WorldWideScience

Sample records for polar alkali-metal dimers

  1. Metal membrane with dimer slots as a universal polarizer

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu

    2014-01-01

    In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory for the electr......In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory...

  2. Metal membrane with dimer slots as a universal polarizer

    Science.gov (United States)

    Zhukovsky, Sergej; Zalkovskij, Maksim; Malureanu, Radu; Kremers, Christian; Chigrin, Dmitry; Tang, Peter T.; Jepsen, Peter U.; Lavrinenko, Andrei V.

    2014-03-01

    In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory for the electromagnetic response of an arbitrary dimer based on the Green functions approach. The theory confirms that a great variety of polarization properties, such as birefringence, chirality and elliptical dichroism, can be achieved in a metal layer with such slot-dimer patterning (i.e. in a metasurface). Optical properties of the metasurface can be extensively tuned by varying the geometry (shape and dimensions) of the dimer, for example, by adjusting the sizes and mutual placement of the slots (e.g. inter-slot distance and alignment angle). Three basic shapes of dimers are analyzed: II-shaped (parallel slots), V-shaped, and T-shaped. These particular shapes of dimers are found to be sensitive to variations of the slots lengths and orientation of elements. Theoretical results are well supported by full-wave three-dimensional simulations. Our findings were verified experimentally on the metal membranes fabricated using UV lithography with subsequent Ni growth. Such metasurfaces were characterized using time-domain THz spectroscopy. The samples exhibit pronounced optical activity (500 degrees per wavelength) and high transmission: even though the slots cover only 4.3 % of the total membrane area the amplitude transmission reaches 0.67 at the resonance frequency 0.56 THz.

  3. Synthesis and structural characterization of alkali metal arsinoamides.

    Science.gov (United States)

    Chen, Xiao; Gamer, Michael T; Roesky, Peter W

    2017-12-20

    The aminoarsane Mes 2 AsN(H)Ph was prepared from Mes 2 AsCl and aniline in good yields. Deprotonation of Mes 2 AsN(H)Ph with suitable alkali metal bases resulted in the corresponding alkali metal derivatives. Thus, reaction of Mes 2 AsN(H)Ph with nBuLi, NaN(SiMe 3 ) 2 , or KH gave the metal complexes [(Mes 2 AsNPh){Li(OEt 2 ) 2 }], [(Mes 2 AsNPh){Na(OEt 2 )}] 2 , and [(Mes 2 AsNPh){K(THF)}] 2 . These are the first metal complexes ligated by an arsinoamide. All solid-state structures were established by single crystal X-ray diffraction. The lithium compounds form a monomer in the solid-state, whereas the sodium and the potassium derivatives are dimers. In the dimeric compounds intra- and intermolecular π-interaction of the aromatic rings with the metal atoms is observed.

  4. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-01-01

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the 2 Σ + ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  5. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  6. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  7. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  8. Dichroism, chirality, and polarization eigenstates in Babinet nanoslot-dimer membrane metamaterials

    Science.gov (United States)

    Zhukovsky, Sergei V.; Chigrin, Dmitry N.; Kremers, Christian; Lavrinenko, Andrei V.

    2013-11-01

    We present a detailed theoretical description of the optical properties of planar metamaterials comprising a metal membrane patterned with openings (microslots) arranged in closely located couples (dimers). Using the covariant coupled-dipole approach, the effective material tensors of such a metamaterial are recovered, and contributions responsible for elliptical dichroism and optical activity are identified. Polarization conversion properties of II-shaped and V-shaped dimers are determined and explained in terms of elliptically polarized eigenmodes of the metamaterial. Good agreement with direct numerical simulations is demonstrated. The results obtained are promising for the design of thin-film frequency selective polarization shapers for terahertz waves.

  9. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  10. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  12. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  13. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  14. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  15. Alkali metal for ultraviolet band-pass filter

    Science.gov (United States)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  16. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  17. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  18. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1979-01-01

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  19. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals

  20. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  1. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  2. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  3. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  4. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals.

    Science.gov (United States)

    Gao, Juehan; Berden, Giel; Rodgers, M T; Oomens, Jos

    2016-03-14

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.

  5. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  6. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    International Nuclear Information System (INIS)

    Fuentealba, P.; Reyes, O.

    1993-01-01

    The electric static dipole polarizability α, quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability γ have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability γ. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author)

  7. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  8. Method for the safe disposal of alkali metal

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam--CO 2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps. 5 claims, 1 figure

  9. Method of handling radioactive alkali metal waste

    Science.gov (United States)

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Method of handling radioactive alkali metal waste

    International Nuclear Information System (INIS)

    Mcpheeters, C.C.; Wolson, R.D.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1

  11. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  12. 40 CFR 721.4740 - Alkali metal nitrites.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in the...

  13. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  14. Controlled in-situ dissolution of an alkali metal

    Science.gov (United States)

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  15. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  16. Modification of the method of polarized orbitals for electron--alkali-metal scattering: Application to e-Li

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Temkin, A.; Silver, A.; Sullivan, E.C.

    1978-01-01

    The method of polarized orbitals is modified to treat low-energy scattering of electrons from highly polarizable systems, specifically alkali-metal atoms. The modification is carried out in the particular context of the e-Li system, but the procedure is general; it consists of modifying the polarized orbital, so that when used in the otherwise orthodox form of the method, it gives (i) the correct electron affinity of the negative ion (in this case Li - ), (ii) the proper (i.e., Levinson-Swan) number of nodes of the associated zero-energy scattering orbital, and (iii) the correct polarizability. A procedure is devised whereby the scattering length can be calculated from the (known) electron affinity without solving the bound-state equation. Using this procedure we adduce a 1 S scattering length of 8.69a 0 . (The 3 S scattering length is -9.22a 0 .) The above modifications can also be carried out in the (lesser) exchange adiabatic approximation. However, they lead to qualitatively incorrect 3 S phase shifts. The modified polarized-orbital phase shifts are qualitatively similar to close-coupling and elaborate variational calculations. Quantitative differences from the latter calculations, however, remain; they are manifested most noticeably in the very-low-energy total and differential spin-flip cross sections

  17. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  18. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  20. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  1. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  2. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  3. Salts of alkali metal anions and process of preparing same

    Science.gov (United States)

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  4. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level. 6 claims

  5. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  6. Mechanical filter for alkali atoms

    CERN Document Server

    Toporkov, D K

    2000-01-01

    A device for separating gases of different mass is discussed. Such a device could be used in a laser-driven spin exchange source of polarized hydrogen atoms to reduce the contamination of alkali atoms. A Monte Carlo simulation has shown that the suggested apparatus based on a commercial turbo pump could reduce by a factor of 10-15 the concentration of the alkali-metal atoms in the hydrogen flow from a laser driven polarized source. This would greatly enhance the effective polarization in hydrogen targets.

  7. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  8. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  9. Interaction of alkali metal nitrates with calcium carbonate and kyanite

    International Nuclear Information System (INIS)

    Protsyuk, A.P.; Malakhov, A.I.; Karabanov, V.P.; Lebedeva, L.P.

    1978-01-01

    Thermographic, thermodynamic and X-ray phase studies have been made into the interaction of alkali metal nitrates with calcium carbonate and kyanite. Examined among other things was the effect of water vapor and carbon dioxide on the interaction between alkali metal nitrates and kyanite. The chemical mechanism of the occurring processes has been established. The interaction with calcium carbonates results in the formation of alkali metal carbonates and calcium oxide with liberation of nitrogen oxide and oxygen. The products of the interaction with kyanite are shown to be identical with the compounds forming when alkali metal carbonates are used

  10. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2 Σ + ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained

  11. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  12. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...

  13. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  14. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  15. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  16. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Stasinska, A.; Callan, A.C.; Heyworth, J.; Ramalingam, M.; Boyce, M.; McCafferty, P.; Odland, J.Ø.

    2015-01-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  17. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  18. First-principles simulations on the new hybrid phases of germanene with alkali metal atoms coverage

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianmei [Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan 411105 (China); Tang, Chan; Zhong, Jianxin [Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan 411105 (China); Mao, Yuliang, E-mail: ylmao@xtu.edu.cn [Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan 411105 (China)

    2016-01-01

    Graphical abstract: - Highlights: • The predicted new phase of complete lithiated germanene is more favorable to form than germanane. • Besides ionic interactions, covalent component in some extent leads the complete lithiated germanene into a semiconductor. • 2D phases of Ge{sub 2}X{sub 1} (X = Li, Na, K) are metallic with weak polarization. • Half-lithiated germanene exhibits local magnetic moments on the Ge atoms neighbored with Li adatoms. - Abstract: We present first-principles calculations of a new type hybrid phases composed by buckled germanene with saturated or half-saturated alkali metal atoms adsorption. Our energetics and electronic structure analysis suggests that adsorbed alkali metal atoms (Li, Na, K) can be used as covered adatoms to synthesize germanene-based new phases in two dimensional. The predicted new phases of Ge{sub 2}X{sub 2} and Ge{sub 2}X{sub 1} (X = Li, Na, K) relative to the single germanene sheet could exist at room temperature. The formation energy of Ge{sub 2}Li{sub 2} configuration obtained from complete lithiation is even more favorable than that of germanane. Charge transfer is significant between the alkali metal atoms and Ge, indicating the ionic interactions between them. Furthermore, our charge density analysis indicates that covalent component in some extent exists in Ge{sub 2}X{sub 2} and Ge{sub 2}X{sub 1} (X = Li, Na, K) 2D phases, which even leads the complete lithiated germanene into a semiconductor with an energy gap of 0.14 eV. We report that 2D phases of Ge{sub 2}X{sub 1} (X = Li, Na, K) are metallic with weak polarization on the Fermi level and in unoccupied states. It is found that half-lithiated germanene exhibits local magnetic moments of 0.48 μ{sub B} on the Ge atoms neighbored with Li adatoms.

  19. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  20. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  1. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  2. Metal induced gap states at alkali halide/metal interface

    International Nuclear Information System (INIS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  3. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzoic acid, alkali...

  4. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  5. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  6. C-N Bond Activation and Ring Opening of a Saturated N-Heterocyclic Carbene by Lateral Alkali-Metal-Mediated Metalation.

    Science.gov (United States)

    Hernán-Gómez, Alberto; Kennedy, Alan R; Hevia, Eva

    2017-06-01

    Combining alkali-metal-mediated metalation (AMMM) and N-heterocyclic carbene (NHC) chemistry, a novel C-N bond activation and ring-opening process is described for these increasingly important NHC molecules, which are generally considered robust ancillary ligands. Here, mechanistic investigations on reactions of saturated NHC SIMes (SIMes=[:C{N(2,4,6-Me 3 C 6 H 2 )CH 2 } 2 ]) with Group 1 alkyl bases suggest this destructive process is triggered by lateral metalation of the carbene. Exploiting co-complexation and trans-metal-trapping strategies with lower polarity organometallic reagents (Mg(CH 2 SiMe 3 ) 2 and Al(TMP)iBu 2 ), key intermediates in this process have been isolated and structurally defined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Plasmonic nanospherical dimers for color pixels

    KAUST Repository

    Alrasheed, Salma

    2018-04-20

    Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular wavelengths. Metal nanosphere dimers are capable of supporting plasmon resonances that can be tuned to span the entire visible spectrum. In this article, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. We show that it is possible to obtain RGB pixels in the reflection mode. The longitudinal plasmon resonance of nanosphere dimers along the axis of the dimer is the main contributor to the color of the pixel, while far-field diffractive coupling further enhances and tunes the plasmon resonance. The computational method used is the finite-difference time-domain method. The advantages of this approach include simplicity of the design, bright coloration, and highly polarized function. In addition, we show that it is possible to obtain different colors by varying the angle of incidence, the periodicity, the size of the dimer, the gap, and the substrate thickness.

  8. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  9. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    1967-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  10. Alkali Metal Modification of Silica Gel-Based Stationary Phase in Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available Modification of the precipitated silica gel was done by treatment with alkali metal (NaCl before and after calcination. The silica surfaces before and after modification were confirmed by infrared spectroscopy in order to observe the strength and abundance of the acidic surface OH group bands which play an important role in the adsorption properties of polar and nonpolar solutes. The surface-modified silica gels were tested as GC solid stationary phases in terms of the separation efficiency for various groups of non-polar and polar solutes. Also, thermodynamic parameters (ΔH, ΔG, and ΔS were determined using n-hexane as a probe in order to show the adsorbate-adsorbent interaction. It was observed that the non-polar solutes could be separated Independent on the reactivity and porosity of the silica surfaces. The efficiency of the surface-modified silica gels to separate the aromatic hydrocarbons seemed to be strongly influenced by the density of the surface hydroxyls.

  11. Graphite-based detectors of alkali metals for nuclear power plants

    International Nuclear Information System (INIS)

    Kalandarishvili, A.G.; Kuchukhidze, V.A.; Sordiya, T.D.; Shartava, Sh.Sh.; Stepennov, B.S.

    1993-01-01

    The coolants most commonly used in today's fast reactors are alkali metals or their alloys. A major problem in nuclear plant design is leakproofing of the liquid-metal cooling system, and many leak detection methods and safety specifications have been developed as a result. Whatever the safety standards adopted for nuclear plants in different countries, they all rely on the basic fact that control of the contamination and radiation hazards involved requires reliable monitoring equipment. Results are presented of trials with some leak detectors for the alkali-metal circuits of nuclear reactors. The principal component affecting the detector performance is the sensing element. In the detectors graphite was employed, whose laminar structure enables it to absorb efficiently alkali-metal vapors at high temperatures (320--500 K). This produces a continuous series of alkali-metal-graphite solid solutions with distinct electrical, thermal, and other physical properties. The principle of operation of the detectors resides in the characteristic reactions of the metal-graphite system. One detector type uses the change of electrical conductivity of the graphite-film sensor when it is exposed to alkali-metal vapor. In order to minimize the effect of temperature on the resistance the authors prepared composite layers of graphite intercalated with a donor impurity (cesium or barium), and a graphite-nickel material. The addition of a small percentage of cesium, barium, or nickel produces a material whose temperature coefficient of resistance is nearly zero. Used as a sensing element, such a material can eliminate the need for thermostatic control of the detector

  12. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  13. Device for removing alkali metal residues from heat exchanger

    International Nuclear Information System (INIS)

    Matal, O.

    1987-01-01

    The main parts of the facility consists of a condensing vessel and a vacuum pump unit interconnected via a vacuum pipe. The heat exchanger is heated to a temperature at which the alkali metal residues evaporate. Metal vapors are collected in the condensing vessel where they condense. The removal of the alkali metal residues from the heat exchanger pipes allows thorough inspection of the pipe inside during scheduled nuclear power plant shutdowns. The facility can be used especially with reverse steam generators. (E.S.). 1 fig

  14. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzenesulfonic acid, alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL...

  15. Exploration of the catalytic use of alkali metal bases

    OpenAIRE

    Bao, Wei

    2017-01-01

    This PhD thesis project was concerned with the use of alkali metal amide Brønsted bases and alkali metal alkoxide Lewis bases in (asymmetric) catalysis. The first chapter deals with formal allylic C(sp3)–H bond activation of aromatic and functionalized alkenes for subsequent C–C and C–H bond formations. The second chapter is focused on C(sp3)–Si bond activation of fluorinated pro-nucleophiles in view of C–C bond formations. In the first chapter, a screening of various metal amides...

  16. An alternative picture of alkali-metal-mediated metallation: cleave and capture chemistry.

    Science.gov (United States)

    Mulvey, Robert E

    2013-05-21

    This perspective article takes an alternative look at alkali-metal-mediated chemistry (exchange of a relatively inert C-H bond for a more reactive C-metal bond by a multicomponent reagent usually containing an alkali metal and a less electropositive metal such as magnesium or zinc). It pictures that the cleavage of selected C-H bonds can be accompanied by the capturing of the generated anion by the multi (Lewis acid)-(Lewis base) character of the residue of the bimetallic base. In this way small atoms or molecules (hydrides, oxygen-based anions) as well as sensitive organic anions (of substituted aromatic compounds, ethers or alkenes) can be captured. Cleave and capture reactions which occur in special positions on the organic substrate are also included.

  17. Long-range interactions among three alkali-metal atoms

    International Nuclear Information System (INIS)

    Marinescu, M.; Starace, A.F.

    1996-01-01

    The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively

  18. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    Guon, J.

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  19. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    International Nuclear Information System (INIS)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO–LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ∼1.11–1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface

  20. Corrosion and compatibility in liquid alkali metals

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The literature dealing with liquid alkali metal corrosion of vanadium and its alloys is reviewed in the following subsections. Attention is given to both lithium and sodium data. Preceding this review, a brief outline of the current state of understanding of liquid metal corrosion mechanisms is provided

  1. Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6-Diisopropyl-N-(trimethylsilyl)anilino Ligand.

    Science.gov (United States)

    Fuentes, M Ángeles; Zabala, Andoni; Kennedy, Alan R; Mulvey, Robert E

    2016-10-10

    Bulky amido ligands are precious in s-block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n-butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe 3 )(Dipp)] - (Dipp=2,6-iPr 2 -C 6 H 3 ). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s-block metal amides. Solvation by N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) or N,N,N',N'-tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi-solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe 3 )(Dipp)} 2 (μ-nBu)] ∞ (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  3. Nuclear reactivity control using laser induced polarization

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1990-01-01

    This patent describes a control element for reactivity control of a fission source provides an atomic density of 3 He in a control volume which is effective to control criticality as the 3 He is spin-polarized. Spin-polarization of the 3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the 3 He for spin-polarizing the 3 He. An alkali-metal vapor may be included with the 3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with 3 He to spin-polarize the 3 He atoms

  4. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  5. Polarization of stable and radioactive noble gas nuclei by spin exchange with laser pumped alkali atoms

    International Nuclear Information System (INIS)

    Calaprice, F.; Happer, W.; Schreiber, D.

    1984-01-01

    The nuclei of noble gases can be strongly polarized by spin exchange with sufficiently dense optically pumped alkali vapors. Only a small fraction of the spin angular momentum of the alkali atoms is transferred to the nuclear spin of the noble gas. Most of the spin angular momentum is lost to translational angular momentum of the alkali and noble gas atoms about each other. For heavy noble gases most of the angular momentum transfer occurs in alkali-noble-gas van der Waals molecules. The transfer efficiency depends on the formation and breakup rates of the van der Waals molecules in the ambient gas. Experimental methods to measure the spin transfer efficiencies have been developed. Nuclei of radioactive noble gases have been polarized by these methods, and the polarization has been detected by observing the anisotropy of the radioactive decay products. Very precise measurements of the magnetic moments of the radioactive nuclei have been made. 12 references, 9 figures

  6. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.; Schwingenschlö gl, Udo; Shi, T.-Y.; Tang, L.-Y.; Yan, Z.-C.

    2012-01-01

    –5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first

  7. Is Electronegativity a Useful Descriptor for the 'Pseudo-Alkali-Metal' NH4?

    International Nuclear Information System (INIS)

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-01-01

    Molecular ions in the form of 'pseudo-atoms' are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the 'pseudo-alkali metal' ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual 'true alkali metal' with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.

  8. Ultrafast electron dynamics at alkali/ice structures adsorbed on a metal surface

    International Nuclear Information System (INIS)

    Meyer, Michael

    2011-01-01

    mediated by tunneling through a potential barrier which is determined by the thickness of the ice layer. In the second system electron solvation at small alkali/water clusters directly prepared at the metal substrate is investigated. In these experiments the average number of water molecules in such a cluster can be controlled so that the population and stabilization dynamics of excess electrons can be investigated as a function of D 2 O coverage. Two main effects are observed: (i) the alkalis are solvated by a reorientation of the surrounding solvent molecules in the cluster; and (ii) above a critical number of water molecules per alkali excess electrons can localize at the clusters where they are energetically stabilized. This critical ratio depends on the type of alkali and is inversely proportional to the alkali-induced dipole moment. Finally, it is demonstrated that trapped electrons in crystalline ice adsorbed on Ru(001) can very efficiently mediate chemical reactions via dissociative electron attachment. When electronegative molecules like CFCl 3 are coadsorbed with crystalline ice a DEA process between trapped electrons and CFCl 3 molecules occurs, resulting in the formation of .CFCl 2 radicals and Cl - anions. These results suggest that photoexcited trapped electrons can play an important role in heterogeneous chemical processes on ice surfaces and could thus be relevant in the polar stratosphere chemistry.

  9. DFT study of the interaction between DOTA chelator and competitive alkali metal ions.

    Science.gov (United States)

    Frimpong, E; Skelton, A A; Honarparvar, B

    2017-09-01

    1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    Science.gov (United States)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  11. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  12. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.

    1990-01-01

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  13. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  14. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  15. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    Science.gov (United States)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  16. Anisotropic anti-rod dimer metamaterial film for terahertz polarization manipulation

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Novitsky, Andrey

    2012-01-01

    We demonstrate the concept of an anti-rod dimer planar metamaterial with strong birefringence and optical activity in the THz range. The retrieval of circular transmission components shows an asymmetric transmission effect for right-to-left and left-to-right polarization conversion....

  17. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Science.gov (United States)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  18. Process for the recovery of alkali metal salts from aqueous solutions thereof

    International Nuclear Information System (INIS)

    Vitner, J.

    1984-01-01

    In an integrated process for the recovery of alkakli metal phenates and carboxylates from aqueous solutions thereof, the aqueous solution is spray dried and the drying gas stream is contacted with an aqueous alkali metal salt solution which dissolves the particles of the alkali metal salt that were entrained in the drying gas stream. The salt-free inert gas stream is then dried, heated, and returned to the spray dryer

  19. Spin-rotation interaction of alkali-metal endash He-atom pairs

    International Nuclear Information System (INIS)

    Walker, T.G.; Thywissen, J.H.; Happer, W.

    1997-01-01

    A treatment of the spin-rotation coupling between alkali-metal atoms and He atoms is presented. Rotational distortions are accounted for in the wave function using a Coriolis interaction in the rotating frame. The expectation value of the spin-orbit interaction gives values of the spin-rotation coupling that explain previous experimental results. For spin-exchange optical pumping, the results suggest that lighter alkali-metal atoms would be preferred spin-exchange partners, other factors being equal. copyright 1997 The American Physical Society

  20. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn [Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)

    2016-08-07

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

  1. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    Science.gov (United States)

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  2. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  3. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  4. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    International Nuclear Information System (INIS)

    Hernberg, R.; Haeyrinen, V.

