delivery due to good biocompatibility and low toxicity. In the present work, 6-armed poly(ethylene glycol) was covalently introduced into the surface of GO sheets via a facile amidation process under mild conditions, making the modified GO, GO-PEG (PEG: 65 wt %, size: 50-200 nm), stable and biocompatible in physiological solution. This nanosized GO-PEG was found to be nontoxic to human lung cancer A549 and human breast cancer MCF-7 cells via cell viability assay. Furthermore, paclitaxel (PTX), a widely used cancer chemotherapy drug, was conjugated onto GO-PEG via π-π stacking and hydrophobic interactions to afford a nanocomplex of GO-PEG/PTX with a relatively high loading capacity for PTX (11.2 wt %). This complex could quickly enter into A549 and MCF-7 cells evidenced by inverted fluorescence microscopy using Fluorescein isothiocyanate as a probe, and it also showed remarkably high cytotoxicity to A549 and MCF-7 cells in a broad range of concentration of PTX and time compared to free PTX. This kind of nanoscale drug delivery system on the basis of PEGylated GO may find potential application in biomedicine.

  19. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    Science.gov (United States)

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-08

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Covalently linked kanamycin - Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance.

    Science.gov (United States)

    Shavit, Michal; Pokrovskaya, Varvara; Belakhov, Valery; Baasov, Timor

    2017-06-01

    To address the growing problem of antibiotic resistance, a set of 12 hybrid compounds that covalently link fluoroquinolone (ciprofloxacin) and aminoglycoside (kanamycin A) antibiotics were synthesized, and their activity was determined against both Gram-negative and Gram-positive bacteria, including resistant strains. The hybrids were antagonistic relative to the ciprofloxacin, but were substantially more potent than the parent kanamycin against Gram-negative bacteria, and overcame most dominant resistance mechanisms to aminoglycosides. Selected hybrids were 42-640 fold poorer inhibitors of bacterial protein synthesis than the parent kanamycin, while they displayed similar inhibitory activity to that of ciprofloxacin against DNA gyrase and topoisomerase IV enzymes. The hybrids showed significant delay of resistance development in both E. coli and B. subtilis in comparison to that of component drugs alone or their 1:1 mixture. More generally, the data suggest that an antagonistic combination of aminoglycoside-fluoroquinolone hybrids can lead to new compounds that slowdown/prevent the emergence of resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    Science.gov (United States)

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites.

    Science.gov (United States)

    Patel, Hasmukh A; Yavuz, Cafer T

    2015-01-01

    Carbon dioxide (CO2) storage and utilization requires effective capture strategies that limit energy penalties. Polyethylenimine (PEI)-impregnated covalent organic polymers (COPs) with a high CO2 adsorption capacity are successfully prepared in this study. A low cost COP with a high specific surface area is suitable for PEI loading to achieve high CO2 adsorption, and the optimal PEI loading is 36 wt%. Though the adsorbed amount of CO2 on amine impregnated COPs slightly decreased with increasing adsorption temperature, CO2/N2 selectivity is significantly improved at higher temperatures. The adsorption of CO2 on the sorbent is very fast, and a sorption equilibrium (10% wt) was achieved within 5 min at 313 K under the flow of simulated flue gas streams. The CO2 capture efficiency of this sorbent is not affected under repetitive adsorption-desorption cycles. The highest CO2 capture capacity of 75 mg g(-1) at 0.15 bar is achieved under dry CO2 capture however it is enhanced to 100 mg g(-1) in the mixed gas flow containing humid 15% CO2. Sorbents were found to be thermally stable up to at least 200 °C. TGA and FTIR studies confirmed the loading of PEIs on COPs. This sorbent with high and fast CO2 sorption exhibits a very promising application in direct CO2 capture from flue gas.