    1995-01-01

    The plasma assisted method for continuous measurement of alkali metal concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. Measurements will be performed during 1995 and 1996 at different stages of the research programme. The results are expected to give information about the influence of different process conditions on the generation of alkali metal vapours, the comparison of different methods for alkali measurement and the specific performance of our system. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  5. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  6. Study of ground state optical transfer for ultracold alkali dimers

    Science.gov (United States)

    Bouloufa-Maafa, Nadia; Londono, Beatriz; Borsalino, Dimitri; Vexiau, Romain; Mahecha, Jorge; Dulieu, Olivier; Luc-Koenig, Eliane

    2013-05-01

    Control of molecular states by laser pulses offer promising potential applications. The manipulation of molecules by external fields requires precise knowledge of the molecular structure. Our motivation is to perform a detailed analysis of the spectroscopic properties of alkali dimers, with the aim to determine efficient optical paths to form molecules in the absolute ground state and to determine the optimal parameters of the optical lattices where those molecules are manipulated to avoid losses by collisions. To this end, we use state of the art molecular potentials, R-dependent spin-orbit coupling and transition dipole moment to perform our calculations. R-dependent SO coupling are of crucial importance because the transitions occur at internuclear distances where they are affected by this R-dependence. Efficient schemes to transfer RbCs, KRb and KCs to the absolute ground state as well as the optimal parameters of the optical lattices will be presented. This work was supported in part by ``Triangle de la Physique'' under contract 2008-007T-QCCM (Quantum Control of Cold Molecules).

  7. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  8. Neutron scattering investigation of layer-bending modes in alkali-metal--graphite intercalation compounds

    International Nuclear Information System (INIS)

    Zabel, H.; Kamitakahara, W.A.; Nicklow, R.M.

    1982-01-01

    Phonon dispersion curves for low-frequency transverse modes propagating in the basal plane have been measured in the alkali-metal--graphite intercalation compounds KC 8 , CsC 8 , KC 24 , and RbC 24 by means of neutron spectroscopy. The acoustic branches show an almost quadratic dispersion relation at small q, characteristic of strongly layered materials. The optical branches of stage-1 compounds can be classified as either graphitelike branches showing dispersion, or as almost dispersionless alkali-metal-like modes. Macroscopic shear constants C 44 and layer-bending moduli have been obtained for the intercalation compounds by analyzing the data in terms of a simple semicontinuum model. In stage-2 compounds, a dramatic softening of the shear constant by about a factor of 8 compared with pure graphite has been observed. Low-temperature results on KC 24 indicate the opening of a frequency gap near the alkali-metal Brillouin-zone boundary, possibly due to the formation of the alkali-metal superstructure

  9. Thermochemistry of uranium(VI), arsenic, and alkali metal triple oxides

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, G.N.

    1994-01-01

    The standard enthalpies of reactions of stoichiometric mixtures of potassium dyhydrogen orthoarsenate, uranium(VI) oxide, alkali metal nitrates, and of mixtures of triple oxides with the general formula M I AsUO 6 (M I =Li, Na, K, Rb, and Cs) and potassium nitrate with aqueous solution of hydrofluoric acid were determined an an adiabatic calorimeter at 298.15 K. The standard enthalpies of formation of uranium(VI), arsenic, and alkali metal triple oxides at 298.15 K were calculated form the data obtained. 8 refs., 1 tab

  10. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides

    Czech Academy of Sciences Publication Activity Database

    Lochmann, Lubomír; Janata, Miroslav

    2014-01-01

    Roč. 12, č. 5 (2014), s. 537-548 ISSN 1895-1066 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : superbases * heavier alkali metal compounds * lithium -heavier alkali metal interchange Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.329, year: 2013

  11. Dansyl - Substituted Aza Crown Ethers: Complexation with Alkali, Alkaline Earth Metal Ions and Ammonium

    Science.gov (United States)

    Deiab, Shihab; Archibong, Edikan; Tasheva, Donka; Mochona, Bereket; Gangapuram, Madhavi; Redda, Kinfe

    2011-01-01

    The present study investigates the binding properties of four dansyl substituted aza-crown ethers with alkali, alkaline earth metal ions and ammonium. The influence of the solvent polarity and protonation on the photophysical properties of the compounds was studied by UV/Vis and fluorescence methods. The host species caused only slight changes on the absorption spectra of the ligands. The fluorescence changes were more pronounced and concentration dependent thus allowing to calculate the binding constants of the process. The most stable complex under our working conditions was the one between Ba2+ and DNS18C6. PMID:21738561

  12. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  13. Metal analyses of ash derived alkalis from banana and plantain ...

    African Journals Online (AJOL)

    The objective of this work was to determine the metal content of plantain and banana peels ash derived alkali and the possibility of using it as alternate and cheap source of alkali in soap industry. This was done by ashing the peels and dissolving it in de-ionised water to achieve the corresponding hydroxides with pH above ...

  14. Review of alkali metal and refractory alloy compatibility for Rankine cycle applications

    International Nuclear Information System (INIS)

    DiStefano, J.R.

    1989-01-01

    The principal corrosion mechanisms in refractory metal-alkali systems are dissolution, mass transfer, and impurity reactions. In general, niobium, tantalum, molybdenum, and tungsten have low solubilities in the alkali metals, even to very high temperatures, and static corrosion studies have verified that the systems are basically compatible. Loop studies with niobium and tantalum based alloys do not indicate any serious problems due to temperature gradient mass transfer. Above 1000 K, dissimilar metal mass transfer is noted between the refractory metals and iron or nickel based alloys. The most serious corrosion problems encountered are related to impurity reactions associated with oxygen

  15. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.

  16. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  17. Thermal investigation of alkali metal hexacyanoruthenate (2)

    International Nuclear Information System (INIS)

    Okorskaya, A.P.; Sergeeva, A.N.; Pavlenko, L.I.; Semenishin, D.I.

    1978-01-01

    Thermal stability of Li, Na, K, Rb and Cs hexacyanoruthenates has been investigated. It has been established, that thermal decomposition of complexes depends upon outer spherical cations; complex compound stability decreasing with the rize of cation ionization potential. According to their thermal stability, alkali metal hexacyanoruthenates can be placed in the following row: Li < Na < K < Rb < Cs. Decomposition of Na, Rb and Cs complexes is accompanied by formation of thermally stable cyanides of these metals

  18. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    Sugiyama, K.; Ishiguro, R.; Kojima, Y.; Kanaoka, H.

    2004-01-01

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  19. Volume dependence of the melting temperature for alkali metals with Debye's model

    International Nuclear Information System (INIS)

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  20. Influence of alkali metal hydroxides on corrosion of Zr-base alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan

    1996-01-01

    The influence of group-1 alkali hydroxides on different Zr-based alloys have been carried out in static autoclaves at 350 deg C in pressurized water, conditioned in low(0.32 mmol), medium(4.3 mmol) and high(31.5 mmol) equimolar concentration of Li-, Na-, K-, Rb- and Cs-hydroxide. Two types of alloys have been investigated: Zr-Sn-(TRM, Transition metal) and Zr-Sn-Nb-(TRM, Transition metal). From the experiments the cation could be identified as the responsible species for corrosion of Zr alloy in alkalized water. The radius of the cation governs the accelerated corrosion in the pre-transition region of Zr alloy. Incorporation of alkali cation into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significant lower effect for the other bases. Nb containing alloys showed lower corrosion resistance than Zr-Sn-TRM alloys in all alkali solutions. Both types of alloys were corroded significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behavior in the different alkali environments and taking into account the tendency to accelerate the corrosion of Zr alloys, CsOH and KOH are possible alternate alkali for PWR (Pressurized Water Reactor) application. (author)

  1. Energy loss spectroscopy study of Si(111)--alkali metal interfaces at low temperatures

    International Nuclear Information System (INIS)

    Avci, R.

    1986-01-01

    Studies are made at approx.150 K under ultrahigh vacuum conditions on a wide range of alkali metal coverages on Si(111)-7 x 7. Negative second-derivative backscattered electron energy loss spectroscopy is used with 100 eV primary electrons. The interaction of the alkali metals with the silicon substrate goes through two stages as a function of alkali coverage: In the initial coverages, for less than approx.0.3 monolayer of alkali atoms, the basic reaction is that of charge transfer from the alkali atoms to the Si surface with a loss peak at approx.3.3 eV associated with the charge transfer states. The second stage of reaction: starting after the depletion of all the Si surface states: falls in a coverage range between approx.0.3 and approx.1 monolayer, in which the formation of a metallic layer with a coverage-dependent loss feature at about 2 eV is observed. At still higher coverages, multiple surface and bulk plasmon excitations and their combinations are dominant. In the overall scattering processes most of the parallel momentum (approx.3 A -1 ) is transferred to the sample during the elastic backscattering from the surface, and all the losses are essentially attributed to the forward inelastic scattering before and/or after the elastic process takes place near the metal/Si interface

  2. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  3. Separation of alkali and alkaline earth metals by polyethers using extraction chromatography

    International Nuclear Information System (INIS)

    Smulek, W.; Lada, W.A.

    1979-01-01

    The separation of alkali and alkaline earth metals by means of an acyclic polyether, 1,13-bis(8-chinolinyl)-1, 4, 7, 10, 13-pentaoxatridecane (CPOD), and cyclic polyethers, benzo-15-crown-5 (BC), dibenzo-18-crown-6 (DBC) and dicyclohexyl-18-crown-6 (DCHC), using extraction chromatography has been studied. The alkali metals can be effectively separated using SCN - as the accompanying ion. For alkaline earth metals, the best results were obtained with ClO 4 - ions. Different elution sequences for these groups were observed using chloroform and/meen=/ sitylene as diluents for the polyethers. (author)

  4. Alkali and heavy metals emissions of the PCFB-process

    International Nuclear Information System (INIS)

    Kuivalainen, R.; Eriksson, T.; Koskinen, J.; Lehtonen, P.

    1995-01-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed by A. Ahlstrom Corporation since 1986. As a part of the development, a 10 MV PCFB Test Facility was constructed at Hans Ahlstrom Laboratory in Karhula, Finland in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 'Alkali and heavy metal emissions of the PCFB-process' is part of national LIEKKI 2 research program and it continues the work started under alkali measurement project Y33 in 1994. The objective of the project is to measure vapor phase alkali and heavy metal concentrations in the PCFB flue gas after high-temperature high-pressure particulate filter and to investigate the effects of process conditions and sorbents on alkali release. The measured Na concentrations were between 0,03 and 0,21 ppm(w). The results of K were between 0,01 and 0,08 ppm(w). The accuracy of the results is about +-50 percent at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions at 800-850 deg C are at the same order of magnitude as the guideline emission limits given by gas turbine manufacturers for flue gas at 1000-1200 deg C. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in autumn 1995 in cooperation with laboratories of VTT Energy and Tampere University of Technology. (author)

  5. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  6. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Ruhmann, H.; Garzarolli, F.

    1997-01-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs

  7. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y H [Korea Atomic Energy Research Inst., Dae Jun (Korea, Republic of); Ruhmann, H; Garzarolli, F [Siemens-KWU, Power Generation Group, Erlangen (Germany)

    1997-02-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs.

  8. Spin density measurement of water-bridged Co-dimer using polarized neutrons

    DEFF Research Database (Denmark)

    Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick

    present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...

  9. Slot-dimer babinet metamaterials as polarization shapers for terahertz waves

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Chigrin, D. N.; Lavrinenko, Andrei

    2013-01-01

    We theoretically study optical properties of free-standing metallic membranes patterned with an array of two-slot elements (dimers) comprising two rectangular slots of different dimensions and orientation. It is shown that these structures feature extraordinary optical transmission with strong...

  10. (e, 2e) triple differential cross sections of alkali and alkali earth atoms: Na, K and Mg, Ca

    International Nuclear Information System (INIS)

    Hitawala, U; Purohit, G; Sud, K K

    2008-01-01

    Recently low-energy measurements have been reported for alkali targets Na and K and alkali earth targets Mg and Ca in coplanar symmetric geometry. We report the results of our calculation of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) of alkali atoms Na, K and alkali earth atoms Mg, Ca in coplanar symmetric geometry. We have performed the present calculations using the distorted-wave Born approximation (DWBA) formalism at intermediate incident electron energies used in the recently performed experiments. Ionization takes place from the valence shell for all the targets investigated and the outgoing electrons share the excess energy equally. We have also considered the effect of target polarization in our DWBA calculations which may be an important quantity at incident electron energies used in the present investigation. We find that the DWBA formalism is able to reproduce most of the trend of experimental data and may provide a future direction for further investigation of ionization process on alkali and alkali earth metals. It is also observed that the second-order effects are more important to understand the collision dynamics of (e, 2e) processes on alkali earth targets

  11. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  12. Alkali Metal Heat Pipe Life Issues

    International Nuclear Information System (INIS)

    Reid, Robert S.

    2004-01-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  13. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  14. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction.

    Science.gov (United States)

    Connor, Gannon P; Holland, Patrick L

    2017-05-15

    The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N 2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N 2 reduction, in the context of the growing knowledge about cooperative interactions between N 2 , transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N 2 . Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.

  15. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  16. A brief history of residual alkali metal destruction development in the UK

    International Nuclear Information System (INIS)

    Fletcher, Brian

    2014-01-01

    The reactors at Dounreay are being decommissioned and there is a need to remove all the residual alkali metal before they can be dismantled. When the Prototype Fast Reactor was shut down work was started to remove the bulk sodium and development of the Water Vapour Nitrogen (WVN) process for the destruction of the residual alkali metal commenced. This development has been ongoing to the present day. Trials began with small amounts of sodium and NaK before moving to larger scale experiments. The development raised a number of issues. As knowledge was built up, the development was expanded to deal with NaK pools in the DFR. Differences in the behaviour of NaK and sodium led to various different processes being developed. This paper presents a brief history of the alkali metal destruction process development within the UK and highlights some of the lessons learnt for future application during reactor decommissioning (authors)

  17. Selectivity in stripping of alkali-metal cations from crown ether carboxylate complexes

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Walkowiak, W.; Robison, T.W.

    1992-01-01

    To probe the effect of structural variations within the ionophore upon the efficiency and selectivity of solvent extraction, a variety of crown ether carboxylic acids and phosphonic acid monoesters have been synthesized. In other studies the influence of the organic diluent upon extraction efficiency and selectivity has been probed for such proton-ionizable crown ethers. In the present investigation, attention is focused upon selectivity in the stripping step. Although the efficiency of metal ion stripping is often examined in solvent extraction studies, the selectivity of competitive metal ion release under different conditions is much less frequently considered. In this study, competitive stripping of metal ions from chloroform solutions of five-alkali-metal crown ether carboxylates by varying concentrations of aqueous hydrochloric acid is examined. Alkali metals used were Li, Na, K, Rb, and Cs

  18. Recent progress in rechargeable alkali metalâair batteries

    OpenAIRE

    Xin Zhang; Xin-Gai Wang; Zhaojun Xie; Zhen Zhou

    2016-01-01

    Rechargeable alkali metalâair batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metalâair batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metalâair batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this ...

  19. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  20. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  1. In situ formation of coal gasification catalysts from low cost alkali metal salts

    Science.gov (United States)

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  2. Infrared multiple photon dissociation action spectroscopy of alkali metal cation-cyclen complexes: Effects of alkali metal cation size on gas-phase conformation

    NARCIS (Netherlands)

    Austin, C.A.; Chen, Y.; Kaczan, C.M.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cationized complexes of cyclen (1,4,7,10-tetraazacyclododecane) are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure theory calculations. The measured IRMPD action spectra of four M+(cyclen) complexes are

  3. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    International Nuclear Information System (INIS)

    Wakahara, Shingo; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Pejchal, Jan; Kurosawa, Shunsuke; Suzuki, Shotaro; Kawaguchi, Noriaki; Fukuda, Kentaro; Yoshikawa, Akira

    2013-01-01

    High scintillation efficiency of Eu-doped LiSrAlF 6 (LiSAF) and LiCaAlF 6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce 3+ , and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  4. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.-F.; Magill, J.

    1985-01-01

    The paper reviews the measured melting, boiling and critical point data of alkali metals. A survey of the static heat generation methods for density and pressure-volume-temperature measurements is given. Measured data on the melting and boiling temperatures of lithium, sodium, potassium, rubidium and caesium are summarised. Also measured critical point data for the same five alkali metals are presented, and discussed. (U.K.)

  5. Alkali metal protective garment and composite material

    Science.gov (United States)

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  6. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1987-06-01

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  7. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  8. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor ...

  9. Interaction of calcium oxide with molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Volkovich, A.V.; Zhuravlev, V.I.; Ermakov, D.S.; Magurina, M.V.

    1999-01-01

    Calcium oxide solubility in molten lithium, sodium, potassium, cesium chlorides and their binary mixtures is determined in a temperature range of 973-1173 K by the method of isothermal saturation. Mechanisms of calcium oxide interaction with molten alkali metal chlorides are proposed

  10. Bad metal behaviour in the new Hg-rich amalgam KHg{sub 6} with polar metallic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The novel Hg-rich amalgam KHg{sub 6} was synthesised by electrocrystallisation. • The structure was investigated by single crystal and powder diffraction. • Thermal decomposition, electric resistance and magnetic susceptibiliy were examined. • Band structure, total and partial density of states and Bader charges were calculated. • Bad metal behaviour results from ionic, metallic and covalent bonding contributions. - Abstract: The new mercury-rich amalgam KHg{sub 6} crystallises with the BaHg{sub 6} structure type (orthorhombic, space group Pnma (No. 62), a = 13.394(9) Å, b = 5.270(3) Å, c = 10.463 Å). It was prepared by electrolysis of a solution of KI in N,N′-Dimethylformamide at 343 K at a reactive Hg cathode. The structure of KHg{sub 6} shows motifs of ionic packing, covalent Hg cluster formation and metallic properties. KHg{sub 6} decomposes peritectically at 443 K. The combination of alkali metals with a noble metal with moderate electron affinity results in the formation of polar metal–metal bonding with considerable but incomplete electron transfer from the electropositive to the electronegative sublattice, resulting in typical “bad metal behaviour”, illustrated by resistance and susceptibility measurements and quantum theoretical calculations.

  11. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  12. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-01-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  13. Dichroism, chirality, and polarization eigenstates in Babinet nanoslot-dimer membrane metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Chigrin, Dmitry N.; Kremers, Christian

    2013-01-01

    We present a detailed theoretical description of the optical properties of planar metamaterials comprising a metal membrane patterned with openings (microslots) arranged in closely located couples (dimers). Using the covariant coupled-dipole approach, the effective material tensors of such a meta...

  14. Coprecipitation of rare earths in systems of three heterovalent ions with sulfates of alkali and alkaline-earth metals

    International Nuclear Information System (INIS)

    Bobrik, V.M.

    1977-01-01

    Co-precipitation of rare earth elements (REE) in milligram amounts (3x10 -3 -3x10 -1 M) with alkali earth (AEE) sulfates in presence of alkali metal ions has been studied, the AEE:REE ratios between the co-precipitator and a REE (up to 50:1) the latter can be co-precipitated quantitatively in presence of corresponding alkali metals linked with the AEE in the Periodic table by a diagonal, i.e. in presence of sodium in co-precipitation with calcium sulfate, potassium with strontium sulfate and rubidium with barium sulfate. Co-precipitation with sulfates of sodium and calcium occurs at temperatures above 85 deg C and presumably involves calcium semihydrate. In presence of an alkali metal REE co-precipitation with AEE becomes isomorphic, i.e. at different AEE:REE ratios the co-precipitation coefficient remains constant. In presence of corresponding alkali metals the decrease in effectiveness of co-precipitation with AEE in the La-Lu series is more pronounced

  15. Periodic table of 3d-metal dimers and their ions.

    Science.gov (United States)

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  16. Atomic polar tensors and acid-base properties of metal-oxide building blocks

    International Nuclear Information System (INIS)

    Ferris, K.F.

    1993-02-01

    The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole (α n and γ n ) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of α n and γ n with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on α and γ quantities

  17. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  18. Recyclable hydrogen storage system composed of ammonia and alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hikaru [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Miyaoka, Hiroki; Hino, Satoshi [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Nakanishi, Haruyuki [Higashi-Fuji Technical Center, Toyota Motor Corporation, 1200 Misyuku, Susono, Shizuoka 410-1193 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15

    Ammonia (NH{sub 3}) reacts with alkali metal hydrides MH (M = Li, Na, and K) in an exothermic reaction to release hydrogen (H{sub 2}) at room temperature, resulting that alkali metal amides (MNH{sub 2}) which are formed as by-products. In this work, hydrogen desorption properties of these systems and the condition for the recycle from MNH{sub 2} back to MH were investigated systematically. For the hydrogen desorption reaction, the reactivities of MH with NH{sub 3} were better following the atomic number of M on the periodic table, Li < Na < K. It was confirmed that the hydrogen absorption reaction of all the systems proceeded under 0.5 MPa of H{sub 2} flow condition below 300 C. (author)

  19. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Venkataramanan, Natarajan Sathiyamoorthy; Belosludov, Rodion Vladimirovich; Note, Ryunosuke; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-01-01

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H 2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H 2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H 2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li 6 B 36 N 36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li 6 B 36 N 36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  20. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    Science.gov (United States)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  1. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  2. Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se2 solar cells on glass substrate

    Science.gov (United States)

    Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru

    2018-03-01

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  3. Effect of Thermal Annealing on the Redistribution of Alkali Metals in Cu(In,Ga)Se2 Solar Cells on Glass Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kamikawa, Yukiko [National Institute of Advanced Industrial Science and Technology (AIST); Nishinaga, Jiro [National Institute of Advanced Industrial Science and Technology (AIST); Ishizuka, Shogo [National Institute of Advanced Industrial Science and Technology (AIST); Tayagaki, Takeshi [National Institute of Advanced Industrial Science and Technology (AIST); Shibata, Hajime [National Institute of Advanced Industrial Science and Technology (AIST); Matsubara, Koji [National Institute of Advanced Industrial Science and Technology (AIST); Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST)

    2018-03-02

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  4. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R; Scala, C von; Schuler, A; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  5. Determination of a various ions such as alkali metals in leaves, stems, roots and seeds of the radish and their distribution

    International Nuclear Information System (INIS)

    Fujino, Osamu; Matsui, Masakazu.

    1995-01-01

    Determination, uptake and distribution of various ions such as alkali metals in three different parts (leaf, stem and root) and seeds of radish (Kaiware daikon) were examined using flame emission spectrometry and ICP-AES. In order to examine the influence of concentration alkali metal ion concentration in the radish culture solution on the uptake and distribution of these metals, the radish was grown at pH 5.6 in solutions containing alkali metal chloride at concentrations ranging from 10 -5 to 10 -1 mol dm -3 . When the radish were grown in culture solution with alkali metal ions of low concentrations (10 -5 and 10 -4 mol dm -3 ), Na, K, Rb and trace Li were detected in leaves, stems and roots while Cs was scarcely detected. However, the contents of Na, K, Li in these organs were the same as those in radish cultivated in pure water. An increase of Rb uptake was observed with an increased Rb concentration. In the case of high concentrations (10 -3 and 10 -2 mol dm -3 ) of alkali metals in culture solution, the all alkali ions uptake of all alkali ions suddenly accelerated. Moreover, at concentrations higher than 0.1 mol dm -3 , the radish germinated poorly and did not completely mature. (author)

  6. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  7. Tunable electronic and magnetic properties in germanene by alkali, alkaline-earth, group III and 3d transition metal atom adsorption.

    Science.gov (United States)

    Li, Sheng-shi; Zhang, Chang-wen; Ji, Wei-xiao; Li, Feng; Wang, Pei-ji; Hu, Shu-jun; Yan, Shi-shen; Liu, Yu-shen

    2014-08-14

    We performed first-principles calculations to study the adsorption characteristics of alkali, alkali-earth, group III, and 3d transition-metal (TM) adatoms on germanene. We find that the adsorption of alkali or alkali-earth adatoms on germanene has minimal effects on geometry of germanene. The significant charge transfer from alkali adatoms to germanene leads to metallization of germanene, whereas alkali-earth adatom adsorption, whose interaction is a mixture of ionic and covalent, results in semiconducting behavior with an energy gap of 17-29 meV. For group III adatoms, they also bind germanene with mixed covalent and ionic bonding character. Adsorption characteristics of the transition metals (TMs) are rather complicated, though all TM adsorptions on germanene exhibit strong covalent bonding with germanene. The main contributions to the strong bonding are from the hybridization between the TM 3d and Ge pz orbitals. Depending on the induced-TM type, the adsorbed systems can exhibit metallic, half-metallic, or semiconducting behavior. Also, the variation trends of the dipole moment and work function with the adsorption energy across the different adatoms are discussed. These findings may provide a potential avenue to design new germanene-based devices in nanoelectronics.

  8. Structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-08-01

    The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)

  9. Pair potentials and structure factors of liquid alkali metals

    International Nuclear Information System (INIS)

    Kumaravadivel, R.; Tosi, M.P.

    1984-03-01

    Measured structure factors of liquid alkali metals are examined in the framework of screened-pair-potentials theory. Information on the main attractive well in the effective pair potential is obtained from the structural data by an approximate method stemming from an optimized random phase treatment of the indirect ion-ion attraction. The results are compared with a variety of theoretical pair potentials in the cases of sodium and potassium, after a test of the method against computer simulation data on a model for rubidium. Results for the other alkali metals are also given and discussed. The small-angle scattering region is then examined in considerable detail, with special attention to the possibility of a linear term in a series expansion of the structure factor at very small momentum transfer. Although sensitivity to both the bare electron-ion coupling and the local field factor in the screening function is demonstrated and analyzed, no linear term of the magnitude reported in recent X-ray diffraction experiments is found in the present theoretical framework. (author)

  10. Plasmonic Dimer Metamaterials and Metasurfaces for Polarization Control of Terahertz and Optical Waves

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu

    2013-01-01

    We explore the capabilities of planar metamaterials and metasurfaces to control and transform the polarization of electromagnetic radiation, and present a detailed covariant multipole theory of dimer-based metamaterials. We show that various optical properties, such as optical activity, elliptical...... dichroism or polarization conversion can be achieved in metamaterials made of simple shapes, such as nanorods, just by varying their geometrical arrangement. By virtue of the Babinet principle, the proposed theory is extended to inverted structures (membranes) where rods are replaced by slots. Such free......-standing “metasurface membranes” can act as thin-film spectrally sensitive polarization shapers for THz radiation. Proof-of-principle devices (a linear polarizer and a structure with giant optical activity) are fabricated and characterized. Experimental results coincide with those of full-wave numerical simulations...

  11. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Abstract. It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from. 3Li to 37Rb. The numerical ...

  12. Solution enthalpies of alkali metal halides in water and heavy water mixtures with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Egorov, G.I.

    1994-01-01

    Solution enthalpies of CsF, LiCl, NaI, CsI and some other halides of alkali metals and tetrabutylammonium have been measured by the method of calorimetry. Standard solution enthalpies of all alkali metals (except rubidium) halides in water and heavy water mixtures with dimethylsulfoxide at 298.15 K have been calculated. Isotopic effects in solvation enthalpy of the electrolytes mentioned in aqueous solutions of dimethylsulfoxide have been discussed. 29 refs., 2 figs., 4 tabs

  13. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smolenskij, V.V.; Moskalenko, N.I.

    2004-01-01

    Volatilities of GaCl 3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl 3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl 3 ; their variation permits altering parameters of GaCl 3 distillation from the salt melt in a wide range [ru

  14. A nanolens-type enhancement in the linear and second harmonic response of a metallic dimer

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy; Biswas, Sushmita; Vaia, Richard; Urbas, Augustine

    2014-01-01

    In this paper we explore the linear and second-order nonlinear response of gold nanoparticle pairs (dimers). Despite that even-order nonlinear processes are forbidden in bulk centrosymmetric media like metals, second order nonlinear response exhibits a high degree of sensitivity for spherical nanoparticles where inversion symmetry is broken at the surface. Recent experiments demonstrate significant dependence of linear response and second-harmonic surface nonlinear response arising from the local fundamental field distribution in a dimer configuration. Our calculations are carried out taking into account high order multipolar interactions between metal nanoparticles, and demonstrate that linear and nonlinear optical responses of the dimer exhibit periodic behavior dependent on the separation distance between nanoparticles. This response increases for dimers with a large difference between particle sizes. (paper)

  15. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  16. Higher-order Cn dispersion coefficients for the alkali-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2005-01-01

    The van der Waals coefficients, from C 11 through to C 16 resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C n /r n potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C 10 /r 10 results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a 0 . This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C 11 ,C 13 ,C 15 ) and attractive (C 12 ,C 14 ,C 16 ) dispersion forces

  17. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  18. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  19. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V; Oikari, R [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  20. Thermal Coefficient of Redox Potential of Alkali Metals

    Science.gov (United States)

    Fukuzumi, Yuya; Hinuma, Yoyo; Moritomo, Yutaka

    2018-05-01

    The thermal coefficient (α) of redox potential (V) is a significant physical quantity that converts the thermal energy into electric energy. In this short note, we carefully determined α of alkali metals (A = Li and Na) against electrolyte solution. The obtained α is much larger than that expected from the specific heat (CpA) of solid A and depends on electrolyte solution. These observations indicate that the solvent has significant effect on α.

  1. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results ...

  2. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  3. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    Science.gov (United States)

    2014-03-27

    WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS NOBLE GAS COLLISIONS THESIS Keith A. Wyman, Second Lieutenant, USAF...the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS

  4. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  5. [On-line analysis and mass concentration characters of the alkali metal ions of PM10 in Beijing].

    Science.gov (United States)

    Zhang, Kai; Wang, Yue-Si; Wen, Tian-Xue; Liu, Guang-Ren; Hu, Bo; Zhao, Ya-Nan

    2008-01-01

    The mass concentration characters and the sources of water-soluble alkali metal ions in PM10 in 2004 and 2005 in Beijing were analyzed by using the system of rapid collection of particles. The result showed that the average concentration of Na+, K+, Mg2+ and Ca2+ was 0.5-1.4, 0.5-2.5, 0.1-0.5 and 0.6-5.8 microg/m3, respectively. The highest and lowest concentration appeared in different seasons for the alkali metal ions, which was related to the quality and source. The concentration of alkali metal ions was no difference between the heating period and no heating period, which meant the heating was not the main source. Sea salt and soil were the important sources of Na+. The source of K+ came from biomass burning and vegetation. Soil was the large source of Mg2+ and Ca2+. The alkali metal ions appeared different daily variation in different seasons. Precipitation could decrease the concentration of Na+, K+, Mg2+ and Ca2+, which was 10%-70%, 20%-80%, 10%-77%, 5%-80% respectively.

  6. Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies.

    Science.gov (United States)

    Rodgers, Mary T; Armentrout, Peter B

    2016-01-01

    Quantitative insight into the structures and thermodynamics of alkali metal cations interacting with biological molecules can be obtained from studies in the gas phase combined with theoretical work. In this chapter, the fundamentals of the experimental and theoretical techniques are first summarized and results for such work on complexes of alkali metal cations with amino acids, small peptides, and nucleobases are reviewed. Periodic trends in how these interactions vary as the alkali metal cations get heavier are highlighted.

  7. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  8. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  9. Thermodynamic and kinetic analysis of solid-phase interaction of alkali metal carbonates with arsenic pentoxide

    International Nuclear Information System (INIS)

    Pashinkin, A.S.; Buketov, E.A.; Isabaeva, S.M.; Kasenov, B.K.

    1985-01-01

    The thermodynamic analysis of solid-phase reactions of alkali metal carbonates with arsenic pentoxide showing the possibility of formation of all arsenates at a higher than the room temperature is performed. Energetically most advantageous is formation of meta-arsenates. It is shown that temperature increase favours the reaction process. By Gibbs standard energy decrease the reactions form the Li>Na>K>Rb>Cs series. On the base of calculation data linear dependence of Gibbs standard energy in reactions on the atomic number of alkali metalis established. By the continuous weighing method the kinetics of interaction of alkali metal carbonates with arsenic pentoxide under isothermal conditions in the 450-500 deg C range is studied. Studies is the dependence of apparent energy of interaction of carbonates wih As 2 0 5 an atomic parameters of al

  10. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    Science.gov (United States)

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Thermodynamic properties of alkali borosilicate gasses and metaborates

    International Nuclear Information System (INIS)

    Asano, Mitsuru

    1992-01-01

    Borosilicate glasses are the proposed solidifying material for storing high level radioactive wastes in deep underground strata. Those have low melting point, and can contain relatively large amount of high level radioactive wastes. When borosilicate glasses are used for this purpose, they must be sufficiently stable and highly reliable in the vitrification process, engineered storage and the disposal in deep underground strata. The main vaporizing components from borosilicate glasses are alkali elements and boron. In this report, as for the vaporizing behavior of alkali borosilicate glasses, the research on thermodynamic standpoint carried out by the authors is explained, and the thermodynamic properties of alkali metaborates of monomer and dimer which are the main evaporation gases are reported. The evaporation and the activity of alkali borosilicate glasses, the thermodynamic properties of alkali borosilicate glasses, gaseous alkali metaborates and alkali metaborate system solid solution and so on are described. (K.I.)

  12. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  13. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  14. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)

    2012-08-15

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  15. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Science.gov (United States)

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  16. Crown Ether Complexes of Alkali-Metal Chlorides from SO2.

    Science.gov (United States)

    Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten

    2017-07-18

    The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4 SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4 SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4 SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  18. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity.

  19. Cathode architectures for alkali metal / oxygen batteries

    Science.gov (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  20. Low temperature wetting and cleanup of alkali metal-advanced electrical machine systems

    International Nuclear Information System (INIS)

    Gass, W.R.; Witkowski, R.E.; Burrow, G.C.

    1980-01-01

    Advanced homopolar electrical machines employing high electrical current density, liquid metal sliprings for current transfer utilize NaK/sub 78/ (78 w/o potassium, 22 w/o sodium) for the conducting fluid. Experiments have been performed to improve alkali metal/oxide clean-up procedures. Studies have also confirmed chemical and materials compatibility between barium doped NaK/sub 78/ and typical machine structural materials. 4 refs

  1. Van der Waals coefficients for alkali metal clusters and their size

    Indian Academy of Sciences (India)

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, ...

  2. Conductivity Measurements of Alkali Metal Thiocyanates in Water-Methanol Mixtures; Mizu-metanoru kongoyoubai ni okeru arukari kinzoku chioshiansan`en no denki dendodo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Eiji.; Horimoto, Sanaki. [Shinshu University, Nagano (Japan). Faculty of Science

    1999-03-10

    The counductivity of several alkali nmetal thiocyanates in water-methanol mixtures was measured at 25degreeC. the data were analyzed using Lee-Wheaton theory for symmetrical electroyers to cbtain ion association constant, K{sub A}, limiting molar sonductivity, {Lambda}{sub 0}, and limiting ionic molar conductivity, lamnda{sub 0}{+-}. In all the solvent systems, calculated{lambda}{sub 0}{sup +} values of the alkali metal ions increase in the order L{sub i}{sup +}alkali metal ions and thiocyanate ion showed a minimum when the molar fraction of methanol was ca.0.4. The changes in {lambda}{sub 0}{+-} of these alkali metal ions and thiocyanate ion with the molar fraction of methanol agree with change in the viscosity of the solvent or the heat of mixing of wateer-methanol mixtures. These alkali metal thiocyanates from little or no ion aggregated in water and water-methanol mixtures. These alkali metal thiocyanates K{sub A}=15-24 dm{sup 3} mol{sub -1} in methanol. (author)

  3. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  4. Polarization-resolved optical response of plasmonic particle-on-film nanocavities

    Science.gov (United States)

    Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.

    2018-02-01

    Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.

  5. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  6. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  7. Special features of the formation of high-conductivity phases of halides of alkali metals at superhigh pressures

    International Nuclear Information System (INIS)

    Babushkin, A.N.; Babushkina, G.V.

    1999-01-01

    The halides of alkali metals are the simplest crystals with the ionic nature of chemical bonds and are used widely as modelling materials in high-pressure physics. As a result of previous theoretical and experimental (optical, structural, electro-physical and shock-waves) investigations it was shown that these materials may be characterised by the overlapping of the valency and conduction bands and by the formation of groups of free charge carriers at pressures of the megabaric level. However, the authors know of no data on the direct investigations of the electrophysical properties of the halides of alkali metals at such high static pressures. The end of this investigation was to examine the temperature dependences of the electrical conductivity and thermal EMF of halides of alkali metals AX (A = Na, K, Rb, Cs, X = Cl, Br, I) in a wide temperature range at pressures from 10 to 50 GPa in order to reveal the general leisure since governing the change of their electronic structures, in particular, the transition to the state with the activation-type or metallic conductivity

  8. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    Science.gov (United States)

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  9. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    International Nuclear Information System (INIS)

    Mousazadeh, M.H.; Faramarzi, E.; Maleki, Z.

    2010-01-01

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, σ, and segment energy, ε. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  10. The removal of alkali metals from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, M.; Haukka, P. (Valtion Teknillinen Tutkimuskeskus, Jyvaeskylae (Finland). Polttoaine- ja Polttotekniikan Lab.)

    1990-01-01

    In investigations in progress at the Fuel and Combustion Laboratory of the Technical Research Centre of Finland, we have been studying in co-operation with A. Ahlstrom Boiler Works, the removal of alkali metals from flue gases of ash-rich fuel with a dense suspension particle cooler. The applications of the particle cooler can be found in combined cycles and in industrial gas cleaning and heat recovery. We have also developed a general mathematical model of heat and mass transfer as well as chemical and physical reactions in multiphase systems.

  11. Electric conductivity of alkali metal vapors in the region of critical point

    International Nuclear Information System (INIS)

    Likal'ter, A.A.

    1982-01-01

    A behaviour of alkali metal conductivity in the vicinity of a critical point has been analyzed on the base of deVeloped representations on a vapor state. A phenomenological conductivity theory has been developed, which is in a good agreement with experimental data obtained

  12. Analysis of the plasma impurity influx from alkali-metal coatings for fusion-reactor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Davidson, J.N.; Krauss, A.R.; Gruen, D.M.

    1982-01-01

    Recently, it has been proposed that alkali-metal covered surfaces be applied to magnetic fusion devices as a means of controlling plasma impurity contamination and shielding the substrate from erosion. Monolayer films of alkali metals have been shown to sputter primarily as ions under particle bombardment. Thus, it is thought that a sheath potential and/or magnetic fields encountered by a sputtered ion will return the ion to the surface without entering the plasma. In this paper, we investigate the net wall impurity influx associated with coatings which exhibit substantial secondary ion emission as compared to those which sputter only as neutral atoms. Included in the analysis are sputtered substrate atoms. These are sometimes found to be a significant fraction of the total sputtering yield for low-Z alkali monolayers and affect the overall performance of such coatings. Estimates of the impurity influx made in the neighborhood of a sheath potential show that secondary-ion emitting coatings are effective as a means of inhibiting plasma impurity contamination and wall erosion

  13. Assessment of alkali metal coolants for the ITER blanket

    International Nuclear Information System (INIS)

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-01-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper will address the thermodynamics of interactions between the liquid metals (i.e., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data will be used to assess the long-term performance of the first wall in a liquid metal environment

  14. Thermochemistry of the complex oxides of uranium, vanadium, and alkali metals

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Suleimanov, E.V.; Kharyushina, E.A.

    1992-01-01

    The standard enthalpies of the formation at T 298.15 K of complex oxides of uranium(VI), vanadium(V) and alkali metals with the general formula M 1 VUO 6 where M 1 = Na, K, Rb, and Cs, were calculated from the results of calorimetric experiments and from published data. 8 refs., 1 tab

  15. The non-pair forces and phonon dispersion in heavy alkali metals

    International Nuclear Information System (INIS)

    Aradhana, Km.; Rathore, R.P.S.

    1990-01-01

    Two types of non-pair forces, one from the Born-Mayer and the other from the Morse potential, are derived to discuss the response of electrons in heavy alkali metals, i.e., rubidium and cesium. The potentials are added to the two-body potential of Morse to account also for the ion-ion interactions. The potentials so obtained are employed to predict the phonon dispersion relations in bcc metals, which are also compared with recent precise neutron scattering data. (author). 1 fig, 3 tabs., 24 refs

  16. On the influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption

    NARCIS (Netherlands)

    Meis, N.N.A.H.; Bitter, J.H.; de Jong, K.P.

    2013-01-01

    To increase the CO2 capture capacity of hydrotalcites, the influence of alkali (K, Na) metal carbonate loading of activated supported and unsupported hydrotalcites (HTact) on their CO2 capture properties was investigated. The alkali-loaded supported hydrotalcites adsorb at 523 K, depending on the

  17. THE DISTRIBUTION OF COMMERCIAL CROWN ETHER DC18C6 AND THE EXTRACTION STUDY OF ALKALI AND EARTH ALKALI METALS

    Directory of Open Access Journals (Sweden)

    Bambang Rusdiarso

    2010-06-01

    Full Text Available Distribution of A and B isomers of crown-ether DC18C6 on their organic and water phases (chloride, nitrate and sulphocyanide salts and extraction of alkali and earth alkali metals has been studied. In LiCl 0.1 M environment, lithium extraction could be ignored. The presence of extracted potassium metal may affect the crown ether DC18C6 distribution albeit only a little. In KNO3 0.1 M environment, the distribution coefficient values (d were 6.1 and 10.3 for A and B isomers, respectively ; while in KCl  0.1 M environment the values were 4.9 and 11.8, respectively. In KSCN 0.1 M, d values for A and B isomers were 40.4 and 36.6, respectively, which were higher than the value obtained from both KNO3 and KCl  0.1 M environments. Caesium metal extraction using DC18C6 occurred weakly, up to only 5%. Strontium extraction using DC18C6 achieved better yield than the caesium extraction. The percentage of extraction increased under organic solvent according to the following: toluene (4% < chloroform (28% < TBP (35%.   Keywords: distribution, crown-ether DC18C6, extraction.

  18. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  19. Electronic and structural ground state of heavy alkali metals at high pressure

    Science.gov (United States)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  20. Fate of alkali and trace metals in biomass gasification

    International Nuclear Information System (INIS)

    Salo, K.; Mojtahedi, W.

    1998-01-01

    The fate of alkali metals (Na, K) and eleven toxic trace elements (Hg, Cd, Be, Se, Sb, As, Pb, Zn, Cr, Co, Ni) in biomass gasification have been extensively investigated in Finland in the past ten years. The former due to the gas turbine requirements and the latter to comply with environmental regulations. In this paper the results of several experimental studies to measure Na and K in the vapor phase after the gas cooler of a simplified (air-blown) Integrated Gasification Combined-Cycle (IGCC) system are reported. Also, trace element emissions from an IGCC plant using alfalfa as the feedstock are discussed and the concentration of a few toxic trace metals in the vapor phase in the gasifier product gas are reported. (author)

  1. The mechanism of diffusion and ionic transport of alkali metal ions in the particles of tin(IV) antimonate

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Aly, S.I.; Atomic Energy Establishment, Cairo

    1992-01-01

    The kinetics of exchange Li + , Na + , K + and Cs + ions of tin(IV) antimonate with H + form was studied under particle-diffusion-control conditions at different temperatures. The value of activation energy, diffusion coefficient and entropy of activation increase with the ionic mobilities and radii, and decrease with the hydration energy of the alkali metal ions. On the basis of the kinetic parameters, the exchange of alkali metal ions occurs in the unhydrated form. (author). 29 refs.; 4 figs.; 2 tabs

  2. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    Science.gov (United States)

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  3. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-03

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  4. Emission spectra of alkali-metal (K,Na,Li)-He exciplexes in cold helium gas

    International Nuclear Information System (INIS)

    Enomoto, K.; Hirano, K.; Kumakura, M.; Takahashi, Y.; Yabuzaki, T.