  3. New biofuel integrating glycerol into its composition through the use of covalent immobilized pig pancreatic lipase.

    Science.gov (United States)

    Luna, Diego; Posadillo, Alejandro; Caballero, Verónica; Verdugo, Cristóbal; Bautista, Felipa M; Romero, Antonio A; Sancho, Enrique D; Luna, Carlos; Calero, Juan

    2012-01-01

    By using 1,3-specific Pig Pancreatic lipase (EC 3.1.1.3 or PPL), covalently immobilized on AlPO(4)/Sepiolite support as biocatalyst, a new second-generation biodiesel was obtained in the transesterification reaction of sunflower oil with ethanol and other alcohols of low molecular weight. The resulting biofuel is composed of fatty acid ethyl esters and monoglycerides (FAEE/MG) blended in a molar relation 2/1. This novel product, which integrates glycerol as monoacylglycerols (MG) into the biofuel composition, has similar physicochemical properties compared to those of conventional biodiesel and also avoids the removal step of this by-product. The biocatalyst was found to be strongly fixed to the inorganic support (75%). Nevertheless, the efficiency of the immobilized enzyme was reduced to half (49.1%) compared to that of the free PPL. The immobilized enzyme showed a remarkable stability as well as a great reusability (more than 40 successive reuses) without a significant loss of its initial catalytic activity. Immobilized and free enzymes exhibited different reaction mechanisms, according to the different results in the Arrhenius parameters (Ln A and Ea). However, the use of supported PPL was found to be very suitable for the repetitive production of biofuel due to its facile recyclability from the reaction mixture.

  4. New Biofuel Integrating Glycerol into Its Composition Through the Use of Covalent Immobilized Pig Pancreatic Lipase

    Directory of Open Access Journals (Sweden)

    Carlos Luna

    2012-08-01

    Full Text Available By using 1,3-specific Pig Pancreatic lipase (EC 3.1.1.3 or PPL, covalently immobilized on AlPO4/Sepiolite support as biocatalyst, a new second-generation biodiesel was obtained in the transesterification reaction of sunflower oil with ethanol and other alcohols of low molecular weight. The resulting biofuel is composed of fatty acid ethyl esters and monoglycerides (FAEE/MG blended in a molar relation 2/1. This novel product, which integrates glycerol as monoacylglycerols (MG into the biofuel composition, has similar physicochemical properties compared to those of conventional biodiesel and also avoids the removal step of this by-product. The biocatalyst was found to be strongly fixed to the inorganic support (75%. Nevertheless, the efficiency of the immobilized enzyme was reduced to half (49.1% compared to that of the free PPL. The immobilized enzyme showed a remarkable stability as well as a great reusability (more than 40 successive reuses without a significant loss of its initial catalytic activity. Immobilized and free enzymes exhibited different reaction mechanisms, according to the different results in the Arrhenius parameters (Ln A and Ea. However, the use of supported PPL was found to be very suitable for the repetitive production of biofuel due to its facile recyclability from the reaction mixture.

  5. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  6. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  7. The non-covalent decoration of self-assembling protein fibers.

    Science.gov (United States)

    Mahmoud, Zahra N; Grundy, Daniel J; Channon, Kevin J; Woolfson, Derek N

    2010-10-01

    The design of self-assembling fibers presents challenges in basic science, and has potential for developing materials for applications in areas such as tissue engineering. A contemporary issue in the field is the construction of multi-component, functionalized systems. Previously, we have developed peptide-based fibers, the SAF system, that comprises two complementary peptides, which affords considerable control over assembly and morphology. Here we present a straightforward route to functionalizing the SAFs with small molecules and, subsequently, other moieties. This is achieved via non-covalent recruitment of charged peptide tags, which offers advantages such as further control, reversibility, and future prospects for developing recombinant tags. We demonstrate the concept by appending fluorescent labels and biotin (and thence gold nanoparticles) to the peptides, and visualising the resulting decorated SAFs by light and electron microscopy. The peptide tags bind in the nm-mum range, and show specificity compared with control peptides, and for the SAFs over similar alpha-helix-based peptide fibers. 2010 Elsevier Ltd. All rights reserved.