    2004-01-01

    We have observed emission spectra of excimers and exciplexes composed of a light alkali-metal atom in the first excited state and 4 He atoms [K*He n (n=1-6), Na * He n (n=1-4), and Li * He n (n=1,2)] in cryogenic He gas (the temperature 2 K -1 . Differently from exciplexes with heavier alkali-metal atoms, the spectra for the different number of He atoms were well separated, so that their assignment could be made experimentally. Comparing with the spectra of K * He n , we found that the infrared emission spectrum of the K atom excited in liquid He was from K*He 6 . To confirm the assignment, we have also carried out ab initio calculation of adiabatic potential curves and peak positions of the emission spectra of the exciplexes

  5. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  6. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  7. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-01-01

    Nuclear power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  8. Thermodynamic and structural properties of ball-milled mixtures composed of nano-structural graphite and alkali(-earth) metal hydride

    International Nuclear Information System (INIS)

    Miyaoka, Hiroki; Ichikawa, Takayuki; Fujii, Hironobu

    2007-01-01

    Hydrogen desorption properties of mechanically milled materials composed of nano-structural hydrogenated-graphite (C nano H x ) and alkali(-earth) metal hydride (MH; M = Na, Mg and Ca) were investigated from the thermodynamic and structural points of view. The hydrogen desorption temperature for all the C nano H x and MH composites was obviously lower than that of the corresponding each hydride. In addition, the desorption of hydrocarbons from C nano H x was significantly suppressed by making composite of C nano H x with MH, even though C nano H x itself thermally desorbs a considerably large amount of hydrocarbons. These results indicate that an interaction exists between C nano H x and MH, and hydrogen in both the phases is destabilized by a close contact between polar C-H groups in C nano H x and the MH solid phase. Moreover, a new type of chemical bonding between the nano-structural carbon (C nano ) and the Li, Ca, or Mg metal atoms may be formed after hydrogen desorption. Thus, the above metal-C-H system would be recognized as a new family of H-storage materials

  9. An analysis of the plasma impurity influx from alkali-metal coatings for fusion reactor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Davidson, J.N.; Krauss, A.R.; Gruen, D.M.

    1982-01-01

    Recently, it has been proposed that alkali-metal covered surfaces be applied to magnetic fusion devices as a means of controlling plasma impurity contamination and shielding the substrate from erosion. Monolayer films of alkali metals have been shown to sputter primarily as ions under particle bombardment. Thus, it is thought that a sheath potential and/or magnetic fields encountered by a sputtered ion will return the ion to the surface without entering the plasma. In this paper, we investigate the net wall impurity influx associated with coatings which exhibit substantial secondary ion emission compared with those which sputter only as neutral atoms. Included in the analysis are sputtered substrate atoms. These are sometimes found to be a significant fraction of the total sputtering yield for low-Z alkali monolayers and affect the overall performance of such coatings. Estimates of the impurity influx made in the neighborhood of a sheath potential show that secondary-ion emitting coatings are effective as a means of inhibiting plasma impurity contamination and wall erosion. (orig.)

  10. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  11. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  12. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  13. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  14. Insights into the photochemical disproportionation of transition metal dimers on the picosecond time scale.

    Science.gov (United States)

    Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2013-05-09

    The reactivity of five transition metal dimers toward photochemical, in-solvent-cage disproportionation has been investigated using picosecond time-resolved infrared spectroscopy. Previous ultrafast studies on [CpW(CO)3]2 established the role of an in-cage disproportionation mechanism involving electron transfer between 17- and 19-electron radicals prior to diffusion out of the solvent cage. New results from time-resolved infrared studies reveal that the identity of the transition metal complex dictates whether the in-cage disproportionation mechanism can take place, as well as the more fundamental issue of whether 19-electron intermediates are able to form on the picosecond time scale. Significantly, the in-cage disproportionation mechanism observed previously for the tungsten dimer does not characterize the reactivity of four out of the five transition metal dimers in this study. The differences in the ability to form 19-electron intermediates are interpreted either in terms of differences in the 17/19-electron equilibrium or of differences in an energetic barrier to associative coordination of a Lewis base, whereas the case for the in-cage vs diffusive disproportionation mechanisms depends on whether the 19-electron reducing agent is genuinely characterized by 19-electron configuration at the metal center or if it is better described as an 18 + δ complex. These results help to better understand the factors that dictate mechanisms of radical disproportionation and carry implications for radical chain mechanisms.

  15. Temperatures and enthalpies of melting of alkali-metal perrhenates

    International Nuclear Information System (INIS)

    Lukas, W.; Gaune-Escard, M.

    1982-01-01

    Melting temperatures and enthalpies of melting were determined for alkali-metal perrhenates by differential enthalpic analysis using a high-temperature Calvet microcalorimeter. The following values were obtained: for LiReO 4 : 692 K and 24.9 kJ.mol -1 ; for NaReO 4 : 693 K and 33 kJ.mol -1 ; for KReO 4 : 828 K and 36 kJ.mol -1 ; for RbReO 4 : 878 K and 34 kJ.mol -1 ; for CsReO 4 : 893 K and 34 kJ.mol -1 . (author)

  16. Integrated oil production and upgrading using molten alkali metal

    Science.gov (United States)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  18. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  19. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  20. Effect of particle size on thermal decomposition of alkali metal picrates

    International Nuclear Information System (INIS)

    Liu, Rui; Zhang, Tonglai; Yang, Li; Zhou, Zunning

    2014-01-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate

  1. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  2. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  3. Effect of alkali metal content of carbon on retention of iodine at high temperatures

    International Nuclear Information System (INIS)

    Evans, A.G.

    1975-01-01

    Activated carbon for filters in reactor confinement systems is intentionally impregnated with iodine salts to enhance the removal of radioiodine from air streams containing organic iodides. When a variety of commercial impregnated carbons were evaluated for iodine retention at elevated temperatures (4 hours at 180 0 C), wide variations in iodine penetration were observed. The alkali metal and iodine content of carbon samples was determined by neutron activation analysis, and a strong correlation was shown between the atom ratio of iodine to alkali metals in the carbons and the high-temperature retention performance. Carbons containing excess alkali (especially potassium) have iodine penetration values 10 to 100 times lower than carbons containing excess iodine. Both low I/K ratios and high pH values were shown essential to high efficiency iodine retention; therefore, conversion of elemental iodine to ionic iodine is the basic reaction mechanism. The natural high K + content and high pH coconut carbons make coconut the preferred natural base material for nuclear air cleaning applications. Studies show, however, that treatment of low potassium carbons with a mixture of KOH and I 2 may produce a product equal to or better than I 2 -impregnated coconut carbons at a lower cost. (U.S.)

  4. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  5. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients, C 6 , C 8 , and C 10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D 8 and the three-body coefficient, C 9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  6. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  7. Separation of alkali metals by extraction chromatography using polyethers

    International Nuclear Information System (INIS)

    Smulek, W.; Lada, W.

    1977-01-01

    Separation of alkali metals by means of acyclic polyether 1,13 bis(8-chinolinyl)1, 4, 7, 10, 13 pentaoxatridecane (CPOD) and cyclic polyether dibenzo-18-crown-6 (DBC) using extraction chromatography is described. Solutions of NaSCN were used as eluting agents. The separation ability of the polyether columns strongly depends on pH and temperature. The following radioisotopes were used in the experiments: Na-22, K-42, Rb-86 and Cs-137. The radionuclide purity of the tracers was examined by γ-ray spectrometry using a Ge(Li) detector and a multichannel γ-ray spectrometer. (T.I.)

  8. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  9. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  10. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  11. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  12. Introducing a Hydrogen-Bond Donor into a Weakly Nucleophilic Brønsted Base: Alkali Metal Hexamethyldisilazides (MHMDS, M=Li, Na, K, Rb and Cs) with Ammonia.

    Science.gov (United States)

    Neufeld, Roman; Michel, Reent; Herbst-Irmer, Regine; Schöne, Ralf; Stalke, Dietmar

    2016-08-22

    Alkali metal 1,1,1,3,3,3-hexamethyldisilazide (MHMDSs) are one of the most utilised weakly nucleophilic Brønsted bases in synthetic chemistry and especially in natural product synthesis. Like lithium organics, they aggregate depending on the employed donor solvents. Thus, they show different reactivity and selectivity as a function of their aggregation and solvation state. To date, monomeric LiHMDS with monodentate donor bases was only characterised in solution. Since the first preparation of LiHMDS in 1959 by Wannagat and Niederprüm, all efforts to crystallise monomeric LiHMDS in the absence of chelating ligands failed. Herein, we present ammonia adducts of LiHMDS, NaHMDS, KHMDS, RbHMDS and CsHMDS with unprecedented aggregation motifs: 1) The hitherto missing monomeric key compound in the LiHMDS aggregation architectures. Monomeric crystal structures of trisolvated LiHMDS (1) and NaHMDS (2), showing unique intermolecular hydrogen bonds, 2) the unprecedented tetrasolvated KHMDS (3) and RbHMDS (4) dimers and 3) the disolvated CsHMDS (5) dimer with very close intermolecular Si-CH3 ⋅⋅⋅Cs s-block "agostic" interactions have been prepared and characterised by single-crystal X-ray structure analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alkali metals effect on the diffusion mobility of fluorine base of GaF3 and IF3

    International Nuclear Information System (INIS)

    Bakhvalov, S.G.; Livshits, A.I.; Shubin, A.A.; Petrova, E.M.

    2000-01-01

    The structure of fluoride glasses on the basis of GaF 3 and InF 3 is studied. The glass lattice bond, i.e. its uniformity or nonuniformity, was analyzed through introduction of alkali metal (LiF, NaF, RbF, CsF) into the composition of fluoride glasses. The consecutive replacement of a modification by alkali metal fluorides made it possible to establish the nonuniformity of the glass-forming lattice by studying through the NMR 19 F method. It may be confirmed by comparing the fluorine ions dynamic behavior in the glasses, based on the indium and gallium trifluorides, that the glass fluorine subsystem on the In basis is more mobile [ru

  14. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  15. Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues

    OpenAIRE

    Pittalis, Mario; Azzena, Ugo Gavino; Carraro, Massimo; Pisano, Luisa

    2013-01-01

    Reductive desulfurisation of organic compounds is of importance both in organic synthesis and in industry. Benzo- and dibenzothiophenes are between the most abundant sulphur containing impurities in crude oils, and their desulfurization is a mandatory issue in the production of non polluting fuels. Following our interest in the development of efficient alkali metal-mediated synthetic procedures and alternative protocols for the chemical transformation of widespread environmental contaminants ...

  16. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  17. Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH

    Science.gov (United States)

    Zannotti, Marco; Giovannetti, Rita; Minofar, Babak; Řeha, David; Plačková, Lydie; D'Amato, Chiara A.; Rommozzi, Elena; Dudko, Hanna V.; Kari, Nuerguli; Minicucci, Marco

    2018-03-01

    The effect of pH change on 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (THPP) with its aggregation as function of water-ethanol mixture was studied with UV-vis, fluorescence, Raman and computational analysis. In neutral pH, THPP was present as free-base and, increasing the water amount, aggregation occurred with the formation of H- and J-aggregates. The aggregation constant and the concentration of dimers were calculated, other information about the dimer aggregation were evaluated by computational study. In acidic pH, by the insertions of two hydrogens in the porphyrin rings, the porphyrin changed its geometry with a ring deformation confirmed by red-shifted spectrum and quenching in fluorescence; at this low pH, increasing the water amount, the acidic form (THPPH2)2 + resulted more stable due to a polar environment with stronger interaction by hydrogen bonding. In basic pH, reached by NH4OH, THPP porphyrin was able to react with alkali metals in order to form sitting-atop complex (M2THPP) confirmed by the typical absorption spectrum of metallo-porphyrin, Raman spectroscopy and by computational analysis.

  18. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  19. Electron core ionization in compressed alkali metal cesium

    Science.gov (United States)

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  20. Conductometric determination of solvation numbers of alkali metal cations

    International Nuclear Information System (INIS)

    Fialkov, Yu.Ya.; Gorbachev, V.Yu.; Chumak, V.L.

    1997-01-01

    Theories describing the interrelation of ion mobility with their effective radii in solutions are considered. Possibility of using these theories for determination the solvation numbers n s of some ions is estimated. According to conductometric data values of n s are calculated for alkali metal ions in propylene carbonate. The data obtained are compared with solvation numbers determined with the use of entropies of ions solvation. Change of n s values within temperature range 273.15-323.15 K is considered. Using literature data the effect of crystallographic radii of cations and medium permittivity on the the values of solvation numbers of cations are analyzed. (author)

  1. Sputtering/redeposition analysis of alkali-based tungsten composites for limiter/divertor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Krauss, A.R.; Gruen, D.M.; Valentine, M.G.

    1986-07-01

    Composites of porous tungsten infiltrated with alkali metal-bearing alloys have been projected as a means of reducing plasma impurities and sputter erosion in magnetic fusion devices. Self-sustaining alkali metal overlayers have been observed to inhibit erosion of the underlying structural substrate by 2X to 10X. The alkali metal itself, insofar as it sputters as a secondary ion, is trapped at the surface by sheath potential and tangential magnetic fields. Self-regeneration of the alkali metal coating is obtained by thermal and radiation-induced segregation from the bulk

  2. Defect formation and desorption of metal atoms from alkali halide crystals under low energy electron bombardment studied by optical absorption and mass spectroscopy

    International Nuclear Information System (INIS)

    Seifert, N.R.

    1993-04-01

    This work presents an extensive investigation of electronically induced desorption of ground-state alkali atoms from alkali halides and for the first time correlates directly the desorption with the stability and spatial distribution of the defects formed during bombardment. The electron impact results in the formation of stable F-centers and F-center clusters in the bulk of the crystals. In striking contrast a significant metallization of the surface is observed. Even at temperatures as low as 90 deg C the metallization is achieved within the time resolution of our detection system, which can only be explained by the rapid diffusion of hot holes. Superimposed to the fast and short diffusion of hot holes is the slow F-center diffusion. Measuring the distribution of defects with low energy ion sputtering techniques indicates that at least in the case of LiF the observed diffusion constant of F-centers agrees with values derived by using methods different from that applied here. At low temperatures the formation of F-center clusters and metal on the surface dominates. Colloid formation clearly requires higher temperatures (typically around 200 deg C). This is a strong evidence that efficient F-center diffusion is necessary for the formation of metallic particles (colloids) in the bulk of the crystals. Desorption of alkali atoms from alkali halides at temperatures around room temperature is due to weakly bound alkali atoms. For elevated temperatures the stability of the metallic clusters in the bulk of the crystals (i.e. colloids) are the rate limiting process. (author)

  3. Construction of thermionic alkali-ion sources

    International Nuclear Information System (INIS)

    Ul Haq, F.

    1986-01-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed. (author)

  4. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  5. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    Science.gov (United States)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  6. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table

    NARCIS (Netherlands)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias

    2017-01-01

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium,

  7. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    Science.gov (United States)

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  8. Post-Harvest Processing Methods for Reduction of Silica and Alkali Metals in Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Lacey, Jeffrey Alan; Shaw, Peter Gordon

    2002-04-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950°C is desirable, corresponding to SiO2:K2O of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, %-solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  9. Existence of hexachlorocerates (4) of alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yu.M.; Filatov, I.Yu.; Popov, A.I.; Goryachenkova, S.A.; Martynenko, L.I.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1985-01-01

    A possibility has been studied to prepare alkali metal hexachlorocerates (4) of the composition M/sub 2/CeCl/sub 6/ (M=Li, Na, K, Rb) according to the reaction 2MX + fH/sub 2/CeCl/sub 6/'' ..-->.. 2HX + M/sub 2/CeCl/sub 6/ (X=Cl/sup -/, NO/sub 3//sup -/). Using X-ray phase analysis and low-temperature hTA it has been shown, that under experimental conditions (-65 deg C) the rubidium-cerium chlorocomplex is formed, in which Ce is present in the form of Ce(4). The complex is unstable at approximately 20 deg C and under the effect of moisture gets hydrolyzed with the formation of Ce(3) derivatives. Isomorphism of Rb and Cs hexachlorocerates (4) is established. According to the data of the low-temperature DTA, the authors failed to prepare Li, Na, K hexachlorocerates (4).

  10. Structure factor of liquid alkali metals using a classical-plasma reference system

    Science.gov (United States)

    Pastore, G.; Tosi, M. P.

    1984-06-01

    This paper presents calculations of the liquid structure factor of the alkali metals near freezing, starting from the classical plasma of bare ions as reference liquid. The indirect ion-ion interaction arising from electronic screening is treated by an optimized random phase approximation (ORPA), imposing physical requirements as in the original ORPA scheme developed by Weeks, Chandler and Andersen for liquids with strongly repulsive core potentials. A comparison of the results with computer simulation data for a model of liquid rubidium shows that the present approach overcomes the well-known difficulties met in applying to these metals the standard ORPA based on a reference liquid of neutral hard spheres. The optimization scheme is also shown to be equivalent to a reduction of the range of the indirect interaction in momentum space, as proposed empirically in an earlier work. Comparison with experiment for the other alkalis shows that a good overall representation of the data can be obtained for sodium, potassium and cesium, but not for lithium, when one uses a very simple form of the electron-ion potential adjusted to the liquid compressibility. The small-angle scattering region is finally examined more carefully in the light of recent data of Waseda, with a view to possible refinements of the pseudopotential model.

  11. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  13. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  14. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid

    International Nuclear Information System (INIS)

    Lai, S.K.; Akinlade, O.; Tosi, M.P.

    1989-12-01

    The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs

  15. Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur

    International Nuclear Information System (INIS)

    Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.

    2008-01-01

    Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru

  16. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.F.; Magill, J.

    1985-01-01

    The measured melting, boiling and critical point data of the alkali metals are reviewed. Emphasis has been given to the assessment of the critical point data. The main experimental techniques for measurements in the critical region are described. The selected data are given. Best estimates of the critical constants of lithium are given. (author)

  17. Cylinder and metal grating polarization beam splitter

    Science.gov (United States)

    Yang, Junbo; Xu, Suzhi

    2017-08-01

    We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.

  18. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  19. Density dependence of the diffusion coefficient of alkali metals

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.; Njah, A.N.; Mathew, B.; Fabamise, O.A.T.

    2004-06-01

    The effect of density on transport coefficients of liquid Li, Na and K at high temperatures using the method of Molecular Dynamics simulation has been studied. Simulation of these liquid alkali metals were carried out with 800 particles in simulation boxes with periodic boundary conditions imposed. In order to test the reliability of the interatomic potential used in the calculations, experimental data on the structural properties were compared with calculated results. The calculations showed a linear relationship between the density and the diffusion coefficient in all the systems investigated except in lithium, where, due to the small size of the atom, standard molecular dynamics simulation method may not be appropriate for calculating the properties of interest. (author)

  20. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  1. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients C 6 , C 8 , and C 10 for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C 6 at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)

  3. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  4. Distributions of alkali metals, alkaline earth metals and halogens in cabbage leaves

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Takeda, Akira; Hasegawa, Hidenao

    2007-01-01

    The distributions of stable elements in plant components provide useful information for understanding the behavior of radionuclides in plants. An entire cabbage plant sample was collected from an experimental field, and the distributions of alkali metals (K, Rb and Cs), alkaline earth metals (Ca, Sr and Ba) and halogens (Cl and I) were determined for cabbage leaves at different positions. The concentration of Cs in outer (older) cabbage leaves was higher than that in inner (younger) leaves, but the distributions of K and Rb concentrations were relatively similar in cabbage leaves, independent of leaf positions. The concentration of Sr in older cabbage leaves was one order of magnitude higher than that in younger leaves. The distributions of Ca, Ba and Sr concentrations in the plant followed a similar pattern. The concentrations of halogens were also very rich in the outer leaves. The percentage distributions of Cs, Sr, Cl and I in the inedible (extreme outer) leaves were 77, 91, 93 and 96% of the total content in the leaf part, respectively. These results show that the inedible plant components are important for understanding the transfer of the radioactive Cs, Sr Cl and I in soil-plant systems. (author)

  5. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  6. Studying thermal dehydration of double nickel alkali metal pyrophosphates

    International Nuclear Information System (INIS)

    Bykanova, T.A.; Lavrov, A.V.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1978-01-01

    The methods of thermogravimetry, paper chromatography, infrared spectroscopy and X-ray phase analysis were used in studying the process of thermal dehydration of pyrophosphates of the M 2 Ni 3 (P 2 O 7 ) 2 xnH 2 O type (where n=6, 10; M=Na, K, Rb, Cs, NH 4 ). The dehydration of Cs 2 Ni 3 (P 2 O 7 ) 2 x10H 2 O proceeds in a single stage (endothermal effect at 210 deg C). The exothermal effects at 730 and 690 deg C correspond to the crystallization of the amorphous dehydration products. It has been established that binary pyrophosphates of nickel with alkali metals decompose when heated into Ni 3 (PO 4 ) 2 +MPO 4

  7. Major signal suppression from metal ion clusters in SFC/ESI-MS - Cause and effects.

    Science.gov (United States)

    Haglind, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-05-01

    The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as "dilute and shoot" and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH 3 ) n  + X] + , [(XOH) n  + X] + , [(X 2 CO 3 ) n  + X] + and [(XOOCOCH 3 ) n  + X] + for X = Na + or K + in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl) n  + Cl] - and [(XOCH 3 ) n  + OCH 3 ] - mainly formed in pure methanol and [(XOOCH) n  + OOCH] - when 20 mM NH 4 Fa was added. To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them. Copyright © 2018 Elsevier

  8. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Zou Ye; Deng Zhenbo; Xu Denghui; Lü Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng

    2012-01-01

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq 3 )/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq 3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  9. Effect of metal trifluoroacetates on the thermal decomposition of poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Mokrousov, G.M.; Gavrilenko, N.A.; Eremina, N.S.; Garber, N.G.

    2001-01-01

    Thermal stability of polymethylmethacrylate composition depending on introducing additives of alkali metal trifluoroacetates - Li(TFA), K(TFA), Na(TFA) was studied. Three stages of a mass lost were observed on the curves of thermogravimetry of polymethylmethacrylate modified by lithium, sodium and potassium trifluoroacetates. Activation energies of thermal oxidation destruction of polymethylmethacrylate modified by alkali metal trifluoroacetates were calculated and demonstrated. For lithium the electron donor fragments of competing molecules are constituents of coordination sphere of ion. This is possible on account of its comparatively small polarizing ability and does not lead to essential changing activation energy [ru

  10. Effect of alkali doping on the structural stability of solid C36

    International Nuclear Information System (INIS)

    Zettl, A.; Piskoti, C.; Grossman, Jeffery C.; Cohen, Marvin L.; Louie, Steven G.

    1999-01-01

    We demonstrate that alkali-doping C 36 solids causes the C 36 cage molecules to be bonded less strongly to each other in the solid. Laser irradiation mass spectroscopy experiments show that for pure C 36 solid, no isolated C 36 subunits are observed in the ablated material, while for potassium-doped C 36 , isolated C 36 molecules are readily produced by laser irradiation. Theoretical modelling shows that charge transfer from the alkali to the C 36 molecules greatly hinders C 36 dimer formation, consistent with these experiments. (c) 1999 American Institute of Physics

  11. Effective interionic pair potentials in liquid alkali metals

    International Nuclear Information System (INIS)

    Kumaravadivel, R.

    1984-06-01

    Information on the effective pair potential of liquid alkali metals is obtained from liquid structure factor data by the combination of two approximate methods in the theory of liquids. One method stems from treating the indirect ion-ion interaction in the optimised random phase approximation (ORPA) and the other uses the modified hypernetted chain (MHNC) equation. It is shown that, in the region of the main attractive well, the effective pair potential is bracketed by the results obtained from these two methods. The MHNC inversion scheme does not fare well in providing information on the potential in the region of interionic distance in the tail of the interionic potential. A cross-over from the hard-sphere bridge function to the mean spherical approximation (MSA) bridge function for the long range behaviour of the bridge term in the MHNC equation does not provide appreciable improvement. (author)

  12. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    Science.gov (United States)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  13. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  14. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.

    Science.gov (United States)

    Jiménez-Halla, J Oscar C; Matito, Eduard; Blancafort, Lluís; Robles, Juvencio; Solà, Miquel

    2009-12-01

    In this work, we analyze the geometry and electronic structure of the [X(n)M(3)](n-2) species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo-[M(3)](2-) unit. The cyclo-[M(3)](2-) ring is held together through a three-center two-electron bond of sigma-character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo-[M(3)](2-) ring and leads to a change from sigma-aromaticity in the bound state of the cyclo-[M(3)](2-) to pi-aromaticity in the XM(3) (-) and X(2)M(3) metallic clusters. Our results also show that the aromaticity of the cyclo-[M(3)](2-) unit in the X(2)M(3) metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M(3) ring. The Na(2)Mg(3), Li(2)Mg(3), and X(2)Ca(3) clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M(3) ring, whereas X(2)Be(3) and K(2)Mg(3) keep its aromaticity relatively constant along this process. (c) 2009 Wiley Periodicals, Inc.

  15. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  16. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  17. Thermodynamic characteristics of viscous flow activation in aqueous solutions of alkali metal iodides

    International Nuclear Information System (INIS)

    Renskij, I.A.; Rudnitskaya, A.A.; Fialkov, Yu.A.

    2003-01-01

    The Gibbs activation energy of the viscous flow of the alkali metal iodides aqueous solutions MI (M = Li, Na, K, Cs) and from its temperature dependence - the enthalpy and entropy of this process are calculated by the Eyring modified equation. The kinetic compensation effects, related to the viscous flow of the unbound water and to the ion-hydrate complexes are established. The relative contribution of the enthalpy and entropy constituents for these solution components is analyzed [ru

  18. Alkali and heavy metal emissions of the PCFB-process; Alkalipaeaestoet PCFB-prosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1996-12-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As a part of the development, 10 MW PCFB Test Facility was built in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 `Alkali and heavy metal emissions of the PCFB-process` was part of national LIEKKI 2 research program. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method by TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about + 50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in spring 1996 for example within Joule II research program. (author)

  19. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  20. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    OpenAIRE

    E. Garrone; A. A. Tsyganenko; G. Turnes Palomino; C. Otero Areán

    2002-01-01

    Abstract: When adsorbed (at a low temperature) on alkali-metal-exchanged zeolites, CO forms both M(CO)+ and M(OC)+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO)+ t...

  1. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  2. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    Science.gov (United States)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  3. Magnetic properties of free alkali and transition metal clusters

    International Nuclear Information System (INIS)

    Heer, W. de; Milani, P.; Chatelain, A.

    1991-01-01

    The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)

  4. Clustering of nucleosides in the presence of alkali metals: Biologically relevant quartets of guanosine, deoxyguanosine and uridine observed by ESI-MS/MS.

    Science.gov (United States)

    Aggerholm, Tenna; Nanita, Sergio C; Koch, Kim J; Cooks, R Graham

    2003-01-01

    Electrospray ionization (ESI) mass spectra of nucleosides, recorded in the presence of alkali metals, display alkali metal ion-bound quartets and other clusters that may have implications for understanding non-covalent interactions in DNA and RNA. The tetramers of guanosine and deoxyguanosine and also their metaclusters (clusters of clusters), cationized by alkali metals, were observed as unusually abundant magic number clusters. The observation of these species in the gas phase parallels previous condensed-phase studies, which show that guanine derivatives can form quartets and metaclusters of quartets in solution in the presence of metal cations. This parallel behavior and also internal evidence suggest that bonding in the guanosine tetramers involves the bases rather than the sugar units. The nucleobases thymine and uracil are known to form magic number pentameric adducts with K+, Cs+ and NH4+ in the gas phase. In sharp contrast, we now show that the nucleosides uridine and deoxythymidine do not form the pentameric clusters characteristic of the corresponding bases. More subtle effects of the sugars are evident in the fact that adenosine and cytidine form numerous higher order clusters with alkali metals, whereas deoxyadenosine and deoxycytidine show no clustering. It is suggested that hydrogen bonding between the bases in the tetramers of dG and rG are the dominant interactions in the clusters, hence changing the ribose group to deoxyribose (and vice versa) generally has little effect. However, the additional hydroxyl group of RNA nucleosides enhances the non-selective formation of higher-order aggregates for adenosine and cytidine and results in the lack of highly stable magic number clusters. Some clusters are the result of aggregation in the course of ionization (ESI) whereas others appear to be intrinsic to the solution being examined. Copyright 2003 John Wiley & Sons, Ltd.

  5. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  6. Alkali metal cation selectivity of [17]ketonand in methanol: free energy perturbation and molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Hwang, Sun Gu; Chung, Doo Soo; Jang, Yun Hee; Ryu, Gean Ha

    1999-01-01

    Free energy perturbation and molecular dynamics simulations were carried out to investigate the relative binding affinities of [1 7 ]ketonand (1) toward alkali metal cations in methanol. The binding affinities of 1 toward the alkali metal cations were calculated to be in the order Li + >Na + >K + >Rb + >Cs + , whereas our recent theoretically predicted and experimentally observed binding affinities for [1 8 ]starand (2) were in the order K + >Rb + >Cs + >Na + >Li + . The extremely different affinities of 1 and 2 toward smaller cations, Li + and Na + , were explained in terms of the differences in their ability to change the conformation to accommodate cations of different sizes. The carbonyl groups constituting the central cavity of 1 can reorganize to form a cavity with the optimal M + -O distance, even for the smallest Li + , without imposing serious strain on 1. The highest affinity of 1 for Li + was predominantly due to the highest Coulombic attraction between the smallest Li + and the carbonyl oxygens of 1

  7. The effect of coal sulfur on the behavior of alkali metals during co-firing biomass and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tianhua Yang; Xingping Kai; Yang Sun; Yeguang He; Rundong Li [Shenyang Aerospace University, Liaoning (China). Liaoning Key Laboratory of Clean Energy and Institute of Clean Energy and Environmental Engineering

    2011-07-15

    Biomass contains high amounts of volatile alkali metals and chlorine, which can cause deposition, corrosion and agglomeration during combustion. Meanwhile coal contains a certain amount of sulfur that produces serious environmental pollution following combustion. To investigate the effects of sulfur on the migration of alkali metals during biomass and coal co-combustion, thermodynamic equilibrium calculations were applied and experiments were performed in a laboratory scale reactor combining with a scanning electron microscope (SEM), X-ray powder diffraction (XRD) and other analytical approaches. The results indicate that inorganic sulfur FeS{sub 2} addition significantly enhanced the formation of potassium sulfate when the S/K molar ratio was less than 2. Meanwhile increasing FeS{sub 2} dosage reduced the formation of KCl(g) and KOH(g) and increased the release of HCl(g). In addition potassium sulfate can react with silica and aluminum to form potassium aluminosilicates and release HCl at the S/K molar ratio above 4. 18 refs., 9 figs., 1 tab.

  8. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    International Nuclear Information System (INIS)

    Kominis, I. K.

    2008-01-01

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks

  9. Electronic nature of zwitterionic alkali metal methanides, silanides and germanides - a combined experimental and computational approach.

    Science.gov (United States)

    Li, H; Aquino, A J A; Cordes, D B; Hase, W L; Krempner, C

    2017-02-01

    Zwitterionic group 14 complexes of the alkali metals of formula [C(SiMe 2 OCH 2 CH 2 OMe) 3 M], (M- 1 ), [Si(SiMe 2 OCH 2 CH 2 OMe) 3 M], (M- 2 ), [Ge(SiMe 2 OCH 2 CH 2 OMe) 3 M], (M- 3 ), where M = Li, Na or K, have been prepared, structurally characterized and their electronic nature was investigated by computational methods. Zwitterions M- 2 and M- 3 were synthesized via reactions of [Si(SiMe 2 OCH 2 CH 2 OMe) 4 ] ( 2 ) and [Ge(SiMe 2 OCH 2 CH 2 OMe) 4 ] ( 3 ) with MOBu t (M = Li, Na or K), resp., in almost quantitative yields, while M- 1 were prepared from deprotonation of [HC(SiMe 2 OCH 2 CH 2 OMe) 3 ] ( 1 ) with LiBu t , NaCH 2 Ph and KCH 2 Ph, resp. X-ray crystallographic studies and DFT calculations in the gas-phase, including calculations of the NPA charges confirm the zwitterionic nature of these compounds, with the alkali metal cations being rigidly locked and charge separated from the anion by the internal OCH 2 CH 2 OMe donor groups. Natural bond orbital (NBO) analysis and the second order perturbation theory analysis of the NBOs reveal significant hyperconjugative interactions in M- 1 -M- 3 , primarily between the lone pair and the antibonding Si-O orbitals, the extent of which decreases in the order M- 1 > M- 2 > M- 3 . The experimental basicities and the calculated gas-phase basicities of M- 1 -M- 3 reveal the zwitterionic alkali metal methanides M- 1 to be significantly stronger bases than the analogous silanides M- 2 and germanium M- 3 .

  10. Reaction of cerium dioxide with alkali metal alkoxides

    International Nuclear Information System (INIS)

    Sato, Nobuaki; Fujino, Takeo

    1992-01-01

    The gas-solid reaction process using volatile alkali metal alkoxides has many advantages in producing the uranates (plutonates) which are expected to improve the dissolution behavior of the fuel into nitric acid. In this work, the reactions of CeO 2 , which was used as a non-radioactive stand-in of PuO 2 , with MOBu t (M = Li, K) under several conditions were examined. In the case of the M y Ce 1-y O 2-x synthesized by an aqueous method, the lattice parameter was slightly increased with increasing M concentration, y, up to 0.20. When the LiOBu t vapor reacted with CeO 2 , a new fluorite phase having a = 5.4935 A, y = 0.044, x = 0.30 was formed over 973 K. A similar compound (a = 5.4797 A, y = 0.035, x = 0.22) was observed by the reaction of CeO 2 with KOBu t . (author)

  11. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin; Li, Zhikao; Nourdine, Mohamed; Shahid, Salman; Takanabe, Kazuhiro

    2014-01-01

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH

  12. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    Directory of Open Access Journals (Sweden)

    E. Garrone

    2002-07-01

    Full Text Available Abstract: When adsorbed (at a low temperature on alkali-metal-exchanged zeolites, CO forms both M(CO+ and M(OC+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO+ than for M(OC+ carbonyls, although the corresponding difference decreases substantially when going from Li+ to Cs+. By means of variable-temperature FTIR spectroscopy, this energy difference was determined for several alkali-metal cations, and the existence of a thermal equilibrium between M(CO+ and M(OC+ species was established. The current state of research in this field is reviewed here, with a view to gain more insight into the thermal isomerization process.

  13. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  14. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-01-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  15. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    International Nuclear Information System (INIS)

    Sinha, Prabal K.; Ghosh, A. S.

    2006-01-01

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10 -16 -10 -4 a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature

  16. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  17. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  18. Electronic and atomic structures of liquid tellurium containing alkali elements

    International Nuclear Information System (INIS)

    Kawakita, Yukinobu; Yao, Makoto; Endo, Hirohisa.

    1997-01-01

    The measurements of electrical conductivity σ, density, EXAFS and neutron scattering were carried out for liquid K-Te and Rb-Te mixtures. The conductivity σ decreases rapidly with alkali concentration and a metal-semiconductor transition occurs at about 10 at.% alkali. It is found that the compositional variation of σ is nearly independent of the alkali species. The Te-Te bond length deduced from EXAFS and neutron scattering measurements is 2.8 A and changes little with alkali concentrations. The average distances from K and Rb atom to Te atoms are 3.6 A and 3.8 A, respectively. Two kinds of relaxation processes are observed in quasielastic neutron scattering for K 20 Te 80 . Upon the addition of alkali the interaction between the neighbouring Te chains, which is responsible for the metallic conduction, weaken considerably. (author)

  19. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  20. Amperometric Ion-Selective Electrode for Alkali Metal Cations Based on a Room-Temperature Ionic Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Trojánek, Antonín; Samec, Zdeněk

    2009-01-01

    Roč. 21, 17-18 (2009), s. 1977-1983 ISSN 1040-0397 R&D Projects: GA MŠk ME08098; GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic liquid * alkali metals * Crown ether * cyclic voltammetry * amperometric ion-selective elkectrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  1. Development of processes for the production of solar grade silicon from halides and alkali metals

    Science.gov (United States)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  2. Corrosion-electrochemical behavior of metals in alkali solutions

    International Nuclear Information System (INIS)

    Levin, V.A.; Levina, E.Eh.

    1995-01-01

    Results of an investigation into corrosion-electrochemical behaviour of 12Kh18N10T, 10Kh17N13M2T, 08Kh21N6M2T and 15Kh25T steels, 06KhN28MDT and KhN78T alloys as well as NP-2 nickel in sodium, potassium and lithium hydroxide solutions at 95-180 deg C temperatures are considered. It is ascertained, that anode polarization curves of all metals irrespective of hydroxide nature, concentration, temperature, presence of chloride and chlorate additions, are of identic character. The movement of anode polarization curves in the direction of lower current of hydroxide type in NaOH-KOH-LiOH series, temperature and solution concentration reduction at other equal terms. 12 refs.; 6 figs

  3. Finite-field evaluation of the Lennard-Jones atom-wall interaction constant C3 for alkali-metal atoms

    International Nuclear Information System (INIS)

    Johnson, W.R.; Dzuba, V.A.; Safronova, U.I.; Safronova, M.S.

    2004-01-01

    A finite-field scaling method is applied to evaluate the Lennard-Jones interaction constant C 3 for alkali-metal atoms. The calculations are based on the relativistic single-double approximation in which single and double excitations of Dirac-Hartree-Fock wave functions are included to all orders in perturbation theory

  4. Investigation of the atom-atom and structural relaxation in liquid alkali metals by means of the memory function formalism

    International Nuclear Information System (INIS)

    Blagoveshchenskii, N. M.; Novikov, A. G.; Savostin, V. V.

    2011-01-01

    An attempt is made to systematize the data on the relaxation characteristics of liquid alkali metals (Li, Na, and K), which were investigated based on neutron-scattering data with the application of the two-time memory function formalism.

  5. Retroviral RNA Dimerization: From Structure to Functions

    Directory of Open Access Journals (Sweden)

    Noé Dubois

    2018-03-01

    Full Text Available The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…, the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.

  6. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  7. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  8. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  9. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  10. Control the polarization state of light with symmetry-broken metallic metastructures

    International Nuclear Information System (INIS)

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu

    2015-01-01

    Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics

  11. Reaction of alkali nitrates with PuO2

    International Nuclear Information System (INIS)

    Yamashita, T.; Ohuchi, K.; Takahashi, K.; Fujino, T.

    1990-01-01

    Improvement of solubility of plutonium dioxide (PuO 2 ) in acid solution is important to establish the nuclear fuel reprocessing technique for uranium-plutonium mixed oxide fuels. If insoluble PuO 2 can be converted into any soluble plutonium compounds, problems arising from the fuel dissolution process will be reduced to a great extent. Alkali metal plutonates and alkaline-earth plutonates are known to have enhanced solubility in mineral acids. However, the reaction conditions to form such plutonates and characterization thereof are not well elucidated. Then the reactivity and reaction conditions to form lithium and sodium plutonates from their nitrates and PuO 2 were studied at temperatures between 500 and 900 degree C and alkali metal to plutonium atom ratios between 0.5 and 6 by means of thermogravimetry as well as X-ray diffraction technique. The reaction behavior of alkali plutonates will be discussed in comparison with corresponding alkali uranates

  12. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  13. James C. McGroddy Prize Talk: Superconductivity in alkali-metal doped Carbon-60

    Science.gov (United States)

    Hebard, Arthur

    2008-03-01

    Carbon sixty (C60), which was first identified in 1985 in laser desorption experiments, is unquestionably an arrestingly beautiful molecule. The high symmetry of the 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball like structure invites special attention and continues to stimulate animated speculation. The availability in 1990 of macroscopic amounts of purified C60 derived from carbon-arc produced soot allowed the growth and characterization of both bulk and thin-film samples. Crystalline C60 is a molecular solid held together by weak van der Waals forces. The fcc structure has a 74% packing fraction thus allowing ample opportunity (26% available volume) for the intercalation of foreign atoms into the interstitial spaces of the three dimensional host. This opportunity catalyzed much of the collaborative work amongst chemists, physicists and materials scientists at Bell Laboratories, and resulted in the discovery of superconductivity in alkali-metal doped C60 with transition temperatures (Tc) in the mid-30-kelvin range. In this talk I will review how the successes of this initial team effort stimulated a worldwide collaboration between experimentalists and theorists to understand the promise and potential of an entirely new class of superconductors containing only two elements, carbon and an intercalated alkali metal. Although the cuprates still hold the record for the highest Tc, there are still open scientific questions about the mechanism that gives rise to such unexpectedly high Tc's in the non-oxide carbon-based superconductors. The doped fullerenes have unusual attributes (e.g., narrow electronic bands, high disorder, anomalous energy scales, and a tantalizing proximity to a metal-insulator Mott transition), which challenge conventional thinking and at the same time provide useful insights into new directions for finding even higher Tc materials. The final chapter of the `soot to superconductivity' story has yet to be written.

  14. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  15. Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.

    Science.gov (United States)

    Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav

    2018-02-07

    Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

  16. A study of fluid alkali metals in the critical region

    International Nuclear Information System (INIS)

    Balasubramanian, R.

    2006-01-01

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation

  17. Electric polarization switching in an atomically thin binary rock salt structure

    Science.gov (United States)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  18. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    Science.gov (United States)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  19. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  1. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Science.gov (United States)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  2. Effect of charging on silicene with alkali metal atom adsorption

    Science.gov (United States)

    Li, Manman; Li, Zhongyao; Gong, Shi-Jing

    2018-02-01

    Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM-Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as  +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM-Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.

  3. Raman spectroscopic study of uranyl complex in alkali chloride melts

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Uda, Takeshi; Iwadate, Yasuhiko; Nagai, Takayuki; Uehara, Akihiro; Yamana, Hajimu

    2013-01-01

    Raman spectra of alkali chloride melts containing 3 mol% U(VI) were measured at 823 K. The complexation of UO 2 Cl 4 2- in binary mixtures of LiCl-KCl, LiCl-RbCl, and LiCl-CsCl was investigated. The spectrum of UO 2 Cl 4 2- obtained was characterized by Raman active vibration modes, that is, totally symmetric stretching vibrations A 1g (ν 1 : OUO) and A 1g (ν 2 : UCl 4 ), and bending vibration E g (ν 8: UO 2 Cl 2 ). The dependence of polarizing power of solvent cations on the vibrational frequencies was clarified. The ν 8 frequencies were insensitive to the change in the polarizing power. On the other hand, the ν 1 and ν 2 frequencies increased with the rise of polarizing power. The Raman shifts suggest that the square bipyramidal structure of UO 2 Cl 4 2- is kept in various binary alkali chlorides, while O 2− and Cl − around U(VI) are clearly polarized by the increase of polarizing power

  4. Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

    International Nuclear Information System (INIS)

    An, Wei; Zhu, Tong; Zhu, QunZhi

    2014-01-01

    When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. -- Highlights: ► Radiative properties of silver nanorod dimer are very sensitive to the assembled angle. ► The projective length of nanorod dimer on the polarization orientation is crucial. ► Compared with single nanorod, wavelength of extinction peak of dimer has a red-shift. ► Extinction peaks of dimer on the substrate are smaller than that without the substrate

  5. Structural and energetic characteristics of alkali metal hexachlorouranates (5)

    International Nuclear Information System (INIS)

    Kudryashov, V.L.; Suglobova, I.G.; Chirkst, D.Eh.

    1978-01-01

    Structure types and lattice parameters of alkali metal hexachlorouranates (5) have been determined by indicating the X-ray diffraction patterns of polycrystals. α-NaVCl 6 has a cubic structure of the Csub(s)PFsub(6) type; β-NaVCl 6 -trigonal lattice of the LiSbF 6 type; KVCl 6 and RbVCl 6 crystallize in the RbPaF 6 structure type; CsVCl 6 is isomorphous to CsPF 6 . Enthalpy values of hexachlorouranates (5) dissolution in 0.5% FeCl 3 solution and in 2% HCl have been measured and the standard enthalpy values of their formation have been calculated. The energies of crystal lattices and of the uranium-uranium-chlorine bonds have been calculated. When uranium coordination number is 6 the energy of the uranium-chlorine bond is 99.6+-0.5; when this number is 8 the energy equals 101.9+-0.5 kcal/mol

  6. The extraction of alkali metal picrates with dibenzo-18-crown-6

    International Nuclear Information System (INIS)

    Sadakane, Akira; Toei, Kyoji; Iwachido, Tadashi.

    1975-01-01

    The distribution of alkali metal picrate complexes of macrocyclic polyether (dibenzo-18-crown-6) between water and benzene was investigated. The polyether-cation complexes were found to be of a 1:1 stoichiometry. The formation of 2:1 complexes was recognized for Rb and Cs in a large excess of the polyether. The extractability of complex cation-picrate ion-pairs decreases in this sequence: K>Rb>Cs>Na>Li. The values of the extraction constants (log Ksub(ex)) were determined to be 4.65, 3.75, and 3.07 for K, Rb, and Cs compounds respectively. The thermodynamic quantities for the extraction process were calculated from the change in the extraction constants with the temperature. The extraction reactions are all exothermic, accompanied by an entropy decrease. (auth.)