  8. Isocyanate-mediated covalent immobilization of Mucor miehei lipase onto SBA-15 for transesterification reaction.

    Science.gov (United States)

    Canilho, N; Jacoby, J; Pasc, A; Carteret, C; Dupire, F; Stébé, M J; Blin, J L

    2013-12-01

    Mucor miehei lipase (Mm-L) covalently bind on a hexagonally ordered silica SBA-15 (Santa Barbara Amorphous), previously functionalized with isocyanate moieties, was examined as biocatalyst for transesterification of colza oil with methanol. The isocyanate-mesoporous silica (NCO-SBA-15) was obtained by condensation of silanol with triethoxysilane propyl isocyanate (TPI). The efficiency of the functionalization has been evidenced by infrared, (29)Si and (13)C NMR spectroscopies. The substrate provided a moderate hydrophobic microenvironment together with reactive sites for chemical immobilization of the enzyme. The biocatalyst containing 0.28 g of Mm-L per gram of support afforded a high level of transesterification activity (yield up to 80%) while using 1:1 molar ratio of methanol/colza oil and small amount of water. The biocatalyst showed higher operational stability than the corresponding physisorbed enzyme since it can be reused 6 times against 2 consecutive runs for the physisorbed enzyme. © 2013 Elsevier B.V. All rights reserved.

  9. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    Science.gov (United States)

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. H-shaped supra-amphiphiles based on a dynamic covalent bond.

    Science.gov (United States)

    Wang, Guangtong; Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-10-16

    The imine bond, a kind of dynamic covalent bond, is used to bind two bolaform amphiphiles together with spacers, yielding H-shaped supra-amphiphiles. Micellar aggregates formed by the self-assembly of the H-shaped supra-amphiphiles are observed. When pH is tuned down from basic to slightly acidic, the benzoic imine bond can be hydrolyzed, leading to the dissociation of H-shaped supra-amphiphiles. Moreover, H-shaped supra-amphiphiles have a lower critical micelle concentration than their building blocks, which is very helpful in enhancing the stability of the benzoic imine bond being hydrolyzed by acid. The surface tension isotherms of the H-shaped supra-amphiphiles with different spacers indicate their twisty conformation at a gas-water interface. The study of H-shaped supra-amphiphiles can enrich the family of amphiphiles, and moreover, the pH-responsiveness may make them apply to controlled or targetable drug delivery in a biological environment.

  11. A 3D Covalent Organic Framework with Exceptionally High Iodine Capture Capability.

    Science.gov (United States)

    Wang, Chang; Wang, Yu; Ge, Rile; Song, Xuedan; Xing, Xueqing; Jiang, Qike; Lu, Hui; Hao, Ce; Guo, Xinwen; Gao, Yanan; Jiang, Donglin

    2018-01-12

    Using porous materials to cope with environmental issues is promising but remains a challenge especially for removing the radioactive vapor wastes in fission because of harsh adsorption conditions. Here we report a new, stable covalent organic framework (COF) as a porous platform for removing iodine vapor-a major radioactive fission waste. The three-dimensional COF consists of a diamond topology knotted by adamantane units, creates ordered one-dimensional pores and are highly porous. The COF enables the removal of iodine vapor via charge transfer complex formation with the pore walls to achieve exceptional capacity. Moreover, the 3D COF is "soft" to trigger structural fitting to iodine while retaining connectivity and enables cycle use for many times while retaining high uptake capacity. These results set a new benchmark for fission waste removal and suggest the great potential of COFs as a designable porous material for challenging world-threatening pollution issues. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films

    International Nuclear Information System (INIS)

    Carballo, R.R.; Campodall' Orto, V.; Hurst, J.A.; Spiaggi, A.; Bonazzola, C.; Rezzano, I.N.