  7. Dual Carbon-Confined SnO2 Hollow Nanospheres Enabling High Performance for the Reversible Storage of Alkali Metal Ions.

    Science.gov (United States)

    Wu, Qiong; Shao, Qi; Li, Qiang; Duan, Qian; Li, Yanhui; Wang, Heng-Guo

    2018-04-25

    To explore a universal electrode material for the high-performance electrochemical storage of Li + , Na + , and K + ions remains a big challenge. Herein, we propose a "trinity" strategy to coat the SnO 2 hollow nanospheres using the dual carbon layer from the polydopamine-derived nitrogen-doped carbon and graphene. Thereinto, hollow structures with sufficient void space could buffer the volume expansion, whereas dual carbon-confined strategy could not only elastically prevent the aggregation of nanoparticle and ensure the structural integrity but also immensely improve the conductivity and endow high rate properties. Benefiting from the effective strategy and specific structure, the dual carbon-confined SnO 2 hollow nanosphere (denoted as G@C@SnO 2 ) can serve as the universal host material for alkali metal ions and enable their rapid and reversible storage. As expected, the resulting G@C@SnO 2 as a universal anode material shows reversible alkali-metal-ion storage with high performance. We believe this that strategy could pave the way for constructing other metal-oxide-based dual carbon-confined high-performance materials for the future energy storage applications.

  8. A study of fluid alkali metals in the critical region

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R. [Department of Physics, Kongu Engineering College, Perundurai, Erode 638 052, Tamil Nadu (India)]. E-mail: drrbala@yahoo.com

    2006-05-31

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation.

  9. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    Science.gov (United States)

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. Copyright © 2015. Published by Elsevier Ltd.

  10. Effect of alkali metal cations on anodic dissolution of gold in cyanide solutions. Potentiodynamic measurement

    International Nuclear Information System (INIS)

    Bek, R.Yu.; Rogozhnikov, N.A.; Kosolapov, G.V.

    1998-01-01

    It is shown that gold dissolution rate in cyanic solutions in Li + , Na + , K + , Cs + cation series increases basically and decreases under cation concentration increasing. Cation effect on current value is caused by cations drawing in dense layer. A model of dense part of double layer with two Helmholtz planes (anion and cation) is suggested. Effect of nature and concentration of alkali metal cations on gold dissolution rate is explained on the base of the model [ru

  11. Carbonation of metal silicates for long-term CO2 sequestration

    Science.gov (United States)

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  12. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  13. Neutral dipole-dipole dimers: A new field in science

    Science.gov (United States)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another

  14. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    Science.gov (United States)

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  15. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-10-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XH n-1 - ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s{sup −1} for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability. - Highlights: • Surfactants were employed to make adjustments of the hydrophobicity of particles. • Polar attractions between particles increased the viscosity considerably. • Loose and open flocculation was formed in CI/DA suspension. • The steric repulsion of oleic acid played a limited role in the stability.

  17. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  18. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.; Beard, James S.

    2017-08-01

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  19. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  20. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry.

    Science.gov (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo

    2004-05-01

    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  1. Comparison of arsenic acid with phosphoric acid in the interaction with a water molecule and an alkali/alkaline-earth metal cation.

    Science.gov (United States)

    Park, Sung Woo; Kim, Chang Woo; Lee, Ji Hyun; Shim, Giwoong; Kim, Kwang S

    2011-10-20

    Recently, Wolfe-Simon has discovered a bacterium which is able to survive using arsenic(V) rather than phosphorus(V) in its DNA. Thus it is important to investigate some important structural and chemical similarities and dissimilarities between phosphate and arsenate. We compared the monohydrated structures and the alkali/alkaline-earth metal (Na(+), K(+), Mg(2+) and Ca(2+)) complexes of the arsenic acid/anions with those of the phosphoric acid/anions [i.e., H(m)PO(4)(-(3-m)) vs H(m)AsO(4)(-(3-m)) (m = 1-3)]. We carried out geometry optimization along with harmonic frequency calculations using ab initio calculations. Despite the increased van der Waals radius of As, the hydrated structures of both P and As systems show very close similarity (within 0.25 Å in the P/As···O(water) distance and within a few kJ/mol in binding energy) because of the increased induction energies by more polar arsenic acid/anons and slightly increased dispersion energy by a larger size of the As atom. In the metal complexes, the arsenic acid has a slightly larger binding distance (by 0.07-1.0 Å) and weaker binding energy because the As(V) ion has a slightly larger radius than the P(V) ion, and the electrostatic interaction is the dominating feature in these systems.

  2. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. D.; Fang, Y. M.; Wu, S. Q., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Zhu, Z. Z., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005 (China)

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  3. First-principles study of the alkali earth metal atoms adsorption on graphene

    International Nuclear Information System (INIS)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Wang, Sake; JinYu; Du, Yanhui; Zhang, Yajun

    2015-01-01

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  4. First-principles study of the alkali earth metal atoms adsorption on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Ren, Qingqiang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan (China); Wang, Sake [Department of Physics, Southeast University, Nanjing 210096, Jiangsu (China); JinYu [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, Jiangsu (China); Du, Yanhui [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Zhang, Yajun [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-30

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  5. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  6. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  7. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  8. Sources of polarized negative ions: progress and prospects

    International Nuclear Information System (INIS)

    Haeberli, W.

    1980-01-01

    A summary of recent progress in the art of producing beams of polarized ions is given. In all sources of polarized ions, one first produces (or selects) neutral atoms which are polarized in electron spin. Those types of sources which use a beam of thermal polarized hydrogen atoms are discussed. Progress made in the preparation of the atomic beam and the methods used to convert the neutral atoms to polarized ions is summarized. The second type of source discussed is based on fast (keV) polarized hydrogen atoms. Conversion to negative ions is very simple because one only needs to pass the fast atoms through a suitable charge exchange medium (gas or vapor). However, the production of the polarized atoms is more difficult in this case. The proposal to employ polarized alkali vapor to form a beam of polarized fast H atoms, where the polarized alkali atoms are produced either by an atomic beam apparatus or by optical pumping is discussed

  9. Influence of N-O chemistry on the excitation of alkali metals by a non-transferred DC plasma jet

    International Nuclear Information System (INIS)

    Haeyrinen, Ville; Oikari, Risto; Hernberg, Rolf

    2004-01-01

    Excitation of Na(3p) and K(4p) states by a high velocity non-transferred direct current plasma jet was studied. A turbulent nitrogen plasma jet was discharged into an atmosphere consisting of nitrogen and oxygen, laden with trace amounts of alkali. The line reversal temperatures of Na and K depend on the molar fraction of oxygen and may deviate considerably from the gas temperature. The reaction pressure was 0.1 MPa. The measured line reversal temperatures were reproduced by a simple chemical model. At temperatures near 2000 K non-equilibrium is caused by association of nitrogen atoms by the Zeldovich mechanism, which affects the vibrational temperature of nitrogen molecules. Near 1000 K excitation may also take place due to a chemiluminescent mechanism between alkali metals and ozone

  10. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    International Nuclear Information System (INIS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-01-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light

  11. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    Science.gov (United States)

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  12. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    W and a 6 MW LTCFBgasifier. Of the total fuel ash entering the system, the largest fraction (40−50%) was retained in the secondary cyclone bottoms,while a lower amount (8−10%) was released as dust in the exit gas. Most of the alkali and alkaline earth metals were retained inthe solid ash, along with Si...... by the particle size and the cut size ofthe primary and secondary cyclones. A model accounting for the ash collection by the plant cyclones was shown to predict theproduct gas ash particle release reasonably well....

  13. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  14. Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations

    Czech Academy of Sciences Publication Activity Database

    Pawlesa, Justyna; Zukal, Arnošt; Čejka, Jiří

    2007-01-01

    Roč. 13, 3-4 (2007), s. 257-265 ISSN 0929-5607 Grant - others:DeSSANS(XE) SES6-CT-2005-020133; INDENS(XE) MRTN-CT-2004-005503 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : MCM-22 zeolite * MCM-49 zeolite * alkali metal cation exchange * N2 and CO2 adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.880, year: 2007

  15. Experimental solubility measurements of lanthanides in liquid alkalis

    Science.gov (United States)

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  16. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  17. Micelle formation during extraction of alkali elements from strongly alkaline mediums

    International Nuclear Information System (INIS)

    Apanasenko, V.V.; Reznik, A.M.; Bukin, V.I.; Brodskaya, A.V.

    1988-01-01

    Extraction of potassium, rubidium and cesium by phenol reagents in hydrocarbon solvents from strongly alkakine solutions was considered. Tendency of prepared alkali metal phenolates to form micelles in aqueous and organic phases was revealed. Phenolates tendency to form micelles is dictated mainly by the size and position of hydrocarbon substituent in molecule. It is shown that when micelles form in organic phase, alkali elements can be extracted both according to cation-exchange mechanism and according to micellar one. It is noted that alkai element extraction from strongly alkaline media requires the correct choice of extractant: alkali metal phenolate shouldn't form micelles in aqueous solution. n-Alkyl- and arylphenoldisulfides and polysulfides are most preferable for solvent extraction among considered phenol derivatives

  18. Saturated vapor pressure over molten mixtures of GaCl{sub 3} and alkali metal chlorides; Davlenie nasyshchennykh parov rasplavlennykh smesej CaCl{sub 3} s khloridami shchelochnykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smolenskij, V V; Moskalenko, N I [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Elaterinburg (Russian Federation)

    2004-07-01

    Volatilities of GaCl{sub 3} and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl{sub 3} in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl{sub 3}; their variation permits altering parameters of GaCl{sub 3} distillation from the salt melt in a wide range.

  19. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  20. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  1. Electric-field-modulated exchange coupling within and between magnetic clusters on metal surfaces: Mn dimers on Cu(1 1 1)

    International Nuclear Information System (INIS)

    Juárez-Reyes, L; Pastor, G M; Stepanyuk, V S

    2014-01-01

    The effects of external electric fields (EFs) on the magnetic state and substrate-mediated magnetic coupling between Mn dimers on Cu(1 1 1) have been studied using a first-principles theoretical method. The calculations show that a change in the ground-state magnetic order, from antiferromagnetic (AF) to ferromagnetic (FM), can be induced within an isolated Mn 2 on Cu(1 1 1) by applying a moderately strong EF of about 1 V Å −1 . The magnetic exchange coupling between pairs of dimers displays Ruderman–Kittel–Kasuya–Yosida-like oscillations as a function of the interdimer distance, which depend significantly on the magnetic order within the dimers (FM or AF) and on their relative orientation on the surface. Moreover, it is observed that applying EFs allows modulation of the exchange coupling within and between the clusters as a function of the intercluster distance. At short distances, AF order within the dimers is favoured even in the presence of EFs, while for large distances the EF can induce a FM order. EFs pointing outwards and inwards with respect to the surface favour parallel and antiparallel magnetic alignment between the dimers, resspectively. The dependence of the substrate-mediated interaction on the magnetic state of Mn 2 is qualitatively interpreted in terms of the differences in the scattering of spin-polarized surface electrons. (paper)

  2. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    Rahier, A.; Mesrobian, G.

    2006-01-01

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  3. Dimers of nineteen-electron sandwich compounds: Crystal and electronic structures, and comparison of reducing strengths

    KAUST Repository

    Mohapatra, Swagat Kumar

    2014-10-03

    The dimers of some Group 8 metal cyclopentadienyl/ arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the Xray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central C-C σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these C-C bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2]2, rather similar (-1.97 to-2.15 V vs. FeCp2 +/0 in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed.

  4. Dimers of nineteen-electron sandwich compounds: Crystal and electronic structures, and comparison of reducing strengths

    KAUST Repository

    Mohapatra, Swagat Kumar; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared Heath; Timofeeva, Tatiana V.; Bredas, Jean-Luc; Marder, Seth R.; Barlow, Stephen J.

    2014-01-01

    The dimers of some Group 8 metal cyclopentadienyl/ arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the Xray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central C-C σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these C-C bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2]2, rather similar (-1.97 to-2.15 V vs. FeCp2 +/0 in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed.

  5. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Nakabeppu, Y.; Sekiguchi, M.

    1981-01-01

    T4 endonuclease, which is involved in repair of uv-damaged DNA, has been purified to apparent physical homogeneity. Incubation of uv-irradiated poly(dA).poly(dT) with the purified enzyme preparations resulted in production of alkali-labile apyrimidinic sites, followed by formation of nicks in the polymer. By performing a limited reaction with T4 endonuclease V at pH 8.5, irradiated polymer was converted to an intermediate form that carried a large number of alkali-labile sites but only a few nicks. The intermediate was used as substrate for the assay of apurinic/apyrimidinic DNA endonuclease activity. The two activities, a pyrimidine dimer DNA glycosylase and an apurinic/apyrimidinic DNA endonuclease, were copurified and found in enzyme preparations that contained only a 16,000-dalton polypeptide. These results strongly suggested that a DNA glycosylase specific for pyrimidine dimers and an apurinic/apyrimidinic DNA endonuclease reside in a single polypeptide chain coded by the denV gene of bacteriophage T4

  6. The Study of Anti-/Pro-Oxidant, Lipophilic, Microbial and Spectroscopic Properties of New Alkali Metal Salts of 5-O-Caffeoylquinic Acid

    Directory of Open Access Journals (Sweden)

    Monika Kalinowska

    2018-02-01

    Full Text Available Lithium, sodium, potassium, rubidium and caesium salts of 5-O-caffeoylquinic acid (chlorogenic acid, 5-CQA were synthesized and described by FT-IR (infrared spectroscopy, FT-Raman (Raman spectroscopy, UV (UV absorption spectroscopy, 1H (400.15 MHz, 13C (100.63 MHz NMR (nuclear magnetic resonance spectroscopy. The quantum–chemical calculations at the B3LYP/6-311++G** level were done in order to obtain the optimal structures, IR spectra, NBO (natural bond orbital atomic charges, HOMO (highest occupied molecular orbital and LUMO (lowest unoccupied molecular orbital orbitals and chemical reactivity parameters for 5-CQA and Li, Na and K 5-CQAs (chlorogenates. The DPPH (α, α-diphenyl-β-picrylhydrazyl and FRAP (ferric reducing antioxidant power assays were used for the preliminary estimation of the antioxidant properties of alkali metal chlorogenates and chlorogenic acid. In the DPPH assay the EC50 parameter were equal to 7.39 μM for 5-CQA and was in the range of 4.50–5.89 μM for salts. The FRAP values for two different concentrations (5 and 2.5 μM of the studied compounds were respectively 114.22 and 72.53 μM Fe2+ for 5-CQA, whereas for salts they were 106.92–141.13 and 78.93–132.00 μM Fe2+. The 5-CQA and its alkali metal salts possess higher antioxidant properties than commonly applied antioxidants (BHA, BHT, l-ascorbic acid. The pro-oxidant action of these compounds on trolox oxidation was studied in the range of their concentration 0.05–0.35 μM. The lipophilicity (logkw of chlorogenates and chlorogenic acid was determined by RP-HPLC (reverse phase—high performance liquid chromatography using five different columns (C8, PHE (phenyl, CN (cyano, C18, IAM (immobilized artificial membrane. The compounds were screened for their in vitro antibacterial activity against E. coli, Bacillus sp., Staphylococcus sp., Streptococcus pyogenes and antifungal activity against Candida sp. The 5-CQA possessed lower antibacterial (minimal inhibitory

  7. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  8. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    Wittchow, F.

    1979-01-01

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li + + K, Na + + K, K + + K, and Rb + + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG) [de

  9. Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min-Soo; Lee, Wook-Hyun; Woo, Sang-Kuk [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2017-07-15

    The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta”-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of 900°C. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

  10. Complexing properties of some carbamoylmethylphosphine oxides and methylenediphosphine dioxides with respect to alkali metal cations and the effect of abnormal aryl strengthening

    International Nuclear Information System (INIS)

    Evreinov, V.I.; Safronova, Z.V.; Yarkevich, A.N.; Kharitonov, A.V.; Bondarenko, N.A.; Tsvetkov, E.N.

    1999-01-01

    By the method of conductometry in anhydrous tetrahydrofuran at 25 Deg C stability constants of alkali metal (M = Li, Na, K) cation complexes with certain phosphinoxides have been determined. Abnormal aryl strengthening is first of all pronounced in the cation complexes with tetraphenyldiphosphine dioxide [ru

  11. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R; Eriksson, T; Lehtonen, P [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  12. Tolerance of polar phytoplankton communities to metals

    International Nuclear Information System (INIS)

    Echeveste, P.; Tovar-Sánchez, A.; Agustí, S.

    2014-01-01

    Large amounts of pollutants reach polar regions, particularly the Arctic, impacting their communities. In this study we analyzed the toxic levels of Hg, Cd and Pb to natural phytoplankton communities of the Arctic and Southern Oceans, and compared their sensitivities with those observed on phytoplankton natural communities from temperate areas. Mercury was the most toxic metal for both Arctic and Antarctic communities, while both Cd and Pb were toxic only for the Antarctic phytoplankton. Total cell abundance of the populations forming the Arctic community increased under high Cd and Pb concentrations, probably due to a decrease of the grazing pressure or the increase of the most resistant species, although analysis of individual cells indicated that cell death was already induced at the highest levels. These results suggest that phytoplankton may have acquired adapting mechanisms to face high levels of Pb and Cd in the Arctic Ocean. Highlights: • First study analyzing the toxicity of Hg, Cd or Pb to natural polar phytoplankton. • Arctic Ocean communities highly resistant to Cd and Pb, but not to Hg. • Southern Ocean communities sensitive to Cd, Pb and Hg. • Both communities incorporated Pb at a similar level. • Arctic phytoplankton may have acquired adapting mechanisms against Cd and Pb. -- Polar phytoplankton communities are tolerant to Cd and Pb, specially the Arctic ones, suggesting the acquisition of adapting mechanisms to face metals' toxicity

  13. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  14. A discotic triphenylene dimer as organic hole transporting material for electroluminescence devices

    International Nuclear Information System (INIS)

    Mao Huaxiang; He Zhiqun; Wang Junling; Zhang Chunxiu; Xie, Ping; Zhang Rongben

    2007-01-01

    A triphenylene dimer, an intermediate between a discotic triphenylene molecule and the macromolecule, had been prepared by linking together two triphenylene units via phenylene carbamate linkages, which was formed through a reaction between one 1,4-phenylene diisocyanate and two hydroxyl end groups on flexible substituents of triphenylenes. The dimer exhibited good film-forming property. Its temperature-dependent phase transitions were investigated using differential scanning calorimetry and polarized optical microscopy. Room temperature microstructure of the dimer was analyzed by X-ray diffraction. Charge mobility of the triphenylene dimer was also measured. Our preliminary result using the materials in a sandwich light-emitting device is reported here. It demonstrates that the triphenylene dimer is a promising candidate as a hole transporting material

  15. Steam Gasification of Sawdust Biochar Influenced by Chemical Speciation of Alkali and Alkaline Earth Metallic Species

    Directory of Open Access Journals (Sweden)

    Dongdong Feng

    2018-01-01

    Full Text Available The effect of chemical speciation (H2O/NH4Ac/HCl-soluble and insoluble of alkali and alkaline earth metallic species on the steam gasification of sawdust biochar was investigated in a lab-scale, fixed-bed reactor, with the method of chemical fractionation analysis. The changes in biochar structures and the evolution of biochar reactivity are discussed, with a focus on the contributions of the chemical speciation of alkali and alkaline earth metallic species (AAEMs on the steam gasification of biochar. The results indicate that H2O/NH4Ac/HCl-soluble AAEMs have a significant effect on biochar gasification rates. The release of K occurs mainly in the form of inorganic salts and hydrated ions, while that of Ca occurs mainly as organic ones. The sp3-rich or sp2-sp3 structures and different chemical-speciation AAEMs function together as the preferred active sites during steam gasification. H2O/HCl-soluble AAEMs could promote the transformation of biochar surface functional groups, from ether/alkene C-O-C to carboxylate COO− in biochar, while they may both be improved by NH4Ac-soluble AAEMs. H2O-soluble AAEMs play a crucial catalytic role in biochar reactivity. The effect of NH4Ac-soluble AAEMs is mainly concentrated in the high-conversion stage (biochar conversion >30%, while that of HCl-soluble AAEMs is reflected in the whole activity-testing stage.

  16. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    Science.gov (United States)

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Effects of alkali metal cations on phospho-enzyme levels and [3H] ouabain binding to (Na+ + K+)-ATPase.

    Science.gov (United States)

    Han, C S; Tobin, T; Akera, T; Brody, T M

    1976-05-13

    The effects of several alkali metal cations on the relationship between steady state phospho-enzyme levels and initial velocity and equilibrium levels of [3H]-ouabain binding to (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3.) were examined. Only Na+ increased both phospho-enzyme and [3H] ouabain binding levels above those observed in the presence of Mg2+ alone. While Na+ stimulated phosphorylation with an apparent Km of about 1 mM, its stimulation of [3H] ouabain binding was biphasic, the lower Km for stimulation corresponding to the Km for formation of phospho-enzyme. Among the other alkali metal cations, potassium, rubidium and lithium were at least eight times more effect in reducing phospho-enzyme levels than in reducing [3H] ouabain binding. This discrepancy is not due to the stability of the enzyme-ouabain complex, nor to any action on the rates of formation or dissociation of the enzyme-ouabain complex. The data thus suggest that [3H] ouabain interacts with the K+, Rb+ or Li+ -enzyme complexes. For Li+, this hypothesis is further supported by the observation that Li+ can cirectly increase the equilibrium level of [3H] ouabain binding to this enzyme under certain conditions.

  18. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Filippova, L.M.; Zebreva, A.I.; Espenbetov, A.A.

    1977-01-01

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  19. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  20. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    Science.gov (United States)

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  1. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  2. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  3. Rate equation modelling of the optically pumped spin-exchange source

    International Nuclear Information System (INIS)

    Stenger, J.; Rith, K.

    1995-01-01

    Sources for spin polarized hydrogen or deuterium, polarized via spin-exchange of a laser optically pumped alkali metal, can be modelled by rate equations. The rate equations for this type of source, operated either with hydrogen or deuterium, are given explicitly with the intention of providing a useful tool for further source optimization and understanding. Laser optical pumping of alkali metal, spin-exchange collisions of hydrogen or deuterium atoms with each other and with alkali metal atoms are included, as well as depolarization due to flow and wall collisions. (orig.)