    2008-01-01

    A formylporphyrin has been covalently bound to Poly (Allylamine Hydrochloride) (PAH) and electrostatically self-assembled polyelectrolyte films, containing the attached metalloporphyrin, have been constructed. The UV-vis absorption band at 390 nm has been followed as core porphyrin marker. The reflection-absorption IR spectra of the gold films modified with layer-by-layer (LBL) polyelectrolytes were recorded after 6 and 12 layers. Characteristic infrared absorbance bands of porphyrin, PAH and PVS became more evident on increasing the number of bilayers. The absorption bands at 750, 1214 and 2960 cm -1 , attributed at ν(S-O), ν s (SO 3 - ) and ν(=NH 2 + ), respectively, showed a linear growth (R 2 > 0.99) with the number of adsorbed layers. A lower correlation coefficient was observed for the band at 1585 cm -1 attributed to Fe-protoporphyrin. In order to evaluate the electron transfer (ET) rate, the ΔE p of the [Fe(CN) 6 ] 4- /[Fe(CN) 6 ] 3- couple in solution was measured after covering the electrode. A proportional increase of the ΔE p with the number of layers is observed up to the 4th layer. After the second bilayer, the magnitude of the peak separation is highly related to the charge of the topmost layer. The method allowed controlling the film thickness via the number of deposited layers (LBL). The electrode described, resulted in a good catalyst for O 2 reduction and sulfite oxidation

  13. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2017-05-01

    Highlights: • Novel lysine modified fibrous adsorbents were prepared using a facile and green method. • PAN-Lys exhibited high adsorption activity and fast adsorption rate. • PAN-Lys significantly remove U(VI) from simulated seawater. - Abstract: Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3–30 μg L{sup −1}) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  14. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    International Nuclear Information System (INIS)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan; Wang, Jun

    2017-01-01

    Highlights: • Novel lysine modified fibrous adsorbents were prepared using a facile and green method. • PAN-Lys exhibited high adsorption activity and fast adsorption rate. • PAN-Lys significantly remove U(VI) from simulated seawater. - Abstract: Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3–30 μg L −1 ) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  15. Improving Properties of a Novel β-Galactosidase from Lactobacillus plantarum by Covalent Immobilization.

    Science.gov (United States)

    Benavente, Rocio; Pessela, Benevides C; Curiel, Jose Antonio; de las Rivas, Blanca; Muñoz, Rosario; Guisán, Jose Manuel; Mancheño, Jose M; Cardelle-Cobas, Alejandra; Ruiz-Matute, Ana I; Corzo, Nieves

    2015-04-30

    A novel β-galactosidase from Lactobacillus plantarum (LPG) was over-expressed in E. coli and purified via a single chromatographic step by using lowly activated IMAC (immobilized metal for affinity chromatography) supports. The pure enzyme exhibited a high hydrolytic activity of 491 IU/mL towards o-nitrophenyl β-D-galactopyranoside. This value was conserved in the presence of different divalent cations and was quite resistant to the inhibition effects of different carbohydrates. The pure multimeric enzyme was stabilized by multipoint and multisubunit covalent attachment on glyoxyl-agarose. The glyoxyl-LPG immobilized preparation was over 20-fold more stable than the soluble enzyme or the one-point CNBr-LPG immobilized preparation at 50 °C. This β-galactosidase was successfully used in the hydrolysis of lactose and lactulose and formation of different oligosaccharides was detected. High production of galacto-oligosaccharides (35%) and oligosaccharides derived from lactulose (30%) was found and, for the first time, a new oligosaccharide derived from lactulose, tentatively identified as 3'-galactosyl lactulose, has been described.

  16. Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions.

    Science.gov (United States)

    Lu, Qiuyu; Ma, Yunchao; Li, Hui; Guan, Xinyu; Yusran, Yusran; Xue, Ming; Fang, Qianrong; Yan, Yushan; Qiu, Shilun; Valtchev, Valentin

    2018-02-19

    Chemical functionalization of covalent organic frameworks (COFs) is critical for tuning their properties and broadening their potential applications. However, the introduction of functional groups, especially to three-dimensional (3D) COFs, still remains largely unexplored. Reported here is a general strategy for generating a 3D carboxy-functionalized COF through postsynthetic modification of a hydroxy-functionalized COF, and for the first time exploration of the 3D carboxy-functionalized COF in the selective extraction of lanthanide ions. The obtained COF shows high crystallinity, good chemical stability, and large specific surface area. Furthermore, the carboxy-functionalized COF displays high metal loading capacities together with excellent adsorption selectivity for Nd 3+ over Sr 2+ and Fe 3+ as confirmed by the Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. This study not only provides a strategy for versatile functionalization of 3D COFs, but also opens a way to their use in environmentally related applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Immobilization of Candida antarctica Lipase B by Covalent Attachment to Green Coconut Fiber

    Science.gov (United States)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60°C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5°C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60°C stability was reduced for both CALB-7 and CALB-10.

  18. Evidence for covalent attachment of phospholipid to the capsular polysaccharide of Haemophilus influenzae type b

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, J.S.; Doelling, V.W.; Graveline, J.F.; McCoy, D.W.

    1985-08-01

    Cells of Haemophilus influenzae type b were grown in a liquid medium containing (TH)palmitate or ( UC)ribose or both for two generations of exponential growth. Radiolabeled type-specific capsular polysaccharide, polyribosyl ribitol phosphate (PRP), was purified from the culture supernatant by Cetavlon precipitation, ethanol fractionation, and hydroxylapatite and Sepharose 4B chromatography. The doubly labeled ( (TH)palmitate and ( UC)ribose) PRP preparation was found to coelute in a single peak from a Sepharose 4B column, suggesting that both precursors were incorporated into the purified PRP. A singly labeled ( (TH)palmitate) purified PRP preparation was found to be quantitatively immune precipitated by human serum containing antibody against PRP. Only after acid, alkaline, or phospholipase A2 treatment of PRP labeled with (TH)palmitate or (TH)palmitate and ( UC)ribose followed by chloroform-methanol extraction could most of the TH-radioactivity be recovered in the organic phase. The chloroform-soluble acid-hydrolyzed or phospholipase A2-treated product was identified as palmitic acid after thin-layer chromatography. These results strongly suggest that a phospholipid moiety is covalently associated with the H. influenzae type b polysaccharide PRP.

  19. Improving Properties of a Novel β-Galactosidase from Lactobacillus plantarum by Covalent Immobilization

    Directory of Open Access Journals (Sweden)

    Rocio Benavente

    2015-04-01

    Full Text Available A novel β-galactosidase from Lactobacillus plantarum (LPG was over-expressed in E. coli and purified via a single chromatographic step by using lowly activated IMAC (immobilized metal for affinity chromatography supports. The pure enzyme exhibited a high hydrolytic activity of 491 IU/mL towards o-nitrophenyl β-d-galactopyranoside. This value was conserved in the presence of different divalent cations and was quite resistant to the inhibition effects of different carbohydrates. The pure multimeric enzyme was stabilized by multipoint and multisubunit covalent attachment on glyoxyl-agarose. The glyoxyl-LPG immobilized preparation was over 20-fold more stable than the soluble enzyme or the one-point CNBr-LPG immobilized preparation at 50 °C. This β-galactosidase was successfully used in the hydrolysis of lactose and lactulose and formation of different oligosaccharides was detected. High production of galacto-oligosaccharides (35% and oligosaccharides derived from lactulose (30% was found and, for the first time, a new oligosaccharide derived from lactulose, tentatively identified as 3'-galactosyl lactulose, has been described.

  20. Recent advances in covalent, site-specific protein immobilization [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Morten Meldal

    2016-09-01

    Full Text Available The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches based on bioorthogonal reactions, like the azide–alkyne cycloaddition, have proven to be powerful tools. The lack of comparative studies and quantitative analysis of these immobilization methods hampers the selection process of the optimal strategy for a given application. However, besides immobilization efficiency, the freedom in selecting the site of conjugation and the size of the conjugation tag and the researcher’s expertise regarding molecular biology and/or chemical techniques will be determining factors in this regard.