  4. The characterisation of vapour-phase alkali metal-tellurium-oxygen species

    International Nuclear Information System (INIS)

    Gomme, R.A.; Ogden, J.S.; Bowsher, B.R.

    1986-10-01

    Detailed assessments of hypothetical severe accidents in light water reactors require the identification of the chemical forms of the radionuclides in order to determine their transport characteristics. Caesium and tellurium are important volatile fission products in accident scenarios. This report describes detailed studies to characterise the chemical species that vaporise from heated mixtures of various alkali metal-tellurium-oxygen systems. The molecular species were characterised by a combination of quadrupole mass spectrometry and matrix isolation-infrared spectroscopy undertaken in conjunction with experiments involving oxygen-18 substitution. The resulting spectra were interpreted in terms of a vapour-phase molecule with the stoichiometry M 2 TeO 3 (M = K,Rb,Cs) for M/Te molecular ratios of ∼ 2, and polymeric species for ratios < 2. This work has demonstrated the stability of caesium tellurite. The formation of this relatively low-volatility, water-soluble species could significantly modify the transport and release of caesium and tellurium. The data presented in this report should allow more comprehensive thermodynamic calculations to be undertaken that assist in the quantification of fission product behaviour during severe reactor accidents. (author)

  5. Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths.

    Science.gov (United States)

    Mohapatra, Swagat K; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared H; Timofeeva, Tatiana V; Brédas, Jean-Luc; Marder, Seth R; Barlow, Stephen

    2014-11-17

    The dimers of some Group 8 metal cyclopentadienyl/arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the X-ray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central CC σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these CC bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2 ]2 , rather similar (-1.97 to -2.15 V vs. FeCp2 (+/0) in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Bahram; Pourabdollah, Kobra [Islamic Azad University, Province (Iran, Islamic Republic of)

    2012-05-15

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixarene in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of p-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusionextraction parameters were optimized including the calixarene scaffold 3 (4 wt %) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusionextraction of alkali metals was as high as 98-99%.

  7. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation

    International Nuclear Information System (INIS)

    Mokhtari, Bahram; Pourabdollah, Kobra

    2012-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixarene in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of p-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusionextraction parameters were optimized including the calixarene scaffold 3 (4 wt %) as the carrier/demulsifier, the commercial kerosene as diluent in membrane, sulphonic acid (0.2 M) and ammonium carbonate (0.4 M) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 rpm), and initial solute concentration (100 mg/L). The selectivity of membrane over more than ten interfering cations was examined and the results reveled that under the optimized operating condition, the degree of inclusionextraction of alkali metals was as high as 98-99%

  8. Control of alkali species in gasification systems: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Turn, S.; Kinoshita, C.; Ishimura, D. Zhou, J.; Hiraki, T.; Masutani, S.

    2000-07-13

    Gas-phase alkali metal compounds contribute to fouling, slagging, corrosion, and agglomeration problems in energy conversion facilities. One mitigation strategy applicable at high temperature is to pass the gas stream through a fixed bed sorbent or getter material, which preferentially absorbs alkali via physical adsorption or chemisorption. This report presents results of an experimental investigation of high-temperature alkali removal from a hot filtered gasifier product gas stream using a packed bed of sorbent material. Two getter materials, activated bauxite and emathlite, were tested at two levels of space time by using two interchangeable reactors of different internal diameters. The effect of getter particle size was also investigated.

  9. Gradients of electric fields and effective charges in alkali metal permanganates on NMR data

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Kirakosyan, G.A.; Meladze, M.A.; German, K.Eh.

    1993-01-01

    Pulse method of 55 Mn, 39 K, 87 Rb, 133 Cs NMR in 7.04 T field was used to study polycrystal permanganates of alkali metals KMnO 4 , RbMnO 4 , CsMnO 4 in 100-440 K range. Qaudrupole bond constants, parameters of tensor asymmetry of electric field gradient (EFG) and isotropic values of chemical shifts were determined in result of analysis of resonance line shape. Cation positions in RbMnO 4 and CsMnO 4 are characterized by two nonequivalent states with 1:1 occupation. Effective charges on oxygen and manganese atoms were calculated in the framework of point charge model, using structural data and experimental EFG values on cation nuclei

  10. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y., E-mail: yamada@bk.tsukuba.ac.jp; Sasaki, M. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  11. Preparation and characterization of dimeric and tetrameric clusters of molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.R.

    1981-10-01

    The cyclo-addition of two Mo/sub 2/Cl/sub 4/(P(C/sub 6/H/sub 5/)/sub 3/)/sub 2/(CH/sub 3/OH)/sub 2/ molecules has produced a new type of tetrameric molybdenum cluster, Mo/sub 4/Cl/sub 8/L/sub 4/. Structural characterization of this dimer revealed weak molybdenum-methanol bonding which was consistent with the observed reactivity of the compound. New synthetic methods were devised for the preparation of Mo/sub 4/X/sub 8/L/sub 4/ clusters where X = Cl, Br, I and L = PR/sub 3/, Po/sub 3/, RCN, CH/sub 3/OH. A scheme for the metal-metal bonding in these clusters was presented which was in agreement with the known structural features of Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/, R = C/sub 2/H/sub 5/, n-C/sub 4/H/sub 9/. The preparation of the analogous W/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ cluster from WCl/sub 4/ was accomplished by application of techniques used in the molybdenum syntheses. The single crystal x-ray structure revealed slight differences from the molybdenum analog which were rationalized in terms of the known behavior in dimeric tungsten and molybdenum species. The attempted preparation of a tetrameric tungsten cluster from W/sub 2/(mhp)/sub 4/ was unsuccessful (mhp = anion of 2-methyl-6-hydroxypyridine). Instead, the new tungsten dimer, W/sub 2/Cl/sub 2/(mhp)/sub 3/, was isolated which possessed a metal-metal bond order of 3.5. The x-ray crystal structure of the dimer revealed that the chlorine atoms were situated cis, one bound to each tungsten. Cyclic voltammetry showed that the compound could be reversibly reduced, presumably to a W/sub 2//sup 4 +/ dimer containing a quadruple metal-metal bond.

  12. Preparation of Cyclic Urethanes from Amino Alcohols and Carbon Dioxide Using Ionic Liquid Catalysts with Alkali Metal Promoters

    OpenAIRE

    Masahiko Arai; Hisanori Senboku; Hiroshi Kanamaru; Shin-ichiro Fujita

    2006-01-01

    Several ionic liquids were applied as catalysts for the synthesis of cyclic urethanes from amino alcohols and pressurized CO2 in the presence of alkali metal compounds as promoters. A comparative study was made for the catalytic performance using different ionic liquids, substrates, promoters, and pressures. The optimum catalytic system was BMIM-Br promoted by K2CO3, which, for 1-amino-2-propanol, produced cyclic urethane in 40% yield with a smaller yield of substituted cyclic ...

  13. c -Axis Dimer and Its Electronic Breakup: The Insulator-to-Metal Transition in Ti2 O3

    Science.gov (United States)

    Chang, C. F.; Koethe, T. C.; Hu, Z.; Weinen, J.; Agrestini, S.; Zhao, L.; Gegner, J.; Ott, H.; Panaccione, G.; Wu, Hua; Haverkort, M. W.; Roth, H.; Komarek, A. C.; Offi, F.; Monaco, G.; Liao, Y.-F.; Tsuei, K.-D.; Lin, H.-J.; Chen, C. T.; Tanaka, A.; Tjeng, L. H.

    2018-04-01

    We report on our investigation of the electronic structure of Ti2 O3 using (hard) x-ray photoelectron and soft x-ray absorption spectroscopy. From the distinct satellite structures in the spectra, we have been able to establish unambiguously that the Ti-Ti c -axis dimer in the corundum crystal structure is electronically present and forms an a1 ga1 g molecular singlet in the low-temperature insulating phase. Upon heating, we observe a considerable spectral weight transfer to lower energies with orbital reconstruction. The insulator-metal transition may be viewed as a transition from a solid of isolated Ti-Ti molecules into a solid of electronically partially broken dimers, where the Ti ions acquire additional hopping in the a -b plane via the egπ channel, the opening of which requires consideration of the multiplet structure of the on-site Coulomb interaction.

  14. Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species.

    Directory of Open Access Journals (Sweden)

    Anna-Karin E Svensson

    2010-04-01

    Full Text Available Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1 can cause amyotrophic lateral sclerosis (ALS. Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals.

  15. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  16. Rice Na+/H+- antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters

    Czech Academy of Sciences Publication Activity Database

    Kinclová-Zimmermannová, Olga; Flegelová, Hana; Sychrová, Hana

    2004-01-01

    Roč. 49, č. 5 (2004), s. 519-525 ISSN 0015-5632 R&D Projects: GA ČR GA204/02/1240; GA AV ČR IAA5011407 Grant - others:EU(XE) QLK3-CT-2001-00533 Institutional research plan: CEZ:AV0Z5011922 Keywords : alkali metal cations * Na/H antiporter * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.034, year: 2004

  17. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  18. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    Science.gov (United States)

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  19. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  20. Ligand design for alkali-metal-templated self-assembly of unique high-nuclearity CuII aggregates with diverse coordination cage units: crystal structures and properties.

    Science.gov (United States)

    Du, Miao; Bu, Xian-He; Guo, Ya-Mei; Ribas, Joan

    2004-03-19

    The construction of two unique, high-nuclearity Cu(II) supramolecular aggregates with tetrahedral or octahedral cage units, [(mu(3)-Cl)[Li subset Cu(4)(mu-L(1))(3)](3)](ClO(4))(8)(H(2)O)(4.5) (1) and [[Na(2) subset Cu(12)(mu-L(2))(8)(mu-Cl)(4)](ClO(4))(8)(H(2)O)(10)(H(3)O(+))(2)](infinity) (2) by alkali-metal-templated (Li(+) or Na(+)) self-assembly, was achieved by the use of two newly designed carboxylic-functionalized diazamesocyclic ligands, N,N'-bis(3-propionyloxy)-1,4-diazacycloheptane (H(2)L(1)) or 1,5-diazacyclooctane-N,N'-diacetate acid (H(2)L(2)). Complex 1 crystallizes in the trigonal R3c space group (a = b = 20.866(3), c = 126.26(4) A and Z = 12), and 2 in the triclinic P1 space group (a = 13.632(4), b = 14.754(4), c = 19.517(6) A, alpha = 99.836(6), beta = 95.793(5), gamma = 116.124(5) degrees and Z = 1). By subtle variation of the ligand structures and the alkali-metal templates, different polymeric motifs were obtained: a dodecanuclear architecture 1 consisting of three Cu(4) tetrahedral cage units with a Li(+) template, and a supramolecular chain 2 consisting of two crystallographically nonequivalent octahedral Cu(6) polyhedra with a Na(+) template. The effects of ligand functionality and alkali metal template ions on the self-assembly processes of both coordination supramolecular aggregates, and their magnetic behaviors are discussed in detail.

  1. Superconductivity and electrical resistivity in alkali metal doped ...

    Indian Academy of Sciences (India)

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to ...

  2. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies

    Science.gov (United States)

    Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.

    2018-06-01

    Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.

  3. First principles study the effects of alkali metal and chorine adatoms on the opposite surface of graphene

    Science.gov (United States)

    Xinxiang, Song; Guang, Yuan; Meifeng, Dong; Mimura, Hidenori; Chun, Li; Mang, Niu

    2018-02-01

    Study of the adsorption properties of graphene has great significance for expanding its application. So far, few studies have analyzed the effects of adatoms on opposite sides of graphene. We use density functional theory to report the effects of chlorine and alkali metal adatoms on the other side of graphene. Although there is an obvious charge transfer between the adatom and graphene, the interaction between the adatoms is shielded by the large π bonds of graphene and therefore the effects of the adatom on the other side of graphene are very weak.

  4. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  5. Dimerization of eosin on nanostructured gold surfaces: Size regime dependence of the small metallic particles

    Science.gov (United States)

    Ghosh, Sujit Kumar; Pal, Anjali; Nath, Sudip; Kundu, Subrata; Panigrahi, Sudipa; Pal, Tarasankar

    2005-08-01

    Gold nanoparticles of variable sizes have been exploited to study their influence on the absorption and emission spectral characteristics of eosin, a fluorescent dye. It has been found that smaller particles of gold stimulate J-aggregation of eosin on the surface of metal particles whereas larger particles cannot induce any kind of aggregation amongst the dye molecules. The size regime dependence of the gold nanoparticles has been attributed to the intercluster interactions induced by the dye molecules for smaller gold nanoparticles and consequently, close packing of the dye molecules around the gold surface engenders intermolecular interactions amongst the dye molecules leading to dimerization.

  6. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    Science.gov (United States)

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  7. The influence of alkali promoters on coadsorbed molecules

    International Nuclear Information System (INIS)

    Umbach, E.

    1986-01-01

    A model has been suggested recently based on the results of an extensive study of the coadsorbate system CO + K on Ru(001). It is introduced and discussed in this article based on previous results and on results obtained very recently for a similar coadsorbate system, CO + K/Ni(111). This model is in competition with a variety of differing or similar ideas and interpretations which are mostly based on similar experimental results. Some of these other models postulate a lying-down, or strongly tilted, molecule in the presence of alkali atoms, at least at low coverages. The CO molecule is usually considered to be attached to the substrate and to be closely coadsorbed to the alkali neighbor(s) but sometimes even a vertical or horizontal adsorption on top of the alkali layer has been suggested. The interaction between alkali and CO has been described as indirect via the substrate or direct by forming a ''π''-bond between adjacent alkalis and CO molecules or even by forming an ionic K/sub x/-CO/sub y/ complex. Some authors prefer a model in which the main (or exclusive) interaction comes from a charge transfer from the donating alkali into the 2π orbital of the coadsorbed CO, thus, enhancing the C- metal and reducing the C-O bond strength

  8. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  9. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    Science.gov (United States)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  10. Research and development on optically pumped polarized ion sources. Technical progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1985-07-01

    During the past year we have studied the relaxation times in an optically pumped 23 Na vapor target, studied the effects of radiation trapping on the polarization in a Na vapor target, and have studied the effects of spin exchange collisions on a beam of fast H 0 atoms as they pass through a polarized alkali target. This research is directed toward improvements in the optically pumped Na or other alkali vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source as well as discussing the progress of our research on optically pumped Na or other alkali vapor targets. 81 refs., 9 figs

  11. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  12. Uranium metalla-allenes with carbene imido R_2C=U"I"V=NR' units (R=Ph_2PNSiMe_3; R'=CPh_3): alkali-metal-mediated push-pull effects with an amido auxiliary

    International Nuclear Information System (INIS)

    Lu, Erli; Tuna, Floriana; Kaltsoyannis, Nikolas; Liddle, Stephen T.; Lewis, William

    2016-01-01

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM"T"M"S)(NCPh_3)(NHCPh_3)(M)] (BIPM"T"M"S=C(PPh_2NSiMe_3)_2; M=Li or K) that can be described as R_2C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R_2C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR_2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U"I"V=N units. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effect of electrolyte sorbed by nonion-exchange mechanism on the state and diffusive mobility of water and alkali metal ions in perfluorinated sulfocationic membranes from NMR data

    International Nuclear Information System (INIS)

    Volkov, V.I.; Sidorenkova, E.A.; Korochkova, S.A.; Novikov, N.A.; Sokol'skaya, I.B.; Timashev, S.F.

    1994-01-01

    On the basis of data of high-resolution NMR on 1 H nuclei of water, 23 Na and 133 Cs, of counterions Na + and Ca + the influence of nonionexchange sorved alkalis and metal chlorides on the state and diffusive mobility of the counterions was studied. It is shown that the type of co-ion can affect considerably the translational diffusion of metal ions

  14. Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2015-01-15

    Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic and partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.

  15. A theoretical study of the structure and thermochemical properties of alkali metal fluoroplumbates MPbF3.

    Science.gov (United States)

    Boltalin, A I; Korenev, Yu M; Sipachev, V A

    2007-07-19

    Molecular constants of MPbF3 (M=Li, Na, K, Rb, and Cs) were calculated theoretically at the MP2(full) and B3LYP levels with the SDD (Pb, K, Rb, and Cs) and cc-aug-pVQZ (F, Li, and Na) basis sets to determine the thermochemical characteristics of the substances. Satisfactory agreement with experiment was obtained, including the unexpected nonmonotonic dependence of substance dissociation energies on the alkali metal atomic number. The bond lengths of the theoretical CsPbF3 model were substantially elongated compared with experimental estimates, likely because of errors in both theoretical calculations and electron diffraction data processing.

  16. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  17. An alkali-metal ion extracted layered compound as a template for a metastable phase synthesis in a low-temperature solid-state reaction: preparation of brookite from K0.8Ti1.73Li0.27O4.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2010-03-15

    We have designed a new approach to synthesize brookite, i.e., to extract alkali-metal ions from K(0.8)Ti(1.73)Li(0.27)O(4) (KTLO) and to apply simultaneous heat treatment to the remaining lepidocrocite-type layers of TiO(6) octahedra. For the alkali-metal ion extraction and the simultaneous heat treatment, KTLO was heated at 400 degrees C with polytetrafluoroethylene (PTFE) in flowing Ar. PTFE has been found to be an effective agent to extract strongly electropositive alkali-metal ions from KTLO because of the strong electronegativity of F as its component. The product of this reaction consists of a mixture of brookite, K(2)CO(3), LiF, and PTFE derivatives, indicating the complete extraction of K(+) and Li(+) from KTLO and formation of brookite from the lepidocrocite-type layer of TiO(6) octahedra as a template. This brookite has a partial replacement of O(2-) with F(-) and/or slight oxygen deficiency; thus, its color is light-bluish gray. Fully oxidized brookite formation and complete decomposition of PTFE derivatives have been achieved by further heating in flowing air, and coproduced alkali-metal salts have been removed by washing in water. Powder X-ray diffraction, Raman spectroscopy, and chemical analysis results have confirmed that the final brookite product treated at 600 degrees C is single phase, and it is white. The method to extract alkali-metal ions from a crystalline material using PTFE is drastically different from the common methods such as soft-chemical and electrochemical reactions. It is likely that this new synthetic approach is applicable to other layered systems to prepare a diverse family of compounds, including novel metastable ones.

  18. Synthesis and Dimerization Behavior of Five Metallophthalocyanines in Different Solvents

    Directory of Open Access Journals (Sweden)

    Zhenhua Cheng

    2014-01-01

    Full Text Available Metallophthalocyanine (MPc has become one of the metal organic compounds with the largest production and the most widely application, because of its excellent performance in catalytic oxidation. However, aggregation of the MPc in solution, resulting in decreased solubility, greatly limits the performance of application. Studying the behavior of dimerization of MPcs can provide a theoretical basis for solving the problem of the low solubility. So five metallophthalocyanines (FePc, CoPc, NiPc, CuPc, and ZnPc were prepared with improved method and characterized. Dimerization of the five MPcs was measured by UV-Vis spectroscopy separately in N,N-dimethyl formamide (DMF and dimethylsulfoxide (DMSO. The red-shift of maximum absorption wavelength and deviations from Lambert-Beer law with increasing the concentration were observed for all the five MPcs. The dimerization equilibrium constants (K of the five MPcs in DMF were arranged in order of CoPc > ZnPc > CuPc > FePc > NiPc, while in DMSO they were arranged in order of ZnPc > CoPc > FePc > CuPc > NiPc. The type of the central metal and nature of the solvent affect the dimerization of the MPcs.

  19. Mass-spectrometric study of ion clustering in alkali-metal hydroxide vapor: cluster-ion energy and structural characteristics

    International Nuclear Information System (INIS)

    Kudin, L.S.; Butman, M.F.; Krasnov, K.S.

    1986-01-01

    Various positive and negative ions have been recorded in the equilibrium vapors from alkali-metal hydroxides: M/sup +/-/, OH - , O - , MO - , MOH - , and X/sup +/-/ (MOH)/sub n/, where X = M/sup +/-/, OH - , n = 1-6. The equilibrium constants have been measured for X/sup +/-/(MOH)/sub n/ = x/sup +/-/ + nMOH(k), n = 1-3, and the enthalpies of reaction have been determined, from which the enthalpies of formation and dissociation energies of X/sup +/-/ (MOH)/sub n/ have been calculated. The relative stabilities of the ions in the series from Na to Cs are examined

  20. From simple rings to one-dimensional channels with calix[8]arenes, water clusters, and alkali metal ions

    OpenAIRE

    Bergougnant, Rémi D.; Robin, Adeline Y.; Fromm, Katharina M.

    2007-01-01

    The macrocycle 4-tert-butylcalix[8]arene (L) was reacted with alkali metal carbonates (Li₂CO₃, Na₂CO₃, K₂CO₃, Rb₂CO₃, and Cs₂CO₃) at the interface of a biphasic THF/water system. Needle-like crystals with a general formula [Ax(4-tert-butylcalix[8]arene-xH)(THF)y(H₂O)z] (with A=Li, Na, K, Rb, Cs, x=1, 2, y=4, 5, 8, and z=6, 7) were thereby obtained. The solid state structures were investigated by X-ray diffraction of single crystals and by TGA measurements. They do not appear to be maintained ...

  1. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  2. Inverse shear viscosity (fluidity) scaled with melting point properties: Almost 'universal' behaviour of heavier alkalis

    International Nuclear Information System (INIS)

    Tankeshwar, K.; March, N.H.

    1997-07-01

    Some numerical considerations relating to the potential of mean force at the melting point of Rb metal are first presented, which argue against the existence of a well defined activation energy for the shear viscosity of this liquid. Therefore, a scaling approach is developed, based on a well established formula for the viscosity η m of sp liquid metals at their melting points T m . This approach is shown to lead to an 'almost' universal plot of scaled fluidity η -1 η m against (T/T m ) 1/2 for the liquid alkali metals, excluding Li. This metal is anomalous because it is a strong scattering liquid, in marked contrast to the other alkali metals. (author). 9 refs, 3 figs, 1 tab

  3. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  4. Solubility and solvation of alkali metal perchlorates, tetramethyl and tetraethylammonium in aqua-ketone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1998-01-01

    The KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 solubility in water and water-acetone, water-methylethylketone mixtures is determined through the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metals perchlorates in acetone and its 90% mixtures (by volume) are determined conductometrically. Solubility products and standard energies of the Gibbs transfer of the studied electrolytes from water into water-acetone and water-methylethylketone solvents. It is established that the Gibbs standard energies of Na + , K + , Rb + and Cs + cations transfer from water to water-ketone solvents are close to each other. It is shown that the effect of acetone and methylethylketone on solvation of the studied electrolytes is practically similar

  5. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Kudyakov, V Ya; Smirnov, M V; Moskalenko, N I [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  6. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I.

    1984-01-01

    The coefficient of HfCl 4 and ZrCl 4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl 4 +HfCl 4 ). HfCl 4 and ZrCl 4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  7. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    Science.gov (United States)

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.

  8. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  9. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  10. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  11. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  12. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    This work investigates strategies to mitigate stress corrosion cracking (SCC) in Zircaloy-4 sheathing materials. The CANLUB coatings currently used in CANDU reactors contain both alkali metal and alkaline earth metal impurities, which can exist as oxides (e.g., Na{sub 2}O and CaO). It is believed that when the corrosive fission product iodine reacts with these oxides, the iodine can be sequestered through the formation of an iodide (e.g.,NaI and CaI{sub 2}). The subsequent O{sub 2} release may repair cracks in the protective ZrO{sub 2} layer on the sheathing, shielding the Zircaloy-4 sheathing from further corrosive fission product attack. For this investigation, O{sub 2} gas, Na{sub 2}O, and CaO were separately introduced into an environment wherein slotted Zircaloy-4 rings endure mechanical stresses in iodine vapour at high temperatures. Controlled additions of O{sub 2} gas created a slight reduction in the corrosive attack on Zircaloy-4 sheathing, while the inclusion of Na{sub 2}O and CaO lead to greater reductions. (author)

  13. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  14. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  15. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    Science.gov (United States)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  16. Long-range interactions between alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Jiang Jun; Cheng Yongjun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li–Rb) and alkaline-earth metal atoms (Be–Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low-lying excited state. (paper)

  17. Separation of polar compounds using a flexible metal-organic framework

    NARCIS (Netherlands)

    Motkuri, R.K.; Thallapally, P.K.; Annapureddy, H.V.R.; Dang, L.X.; Krishna, R.; Nune, S.K.; Fernandez, C.A.; Liu, J.; McGrail, B.P.

    2015-01-01

    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds (propanol isomers) by exploiting the differences in the saturation capacities of the constituents. Transient breakthrough simulations show that these

  18. Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures

    International Nuclear Information System (INIS)

    Lombard, E; Genet, C; Ebbesen, T W; Drezet, A

    2010-01-01

    We demonstrate experimentally a simple method for preparing non-diffractive vectorial optical beams that can display wave-front helicity. This method is based on space-variant modifications of the polarization of an optical beam transmitted through subwavelength annular rings perforating opaque metal films. We show how the description of the optical properties of such structures must account for the vectorial character of the polarization and how, in turn, these properties can be controlled by straightforward sequences of preparation and analysis of polarization states.

  19. Monitoring transport and equilibrium of heavy metals in soil using induced polarization

    Science.gov (United States)

    Shalem, T.; Huisman, J. A.; Zimmermann, E.; Furman, A.

    2017-12-01

    Soil and groundwater pollution in general, and by heavy metals in particular, is a major threat to human health, and especially in rapidly developing regions, such as China. Fast, accurate and low-cost measurement of heavy metal contamination is of high desire. Spectral induced polarization (SIP) may be an alternative to the tedious sampling techniques typically used. In the SIP method, an alternating current at a range of low frequencies is injected into the soil and the resultant potential is measured along the current's path. SIP is a promising method for monitoring heavy metals, because it is sensitive to the chemical composition of both the absorbed ions on the soil minerals and the pore fluid and to the interface between the two. The high sorption affinity of heavy metals suggests that their electrical signature may be significant, even at relatively low concentrations. The goal of this research is to examine the electrical signature of soil contaminated by heavy metals and of the pollution transport and remediation processes, in a non-tomographic fashion. Specifically, we are looking at the SIP response of various heavy metals in several settings: 1) at equilibrium state in batch experiments; 2) following the progress of a pollution front along a soil column through flow experiments and 3) monitoring the extraction of the contaminant by a chelating agent. Using the results, we develop and calibrate a multi-Cole-Cole model to separate the electrochemical and the interfacial components of the polarization. Last, we compare our results to the electrical signature of contaminated soil from southern China. Results of single metals from both batch and flow experiments display a shift of the relaxation time and a decrease in the phase response of the soil with increase of the metal concentration, suggesting strong sorption of the metals on the stern layer. Preliminary results also show evidence of electrodic polarization, assuming to be related to the formation of

  20. Metallicity at interphase boundaries due to polar catastrophe induced by charge density discontinuity

    KAUST Repository

    Albar, Arwa

    2018-02-09

    The electronic properties of interphase boundaries are of basic importance for most materials, particularly when those properties deviate strongly from the bulk behavior. We introduce a mechanism that can result in metallicity at stoichiometric interphase boundaries between semiconductors based on the idea of polar catastrophe, which is usually considered only in the context of heterostructures. To this end, we perform ab initio calculations within density functional theory to investigate the electronic states at stoichiometric SnO/SnO2 (110) interphase boundaries. In this system, one would not expect polar catastrophe to have a role according to state-of-the-art theory because the interface lacks formal charge discontinuity. However, we observe the formation of a hole gas between the semiconductors SnO and SnO2. To explain these findings, we provide a generalized theory based on the idea that the charge density discontinuity between SnO and SnO2, a consequence of lattice mismatch, drives a polar catastrophe scenario. As a result, SnO/SnO2 (110) interphase boundaries can develop metallicity depending on the grain size. The concept of metallicity due to polar catastrophe induced by charge density discontinuity is of general validity and applies to many interphase boundaries with lattice mismatch.

  1. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  2. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.

    Science.gov (United States)

    Hao, Qi; Huang, Hao; Fan, Xingce; Yin, Yin; Wang, Jiawei; Li, Wan; Qiu, Teng; Ma, Libo; Chu, Paul K; Schmidt, Oliver G

    2017-10-18

    We report on design and fabrication of patterned plasmonic dimer arrays by using an ultrathin anodic aluminum oxide (AAO) membrane as a shadow mask. This strategy allows for controllable fabrication of plasmonic dimers where the location, size, and orientation of each particle in the dimer pairs can be independently tuned. Particularly, plasmonic dimers with ultrasmall nanogaps down to the sub-10 nm scale as well as a large dimer density up to 1.0 × 10 10 cm -2 are fabricated over a centimeter-sized area. The plasmonic dimers exhibit significant surface-enhanced Raman scattering (SERS) enhancement with a polarization-dependent behavior, which is well interpreted by finite-difference time-domain (FDTD) simulations. Our results reveal a facile approach for controllable fabrication of large-area dimer arrays, which is of fundamental interest for plasmon-based applications in surface-enhanced spectroscopy, biochemical sensing, and optoelectronics.

  3. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  4. Interference Effects in the Optical Second Harmonic Generation from Ultrathin Alkali Films

    DEFF Research Database (Denmark)

    Balzer, F.; Rubahn, Horst-Günter

    2000-01-01

    Interference effects are shown to strongly modulate the transmission second harmonic signal (fundamental wavelength 1067 nm) from rough alkali island films grown on insulating substrates if one varies the angle of incidence. Depending on growth conditions and substrate thickness, the measured...... second harmonic dependencies can be interpreted in terms of interference between frontside and rearside adsorbed islands or by taking into account the morphology of the adsorbed alkali islands. By the use of different polarization combinations of both pump and reflected second harmonic wave we obtain...... accurate values of the ratios of the relevant nonlinear optical coefficients....

  5. Research and development on optically pumped polarized ion sources. Technical progress report, July 1, 1985-June 30, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-07-01

    The development of an optically pumped polarized 23 Na target is discussed. The three categories of research are: (1) electron spin relaxation of the 23 Na due to wall collisions; (2) effects of radiation trapping on the polarization that can be produced in an alkali target by optical pumping; and (3) the effects of spin exchange collisions in the polarization of a fast H 0 beam formed by charge transfer as an H + beam passes through a polarized alkali target. 90 refs., 7 figs

  6. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  8. Alkali-Metal-Mediated Magnesiations of an N-Heterocyclic Carbene: Normal, Abnormal, and "Paranormal" Reactivity in a Single Tritopic Molecule.

    Science.gov (United States)

    Martínez-Martínez, Antonio J; Fuentes, M Ángeles; Hernán-Gómez, Alberto; Hevia, Eva; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T

    2015-11-16

    Herein the sodium alkylmagnesium amide [Na4Mg2(TMP)6(nBu)2] (TMP=2,2,6,6-tetramethylpiperidide), a template base as its deprotonating action is dictated primarily by its 12 atom ring structure, is studied with the common N-heterocyclic carbene (NHC) IPr [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Remarkably, magnesiation of IPr occurs at the para-position of an aryl substituent, sodiation occurs at the abnormal C4 position, and a dative bond occurs between normal C2 and sodium, all within a 20 atom ring structure accommodating two IPr(2-). Studies with different K/Mg and Na/Mg bimetallic bases led to two other magnesiated NHC structures containing two or three IPr(-) monoanions bound to Mg through abnormal C4 sites. Synergistic in that magnesiation can only work through alkali-metal mediation, these reactions add magnesium to the small cartel of metals capable of directly metalating a NHC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Affinity capillary electrophoresis and density functional theory employed for the characterization of hexaarylbenzene-based receptor complexation with alkali metal ions

    Czech Academy of Sciences Publication Activity Database

    Ehala, Sille; Toman, Petr; Rathore, R.; Makrlík, E.; Kašička, Václav

    2011-01-01

    Roč. 32, č. 9 (2011), s. 981-987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/08/1428; GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GAP205/10/2280; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : affinity capillary electrophoresis * alkali metal ions * binding constant Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  10. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  11. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  12. Re-evaluation of the thermodynamic activity quantities in aqueous alkali metal nitrate solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Partanen, Jaakko I., E-mail: jpartane@lut.f [Laboratory of Physical Chemistry, Department of Chemical Technology, Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta (Finland)

    2010-12-15

    The Hueckel equation used in this study to correlate the experimental activities of dilute alkali metal nitrate solutions up to a molality of about 1.5 mol . kg{sup -1} contains two parameters being dependent on the electrolyte: B [that is related closely to the ion-size parameter (a*) in the Debye-Hueckel equation] and b{sub 1} (this parameter is the coefficient of the linear term with respect to the molality and this coefficient is related to hydration numbers of the ions of the electrolyte). In more concentrated solutions up to a molality of 7 mol . kg{sup -1}, an extended Hueckel equation was used, and it contains additionally a quadratic term with respect to the molality and the coefficient of this term is parameter b{sub 2}. All parameter values for the Hueckel equations of LiNO{sub 3}, NaNO{sub 3}, and KNO{sub 3} were determined from the isopiestic data measured by Robinson for solutions of these salts against KCl solutions [J. Am. Chem. Soc. 57 (1935) 1165]. In these estimations, the Hueckel parameters determined recently for KCl solutions [J. Chem. Eng. Data 54 (2009) 208] were used. The Hueckel parameters for RbNO{sub 3} and CsNO{sub 3} were determined from the reported osmotic coefficients of Robinson [J. Am. Chem. Soc. 59 (1937) 84]. The resulting parameter values were tested with the vapour pressure and isopiestic data existing in the literature for alkali metal nitrate solutions. These data support well the recommended Hueckel parameters up to a molality of 7.0 mol . kg{sup -1} for LiNO{sub 3} and NaNO{sub 3}, up to 4.5 mol . kg{sup -1} for RbNO{sub 3}, up to 3.5 mol . kg{sup -1} for KNO{sub 3}, and up to 1.4 mol . kg{sup -1} for CsNO{sub 3} solutions. Reliable activity and osmotic coefficients of alkali metal nitrate solutions can, therefore, be calculated by using the new Hueckel equations, and they have been tabulated at rounded molalities. The activity and osmotic coefficients obtained from these equations were compared to the values suggested by

  13. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  14. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  15. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  16. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge...

  17. Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

    OpenAIRE

    Nikoshvili, Linda Zh.; Bykov, Alexey V.; Khudyakova, Tatiana E.; Lagrange, Thomas; Héroguel, Florent; Luterbacher, Jeremy S.; Matveeva, Valentina G.; Sulman, Esther M.; Dyson, Paul J.; Kiwi-Minsker, Lioubov

    2017-01-01

    Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient hydrogen pressure. The alkali metal hydroxide accelerates the transformation of the residual Pd(II) salt into Pd(0) NPs and diminishes the reaction induction period. In addition, the selectivity t...

  18. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  19. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals

    Science.gov (United States)

    Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-01

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  20. New quaternary alkali metal cadmium selenites, A2Cd(SeO3)2 (A = K, Rb, and Cs) and Li2Cd3(SeO3)4

    Science.gov (United States)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2017-12-01

    A series of new alkali metal cadmium selenites, A2Cd(SeO3)2 (A = K, Rb, and Cs) and Li2Cd3(SeO3)4 have been synthesized in phase pure forms through hydrothermal and solid-state reactions. Structural analyses using single crystal X-ray diffraction indicate that while A2Cd(SeO3)2 and Li2Cd3(SeO3)4 reveal layered structures consisting of CdO6 and SeO3 polyhedra, their symmetry, bonding modes, and the orientation of lone pairs on Se4+ cations are different. A closer examination suggests that the observed structural variations found in the reported materials are attributed to the structure-directing effect of alkali metal cations with different sizes. Scanning electron microscopy/energy dispersive analysis by X-ray, thermogravimetric analysis, Infrared and UV-vis diffuse reflectance spectroscopy, transformation reactions under hydrothermal conditions, and local dipole moment calculations for the reported materials are also reported.

  1. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  2. Synthesis and characterization of monomeric and dimeric ...

    African Journals Online (AJOL)

    The two complexes are isostructural, with the central metal atom lying on a crystallographic 2-fold axis. Both complexes are approximately octahedral, the coordination being provided by two trans pyridine nitrogen atoms and two cis amine nitrogen atoms from the oxime ligands, and by two cis chlorides. The dimeric ...

  3. Study of defectiveness in orthosilicates of alkali earth metals by the method of radiospectroscopy

    International Nuclear Information System (INIS)

    Bikbau, M.Ya.; Akramov, R.

    1978-01-01

    With a view to investigating the defectiveness of the orthosilicates of alkali-earth metals, the spectra of the electronic paramagnetic resonance of γ-irradiated orthosilicates of Be, Mg, Ca, Sr and Ba have been examined. The spectra are obtained at 77 and 298 K. The maximum concentration and stability of paramagnetic centers is observed on the defects of the crystalline-optical structure of orthosilicates of Sr and Ba, as well as of β-Ca 2 SiO 4 . This is attributed to a great defectiveness of those compounds. On the basis of an analysis of the possible nature of electron and hole paramagnetic centers that are formed in the compounds examined by means of γ-irradiation, it has been suggested to form the electron centers of [M 2+ ]sub(n)sup(e) type. The formation of hole centers has been shown in aluminium used as addition

  4. Method of bonding metals to ceramics and other materials

    Science.gov (United States)

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  5. Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M2 (M = Cu, Ag, Au, Rg).

    Science.gov (United States)

    Li, Wan-Lu; Lu, Jun-Bo; Wang, Zhen-Ling; Hu, Han-Shi; Li, Jun

    2018-05-07

    The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu 2 , Ag 2 , Au 2 , Rg 2 ) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0 g + ground state, Rg 2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg 2 , two nearly degenerate SO states, 0 g + and 2 u , exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.

  6. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.

    Science.gov (United States)

    Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia

    2011-12-27

    We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.

  7. Structure and energetics of trivalent metal halides

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1999-01-01

    Metal trihalide (MX 3 ) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, axe shown to be significant. For example, crystal structures different to those observed experimentally axe adopted. The potentials axe improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques axe developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl 3 ) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects axe shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl 3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying

  8. How It's Made - Polarized Proton Beam (444th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Zelenski, Anatoli

    2008-01-01

    Experiments with polarized beams at RHIC will provide fundamental tests of QCD, and the electro-weak interaction reveal the spin structure of the proton. Polarization asymmetries and parity violation are the strong signatures for identification of the fundamental processes, which are otherwise inaccessible. Such experiments require the maximum available luminosity and therefore polarization must be obtained as an extra beam quality without sacrificing intensity. There are proposals to polarize the high-energy proton beam in the storage rings by the Stern-Gerlach effect or spin-filter techniques. But so far, the only practically available option is acceleration of the polarized beam produced in the source and taking care of polarization survival during acceleration and storage. Two major innovations -- the 'Siberian Snake' technique for polarization preservation during acceleration and high current polarized proton sources make spin physics with the high-energy polarized beams feasible. The RHIC is the first high-energy collider, where the 'Siberian Snake' technique allowed of polarized proton beam acceleration up-to 250 GeV energy. The RHIC unique Optically Pumped Polarized Ion Source produces sufficient polarized beam intensity for complete saturation of the RHIC acceptance. This polarization technique is based on spin-transfer collisions between a proton or atomic hydrogen beam of a few keV beam energy and optically pumped alkali metal vapors. From the first proposal and feasibility studies to the operational source this development can be considered as example of successful unification of individual scientists ingenuity, international collaboration and modern technology application for creation of a new polarization technique, which allowed of two-to-three order of magnitude polarized beam intensity increase sufficient for loading the RHIC to its full capacity for polarization studies.

  9. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  10. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  11. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  12. The immobilisation of nuclear waste materials containing different alkali elements into single-phase NZP based ceramics

    International Nuclear Information System (INIS)

    Pet'kov, V.I.; Orlova, A.I.; Trubach, I.G.; Demarin, T.; Kurazhkovskaya, V.S.

    2002-01-01

    The NZP matrix, which is based on NaZr 2 (PO 4 ) 3 , is a viable candidate for nuclear waste immobilisation. We examined the possibilities of incorporating of alkali elements into the NZP host structure, investigated the conditions of the crystalline solution formation, and determined the regions of the NZP structure compositional stability for a series of complex orthophosphates of titanium or zirconium and alkali elements A m-x A' x M 2-(m-1)/4 (PO 4 ) 3 with m = 1, 3, or 5 and 0 ≤ x ≤ m, where A and A' are mutually different alkali elements and M is Ti or Zr. The phosphates containing Li-Na, Li-K, Li-Rb, Li-Cs, Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs and Rb-Cs pairs were prepared and studied by X-ray powder analysis, IR spectroscopy, simultaneous DTA-TG measurements and electron microprobe analyses. In the systems studied, wide ranges of crystalline phosphate solutions with tailored alkali metal substitutions were formed owing to the large number of sites available for substitution and high degree of flexibility in the NZP structure. It was found that introduction of the less expensive and lighter Ti in the host phase in place of the commonly used Zr permits cheaper ceramics, having in some cases larger alkali element contents, to be obtained. The phases containing alkali metals can be formed, for instance, during phosphate solidification of molten alkali chlorides with radioactive nuclides from the pyroelectrochemical technologies of nuclear fuel recycling

  13. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  14. Cobalt(2) and nickel(2) tris-acetylacetonates with alkali metal cations in outer sphere

    International Nuclear Information System (INIS)

    Steblyanko, A.Yu.; Grigor'ev, A.N.; Martynenko, L.I.

    1996-01-01

    Anhydrous tris-acetylacetonates of Co(2) and Ni(2) with alkali metal cations in outer sphere were synthesized and investigated by different physicochemical methods. Chemical analysis and IR-spectroscopy show, that complex composition corresponds to the formula Eh[MA 3 ] (where Eh + - Li + , Na + , K + , Rb + , Cs + ; M - Co(2), Ni(2); A - - acetyacetonate-ion). Eh[MA 3 ] heating in vacuum leads to transition of volatile Co(2) and Ni(2) acetylacetonates to gaseous phase. The data of photoelectron spectroscopy and vacuum sublimation show, that Li[MA 3 ] is transformed to gaseous phase congruently and only partially dissociates to EhA and MA 2 . Li[MA 3 ] and Cs[MA 3 ] are characterized by the lowest thermal stability at atmospheric pressure. Low stability of Li[MA 3 ] is related with detachment of one of A - radical from [MA 3 ] complex anion by Li + cation under conditions, when LiA and Li[MA 3 ] are volatile. 11 refs.; 2 figs.; 3 tabs

  15. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Kudyakov, V Ya; Komarov, V E; Salyulev, A B [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1979-02-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10/sup -4/ T-(1.67-10/sup -4/T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10/sup -4/T-(0.71x10/sup -4/T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed.

  16. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.; Komarov, V.E.; Salyulev, A.B.

    1979-01-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10 -4 T-(1.67-10 -4 T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10 -4 T-(0.71x10 -4 T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  17. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  18. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome

    Science.gov (United States)

    Costa, Alessandro; Renault, Ludovic; Swuec, Paolo; Petojevic, Tatjana; Pesavento, James J; Ilves, Ivar; MacLellan-Gibson, Kirsty; Fleck, Roland A; Botchan, Michael R; Berger, James M

    2014-01-01

    The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3′ single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase. DOI: http://dx.doi.org/10.7554/eLife.03273.001 PMID:25117490

  19. Effects of gold based dimers on structural and electronic properties of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi, E-mail: ouzengi@adu.edu.tr [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2017-02-28

    Highlights: • Semiconductor MoS{sub 2} shows metallic character by AuPt and AuPd adsorption. • MoS{sub 2} maintains its semiconductor characteristics with a decrease in the band gap values after AuAg, AuCu, and AuAl adsorption. • AuPt adsorbed system is the most stable structure energetically. • AuAl exhibits the weakest adsorption to MoS{sub 2} among the considered dimers. - Abstract: In view of first principles calculations, we investigate the electronic structure redecoration of monolayer MoS{sub 2} upon adsorptions of AuAg, AuPt, AuPd, AuCu, and AuAl bimetallic dimers. Geometrical structure, band structures, electronic density of states, charge density differences of dimer adsorbed MoS{sub 2} systems are presented and discussed. All the systems studied have non-magnetic ground states. Charge transfers occur from dimer to surface except for AuPt adsorption. Our results indicate that the semiconductor MoS{sub 2} maintains its semiconductor character with decreased band gaps upon AuAg, AuCu, and AuAl adsorptions. However, MoS{sub 2} shows metallic behaviour by AuPt and AuPd adsorptions, so Pt-d and Pd-d states cross Fermi level yielding metallic character. AuPt adsorbed system has the highest E{sub ads} value of 3.15 eV indicating the most stable structure energetically among the dimer adsorbed MoS{sub 2} systems considered.

  20. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed