WorldWideScience

Sample records for polallie creek debris

  1. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Science.gov (United States)

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  2. A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Matthias Jakob

    2017-01-01

    Full Text Available A destructive debris flood occurred between 19 and 21 June 2013 on Cougar Creek, located in Canmore, Alberta. Cougar Creek fan is likely the most densely developed alluvial fan in Canada. While no lives were lost, the event resulted in approximately $40 M of damage and closed both the Trans-Canada Highway (Highway 1 and the Canadian Pacific Railway line for a period of several days. The debris flood triggered a comprehensive hazard assessment which is the focus of this paper. Debris-flood frequencies and magnitudes are determined by combining several quantitative methods including photogrammetry, dendrochronology, radiometric dating, test pit logging, empirical relationships between rainfall volumes and sediment volumes, and landslide dam outburst flood modeling. The data analysis suggests that three distinct process types act in the watershed. The most frequent process is normal or “clearwater” floods. Less frequent but more damaging are debris floods during which excessive amounts of bedload are transported on the fan, typically associated with rapid and extensive bank erosion and channel infilling and widening. The third and most destructive process is interpreted to be landslide dam outbreak floods. This event type is estimated to occur at return periods exceeding 300 years. Using a cumulative magnitude frequency technique, the data for conventional debris floods were plotted up to the 100–300s year return period. A peak-over-threshold approach was used for landslide dam outbreak floods occurring at return periods exceeding 300 years, as not all such events were identified during test trenching. Hydrographs for 6 return period classes were approximated by using the estimated peak discharges and fitting the hydrograph shape to integrate to the debris flood volumes as determined from the frequency-magnitude relationship. The fan volume was calculated and compared with the integrated frequency-magnitude curve to check of the validity of

  3. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    . Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.

  4. Changes in the composition of ichthyoplankton assemblage and plastic debris in mangrove creeks relative to moon phases.

    Science.gov (United States)

    Lima, A R A; Barletta, M; Costa, M F; Ramos, J A A; Dantas, D V; Melo, P A M C; Justino, A K S; Ferreira, G V B

    2016-07-01

    Lunar influence on the distribution of fish larvae, zooplankton and plastic debris in mangrove creeks of the Goiana Estuary, Brazil, was studied over a lunar cycle. Cetengraulis edentulus, Anchovia clupeoides and Rhinosardinia bahiensis were the most abundant fish larvae (56·6%), independent of the moon phase. The full moon had a positive influence on the abundance of Gobionellus oceanicus, Cynoscion acoupa and Atherinella brasiliensis, and the new moon on Ulaema lefroyi. The full and new moons also influenced the number of zoeae and megalopae of Ucides cordatus, protozoeae and larvae of caridean shrimps, and the number of hard and soft plastic debris, both 5 mm. Micro and macroplastics were present in samples from all 12 creeks studied, at densities similar to the third most abundant taxon, R. bahiensis. Cetengraulis edentulus and R. bahiensis showed a strong positive correlation with the last quarter moon, when there was less zooplankton available in the creeks and higher abundance of microplastic threads. Anchovia clupeoides, Diapterus rhombeus, U. lefroyi and hard microplastics were positively associated with different moon phases, when calanoid copepods, Caridean larvae and zoeae of U. cordatus were highly available in the creeks. Cynoscion acoupa, G. oceanicus and A. brasiliensis were strongly associated with the full moon, when protozoeae of caridean shrimps and megalopae of U. cordatus were also highly available, as were hard and soft macroplastics, paint chips (mangrove creeks as nursery habitats. The moon phases influenced the distribution of fish larvae species, zooplankton and plastic debris by changing their compositions and abundances in the mangrove creeks of the Goiana Estuary when under the influence of different tidal current regimes. © 2015 The Fisheries Society of the British Isles.

  5. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  6. Investigation of the peeks creek debris flow of September 2004 and its relationship to landslide hazard mapping in Macon County, North Carolina

    Science.gov (United States)

    Rebecca Latham; Rick Wooten; Anne Witt; Ken Gillon; Tommy Douglas; Stephen Fuemmeler; Jennifer Bauer; Scott Brame

    2007-01-01

    On September 16,2004 the remnants of Hurricane Ivan dumped heavy rain on Macon County, North Carolina, triggering a debris slide near the top of Fishhawk Mountain (figure 1) at an elevation of 4,420 ft around 10: 10 PM. This slide quickly mobilized into a debris flow that traveled approximately 2.25 miles and dropped 2,000 ft colliding with the Peeks Creek community...

  7. Assessment of an in-channel redistribution technique for large woody debris management in Locust Creek, Linn County, Missouri

    Science.gov (United States)

    Heimann, David C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and Missouri Department of Natural Resources, completed a study to assess a mechanical redistribution technique used for the management of large woody debris (LWD) jams in Locust Creek within Pershing State Park and Fountain Grove Conservation Area, Linn County, Missouri. Extensive LWD jams were treated from 1996 to 2009 using a low-impact technique in which LWD from the jams was redistributed to reopen the channel and to mimic the natural geomorphic process of channel migration and adjustment to an obstruction. The scope of the study included the comparison of selected channel geometry characteristics and bed material particle-size distribution in seven LWD treatment reaches with that of adjacent untreated reaches (unaffected by LWD accumulations) of Locust Creek. A comparison of 1996 and 2015 survey cross sections in treated and untreated reaches and photograph documentation were used to assess channel geomorphic change and the stability of redistributed LWD. The physical characteristics of LWD within jams present in the study reach during 2015–16 also were documented.Based on the general lack of differences in channel metrics between treated and untreated reaches, it can be concluded that the mechanical redistribution technique has been an effective treatment of extensive LWD jams in Locust Creek. Channel alterations, including aggradation, streamflow piracy, and diversions, have resulted in temporal and spatial changes in the Locust Creek channel that may affect future applications of the redistribution technique in Pershing State Park. The redistribution technique was used to effectively manage LWD in Locust Creek at a potentially lower financial cost and reduced environmental disturbance than the complete removal of LWD.A comparison of four channel metrics (bankfull cross-sectional area, channel width, streamflow capacity, and width-depth ratio) for individual treatment

  8. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    Science.gov (United States)

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range

  9. Sedimentation Study and Flume Investigation, Mission Creek, Santa Barbara, California; Corte Madera Creek, Marin County, California

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2000-01-01

    .... An existing concrete-lined flood control channel on Corte Madera Creek in Marin County, California lacks a debris basin at its upstream terminus and carries significant bed load through a supercritical flow reach...

  10. Woody debris

    Science.gov (United States)

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  11. Hail creek

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    2005-09-01

    The paper examines the development of one of the largest coking coal deposits in the world. Hail Creek is 100 km west of Mackay and 35 km northeast of Nebo, Queensland and has proven opencut reserves of 195.6 as at December 2003. Coal processing stated in July 2003. The award winning project included construction of a coal handling and preparation plant, a railway, a village and offsite infrastructure and mine buildings and site services. Coal is mined by conventional dragline and truck/shovel techniques. 1 photo.

  12. Effects of timber harvest on aquatic vertebrates and habitat in the North Fork Caspar Creek

    Science.gov (United States)

    Rodney J. Nakamoto

    1998-01-01

    I examined the relationships between timber harvest, creek habitat, and vertebrate populations in the North and South forks of Caspar Creek. Habitat inventories suggested pool availability increased after the onset of timber harvest activities. Increased large woody debris in the channel was associated with an increase in the frequency of blowdown in the riparian...

  13. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  14. Sediment transport and storage in North Fork Caspar Creek, Mendocino County, California: water years 1980-1988

    Science.gov (United States)

    Michael Brent Napolitano

    1996-01-01

    Abstract - The old-growth redwood forest of North Fork Caspar Creek was clear-cut between 1864 and 1904. Previous research on logging-related changes in suspended sediment and streamflow would suggest that North Fork Caspar Creek has recovered from historical logging (Rice et al., 1979; Ziemer, 1981); research on the influence of large woody debris (LWD) on channel...

  15. Estimated probability of postwildfire debris flows in the 2012 Whitewater-Baldy Fire burn area, southwestern New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.

    2012-01-01

    In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow

  16. Distribution and abundance of marine debris along the coast of karachi (arabian sea), pakistan

    International Nuclear Information System (INIS)

    Qari, R.; Shaffat, M.

    2015-01-01

    This study reports the first assessment of distribution and abundance of marine debris along the coast of Karachi (Arabian Sea), Pakistan. The quadrate method was used for estimating the debris material. Total 40 quadrates were made for collecting the debris on 4 beaches: Sandspit, Buleji, Paradise Point and Korangi Creek in the year of 2012. Nine different types of debris comprising of plastics, glasses, thermopore, clothing, rubber, paper, pot pieces and cigarette filters were collected. The study revealed that, plastic was found in high quantity at all four beaches of Karachi. Other most common items were as follow: plastic at Paradise Point and Sandspit; pot pieces at Korangi Creek and rubber at Buleji. A total weight of 12277.45 g debris was recorded during the whole study period. It was also noted that Paradise Point is the dirtiest beach (5612.6 g) when compared with other studied beaches. (author)

  17. Orbital debris: a technical assessment

    National Research Council Canada - National Science Library

    Committee on Space Debris, National Research Council

    ..., and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft...

  18. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    Science.gov (United States)

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  19. Big Creek Pit Tags

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BCPITTAGS database is used to store data from an Oncorhynchus mykiss (steelhead/rainbow trout) population dynamics study in Big Creek, a coastal stream along the...

  20. Henretta Creek reclamation project

    International Nuclear Information System (INIS)

    Pumphrey, J.F.

    2009-01-01

    Teck Coal Ltd. operates 6 open-pit coal mines, of which 5 are located in the Elk Valley in southeastern British Columbia. The Fording River Operations (FRO) began in 1971 in mining areas in Eagle Mountain, Turnbull Mountain and Henretta Valley. The recovery of approximately 5 million tons of coal from the Henretta Creek Valley posed significant challenges to mine planners, hydrologists and environmental experts because the coal had to be recovered from the valley flanks and also from under the main valley floor, on which the fish-bearing Henretta Creek runs. The Henretta Dragline Mining project was described along with the water control structures and fisheries management efforts for the cutthroat trout. A detailed Environmental Impact Assessment and Stage 1 mining report for the Henretta Valley area was completed in December 1990. FRO was granted a mining and reclamation permit in 1991. A temporary relocation of 1,270 metres was required in in April 1997 in order to enable mining on both sides and below the creek bed. Among the innovative construction techniques was a diversion of Henretta Creek through large diameter steel culverts and a specialized crossing of the creek to allow fish passage. The first water flowed through the reclaimed Henretta Creek channel in late 1998 and the first high flow occurred in the spring of 2000. Teck coal FRO then launched an annual fish and fish habitat monitoring program which focused on the Henretta Creek Reclaimed Channel and Henretta Lake. This document presented the results from the final year, 2006, and a summary of the 7 year aquatic monitoring program. It was concluded that from mining through to reclamation, the Henretta project shows the commitment and success of mining and reclamation practices at Teck Coal. Indicators of the project's success include riparian zone vegetation, fisheries re-establishment, aquatic communities and habitat utilization by terrestrial and avian species. 33 refs., 1 fig.

  1. Debris thickness patterns on debris-covered glaciers

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  2. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Natural Resource Agency — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  3. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  4. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  5. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  6. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  7. Disaster Debris Recovery Database - Landfills

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  8. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  9. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  10. Debris Flow Risk Management Framework and Risk Analysis in Taiwan, A Preliminary Study

    Science.gov (United States)

    Tsao, Ting-Chi; Hsu, Wen-Ko; Chiou, Lin-Bin; Cheng, Chin-Tung; Lo, Wen-Chun; Chen, Chen-Yu; Lai, Cheng-Nong; Ju, Jiun-Ping

    2010-05-01

    Taiwan is located on a seismically active mountain belt between the Philippine Sea plate and Eurasian plate. After 1999's Chi-Chi earthquake (Mw=7.6), landslide and debris flow occurred frequently. In Aug. 2009, Typhoon Morakot struck Taiwan and numerous landslides and debris flow events, some with tremendous fatalities, were observed. With limited resources, authorities should establish a disaster management system to cope with slope disaster risks more effectively. Since 2006, Taiwan's authority in charge of debris flow management, the Soil and Water Conservation Bureau (SWCB), completed the basic investigation and data collection of 1,503 potential debris flow creeks around Taiwan. During 2008 and 2009, a debris flow quantitative risk analysis (QRA) framework, based on landslide risk management framework of Australia, was proposed and conducted on 106 creeks of the 30 villages with debris flow hazard history. Information and value of several types of elements at risk (bridge, road, building and crop) were gathered and integrated into a GIS layer, with the vulnerability model of each elements at risk applied. Through studying the historical hazard events of the 30 villages, numerical simulations of debris flow hazards with different magnitudes (5, 10, 25, 50, 100 and 200 years return period) were conducted, the economic losses and fatalities of each scenario were calculated for each creek. When taking annual exceeding probability into account, the annual total risk of each creek was calculated, and the results displayed on a debris flow risk map. The number of fatalities and frequency were calculated, and the F-N curves of 106 creeks were provided. For F-N curves, the individual risk to life per year of 1.0E-04 and slope of 1, which matched with international standards, were considered to be an acceptable risk. Applying the results of the 106 creeks onto the F-N curve, they were divided into 3 categories: Unacceptable, ALARP (As Low As Reasonable Practicable) and

  11. Plastic debris retention and exportation by a mangrove forest patch.

    Science.gov (United States)

    Ivar do Sul, Juliana A; Costa, Monica F; Silva-Cavalcanti, Jacqueline S; Araújo, Maria Christina B

    2014-01-15

    An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Judy Creek and beyond

    International Nuclear Information System (INIS)

    Kerr, S.A.

    1999-01-01

    The story of the Pengrowth Energy Trust, a company created in 1988 to provide investors with an opportunity to participate in the oil and gas industry without the higher investment risk associated with exploratory drilling is the vehicle used to provide an overview of the development of the Judy Creek oil field, an historical sketch of Imperial Oil Limited, and of the development of the community of Swan Hills shed, a town carved out of muskeg by early pioneers in 1957-1958. The book is replete with anecdotes and photographs, depicting the indomitable spirit of the people whose determination and faith made the development of the oil industry in Alberta possible

  13. Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado

    Science.gov (United States)

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya

  14. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Science.gov (United States)

    Godt, J.W.; Coe, J.A.

    2007-01-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.

  15. Ship Creek bioassessment investigations

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  16. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration approach...

  17. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    Science.gov (United States)

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  18. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  19. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  20. Wholesale debris removal from LEO

    Science.gov (United States)

    Levin, Eugene; Pearson, Jerome; Carroll, Joseph

    2012-04-01

    Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.

  1. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  2. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  3. Problems of Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  4. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  5. Physical Processes Affecting the Distribution of Diydymosphenia Geminata Biomass Bloom in Rapid Creek, South Dakota

    Science.gov (United States)

    Abessa, M. B.; Sundareshwar, P. V.; Updhayay, S.

    2010-12-01

    Didymosphenia geminata is a freshwater diatom that has invaded and colonized many of the world’s oligotrophic streams and rivers, including Rapid Creek in Western South Dakota - a perennial oligotrophic stream that emerges from the Black Hills and is fed by cold water release from the Pactola Reservoir. Since 2002, D. geminata blooms have been observed in certain stretches of the Rapid Creek. These massive blooms are localized to certain segments of the Creek where the flow is mainly slow, stable and shallow dominated by boulder type bed material and submerged large woody debris. Water chemistry data from this Creek showed the variability of major nutrients such as phosphate, nitrates/nitrites and ammonium are insignificant across our study sites while the nature of the stream flow is quite irregular. We measured flow rates, depth, temperature, stream bed characteristics, water chemistry, and D. geminata biomass in regions with and without blooms. The presentation will discuss how changes in physical parameters along the various reaches of the Creek impact the biomass distribution of this invasive alga.

  6. Pine creek geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Ewers, G.R.; Ferguson, J.

    1988-01-01

    The Pine Creek Geosyncline is a 66,000 km 2 inlier of Early Proterozoic metasediments, mafic and felsic intrusives and minor extrusives, surrounding small late Archaean granitic domes. Economic uranium occurrences cluster into three fields, with the Alligator Rivers field being the most significant. The metasediments are alluvial and reduced shallow-water pelites and psammites. Evaporitic carbonate developed on shallow shelves around Archaean islands. Basin development and sedimentation (c. 2000-1870 Ma) were related to gradual subsidence induced by crustal extension. Facies variations and volcanism were in places controlled by the extensional faults. The rocks were metamorphosed to lower the high grade, complexly folded, and intruded by numerous granitoids from c. 1870 to 1730 Ma. Late orogenic felsic volcanics accumulated in local rift systems. Middle Proterozoic sandstone was deposited on a peneplaned and deeply weathered surface from about 1650 Ma. Uranium is enriched in some Archaean and Proterozoic igneous rocks, but there is no local or regional enrichment of the metasedimentary hosts or of the unconformably overlying sandstone. There is no regional gravity, magnetic or radiometric character attributable to the region's significance as a uranium province; contrasts with surrounding sedimentary basins reflect expected differences in rock properties between a heterogeneous igneous/metamorphic region and relatively homogeneous undeformed and unmineralized sediments. Uranium-enriched Archaean and Proterozoic granitoids and felsic volcanics with labile U are likely though not exclusive source rocks. U was probably transported in oxidized low temperature solutions as uranyl complexes and precipitated in reduced, structurally controlled, low-pressure traps. All uranium occurrences are broadly classified as 'Proterozoic unconformity related'. Greatest potential for further discovery is offered in the Alligator Rivers field, where perhaps at least 3 to 5.5 times the

  7. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  8. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  9. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  10. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  11. TMI-2 core debris analysis

    International Nuclear Information System (INIS)

    Cook, B.A.; Carlson, E.R.

    1985-01-01

    One of the ongoing examination tasks for the damaged TMI-2 reactor is analysis of samples of debris obtained from the debris bed presently at the top of the core. This paper summarizes the results reported in the TMI-2 Core Debris Grab Sample Examination and Analysis Report, which will be available early in 1986. The sampling and analysis procedures are presented, and information is provided on the key results as they relate to the present core condition, peak temperatures during the transient, temperature history, chemical interactions, and core relocation. The results are then summarized

  12. Space Debris Mitigation CONOPS Development

    Science.gov (United States)

    2013-06-01

    literature search and review a lone article was found with any discussion of it. As with any net, the concept is to catch space debris objects in the net...travel along the track of the orbit and collect debris along its path. The lone article found contends that the idea “does not work”. Bonnal and...100,000 pieces of debris orbiting the planet , [as] NASA estimated -- 2,600 of them more than [four] inches across. [NASA] called the breakup of the

  13. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  14. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  15. DebriSat Laboratory Analyses

    Science.gov (United States)

    2015-01-05

    droplets. Fluorine from Teflon wire insulation was also common in the SEM stub and witness plates deposits. Nano droplets of metallic materials...and Debris-LV debris. Aluminum was from the Al honeycomb, nadir and zenith panels, structural core and COPV liner. Aluminum oxide particles were...three pieces: Outer Nylon shell (sabot) with 2 part hollow aluminum insert. • ~600 grams, 8.6 cm diameter X 10.3 cm long – size of a soup can

  16. Backwater development by woody debris

    Science.gov (United States)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  17. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  18. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  19. The physics of debris flows

    Science.gov (United States)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  20. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  1. Exploiting LSPIV to assess debris-flow velocities in the field

    Science.gov (United States)

    Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco

    2018-01-01

    The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.

  2. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    Science.gov (United States)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic

  3. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  4. Disaster Debris Recovery Database - Landfills

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  5. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  6. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  7. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  8. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  9. Space Debris Elimination (SpaDE)

    Data.gov (United States)

    National Aeronautics and Space Administration — The amount of debris in low Earth orbit (LEO) has increased rapidly over the last twenty years. This prevalence of debris increases the likelihood of cascading...

  10. DebriSat Project Update and Planning

    Science.gov (United States)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  11. DebriSat Hypervelocity Impact Test

    Science.gov (United States)

    2015-08-01

    public release; distribution unlimited.  Targets: Scaled Multishock Shield, DebrisLV, and DebriSat  500-600 g hollow aluminum and nylon projectile... insulation . DebriSat’s internal components were structurally similar to real flight hardware but were nonfunctional. AEDC-TR-15-S-2 6...structures with an AL 5052 honeycomb core and M55J carbon fiber face sheets. The basic system characteristics of the DebriSat are given in Table 1

  12. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Science.gov (United States)

    2010-07-13

    ... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek...-managed public land on Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and... Proposed Land Use Alternative) identified in the final environmental impact statement (FEIS). Under the...

  13. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  14. The role of large woody debris in modulating the dispersal of a post-fire sediment pulse

    Science.gov (United States)

    Short, Lauren E.; Gabet, Emmanuel J.; Hoffman, Daniel F.

    2015-10-01

    In 2001, a series of post-fire debris flows brought 30,000 m3 of sediment, deposited as fans, to the narrow valley floor of Sleeping Child Creek in western Montana (USA). In 2005, pebble-counts and surveys of the channel in proximity to six of the debris flow fans documented a regular sequence of fine-grained aggradation upstream of the fans, incision through the fans, and coarse-grained aggradation downstream of the fans. These measurements were repeated in 2012. We found that the delivery of large woody debris (LWD) over the intervening 7 years has been a dominant factor in the disposition of the debris-flow material. The amount of LWD in the study reach has increased by as much as 50% in the areas with a high burn severity, leading to the formation of large logjams that interrupt the flow of sediment along the streambed. Nearly all of the surveyed reaches have aggraded since 2005, including those that had initially begun incising through the debris flow deposits, and the streambed has become generally finer. We hypothesize that, over the next few decades, debris flow sediment not colonized and anchored by riparian vegetation will trickle out of the affected reaches as the logjams slowly degrade.

  15. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  16. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  17. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  18. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  19. 33 CFR 117.543 - Bear Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the Baltimore...

  20. 27 CFR 9.211 - Swan Creek.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural are...

  1. 33 CFR 117.231 - Brandywine Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of the...

  2. 33 CFR 117.841 - Smith Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  3. 33 CFR 117.324 - Rice Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  4. Currents and siltation at Dharamtar creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Kolhatkar, V.M.; Fernandes, A.A.

    Hydrographic data collected in Dharamtar Creek during 1976-77 have been analysed. This showed that the waters in the Creek are well mixed and the salinity varied with the tide. The tidal currents are found to be generally strong. The distribution...

  5. 33 CFR 117.335 - Taylor Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  6. The fast debris evolution model

    Science.gov (United States)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  7. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  8. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  9. Warm Debris Disks from WISE

    Science.gov (United States)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  10. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Witch Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  11. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Buckweed Fire, Los Angeles County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  12. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Santiago Fire, Orange County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  13. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Canyon Fire, Los Angeles County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  14. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Poomacha Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  15. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Rice Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  16. Emergency assessment of debris-flow hazards from basins burned by the 2007 Harris Fire, San Diego County, southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  17. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ammo Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  18. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  19. Space Debris and Observational Astronomy

    Science.gov (United States)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  20. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  1. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Science.gov (United States)

    2012-02-24

    ... Operation Regulation; Snake Creek, Islamorada, FL AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of Snake Creek Bridge, mile 0.5, across Snake Creek... schedule of Snake Creek Bridge in Islamorada, Florida. This deviation will result in the bridge opening...

  2. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  3. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  4. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  5. Small satellites and space debris issues

    Science.gov (United States)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  6. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  7. Featured Partner: Saddle Creek Logistics Services

    Science.gov (United States)

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  8. Some Physicochemical Charateristics of Badagry Creek, Nigeria ...

    African Journals Online (AJOL)

    West African Journal of Applied Ecology ... Badagry Creek runs through Nigeria and Republic of Benin with access to the Atlantic Ocean. ... Colour, surface temperature, pH, salinity, turbidity, phenol, dissolved oxygen, biological oxygen ...

  9. Tritium at the Steel Creek Landing

    International Nuclear Information System (INIS)

    Arnett, M.; Heffner, J.D.; Fledderman, P.D.; Littrell, J.W.; Hayes, D.W.; Dodgen, M.S.

    1998-01-01

    In December 1997 and January 1998, the South Carolina Department of Health and Environmental Control (SCDHEC) collected routine weekly grab samples from the Savannah River near the Steel Creek Boat Landing

  10. Mercury in Thana creek, Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    weight) with marked increased from harbour to the creek region suggests substantial mercury input in the head region. Chemical extraction by hydrogen peroxide indicated that more than 70% of mercury was leachable and probably organically bound...

  11. Applications of simulation technique on debris-flow hazard zone delineation: a case study in Hualien County, Taiwan

    Directory of Open Access Journals (Sweden)

    S. M. Hsu

    2010-03-01

    Full Text Available Debris flows pose severe hazards to communities in mountainous areas, often resulting in the loss of life and property. Helping debris-flow-prone communities delineate potential hazard zones provides local authorities with useful information for developing emergency plans and disaster management policies. In 2003, the Soil and Water Conservation Bureau of Taiwan proposed an empirical model to delineate hazard zones for all creeks (1420 in total with potential of debris flows and utilized the model to help establish a hazard prevention system. However, the model does not fully consider hydrologic and physiographical conditions for a given creek in simulation. The objective of this study is to propose new approaches that can improve hazard zone delineation accuracy and simulate hazard zones in response to different rainfall intensity. In this study, a two-dimensional commercial model FLO-2D, physically based and taking into account the momentum and energy conservation of flow, was used to simulate debris-flow inundated areas.

    Sensitivity analysis with the model was conducted to determine the main influence parameters which affect debris flow simulation. Results indicate that the roughness coefficient, yield stress and volumetric sediment concentration dominate the computed results. To improve accuracy of the model, the study examined the performance of the rainfall-runoff model of FLO-2D as compared with that of the HSPF (Hydrological Simulation Program Fortran model, and then the proper values of the significant parameters were evaluated through the calibration process. Results reveal that the HSPF model has a better performance than the FLO-2D model at peak flow and flow recession period, and the volumetric sediment concentration and yield stress can be estimated by the channel slope. The validation of the model for simulating debris-flow hazard zones has been confirmed by a comparison of field evidence from historical debris

  12. Wolf Creek Generating Station containment model

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Neises, G.J.; Howard, M.L.

    1995-01-01

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project

  13. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  14. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Science.gov (United States)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  15. The Fabulous Four Debris Disks

    Science.gov (United States)

    Werner, Michael; Stapelfeldt, Karl

    2004-09-01

    This program is a comprehensive study of the four bright debris disks that were spatially resolved by IRAS: Beta Pictoris, Epsilon Eridani, Fomalhaut, and Vega. All SIRTF instruments and observing modes will be used. The program has three major objectives: (1) Study of the disk spatial structure from MIPS and IRAC imaging; (2) Study of the dust grain composition using the IRS and MIPS SED mode; and (3) companion searches using IRAC. The data from this program should lead to a detailed understanding of these four systems, and will provide a foundation for understanding all of the debris disks to be studied with SIRTF. Images and spectra will be compared with models for disk structure and dust properties. Dynamical features indicative of substellar companions' effects on the disks will be searched for. This program will require supporting observations of PSF stars, some of which have been included explicitly. In the majority of cases, the spectral observations require a preferred orientation to align the slits along the disk position angles. Detector saturation issues are still being worked for this program, and will lead to AOR modifications in subsequent submissions. The results from this program will be analyzed collaboratively by the IRAC, IRS, and MIPS teams and by general GTOs Jura and Werner.

  16. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  17. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  18. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  19. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    Science.gov (United States)

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  20. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-10-25

    ...] Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor Creek, and... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  1. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-05-03

    ...] Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor Creek, and... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  2. Space Debris Removal: A Game Theoretic Analysis

    Directory of Open Access Journals (Sweden)

    Richard Klima

    2016-08-01

    Full Text Available We analyse active space debris removal efforts from a strategic, game-theoretical perspective. Space debris is non-manoeuvrable, human-made objects orbiting Earth, which pose a significant threat to operational spacecraft. Active debris removal missions have been considered and investigated by different space agencies with the goal to protect valuable assets present in strategic orbital environments. An active debris removal mission is costly, but has a positive effect for all satellites in the same orbital band. This leads to a dilemma: each agency is faced with the choice between the individually costly action of debris removal, which has a positive impact on all players; or wait and hope that others jump in and do the ‘dirty’ work. The risk of the latter action is that, if everyone waits, the joint outcome will be catastrophic, leading to what in game theory is referred to as the ‘tragedy of the commons’. We introduce and thoroughly analyse this dilemma using empirical game theory and a space debris simulator. We consider two- and three-player settings, investigate the strategic properties and equilibria of the game and find that the cost/benefit ratio of debris removal strongly affects the game dynamics.

  3. A Peek into 'Alamogordo Creek'

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 On its 825th Martian day (May 20, 2006), NASA's Mars Exploration Rover Opportunity stopped for the weekend to place its instrument arm onto the soil target pictured here, dubbed 'Alamogordo Creek.' Two views from the panoramic camera, acquired at about noon local solar time, are at the top. Below them is a close-up view from the microscopic imager. At upper left, a false-color view emphasizes differences among materials in rocks and soil. It combines images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. At upper right is an approximately true-color rendering made with the panoramic camera's 600-nanometer, 535-nanometer and 480-nanometer filters. The microscopic-imager frame covers the area outlined by the white boxes in the panoramic-camera views, a rectangle 3 centimeters (1.2 inches) across. As Opportunity traverses to the south, it is analyzing soil and rocks along the way for differences from those seen earlier. At this site, the soil contains abundant small spherical fragments, thought to be hematite-rich concretions, plus finer-grained basaltic sand. Most of the spherical fragments seen in the microscopic image are smaller than those first seen at the rover's landing site in 'Eagle Crater,' some five kilometers (3.1 miles) to the north. However, a few larger spherical fragments and other rock fragments can also be seen in the panoramic-camera images.

  4. Orbital Debris and NASA's Measurement Program

    Science.gov (United States)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  5. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  6. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  7. Design of full scale debris washing system

    International Nuclear Information System (INIS)

    Taylor, M.L.; Dosani, M.A.; Wentz, J.A.; Patkar, A.N.; Barkley, N.P.

    1992-01-01

    Since 1987, IT Environmental Programs Inc. (ITEP, a subsidiary of International Technology Corporation) in conjunction with EPA/RREL in Cincinnati, Ohio, have been developing and conducting bench scale and pilot scale testing of a transportable debris washing system which can be used on-site for the decontamination of debris. During the initial phase of the debris decontamination project, a series of bench scale tests were performed in the laboratory to assess the ability of the system to remove contaminants from debris and to facilitate selection of the most efficient surfactant solution. Five nonionic, non-toxic, low foaming, surfactant solution (BG-5, MC-2000, LF-330, BB-100, and L-433) were selected for an experimental evaluation to determine their capacity to solubilize and remove contaminants from the surfaces of corroded steel places. The pieces of corroded steel were coated with a heavy grease mixture prepared in the laboratory and these pieces of debris were placed in a bench scale spray tank on a metal tray and subjected in a high-pressure spray for each surfactant solution for 15 minutes. At the end of the spray cycle, The tray was transferred to a second bench scale system, a high-turbulence wash tank, where the debris was washed for 30 minutes with the same surfactant solution as the used in the spray tank. After the was cycle was completed, the tray was removed from the wash tank and the debris was allowed to air-dry. Before and after treatment, surface-wipe samples were obtained from each of the six pieces of debris and were analyzed for oil and graese. Based on the results, BG-5 was selected as the solution best suited for cleaning grease-laden, metallic debris. 2 refs

  8. Apparatus for controlling nuclear core debris

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    Disclosed is an apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling

  9. Apparatus for controlling nuclear core debris

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  10. Development of debris resistant bottom end piece

    International Nuclear Information System (INIS)

    Lee, Jae Kyung; Sohn, Dong Seong; Yim, Jeong Sik; Hwang, Dae Hyun; Song, Kee Nam; Oh, Dong Seok; Rhu, Ho Sik; Lee, Chang Woo; Kim, Seong Soo; Oh, Jong Myung

    1993-12-01

    Debris-related fuel failures have been identified as one of the major causes of fuel failures. In order to reduce the possibility of debris-related fuel failures, it is necessary to develop Debris-Resistant Bottom End Piece. For this development, mechanical strength test and pressure drop test were performed, and the test results were analyzed. And the laser cutting, laser welding and electron beam welding technology, which were the core manufacturing technology of DRBEP, were developed. Final design were performed, and the final drawing and specifications were prepared. The prototype of DRBEP was manufactured according to the developed munufacturing procedure. (Author)

  11. Laser ignition of traumatically embedded firework debris.

    Science.gov (United States)

    Taylor, C R

    1998-01-01

    The Q-switched ruby laser (QSRL) has a good track record for traumatic tattoo removal. An unusual case of QSRL-treatment of a traumatic tattoo composed of firework debris is presented. A young man's traumatic tattoo, composed of firework debris, underwent QSRL ablation at 4-7 J/cm2 (pulse width 5 mm; duration 20 ns). Each test pulse produced visible sparks and focal projectile ejection of skin with pox-like scar formation. Caution is advised when using the QSRL for the treatment of traumatic tattoos composed of potentially combustible debris.

  12. Algorithms for the Computation of Debris Risk

    Science.gov (United States)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  13. Algorithms for the Computation of Debris Risks

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  14. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  15. Preliminary Chemical and Biological Assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    USER

    The study was aimed at assessing the quality of water from the Ogbe Creek ... indicated the impact of the perturbational stress on the organisms inhabiting the creek. ... experiences seasonal flooding which introduces a lot of detritus and ...

  16. Plankton biodiversity of Dharamtar creek adjoining Mumbai harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    rich plankton community. However, recent industrial development along the banks of creek may pose the problem due to waste disposal into this creek system. Losses of marine life diversity are largely the results of conflicting uses, in particular...

  17. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  18. Streamflow conditions along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  19. Development of debris-resistant bottom end piece

    International Nuclear Information System (INIS)

    Sohn, Dong Seong; Lee, Jae Kyung; Hwang, Dae Hyun; Yim, Jung Sik; Song, Kee Nam; Oh, Dong Seok; Im, Hyun Tae

    1993-01-01

    Debris-related fuel failures has been identified to be one of the major causes of fuel failures recently occured in nuclear power plants. In order to reduce the possibility of debris-related fuel failures, it is necessary to prevent the debris from reaching to fuel rods. In this regard, it is important to develop Debris-Resistant Bottom End Piece. (Author)

  20. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  1. CREEK Project's Phytoplankton Pigment Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The CREEK Project began in January of 1996 and was designed to help determine the role of oysters, Crassostrea virginica, in tidal creeks of the North Inlet Estuary,...

  2. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-02-02

    ...-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD AGENCY: Coast Guard, DHS. ACTION: Notice... operation of the Baltimore County highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk... Avenue across Bear Creek, mile 3.4 between Dundalk and Sparrows Point, MD. This change would require the...

  3. Debris Examination Using Ballistic and Radar Integrated Software

    Science.gov (United States)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  4. Structural debris experiments at operation MILL RACE

    International Nuclear Information System (INIS)

    Rempel, J.R.; Beck, J.E.; McKee, R.G.

    1983-01-01

    Structural debris patterns as determined by the mechanisms of building collapse under airblast loading have been studied experimentally at MILL RACE, White Sands, NM. Three near full-size buildings were instrumented to observe deflections, accelerations and air pressures and exposed to two different regimes of incident blast pressure produced by HE simulating 1 kt, viz., 10 and 3 psi; after the shot enough wall debris was located and identified to provide estimates of debris movement. Two of the test buildings were unreinforced, load-bearing masonry, one located at each of the two incident overpressures. The third building was made of reinforced concrete panels and was exposed to approximately 25 psi. Preliminary estimates of the effect of arching on debris energy and distribution are presented

  5. New solutions for the space debris problem

    CERN Document Server

    Pelton, Joseph N

    2015-01-01

    Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines.  Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating furth...

  6. TMI defueling project fuel debris removal system

    International Nuclear Information System (INIS)

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min

  7. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  8. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ranch Fire, Ventura and Los Angeles Counties, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  9. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  10. Marine debris: global and regional impacts

    OpenAIRE

    Torres N,Daniel; Berguño B,Jorge

    2011-01-01

    A synthesis on the Marine Debris problem is given upon de basis of the general knowledge on the matter as well as that obtained at Cape Shirreff, Livingston Island, South Shetland, Antarctica. It is suggested to improve the database on marine debris through permanent scientific research as well as with monitoring activities. It is necessary to coordinate key groups to apply strategies to identify types, sources, amount, interactions and socio-economic aspects of this global and regional probl...

  11. Postdetonation nuclear debris for attribution.

    Science.gov (United States)

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material.

  12. A 50 to 70-year-old-oil-spill : Bluefish Creek, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sikstrom, C.B. [Imperial Oil Resources, Cold Lake, AB (Canada); Jensen, P.K. [Imperial Oil Resources, Calgary, AB (Canada)

    1998-09-01

    In 1991, an oil spill was discovered in Bluefish Creek near Fort Norman, Northwest Territories. It was estimated that the spill was between 50 to 70 years old. The spill was discovered in an excavated area that appeared to be a drilling sump. The old spill exhibited an unusual occurrence of patterned partitioning of translucent wax-like material. Gas chromatography found the substance to be consistent with a paraffin based crude oil similar to Norman Wells crude oil. It is possible that Norman Wells crude was used for drilling purposes at the site. It is not likely that the Bluefish wells were the source of the oil because they were both dry holes and there were no records of hydrocarbons being encountered during drilling. Imperial Oil Resources (NWT) Ltd., and Fort Norman Band have made joint efforts in removing 118 barrels of oily debris and have successfully restored the site. 12 refs., 4 figs.

  13. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  14. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  15. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  16. Drywell corrosion stopped at Oyster Creek

    International Nuclear Information System (INIS)

    Lipford, B.L.; Flynn, J.C.

    1993-01-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results

  17. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  18. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  19. Species status of Mill Creek Elliptio

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.M. [Academy of Natural Sciences (United States); Mulvey, M. [Savannah River Ecology Lab., Aiken, SC (United States)

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  20. UTILIZING CREEKS FOR INTEGRATED RURAL COASTAL ...

    African Journals Online (AJOL)

    Osondu

    2013-02-09

    Feb 9, 2013 ... This study examines the Utilization of Creeks for Integrated Coastal Development of Ilaje ... utilization, poor fishing techniques, poor sources of water and navigation routes, and manual ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.3 .... together, implement, monitor and evaluate.

  1. Collaborative monitoring in Walnut Creek, California

    Science.gov (United States)

    Heidi Ballard; Ralph Kraetsch; Lynn Huntsinger

    2002-01-01

    In 1995 and 2000, a monitoring program was designed and implemented to track oak regeneration and native grass populations in target management areas in the four Open Space Preserves of the City of Walnut Creek, California. The program resulted from a collaboration of scientists at the University of California, Berkeley, a group of interested citizens known as the...

  2. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  3. Pine Creek Ranch, FY 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  4. Debris filtering effectiveness and pressure drop tests of debris resistance-bottom end piece

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Song, Chul Hwa; Chung, Heung June; Won, Soon Yeun; Cho, Young Ro; Kim, Bok Deuk

    1992-03-01

    In this final report, described are the test conditions and test procedures for the debris filtering effectiveness and pressure drop tests for developing the Debris Resistance-Bottom End Piece (DR-BEP). And the test results are tabulated for later evaluation. (Author)

  5. Loopy, Floppy and Fragmented: Debris Characteristics Matter

    Science.gov (United States)

    Parrish, J.; Burgess, H. K.

    2016-02-01

    Marine debris is a world-wide problem threatening the health and safety of marine organisms, ecosystems, and humans. Recent and ongoing research shows that risk of harm is not associated with identity, but rather with a set of specific character states, where the character state space intersection is defined by the organism of interest. For example, intersections of material, color, rigidity and size predict the likelihood of an object being ingested: plastic, clear-white, floppy objects risks to sea turtles whereas yellow-red, rigid objects risks to albatrosses. A character state space approach allows prioritization of prevention and removal of marine debris informed by risk assessments for species of interest by comparing species ranges with spatio-temporal hotspots of all debris with characteristics known to be associated with increased risk of harm, regardless of identity. With this in mind, the Coastal Observation and Seabird Survey Team (COASST) developed and tested a 20 character data collection approach to quantifying the diversity and abundance of marine debris found on beaches. Development resulted in meta-analysis of the literature and expert opinion eliciting harmful character state space. Testing included data collection on inter-rater reliability and accuracy, where the latter included 75 participants quantifying marine debris characteristics on monthly surveys of 30 beaches along the Washington and Oregon coastlines over the past year. Pilot work indicates that characters must be simply and operationally defined, states must be listed, and examples must be provided for color states. Complex characters (e.g., windage, shape) are not replicable across multiple data collectors. Although data collection takes longer than other marine debris surveys for a given amount of debris and area surveyed, volunteer rapidity and accuracy improved within 3-5 surveys. Initial feedback indicated that volunteers were willing to continue collecting data as long as they

  6. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  7. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the EPA published the final revised treatment standards for hazardous debris, including mixed debris. Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were evaluated against the debris rule to determine an overall treatment strategy for the INEL. Seven types of debris were identified: Combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  8. Thermal-hydraulic and characteristic models for packed debris beds

    International Nuclear Information System (INIS)

    Mueller, G.E.; Sozer, A.

    1986-12-01

    APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix

  9. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  10. Cetaceans and Marine Debris: The Great Unknown

    Directory of Open Access Journals (Sweden)

    Mark Peter Simmonds

    2012-01-01

    Full Text Available Plastics and other marine debris have been found in the gastrointestinal tracts of cetaceans, including instances where large quantities of material have been found that are likely to cause impairment to digestive processes and other examples, where other morbidity and even death have resulted. In some instances, debris may have been ingested as a result of the stranding process and, in others, it may have been ingested when feeding. Those species that are suction or “ram” feeders may be most at risk. There is also evidence of entanglement of cetaceans in marine debris. However, it is usually difficult to distinguish entanglement in active fishing gear from that in lost or discarded gear. The overall significance of the threat from ingested plastics and other debris remains unclear for any population or species of cetaceans, although there are concerns for some taxa, including at the population level, and marine debris in the oceans continues to grow. Further research including the compilation of unpublished material and the investigation of important habitat areas is strongly recommended.

  11. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  12. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  13. The macroinvertebrates of Magela Creek, Northern Territory

    International Nuclear Information System (INIS)

    Marchant, R.

    1982-04-01

    The littoral zones of five permanent billabongs in Magela Creek were sampled monthly for macroinvertebrates. Greatest numbers of taxa and individuals were caught in the late wet season and early dry season in the shallow billabongs; in the deep billabongs, seasonal variations were not so marked. These changes appeared to be associated with the development of macrophytes, which offered food and shelter to the invertebrate fauna. The dominant groups were the Chironomidae, Oligochaetae and Ephemeroptera. The seasonal patterns of the catches were sufficiently consistent for future samples to be able to be compared with these initial ones with some confidence that any changes are real. This work is part of a larger study into the biota and water quality of Magela Creek designed to provide data on aquatic communities before mining of the Ranger uranium deposit starts

  14. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  15. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    Science.gov (United States)

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  16. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  17. Electrometallurgical treatment of TMI-2 fuel debris

    International Nuclear Information System (INIS)

    Karell, E.J.; Gourishankar, K.V.; Johnson, G.K.

    1997-01-01

    Argonne National Laboratory (ANL) has developed an electrometallurgical treatment process suitable for conditioning DOE oxide spent fuel for long-term storage or disposal. The process consists of an initial oxide reduction step that converts the actinide oxides to a metallic form, followed by an electrochemical separation of uranium from the other fuel constituents. The final product of the process is a uniform set of stable waste forms suitable for long-term storage or disposal. The suitability of the process for treating core debris from the Three Mile Island-2 (TMI-2) reactor is being evaluated. This paper reviews the results of preliminary experimental work performed using simulated TMI-2 fuel debris

  18. Clean Coal Power at Toms Creek

    International Nuclear Information System (INIS)

    Schmid, M.R.

    1993-01-01

    On October 20, 1992 the US Department of Energy (DOE), through the Morgantown Energy Technology Center, entered into Cooperative Agreement DE-FC-21-93MC92444 with TAMCO Power Partners to implement the Toms Creek Integrated Gasification Combined - Cycle Demonstration Project. The process design is proceeding as scheduled, and a draft Environmental Information Volume has been produced. The overall project schedule, however, may have to be adjusted when the Power Sales Agreement has been finalized

  19. Final Environmental Assessment, Horse Creek Bridge Replacement

    Science.gov (United States)

    2010-10-01

    existing bridge pipes that have failed and replace the failed structure with a new, prefabricated pedestrian bridge within the original bridge footprint...vehicles, nor designed for support of standard passenger vehicle loads. The bridge would be a single prefabricated unit consisting of a steel grate...placed on new concrete abutments built on the existing foundations on the creek banks, and put in place by a crane operating from the vehicle parking

  20. Channel stability of Turkey Creek, Nebraska

    Science.gov (United States)

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  1. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  2. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  3. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  4. Linking effects of anthropogenic debris to ecological impacts

    NARCIS (Netherlands)

    Browne, M.A.; Underwood, A.J.; Chapman, M.G.; Williams, R.; Thompson, R.C.; Franeker, van J.A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that

  5. Monitoring the abundance of plastic debris in the marine environment

    OpenAIRE

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infreque...

  6. Property measurements and inner state estimation of simulated fuel debris

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, S.; Kato, M.; Morimoto, K.; Washiya, T. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2014-07-01

    Fuel debris properties and inner state such as temperature profile were evaluated by using analysis of simulated fuel debris manufactured from UO{sub 2} and oxidized zircaloy. The center of the fuel debris was expected to be molten state soon after the melt down accident of LWRs because power density was very high. On the other hand, the surface of the fuel debris was cooled in the water. This large temperature gradient may cause inner stress and consequent cracks were expected. (author)

  7. The Patroon Creek Contamination Migration Investigation

    International Nuclear Information System (INIS)

    Dufek, K.; Zafran, A.; Moore, J.T.

    2006-01-01

    Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areas of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and

  8. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100 ampersand D3 and Y/ER-53 ampersand D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs

  9. The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment

    Directory of Open Access Journals (Sweden)

    R. H. Guthrie

    2012-05-01

    Full Text Available A large rock avalanche occurred at 03:27:30 PDT, 6 August 2010, in the Mount Meager Volcanic Complex southwest British Columbia. The landslide initiated as a rock slide in Pleistocene rhyodacitic volcanic rock with the collapse of the secondary peak of Mount Meager. The detached rock mass impacted the volcano's weathered and saturated flanks, creating a visible seismic signature on nearby seismographs. Undrained loading of the sloping flank caused the immediate and extremely rapid evacuation of the entire flank with a strong horizontal force, as the rock slide transformed into a debris flow. The disintegrating mass travelled down Capricorn Creek at an average velocity of 64 m s−1, exhibiting dramatic super-elevation in bends to the intersection of Meager Creek, 7.8 km from the source. At Meager Creek the debris impacted the south side of Meager valley, causing a runup of 270 m above the valley floor and the deflection of the landslide debris both upstream (for 3.7 km and downstream into the Lillooet River valley (for 4.9 km, where it blocked the Lillooet River river for a couple of hours, approximately 10 km from the landslide source. Deposition at the Capricorn–Meager confluence also dammed Meager Creek for about 19 h creating a lake 1.5 km long. The overtopping of the dam and the predicted outburst flood was the basis for a night time evacuation of 1500 residents in the town of Pemberton, 65 km downstream. High-resolution GeoEye satellite imagery obtained on 16 October 2010 was used to create a post-event digital elevation model. Comparing pre- and post-event topography we estimate the volume of the initial displaced mass from the flank of Mount Meager to be 48.5 × 106 m3, the height of the path (H to be 2183 m and the total length of the path (L to be 12.7 km. This yields H/L = 0.172 and a fahrböschung (travel angle of 9.75°. The movement was recorded on seismographs in British

  10. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  11. Debris prevention system, radiation system, and lithograpic apparatus

    NARCIS (Netherlands)

    2009-01-01

    A debris prevention system is constructed and arranged to prevent debris that emanates from a radiation source from propagating with radiation from the radiation source into or within a lithographic apparatus. The debris prevention system includes an aperture that defines a maximum emission angle of

  12. Monitoring the abundance of plastic debris in the marine environment

    NARCIS (Netherlands)

    Ryan, P.G.; Moore, C.J. C.J.; Franeker, van J.A.; Moloney, C.L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and

  13. Conditioning of metallic Magnox fuel element debris

    International Nuclear Information System (INIS)

    Kaye, C.J.

    1983-01-01

    The conditioning of metallic Magnox debris poses particular problems arising from its chemical reactivity and from the presence in discrete amounts of highly radioactive components. The treatment of this waste is currently being studied by the Central Electricity Generating Board. Following retrieval from store it is envisaged that the debris will be dried and comminuted to facilitate the removal for further storage of the highly active components from the bulk debris. A satisfactory means of sorting the debris appears to be by magnetic induction. The relatively low activity but potentially reactive Magnox will then be directly encapsulated prior to disposal off-site. Currently the only disposal route open for this waste is to the deep ocean. Matrices for encapsulating Magnox have been developed and others are under investigation. The desirable features of such matrices include low chemical reactivity and impermeability to water. The methods used to characterize the resultant waste forms and the results obtained are presented. Thermosetting polymers produce suitable waste forms for sea disposal, exhibiting high mechanical strength and resistance to leaching, and possessing very low chemical reactivity with respect to the Magnox waste. Low viscosity matrices are advantageous from the point of view of the process plant engineering as they enable the comminuted waste to be directly encapsulated. (author)

  14. Europium-155 in Debris from Nuclear Weapons

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Lippert, Jørgen Emil

    1967-01-01

    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...

  15. Numerical modeling of the debris flows runout

    Directory of Open Access Journals (Sweden)

    Federico Francesco

    2017-01-01

    Full Text Available Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a ‘shear layer’, typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  16. Plastic Debris Is a Human Health Issue

    NARCIS (Netherlands)

    Vethaak, A.D.; Leslie, H.A.

    2016-01-01

    The global threat of highly persistent plastic waste accumulating and fragmenting in the world’s oceans, inland waters and terrestrial environments is becoming increasingly evident.1−3 Humans are being exposed to both plastic particles and chemical additives being released from the plastic debris of

  17. Optical Photometric Observations of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  18. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  19. Laser space debris removal: now, not later

    Science.gov (United States)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  20. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  1. NASA's New Orbital Debris Engineering Model, ORDEM2010

    Science.gov (United States)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  2. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions

  3. The natural channel of Brandywine Creek, Pennsylvania

    Science.gov (United States)

    Wolman, M.G.

    1955-01-01

    This study of the channel of Brandy wine Creek, Pennsylvania, consists of three parts. The first is an analysis of the changes which take place in the width, depth, velocity, slope of the water surface, suspended load, and roughness factor with changing discharge below the bankfull stage at each of several widely separated cross sections of the channel. Expressed as functions of the discharge, it is found that the variables behave systematically. In every section studied, as the discharge increases, the velocity increases to about the 0.6 power, depth to the 0.4, and load to the 2.0 power of the discharge. The roughness decreases to the 0.2 power of the discharge. The relative magnitudes and the direction of these variations are similar to those which have been observed in other rivers in the United States, primarily in the West. Some modifications of the hypotheses applicable to the western rivers are probably required because on Brandywine Creek the difference between the materials on the bed and in the banks is considerably greater than it is on most of the western rivers studied. In the second part of the paper the progressive changes of the same variables in the downstream direction with increasing discharge at a given frequency are described. Despite the disorderly appearance of the stream, it is found that the variables display a progressive, orderly change in the downstream direction when traced from the headwater tributaries through the trunk stream of Brandywine Creek. At a given frequency of flow, width increases with discharge to about the 0.5 power. Depth increases downstream somewhat less rapidly, while the slope and roughness both decrease in the downstream direction. Despite a decrease in the size of the material on the bed, both the mean velocity and the mean bed velocity increase downstream. The rates of change of these variables are in close accord with the changes observed on rivers flowing in alluvium and in stable irrigation canals. These

  4. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  5. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  6. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  7. [Research progress in post-fire debris flow].

    Science.gov (United States)

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  8. Bear Creek Project. Final environmental statement

    International Nuclear Information System (INIS)

    1977-06-01

    The Bear Creek Project consists of certain mining and milling operations involving uranium ore deposits located in Converse County, Wyoming. Mining of uranium from nine known ore bodies will take place over a period of ten years (estimated); a mill with a nominal capacity of 1000 tons per day of ore will be constructed and operated as long as ore is available. The waste material (tailings) from the mill, also produced at a rate of about 1000 tons per day, will be stored onsite in an impoundment. Environmental impacts and adverse effects are summarized

  9. Postwildfire preliminary debris flow hazard assessment for the area burned by the 2011 Las Conchas Fire in north-central New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    basins at the northeast edge of the burned area tributary to Rio del Oso and Vallecitos Creek. The Combined Relative Debris-Flow Hazard Rankings identify the areas of highest probability of the largest debris flows. Basins with high Combined Relative Debris-Flow Hazard Rankings include upper Santa Clara Canyon in the northern section of the burn scar, and portions of Peralta, Colle, Bland, Cochiti, Capulin, Alamo, and Frijoles Canyons in the southern section of the burn scar. Three basins with high Combined Relative Debris-Flow Hazard Rankings also occur in areas upstream from the city of Los Alamos—the city is home to and surrounded by numerous technical sites for the Los Alamos National Laboratory. Potential debris flows in the burned area could affect the water supply for Santa Clara Pueblo and several recreational lakes, as well as recreational and archeological resources in Bandelier National Monument. Debris flows could damage bridges and culverts along State Highway 501 and other roadways. Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into areas downstream from the modeled basins along the valley floors, where they could affect human life, property, agriculture, and infrastructure in those areas. Additionally, further investigation is needed to assess the potential for debris flows to affect structures at or downstream from basin outlets and to increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Las Conchas Fire.

  10. Impact Forces from Tsunami-Driven Debris

    Science.gov (United States)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  11. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  12. 75 FR 57766 - Ryckman Creek Resources, LLC; Notice of Petition

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-498-000] Ryckman Creek Resources, LLC; Notice of Petition September 15, 2010. Take notice that on September 3, 2010, Ryckman Creek..., a petition for an Exemption of Temporary Acts and Operations and Request for Expedited Approval...

  13. 33 CFR 117.1001 - Cat Point Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of the...

  14. 33 CFR 117.800 - Mill Neck Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the...

  15. 33 CFR 117.705 - Beaver Dam Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  16. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Science.gov (United States)

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  17. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Science.gov (United States)

    2013-12-19

    ... operating schedule that governs the Burlington Northern Santa Fe (BNSF) Chambers Creek Railway Bridge across... performing lift bridge maintenance and upgrades for the BNSF Chambers Creek Railway Bridge across Chambers... maintenance and upgrade items to this vertical lift bridge in support of Positive Train Control requirements...

  18. Warm Debris Disk Candidates from WISE

    Science.gov (United States)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  19. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  20. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  1. Plastic debris in the open ocean

    OpenAIRE

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. Howeve...

  2. Optimized debris stoppers for Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Gondarenko, N A; Pereira, N R [Berkeley Research Associates, Springfield, VA (United States)

    1997-12-31

    A pulse power generator discharging through an array of wires or a gas cylinder creates a pulse of useful soft x-rays, which is usually followed by deleterious byproducts such as plasma, hot gases and droplets of metal from evaporated electrodes. Separating the extraneous material from the x-rays is done with a debris shield. Optimization of such shields is discussed. (author). 3 figs., 3 refs.

  3. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  4. Orbital Debris: Past, Present, and Future

    Science.gov (United States)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  5. The California Debris Commission: A History

    Science.gov (United States)

    1981-01-01

    the pipe a more freely in the horizontal plane, while vertical elastic packing in the joint instead of two stable instrument to handle. movement was...report of January duplicate and triplicate taxation , and (4) it 1880 painted a dark and sobering picture Following two months of intense and had not the...isolated cases it is possible to impound debris without injury; also, that loca- tions exist in the canons of the different mining streams in the Sierra

  6. Forewarning of Debris flows using Intelligent Geophones

    Science.gov (United States)

    PK, I.; Ramesh, M. V.

    2017-12-01

    Landslides are one of the major catastrophic disasters that cause significant damage to human life and civil structures. Heavy rainfall on landslide prone areas can lead to most dangerous debris flow, where the materials such as mud, sand, soil, rock, water and air will move with greater velocity down the mountain. This sudden slope instability can lead to loss of human life and infrastructure. According to our knowledge, till now no one could identify the minutest factors that lead to initiation of the landslide. In this work, we aim to study the landslide phenomena deeply, using the landslide laboratory set up in our university. This unique mechanical simulator for landslide initiation is equipped with the capability to generate rainfall, seepage, etc., in the laboratory setup. Using this setup, we aim to study several landslide initiation scenarios generated by varying different parameters. The complete setup will be equipped with heterogeneous sensors such as rain gauge, moisture sensor, pore pressure sensor, strain gauges, tiltmeter, inclinometer, extensometer, and geophones. Our work will focus on the signals received from the intelligent geophone system for identifying the underground vibrations during a debris flow. Using the large amount of signals derived from the laboratory set up, we have performed detailed signal processing and data analysis to determine the fore warning signals captured by these heterogeneous sensors. Detailed study of these heterogeneous signals has provided the insights to forewarning the community based on the signals generated during the laboratory tests. In this work we will describe the details of the design, development, methodology, results, inferences and the suggestion for the next step to detect and forewarn the students. The response of intelligent geophone sensors at the time of failure, failure style and subsequent debris flow for heterogeneous soil layers were studied, thus helping in the development of fore warning

  7. Hoe Creek 1990 quarterly sampling cumulative report

    Energy Technology Data Exchange (ETDEWEB)

    Crader, S.E.; Huntington, G.S.

    1991-03-01

    Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.

  8. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    Science.gov (United States)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  9. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    Science.gov (United States)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  10. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres

    2014-06-30

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  11. CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd., Washington, DC 20015 (United States); Naoz, Smadar; Vican, Laura [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Farr, Will M. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2016-07-20

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  12. Plastic debris in the open ocean.

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  13. Bremsstrahlung converter debris shields: test and analysis

    International Nuclear Information System (INIS)

    Reedy, E.D. Jr.; Perry, F.C.

    1983-10-01

    Electron beam accelerators are commonly used to create bremsstrahlung x-rays for effects testing. Typically, the incident electron beam strikes a sandwich of three materials: (1) a conversion foil, (2) an electron scavenger, and (3) a debris shield. Several laboratories, including Sandia National Laboratories, are developing bremsstrahlung x-ray sources with much larger test areas (approx. 200 to 500 cm 2 ) than ever used before. Accordingly, the debris shield will be much larger than before and subject to loads which could cause shield failure. To prepare for this eventuality, a series of tests were run on the Naval Surface Weapons Center's Casino electron beam accelerator (approx. 1 MeV electrons, 100 ns FWHM pulse, 45 kJ beam energy). The primary goal of these tests was to measure the stress pulse which loads a debris shield. These measurements were made with carbon gages mounted on the back of the converter sandwich. At an electron beam fluence of about 1 kJ/cm 2 , the measured peak compressive stress was typically in the 1 to 2 kbar range. Measured peak compressive stress scaled in a roughly linear manner with fluence level as the fluence level was increased to 10 kJ/cm 2 . The duration of the compressive pulse was on the order of microseconds. In addition to the stress wave measurements, a limited number of tests were made to investigate the type of damage generated in several potential shield materials

  14. Plastic debris in the open ocean

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  15. Treatment technology analysis for mixed waste containers and debris

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste

  16. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    Science.gov (United States)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  17. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  18. The effect of debris-flow composition on runout distance

    Science.gov (United States)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  19. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.; Lindvall, R.; Gostic, J.M.

    2011-01-01

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  20. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  1. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  2. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  3. A probabilistic approach for debris impact risk with numerical simulations of debris behaviors

    International Nuclear Information System (INIS)

    Kihara, Naoto; Matsuyama, Masafumi; Fujii, Naoki

    2013-01-01

    We propose a probabilistic approach for evaluating the impact risk of tsunami debris through Monte Carlo simulations with a combined system comprising a depth-averaged two-dimensional shallow water model and a discrete element model customized to simulate the motions of floating objects such as vessels. In the proposed method, first, probabilistic tsunami hazard analysis is carried out, and the exceedance probability of tsunami height and numerous tsunami time series for various hazard levels on the offshore side of a target site are estimated. Second, a characteristic tsunami time series for each hazard level is created by cluster analysis. Third, using the Monte Carlo simulation model the debris impact probability with the buildings of interest and the exceedance probability of debris impact speed are evaluated. (author)

  4. Modeling collisions in circumstellar debris disks

    Science.gov (United States)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  5. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  6. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  7. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  8. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  9. Bereavement rituals in the Muscogee Creek tribe.

    Science.gov (United States)

    Walker, Andrea C; Balk, David E

    2007-08-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included: (a) conducting a wake service the night before burial; (b) never leaving the body alone before burial; (c) enclosing personal items and food in the casket; (d) digging graves by hand; (e) each individual throwing a handful of dirt into the grave before covering, called giving a "farewell handshake"; (f) covering the grave completely by hand; (g) building a house over the grave; (h) waiting 4 days before burial; (i) using medicine/purification; and (j) adhering to socialized mourning period. Cultural values of family, community, religion, importance of the number 4, Indian medicine, and the meaning of death contributed to the development of these rituals.

  10. Bear Creek Project. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    The Bear Creek Project consists of mining and milling operations involving uranium ore deposits located in Converse County, Wyoming. Mining of uranium from six known ore bodies will take place over ten years; a 1000 tons ore/day will be constructed and operated as long as ore is available. The tailings will be stored onsite in an impoundment. The project would convert 2700 acres from grazing use to mining/milling activities for about ten years. Mining would disturb a total of 1600 acres but, because of reclamation, the max acreage disturbed at any one time would be about 1000 acres, the average being about 650 acres. Dose rates were computed for an individual in a ranch house at the nearest ranch. Conditions for the protection of the environment are proposed. Possible environmental impacts evaluated cover air, land, water, soil, vegetation, wildlife, and community. A benefit-cost analysis is made

  11. Hydrogen sulfide concentration in Beaver Dam Creek

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-01-01

    Concentration-time profiles calculated with LODIPS for various hypothetical releases of hydrogen sulfide from the heavy water extraction facility predict lethal conditions for swamp fish from releases as small as 568 kg discharged over a period of 30 minutes or from releases of 1818 kg discharged over a period of 6 hours or less. The necessary volatilization and oxidation coefficients for LODIPS were derived from field measurements following planned releases of H 2 S. Upsets in the operation of the wastewater strippers in the Girdler-Sulfide (GS) heavy water extraction facility in D Area have released significant amounts of dissolved H 2 S to Beaver Dam Creek. Because H 2 S is toxic to fish in concentrations as low as 1 mg/liter, the downstream environmental impact of H 2 S releases from D Area was evaluated

  12. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  13. GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events

    Science.gov (United States)

    Frodella, William; Salvatici, Teresa; Pazzi, Veronica; Morelli, Stefano; Fanti, Riccardo

    2017-10-01

    Diffuse and severe slope instabilities affected the whole Veneto region (north-eastern Italy) between 31 October and 2 November 2010, following a period of heavy and persistent rainfall. In this context, on 4 November 2010 a large detrital mass detached from the cover of the Mt. Rotolon deep-seated gravitational slope deformation (DSGSD), located in the upper Agno River valley, channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena damaged many hydraulic works, also threatening bridges, local roads, and the residents of the Maltaure, Turcati, and Parlati villages located along the creek banks and the town of Recoaro Terme. From the beginning of the emergency phase, the civil protection system was activated, involving the National Civil Protection Department, Veneto Region, and local administrations' personnel and technicians, as well as scientific institutions. On 8 December 2010 a local-scale monitoring system, based on a ground-based interferometric synthetic aperture radar (GB-InSAR), was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and managing the emergency phase. This paper describes the results of a 2-year GB-InSAR monitoring campaign (December 2010-December 2012) and its application for monitoring, mapping, and emergency management activities in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and the decision-making process in a critical landslide scenario.

  14. GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events

    Directory of Open Access Journals (Sweden)

    W. Frodella

    2017-10-01

    Full Text Available Diffuse and severe slope instabilities affected the whole Veneto region (north-eastern Italy between 31 October and 2 November 2010, following a period of heavy and persistent rainfall. In this context, on 4 November 2010 a large detrital mass detached from the cover of the Mt. Rotolon deep-seated gravitational slope deformation (DSGSD, located in the upper Agno River valley, channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena damaged many hydraulic works, also threatening bridges, local roads, and the residents of the Maltaure, Turcati, and Parlati villages located along the creek banks and the town of Recoaro Terme. From the beginning of the emergency phase, the civil protection system was activated, involving the National Civil Protection Department, Veneto Region, and local administrations' personnel and technicians, as well as scientific institutions. On 8 December 2010 a local-scale monitoring system, based on a ground-based interferometric synthetic aperture radar (GB-InSAR, was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and managing the emergency phase. This paper describes the results of a 2-year GB-InSAR monitoring campaign (December 2010–December 2012 and its application for monitoring, mapping, and emergency management activities in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and the decision-making process in a critical landslide scenario.

  15. Ground water in Creek County, Oklahoma

    Science.gov (United States)

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  16. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  17. Understanding sources, sinks, and transport of marine debris

    Science.gov (United States)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  18. Classification of debris flow phenomena in the Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

    2012-01-01

    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... a multidisciplinary study involving geomorphological fieldwork and qualitative collection of indigenous landslide knowledge, presents physical characteristics to classify debris flow phenomena into groups named with Faroese terms. The following landslide definitions are proposed. Brekku-skriðulop (English translation...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  19. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  20. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  1. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    Science.gov (United States)

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Population of Optically Faint GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  3. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  4. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Morewitz, H.A.; Johnson, R.P.; Nelson, C.T.; Vaughan, E.U.; Guderjahn, C.A.; Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1978-01-01

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m 3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m 3 ), high turbulence, and high temperature (approximately 2000 0 C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  5. Photometric Studies of Orbital Debris at GEO

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  6. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  7. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    Science.gov (United States)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  8. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  9. Ecology of phytoplankton from Dharmatar Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    Phytoplankton pigment, cell count and species diversity wee studied at five locations in Dharamtar Creek during September 1984 to November 1985. Chemical parameters indicated a healthy system free of any environmental stress. The water...

  10. Missing link between the Hayward and Rodgers Creek faults.

    Science.gov (United States)

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick

    2016-10-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface-a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake ( M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  11. Zooplankton composition in Dharamtar creek adjoining Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    bedoti was the true inhabitant. In general zooplankton production indicated 1.5 fold increase towards the upper reaches of the creek where salinity variations were drastic. A more diversified faunal assemblage of oceanic and neritic species characterised...

  12. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  13. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  14. Results of the 2000 Creek Plantation Swamp Survey

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    2000-01-01

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible

  15. Early deterioration of coarse woody debris.

    Energy Technology Data Exchange (ETDEWEB)

    Tainter, Frank, H.; McMinn, James, W.

    1999-02-16

    Tainter, F.H., and J.W. McMinn. 1999. Early deterioration of coarse woody debris. In: Proc. Tenth Bien. South. Silv. Res. Conf. Shreveport, LA, February 16-18, 1999. Pp. 232-237 Abstract - Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a I6-week period. Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and starch) of sapwood. Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to reallocation of these materials by sapwood parenchyma cells. These carbohydrates later formed pools increasingly metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood were Ceratocysfis spp. in pine and Hypoxy/on spp. in oak. Although pine sapwood became blue stained and oak sapwood exhibited yellow soft decay with black zone lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during the 16-week study period. A small effect of site was detected for starch content of sapwood of both species. Fungal biomass in sapwood of both species, as measured by ergosterol content, was detectable at week zero, increased somewhat by week three and increased significantly by week 16.

  16. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-08-20

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  17. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  18. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  19. Swift Creek Landslide Observatory: a university public - private partnership for education and public safety

    Science.gov (United States)

    Linneman, S. R.

    2017-12-01

    Community - Scientist partnerships take many forms. In the northwest corner of Washington state a large, active, serpentinitic earthflow has, for decades, shed >25,000 m^3/yr of asbestos-rich sediment into a small agricultural stream system. While the landslide, which moves 3 m/yr, and its unusual sediment have much attracted scientific interest, the situation also presents a great opportunity for community - scientist partnerships. The Swift Creek Landslide Observatory (SCLO) (http://landslide.geol.wwu.edu) is a partnership between scientists and technical staff at Western Washington University + local landowners + the state Department of Ecology + Whatcom County Public Works + a local video security firm. SCLO maintains two remote webcams from which current images are posted to the SCLO website hourly. Users can also view archived images from the cameras, create image-compare visualizations, and create time-lapse movies from the eight-year image archive. SCLO is used by local emergency managers and residents to evaluate the threat of debris flows and floods. It is also used by educators to dramatically illustrate hillslope evolution at a variety of time scales.

  20. Space Debris Alert System for Aviation

    Science.gov (United States)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  1. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  2. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  3. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  4. CREEK Project's Nekton Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  5. CREEK Project's Microzooplankton Seasonal Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  6. Linking effects of anthropogenic debris to ecological impacts.

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Linking effects of anthropogenic debris to ecological impacts

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  8. Net deployment and contact dynamics of capturing space debris objects

    NARCIS (Netherlands)

    Shan, M.

    2018-01-01

    Space debris poses a big threat to operational satellites which form a crucial infrastructure for society. According to the main source of information on space debris, the U.S. Space SurveillanceNetwork (SSN), more than 17 500 objects larger than 10 cmhave been catalogued as of February 2017. Among

  9. Optimizing of the recycling of contaminated concrete debris. Final report

    International Nuclear Information System (INIS)

    Kloeckner, J.; Rasch, H.; Schloesser, K.H.; Schon, T.

    1999-01-01

    1. Latest research: So far concrete debris from nuclear facilities has been free released or was treated as radioactive waste. 2. Objective: The objective of this study is to develop solutions and methods for recycling concrete debris. The amount of materials used in nuclear facilities should be limited and the contamination of new materials should be avoided. 3. Methods: The status of recycling was presented using examples of operating or completed decommissioning as well as available studies and literature. The quality requirements for the production of new concrete products using recycled materials has been discussed. The expected amounts of concrete debris for the next 12 years was estimated. For the proposed recycling examples, radiological and economic aspects have been considered. 4. Results: The production of qualified concrete products from concrete debris is possible by using modified receptions. Technical regulations to this are missing. There is no need for the utilization of large amounts of concrete debris for shielding walls. For the production of new shielding-containers for radioactive waste, concrete debris can be applied. Regarding the distance to a central recycling facility the use of mobile equipment can be economical. By using the concrete for filling the cavity or space in a final storage, it is possible to dispose the whole radioactive debris. 5. Application possibilities: The use of concrete debris as an inner concrete shielding in waste-containers today is already possible. For the manufacture of qualified concrete products by using recycling products, further developments and regulations are necessary. (orig.) [de

  10. Laser Remediation of Threats Posed by Small Orbital Debris

    Science.gov (United States)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  11. Active Debris Removal and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  12. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  13. Puente Willow Creek en Monterrey, California

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1965-09-01

    Full Text Available Of the 10 awards given every year by the Prestressed Concrete Institute for the most outstanding prestressed concrete projects, two have been awarded in California this year, one of them to the Willow Creek bridge, near Monterrey. The prestressed, double T girders of this bridge were made at a workshop, a great distance from the bridge site. These are 24 m long, 1.35 m high, and are stabilized by transversal diaphragms, 20 cm in thickness. The table deck is of reinforced concrete, being 8.85 m wide and 20 cm thick. The structure is straightforward, slender, and adapts itself pleasantly to the background. It has seven spans and crosses over a secondary road, in addition to bridging the Willow stream. The supporting piles are hollow, of rectangular cross section, and over them a cross beam carries the five girders and the deck itself. The end abutments consist of vertical reinforced concrete walls, and supporting, soil filled, structures. The above information was supplied by the California Road Department.De los diez premios que anualmente concede el Prestressed Concrete Institute para las obras de hormigón pretensado más notables, dos han correspondido a California y uno de ellos al puente de Willow Creek, situado en la región de Monterrey. Las vigas de hormigón pretensado, con sección en forma de doble T, se prefabricaron en un taller situado a gran distancia del puente. Tienen 24 m de longitud y 1,35 m de canto, estando arriostradas con diafragmas transversales de 20 cm de espesor. La losa del tablero, de hormigón armado, tiene 8,85 m de anchura y 20 cm de espesor. La estructura es sencilla, esbelta y armoniza perfectamente con el paisaje que la circunda. Tiene siete tramos y salva un paso inferior secundario y el arroyo Willow. Los soportes, se apoyan sobre pilotes, algunos de gran altura; son huecos, de sección rectangular y terminan en una cruceta que sirve de sostén a las cinco vigas que soportan la losa del tablero. Los estribos

  14. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS

    International Nuclear Information System (INIS)

    MAJI, A. K.; MARSHALL, B.

    2000-01-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation FR-om nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  15. Benthic plastic debris in marine and fresh water environments.

    Science.gov (United States)

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  16. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  17. The impact of debris on the Florida manatee

    Science.gov (United States)

    Beck, C.A.; Barros, N.B.

    1991-01-01

    The endangered Florida manatee ingests debris while feeding. From 1978 through 1986, 439 salvaged manatees were examined. Debris was in the gastrointestinal tract of 63 (14.4%) and four died as a direct result of debris ingestion. Monofilament fishing line was the most common debris found (N=49). Plastic bags, string, twine, rope, fish hooks, wire, paper, cellophane, synthetic sponges, rubber bands, and stockings also were recovered. Entanglement in lines and nets killed 11 manatees from 1974 through 1985. Numerous free-ranging manatees have missing or scarred flippers from entanglements, or debris still encircling one or both flippers. We recommend local cleanups, education of the public, and fishing restrictions in high use areas to significantly reduce harm to manatees.

  18. Evaluation of Oconee steam-generator debris. Final report

    International Nuclear Information System (INIS)

    Rigdon, M.A.; Rubright, M.M.; Sarver, L.W.

    1981-10-01

    Pieces of debris were observed near damaged tubes at the 14th support plate elevation in the Oconee 1-B steam generator. A project was initiated to evaluate the physical and chemical nature of the debris, to identify its source, and to determine its role in tube damage at this elevation. Various laboratory techniques were used to characterize several debris and mill scale samples. Data from these samples were then compared with each other and with literature data. It was concluded that seven of eight debris samples were probably formed in the steam generator. Six of these samples were probably formed by high temperature aqueous corrosion early in the life of the steam generator. The seventh sample was probably formed by the deposition and spalling of magnetite on the Inconel steam generator tubes. None of the debris samples resembled any of the mill scale samples

  19. Analysis of a space debris laser removal system

    Science.gov (United States)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  20. Regional geology of the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Crick, I.H.; Stuart-Smith, P.G.

    1980-01-01

    The Pine Creek Geosyncline comprises about 14km of chronostratigraphic mainly pelitic and psammitic Lower Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as three small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Lower Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The Lower Proterozoic metasediments are mainly pelites (about 75 percent) which are commonly carbonaceous, lesser psammites and carbonates (about 10 percent each), and minor rudites (about 5 percent). Volcanic rocks make up about 10 percent of the total sequence. The environment of deposition ranges from shallow-marine to supratidal and fluviatile for most of the sequence, and to flysch in the topmost part. Poor exposure and deep weathering over much of the area hampers correlation of rock units; the correlation preferred by the authors is presented, and possible alternatives are discussed. Regional geological observations pertinent to uranium ore genesis are described. (author)

  1. Pine Creek Geosyncline, N.T

    International Nuclear Information System (INIS)

    Ewers, G.R.; Ferguson, J.; Needham, R.S.; Donnelly, T.H.

    1984-01-01

    The Pine Creek Geosyncline comprises about 14 km of chronostratigraphic mainly pelitic and psammitic Early Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800 Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast, granulites are present in the extreme northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Early Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10 km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The uranium deposits post-date the approx. 1800 Ma regional metamorphic event; isotopic dating of uraninite and galena in the ore bodies indicates ages of mineralisation at approx. 1600 Ma, approx. 900 Ma and approx. 500 Ma. The ore bodies are stratabound, located within breccia zones, are of a shallow depth, and occur immediately below the Early/Middle Proterozoic unconformity

  2. Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The transient effect of forest fires on runoff, erosion and yield of woody biomass has been investigated by combining the experimental approach with mathematical models of hydrological processes. The case study is the Branega creek in Liguria, Italy, where a forest fire in August 2003 caused substantial changes to soil and vegetation, and left a considerable amount of woody debris on the ground. Immediately after the fire, rainfall simulator experiments in adjacent burned and unburned plots showed the extent to which fire had increased runoff and erosion rates. A distributed hydrological model using the tube-flux approach, calibrated on experimental measurements, has been used to investigate hill slope and channel erosion in a small sub-catchment, 1.5 ha in area, nested in the Branega basin. Simulation runs show that the model accommodates the observed variability of runoff and erosion under disturbed and undisturbed conditions. A model component describing the delivery of wood from hill slopes to the channel in post-fire conditions, validated against local survey data, showed that the removal and transport of woody biomass can be reproduced using an integrated hydrological approach. Hence, transient complexity after wildfires can be addressed by such an approach with empirically determined physically-based parameters.

  3. Coarse woody debris and soil respiration 6 years post-tornado in a Piedmont forest blowdown

    Science.gov (United States)

    Oldfield, C.; Peterson, C. J.

    2017-12-01

    Severe wind disturbances can rapidly change carbon pools and fluxes in forests, causing a site to switch from a carbon sink to a source in a matter of minutes. Moreover, salvage logging after a disturbance can result in disturbed and compacted soil, altered woody debris carbon pools, and seedling mortality, all of which may further alter carbon dynamics beyond that caused by the disturbance itself. We measured down dead wood and soil respiration in the summer of 2017 at Boggs Creek Recreation Area in the Piedmont of northeast Georgia, the site of a severe tornado in 2011. Down dead wood and soil respiration were compared in control (intact forest), salvaged, and unsalvaged areas. Megagrams per hectare of down dead wood was significantly higher in the unsalvaged condition than the control or salvage logging condition (ANOVAs, pdead wood was not significantly different in the control when compared to the salvage logging condition (p=0.99). Soil respiration was significantly higher in the salvage logged condition than the control (pdead wood in a forest, and salvage logging may lead to greater soil respiration years after the initial disturbance, both of which will influence the time elapsed before a disturbed forest switches from carbon source to carbon sink. Further research is needed to determine the duration of these effects, along with the carbon consequences for other forest carbon pools.

  4. Charged Coupled Device Debris Telescope Observations of the Geosynchronous Orbital Debris Environment - Observing Year: 1998

    Science.gov (United States)

    Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.

    2002-01-01

    NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.

  5. Protection Spacelab from Meteoroid and Orbital Debris

    Science.gov (United States)

    Zheng, Shigui; Yan, Jun; Han, Zengyao

    2013-08-01

    As the first long-term on-orbit spacelab of China, TianGong-1 will stay aloft for 2 years. Its failure risk subjected to Meteoroid and Orbital Debris(M/OD) is hundreds of times higher than the risk of Shenzhou-5, Shenzhou-6 or Shenzhou-7, so the special M/OD protection designs have been applied. In order to reduce the penetration risk of radiator tube, the design of radiator has been modified by placing the tube at the side of radiator plate, and the new design does not affect the thermal control system without adding the mass. Secondly, Whipple structure is adopted in the two sides and front of spacecraft against M/OD impact.

  6. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  7. Ecological effects of contaminants and remedial actions in Bear Creek

    International Nuclear Information System (INIS)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J.; Burris, J.A.

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report

  8. A real two-phase submarine debris flow and tsunami

    International Nuclear Information System (INIS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-01-01

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  9. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  10. Safe disposal and recycling of water disaster debris in pakistan

    International Nuclear Information System (INIS)

    Latif, A.

    2014-01-01

    Depending upon the nature, the disaster may produce large masses of debris. Waste masses from single disaster integrate to larger magnitude annually. This will ultimately causes the extra work load on personnel and reflects the poor existing debris management facilities. Besides, it will take longer time to rehabilitate the debris exaggerated regions. The study focuses on 2 main cases of disaster i.e. earthquake of 2005 and flood of 2010 in Pakistan. Complete analysis involve two stages: the first stage involve development of disaster and disaster debris effects guidance whereas the second stage involves the development of set of criteria to make efficient environment and positive impacts of successful debris managing scheme. Such principles were employed to evaluate efficiency of debris managing scheme for detailed analysis. The discussion of the detailed analysis depicts methodology which assists the disaster managers, planners and researcher to simply multitude of work. Moreover, the disaster and disaster debris influence direction, the effect evaluation criterion and managing criteria have been established having the effect they can be virtually put into service for prospect debris managing scheme, planning and retort. With respect to character and strictness, calamity may make high magnitude of waste. By keeping in view the precedent calamities in the United States (US), concluded that in few situations produced waste masses approximately five to fifteen times more than yearly waste production rate from a single occasion. Same results were revealed by subsequent tsunami of Indian Ocean. Such kind of large masses may effects the existing solid debris management system and human resources. Major disaster yields large masses of debris in few hours or sometimes even in minutes. The volume of disaster debris depends upon the magnitude of trees ball up, indemnity to houses, business, services etc. The disaster remaining may be equally large in metropolitan and non

  11. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  12. Experimental observations of granular debris flows

    Science.gov (United States)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  13. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  14. The effects of large beach debris on nesting sea turtles

    Science.gov (United States)

    Fujisaki, Ikuko; Lamont, Margaret M.

    2016-01-01

    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  15. The world state of orbital debris measurements and modeling

    Science.gov (United States)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  16. On the debris-level origins of adhesive wear.

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François

    2017-07-25

    Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.

  17. Preliminary results from initial in-pile debris bed experiments

    International Nuclear Information System (INIS)

    Rivard, J.B.

    1977-01-01

    An accident in a liquid metal fast breeder reactor (LMFBR) in which molten core material is suddenly quenched with subcooled liquid sodium could result in extensive fragmentation and dispersal of fuel as subcritical beds of frozen particulate debris within the reactor vessel. Since this debris will continue to generate power due to decay of retained fission products, containment of the debris is threatened if the generated heat is not removed. Therefore, the initial safety question is the capacity which debris beds may have for transfer of the decay heat to overlying liquid sodium by natural processes--i.e., without the aid of forced circulation of the coolant. Up to the present time, all experiments on debris bed behavior either have used substitute materials (e.g., sand and water) or have employed actual materials, but atypical heating methods. Increased confidence in the applicability of debris bed simulations is afforded if the heat is generated within the fuel component of the appropriate fast reactor materials. The initial series of in-pile tests reported on herein constitutes the first experiments in which the internal heating mode has been produced in particulate oxide fuel immersed in liquid sodium. Fission heating of the fully-enriched UO 2 in the experiment while it is contained within Sandia Laboratories Annular Core Pulse Reactor (ACPR), operating in its steady-state mode, approximates the decay heating of debris. Preliminary results are discussed

  18. An Approach to Predict Debris Flow Average Velocity

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2017-03-01

    Full Text Available Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF neural network and gravitational search algorithm (GSA for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF. Eighty percent (40 groups of the measured data were selected randomly as the training database. The other 20% (10 groups of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA approach were used for comparison and validation. The results showed that: (i the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii in the study area, the GSA-RBF results are validated reliable; and (iv we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other.

  19. Monitoring the abundance of plastic debris in the marine environment.

    Science.gov (United States)

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  20. Development of a debris flow model in a geotechnical centrifuge

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2013-04-01

    Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.

  1. FIDDLER CREEK POLYMER AUGMENTATION PROJECT; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  2. Investigating the Maya Polity at Lower Barton Creek Cayo, Belize

    Science.gov (United States)

    Kollias, George Van, III

    The objectives of this research are to determine the importance of Lower Barton Creek in both time and space, with relation to other settlements along the Belize River Valley. Material evidence recovered from field excavations and spatial information developed from Lidar data were employed in determining the socio-political nature and importance of this settlement, so as to orient its existence within the context of ancient socio-political dynamics in the Belize River Valley. Before the investigations detailed in this thesis no archaeological research had been conducted in the area, the site of Lower Barton Creek itself was only recently identified via the 2013 West-Central Belize LiDAR Survey (WCBLS 2013). Previously, the southern extent of the Barton Creek area represented a major break in our knowledge not only of the Barton Creek area, but the southern extent of the Belize River Valley. Conducting research at Lower Barton Creek has led to the determination of the polity's temporal existence and allowed for a greater and more complex understanding of the Belize River Valley's interaction with regions abutting the Belize River Valley proper.

  3. Sherman Creek Hatchery, annual report 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake

  4. A possible climate signal in the surface morphology and internal structure of Galena Creek Rock Glacier, Wyoming

    Science.gov (United States)

    Petersen, Eric; Holt, John; Levy, Joseph; Stuurman, Cassie; Nerozzi, Stefano; Cardenas, Benjamin; Pharr, James; Aylward, Dan; Schmidt, Logan; Hoey, William; Prem, Parvathy; Rambo, Jackie; Lim, YeJin; Maharaj, Kian

    2016-04-01

    Galena Creek Rock Glacier (GCRG) has been shown in previous studies to be a debris-covered glacier (e.g. Ackert, Jr., 1998), and is thus a target of interest as a record of climate and an element of the mountain hydrological system. The goal of this study was to investigate possible relationships between surface morphology and internal structure and composition of GCRG. This was achieved using ground-penetrating radar (GPR), time-domain electromagnetic sounding (TEM), and photogrammetry to produce digital terrain models (DTMs). We acquired 6 longitudinal GPR surveys at 50 and 100 MHz, 2 common midpoint GPR surveys, and 28 TEM soundings on GCRG from the head to the toe, and ground-based photogrammetry data were collected to produce a DTM of its cirque at 10 cm resolution. TEM soundings locally constrained the bulk thickness of GCRG to 26-75 meters. Common midpoint and hyperbola analyses of GPR surveys produced dielectric constants in the near subsurface of 4 in the upper glacier to 5-9 in the middle and lower glacier. These are consistent with clean ice and a mélange of rock with air and/or ice, respectively. GPR revealed a pervasive shallow reflector at 1-2.5m depth that we interpret to be the interface between the surface debris layer and glacier ice. There is increased structure and clutter in the GPR data beneath this interface as one moves down glacier. Observations were additionally made of a 40m wide, 4-5m deep circular thermokarst pond located on upper GCRG in the cirque. The walls of the pond revealed a cross-section of the top several meters of GCRG's interior: a dry surface layer of rocky debris 1-1.5m thick overlying pure glacier ice. An englacial debris band was also observed, roughly 50 cm thick and presenting at an apparent up-glacier dip of ~30 degrees, intersecting the surface near a subtle ridge resolved in the photogrammetry DTM. A GPR transect conducted near the pond over 6 similar ridges imaged 6 corresponding up-glacier dipping reflectors that

  5. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  6. ASTM standards for fire debris analysis: a review.

    Science.gov (United States)

    Stauffer, Eric; Lentini, John J

    2003-03-12

    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  7. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  8. 75 FR 66077 - Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Supplemental Environmental...

    Science.gov (United States)

    2010-10-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12555-004-PA] Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Supplemental Environmental Assessment... Energy Projects has reviewed the application for an original license for the Mahoning Creek Hydroelectric...

  9. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility...

  10. 76 FR 8728 - Bear Creek Hydro Associates, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2011-02-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13951-000] Bear Creek Hydro..., Motions To Intervene, and Competing Applications On December 22, 2010, the Bear Creek Hydro Associates... (FPA), proposing to study the [[Page 8729

  11. Phytoplankton characteristics in a polluted Bombay Harbour-Thana-Bassein creek estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ramaiah, N.; Nair, V.R.

    Annual variations in phytoplankton characteristics were studied from Bombay Harbour-Thana creek-Bassein creek (BHTCBC) estuarine confluence to assess the levels of pigment concentration, productivity and, qualitative and qunatitative nature...

  12. 78 FR 26063 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Final Environmental...

    Science.gov (United States)

    2013-05-03

    ...-100-00-0-0, CUPCA00] Central Utah Project Completion Act; East Hobble Creek Restoration Project Final... Creek Restoration Project. These two agencies have determined that the proposed [[Page 26064

  13. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    International Nuclear Information System (INIS)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.; Wolf, D.A.

    1981-01-01

    The purpose of the Date Creek Supplement is to characterize the chemistry of sediment samples representing stream basins in which the Anderson Mine (and related prospects) occur. Once characterized, the chemistry is then used to delineate other areas within the Date Creek Basin where stream sediment chemistry resembles that of the Anderson Mine area. This supplementary report examines more closely the data from sediment samples taken in 239 stream basins collected over a total area of approximately 900 km 2 (350 mi 2 ). Cluster and discriminant analyses are used to characterize the geochemistry of the stream sediment samples collected in the Date Creek Basin. Cluster and discriminant analysis plots are used to delineate areas having a potential for uranium mineralization similar to that of the Anderson Mine

  14. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    Science.gov (United States)

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to

  15. Corporate social responsibility in marine plastic debris governance.

    Science.gov (United States)

    Landon-Lane, Micah

    2018-02-01

    This paper explores the governance characteristics of marine plastic debris, some of the factors underpinning its severity, and examines the possibility of harnessing corporate social responsibility (CSR) to manage plastic use within the contextual attitudes of a contemporary global society. It argues that international and domestic law alone are insufficient to resolve the "wicked problem" of marine plastic debris, and investigates the potential of the private sector, through the philosophy of CSR, to assist in reducing the amount and impacts of marine plastic debris. To illustrate how CSR could minimise marine plastic pollution, an industry-targeted code of conduct was developed. Applying CSR would be most effective if implemented in conjunction with facilitating governance frameworks, such as supportive governmental regulation and non-governmental partnerships. This study maintains that management policies must be inclusive of all stakeholders if they are to match the scale and severity of the marine plastic debris issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  17. Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers

    Science.gov (United States)

    Irvine-Fynn, Tristram D. L.; Porter, Philip R.; Rowan, Ann V.; Quincey, Duncan J.; Gibson, Morgan J.; Bridge, Jonathan W.; Watson, C. Scott; Hubbard, Alun; Glasser, Neil F.

    2017-12-01

    Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one-fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a 7 month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 h. Given projections of increased debris cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream.

  18. Recent advances in modeling landslides and debris flows

    CERN Document Server

    2015-01-01

    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with V...

  19. Rainfall characteristics and thresholds for periglacial debris flows in ...

    Indian Academy of Sciences (India)

    Mingfeng Deng

    2018-02-14

    Feb 14, 2018 ... Rainfall characteristics; runoff generated; threshold; debris flows; southeast Tibetan. Plateau. 1. ... glacier ablation water (Lu and Li 1989; Liu et al. 2013). ...... F J and Lund L J, US Department of Agriculture (River- side, CA ...

  20. Spiders (Araneae of stony debris in North Bohemia

    Directory of Open Access Journals (Sweden)

    Růžička, Vlastimil

    1996-12-01

    Full Text Available The arachnofauna was studied at five stony debris sites in northern Bohemia. In Central Europe, the northern and montane species inhabiting cold places live not only on mountain tops and peat bogs but also on the lower edges of boulder debris, where air streaming through the system of inner compartments gives rise to an exceedingly cold microclimate. At such cold sites, spiders can live either on bare stones (Bathyphantes simillimus, Wubanoides uralensis, or in the rich layers of moss and lichen (Diplocentria bidentata. Kratochviliella bicapitata exhibits a diplostenoecious occurence in stony debris and on the tree bark. Latithorax faustus and Theonoe minutissima display diplostenoecious occurence in stony debris and on peat bogs. The occurence of the species Scotina celans in the Czech Republic was documented for the first time.

  1. Technology Combination Analysis Tool (TCAT) for Active Debris Removal

    Science.gov (United States)

    Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.

    2013-08-01

    This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.

  2. Evaluation of the amount of apically extruded debris during ...

    African Journals Online (AJOL)

    2015-04-06

    Apr 6, 2015 ... Objective: To evaluate the amount of apically extruded debris during retreatment (with or without solvent) of root canals filled by two ... These filling materials can be used with several obturation .... The tip of the master cone.

  3. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  4. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Science.gov (United States)

    2011-10-11

    ... environmental analyses for proposed mining Plans in the portions of the Granite Creek Watershed under their... Granite Creek Watershed Mining Plans analysis area that meets the Purpose of and Need for Action. It is... Granite Creek Watershed Mining Plans AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an...

  5. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  6. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  7. 76 FR 65118 - Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD

    Science.gov (United States)

    2011-10-20

    ...-AA09 Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD AGENCY: Coast Guard, DHS. ACTION... regulation. The Baltimore County Revenue Authority (Dundalk Avenue) highway toll drawbridge across Bear Creek... applicable or necessary. Basis and Purpose The drawbridge across Bear Creek, mile 1.5 was removed and...

  8. 75 FR 31418 - Intermountain Region, Payette National Forest, Council Ranger District; Idaho; Mill Creek-Council...

    Science.gov (United States)

    2010-06-03

    ... Ranger District; Idaho; Mill Creek--Council Mountain Landscape Restoration Project AGENCY: Forest Service... the Mill Creek--Council Mountain Landscape Restoration Project. The approximate 51,900 acre project area is located about two miles east of Council, Idaho. The Mill Creek--Council Mountain Landscape...

  9. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Science.gov (United States)

    2010-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory Commission (Commission) of...

  10. Investigation of debris bed formation, spreading and coolability

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  11. Radiator debris removing apparatus and work machine using same

    Science.gov (United States)

    Martin, Kevin L [Washburn, IL; Elliott, Dwight E [Chillicothe, IL

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  12. Investigation of debris bed formation, spreading and coolability

    International Nuclear Information System (INIS)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A.

    2013-08-01

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  13. Aerogels Materials as Space Debris Collectors

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2013-01-01

    Full Text Available Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3 have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.

  14. Melt propagation in dry core debris beds

    International Nuclear Information System (INIS)

    Dosanjh, S.S.

    1989-01-01

    During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO 2 and ZrO 2 ) as well as metallic (e.g., zirconium) constituents is developed. Key results are that a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; liquid accumulates above the blockage and, if zirconium is present, the pool grows rapidly as molten zirconium dissolved both UO 2 and ZrO 2 particles; if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; in a nonwetting system, all of the melt flows into the bottom of the bed; and when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is > 0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence

  15. Mapping coastal marine debris using aerial imagery and spatial analysis.

    Science.gov (United States)

    Moy, Kirsten; Neilson, Brian; Chung, Anne; Meadows, Amber; Castrence, Miguel; Ambagis, Stephen; Davidson, Kristine

    2017-12-19

    This study is the first to systematically quantify, categorize, and map marine macro-debris across the main Hawaiian Islands (MHI), including remote areas (e.g., Niihau, Kahoolawe, and northern Molokai). Aerial surveys were conducted over each island to collect high resolution photos, which were processed into orthorectified imagery and visually analyzed in GIS. The technique provided precise measurements of the quantity, location, type, and size of macro-debris (>0.05m 2 ), identifying 20,658 total debris items. Northeastern (windward) shorelines had the highest density of debris. Plastics, including nets, lines, buoys, floats, and foam, comprised 83% of the total count. In addition, the study located six vessels from the 2011 Tōhoku tsunami. These results created a baseline of the location, distribution, and composition of marine macro-debris across the MHI. Resource managers and communities may target high priority areas, particularly along remote coastlines where macro-debris counts were largely undocumented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  17. Economic analysis requirements in support of orbital debris regulatory policy

    Science.gov (United States)

    Greenberg, Joel S.

    1996-10-01

    As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.

  18. Experimental study of self-leveling behavior in debris bed

    International Nuclear Information System (INIS)

    Zhang, Bin; Harada, Tetsushi; Hirahara, Daisuke; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2008-01-01

    After a core disruptive accident in a sodium-cooled fast reactor, core debris may settle on locations such as within the core-support structure or in the lower inlet plenum of the reactor vessel as debris beds, as a consequence of rapid quenching and fragmentation of core materials in subcooled sodium. The particle beds that are initially of varying depth have been observed to undergo a process of self-leveling when sodium boiling occurs within the beds. The boiling is believed to provide the driven force with debris needed to overcome resisting forces. Self-leveling ability has much effect on heat-removal capability of debris beds. In the present study, characteristics of self-leveling behaviors were investigated experimentally with simulant materials. Although the decay heat from fuel debris drives the coolant boiling in reactor accident conditions, the present experiments employed depressurization boiling of water to simulate axially increasing void distribution in a debris bed, which consists of solid particles of alumina or lead with different density. The particle size (from 0.5 mm to 6 mm in diameter) and shape (spherical or non-spherical particles) were also taken as experimental parameters. A rough criteria for self-leveling occurrence is proposed and compared with the experimental results. Characteristics of the self-leveling behaviors observed are analyzed and extrapolate to reactor accident conditions. (author)

  19. Particulate metallic debris in cemented total hip arthroplasty.

    Science.gov (United States)

    Salvati, E A; Betts, F; Doty, S B

    1993-08-01

    Several studies conducted by the authors in the last six years demonstrate that the generation of metallic debris is more severe with titanium alloy than with cobalt-chrome alloy femoral components in cemented total hip arthroplasty (THA). The debris is generated from the articulating surface, particularly if entrapped acrylic debris produces three-body wear, and from the stem surface when the component loosens and abrades against fragmented cement. In selected cases in which the titanium metallic debris is copious, premature failure and severe progressive bone loss occurs. Electron microscopy demonstrates that the particles of metallic debris can be extremely small (a few hundredths of 1 micron). They are phagocytized by the macrophages and transported to the phagolysosomes. In this highly corrosive environment, the very high surface area of the particles may release toxic concentrations of the constituents of the alloy intracellularly, probably leading to progressive cell degeneration and death, with subsequent release of intracellular enzymes and ingested metallic debris. This cycle most likely repeats itself, leading to tissue necrosis. The results presented do not support the use of titanium alloy femoral components for cemented THA, particularly for the articulating surface.

  20. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    Science.gov (United States)

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  1. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  2. Plastic debris in the coastal environment: The invincible threat? Abundance of buried plastic debris on Malaysian beaches.

    Science.gov (United States)

    Fauziah, S H; Liyana, I A; Agamuthu, P

    2015-09-01

    Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution. © The Author(s) 2015.

  3. Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001

    Science.gov (United States)

    Galeone, Daniel G.; Low, Dennis J.

    2003-01-01

    Powell Creek and Armstrong Creek Watersheds are in Dauphin County, north of Harrisburg, Pa. The completion of the Dauphin Bypass Transportation Project in 2001 helped to alleviate traffic congestion from these watersheds to Harrisburg. However, increased development in Powell Creek and Armstrong Creek Watersheds is expected. The purpose of this study was to establish a baseline for future projects in the watersheds so that the effects of land-use changes on water quality can be documented. The Pennsylvania Department of Environmental Protection (PADEP) (2002) indicates that surface water generally is good in the 71 perennial stream miles in the watersheds. PADEP lists 11.1 stream miles within the Armstrong Creek and 3.2 stream miles within the Powell Creek Watersheds as impaired or not meeting water-quality standards. Siltation from agricultural sources and removal of vegetation along stream channels are cited by PADEP as likely factors causing this impairment.

  4. Performance testing of the new AMPAC fire debris bag against three other commercial fire debris bags.

    Science.gov (United States)

    Grutters, Michiel M P; Dogger, Judith; Hendrikse, Jeanet N

    2012-09-01

    Fire debris evidence is collected and stored in a wide range of containers, including various polymer bags. Four different polymer bags have been investigated, including the NYLON, DUO, ALU, and AMPAC bags. The latter is the successor of the Kapak Fire DebrisPAK™. Microscopy and infrared spectroscopy were used to elucidate the composition of the bags. Gas chromatography/mass spectrometry was used to investigate performance parameters such as background volatiles, leak rate, cross-contamination, recovery, and sorption. The NYLON bag was susceptible for leakage and cross-contamination and showed decreased recoveries. The DUO and ALU bags showed some background volatiles, sorption, and poor recoveries. The AMPAC bag performed excellent: low background, no leakage or cross-contamination, good recoveries, and only traces of sorption. Heat sealing proved to be the best method of closure. Preliminary studies on AMPAC bags showed that polyethylene clamps are easy to use on-site and preserve ignitable liquids adequately for a limited period of time. © 2012 American Academy of Forensic Sciences.

  5. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  6. Preliminary investigations on the Ichthyodiversity of Kilifi Creek, Kenya

    African Journals Online (AJOL)

    (Smith, 1939) off the Kenyan coast at Malindi only. 50 km north of ... communities, river fed creek, upstream and the bay proper, in Gazi ... habitat degradation: pollution, overfishing, ..... exploitable fishes from a marine park and its effect on the ...

  7. 78 FR 67084 - Drawbridge Operation Regulation; Broad Creek, Laurel, DE

    Science.gov (United States)

    2013-11-08

    ...-AA09 Drawbridge Operation Regulation; Broad Creek, Laurel, DE AGENCY: Coast Guard, DHS. ACTION: Notice....25, both at Laurel, DE. The proposed new rule would change the current regulation by requiring a..., mile 8.2, all at Laurel, shall open on signal if at least 48 hours notice is given. Previous regulation...

  8. Short notes and reviews The fossil fauna of Mazon Creek

    NARCIS (Netherlands)

    Schultze, Hans-Peter

    1998-01-01

    Review of: Richardson’s Guide to the Fossil Fauna of Mazon Creek, edited by Charles W. Shabica & Andrew A. Hay. Northeastern Illinois University, Chicago, Illinois, 1997: XVIII + 308 pp., 385 figs., 4 tables, 1 faunal list; $75.00 (hard cover) ISBN 0-925065-21-8. Since the last century, the area

  9. Forest Creeks Research Natural Area: guidebook supplement 39

    Science.gov (United States)

    Reid Schuller; Ron Halvorson

    2010-01-01

    This guidebook describes Forest Creeks Research Natural Area, a 164-ha (405-ac) area comprising two geographically distinct canyons and associated drainages. The two units have been established as examples of first- to third-order streams originating within a ponderosa pine (Pinus ponderosa) zone. The two riparian areas also represent examples of...

  10. Copepod composition, abundance and diversity in Makupa Creek ...

    African Journals Online (AJOL)

    Evenness (J) was, however, relatively constant (0.67 to 0.84) during the entire sampling period. These results point to suppressed copepod diversity and abundance in Makupa Creek, and possible reasons for this, which may include environmental degradation caused by pollution, are presented. Western Indian Ocean ...

  11. Cherry Creek Research Natural Area: guidebook supplement 41

    Science.gov (United States)

    Reid Schuller; Jennie Sperling; Tim Rodenkirk

    2011-01-01

    This guidebook describes Cherry Creek Research Natural Area, a 239-ha (590-ac) area that supports old-growth Douglas-fir-western hemlock (Pseudotsuga menziesii- Tsuga heterophylla) forest occurring on sedimentary materials in the southern Oregon Coast Range. Major plant associations present within the area include the western hemlock/Oregon oxalis...

  12. Fish Creek Rim Research Natural Area: guidebook supplement 50

    Science.gov (United States)

    Reid Schuller; Ian Grinter

    2016-01-01

    This guidebook describes major biological and physical attributes of the 3531-ha (8,725-ac) Fish Creek Rim Research Natural Area located within the Northern Basin and Range ecoregion and managed by the Bureau of Land Management, Lakeview District (USDI BLM 2003).

  13. WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987

    Science.gov (United States)

    In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...

  14. Tillman Creek Mitigation Site As-Build Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Doug [Otak, Inc.

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  15. 78 FR 47427 - AUC, LLC Reno Creek, In Situ

    Science.gov (United States)

    2013-08-05

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 040-09092; NRC-2013-0164] AUC, LLC Reno Creek, In Situ... October 3, 2012, AUC submitted a license application to the U.S. Nuclear Regulatory Commission (NRC... provided the first time that a document is referenced. The AUC License Application request and additional...

  16. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...

  17. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  18. A baseline and watershed assessment in the Lynx Creek, Brenot Creek, and Portage Creek watersheds near Hudson's Hope, BC : summary report

    International Nuclear Information System (INIS)

    Matscha, G.; Sutherland, D.

    2005-06-01

    This report summarized a baseline monitoring program for the Lynx Creek, Brenot Creek, and Portage Creek watersheds located near Hudson's Hope, British Columbia (BC). The monitoring program was designed to more accurately determine the effects of potential coalbed gas developments in the region, as well as to assess levels of agricultural and forest harvesting, and the impacts of current land use activities on water quantity and quality. Water quality was sampled at 18 sites during 5 different flow regimes, including summer and fall low flows; ice cover; spring run-off; and high flows after a heavy summer rain event. Sample sites were located up and downstream of both forest and agricultural activities. The water samples were analyzed for 70 contaminants including ions, nutrients, metals, hydrocarbons, and hydrocarbon fractions. Results showed that while many analyzed parameters met current BC water quality guidelines, total organic carbon, manganese, cadmium, E. coli, fecal coliforms, and fecal streptococci often exceeded recommended guidelines. Aluminum and cobalt values exceeded drinking water guidelines. The samples also had a slightly alkaline pH and showed high conductance. A multiple barrier approach was recommended to reduce potential risks of contamination from the watersheds. It was concluded that a more refined bacteria source tracking method is needed to determine whether fecal pollution has emanated from human, livestock or wildlife sources. 1 tab., 9 figs

  19. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-34-000] Bear Creek..., 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569 Brookwood Village, Suite 749, Birmingham....208, 157.213 and 157.216 of the Commission's Regulations under the Natural Gas Act, and Bear Creek's...

  20. First laser measurements to space debris in Poland

    Science.gov (United States)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  1. Pine Creek Ranch, FY 2001 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Berry, Mark E.

    2001-01-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring

  2. Volume calculations of coarse woody debris; evaluation of coarse woody debris volume calculations and consequences for coarse woody debris volume estimates in forest reserves

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Vaessen, O.H.B.; Hees, van A.F.M.; Olsthoorn, A.F.M.

    2005-01-01

    Dead wood is recognized as one of the key indicators for sustainable forest management and biodiversity. Accurate assessments of dead wood volume are thus necessary. In this study New volume models were designed based on actual volume measurements of coarse woody debris. The New generic model

  3. Magnitude-frequency characteristics and preparatory factors for spatial debris-slide distribution in the northern Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; Jensen, Niels H.; Veihe, Anita

    2013-01-01

    The Faroe Islands in the North Atlantic Ocean are highly susceptible to debris-avalanches and debris-flows originating from debris-slide activity in shallow colluvial soils. To provide data for hazard and risk assessment of debris-avalanches and debris-flows, this study aims at quantifying the ma...

  4. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  5. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    Science.gov (United States)

    Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.

    2017-10-01

    Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion

  6. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  7. Estimating Foreign-Object-Debris Density from Photogrammetry Data

    Science.gov (United States)

    Long, Jason; Metzger, Philip; Lane, John

    2013-01-01

    Within the first few seconds after launch of STS-124, debris traveling vertically near the vehicle was captured on two 16-mm film cameras surrounding the launch pad. One particular piece of debris caught the attention of engineers investigating the release of the flame trench fire bricks. The question to be answered was if the debris was a fire brick, and if it represented the first bricks that were ejected from the flame trench wall, or was the object one of the pieces of debris normally ejected from the vehicle during launch. If it was typical launch debris, such as SRB throat plug foam, why was it traveling vertically and parallel to the vehicle during launch, instead of following its normal trajectory, flying horizontally toward the north perimeter fence? By utilizing the Runge-Kutta integration method for velocity and the Verlet integration method for position, a method that suppresses trajectory computational instabilities due to noisy position data was obtained. This combination of integration methods provides a means to extract the best estimate of drag force and drag coefficient under the non-ideal conditions of limited position data. This integration strategy leads immediately to the best possible estimate of object density, within the constraints of unknown particle shape. These types of calculations do not exist in readily available off-the-shelf simulation software, especially where photogrammetry data is needed as an input.

  8. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  9. MIPS Observations of the Fabulous Four Debris Disks

    Science.gov (United States)

    Su, K. Y. L.; Stansberry, J. A.; Rieke, G. H.; Trilling, D. E.; Stapelfeldt, K. R.; Werner, M. W.; Beichman, C.; Chen, C.; Marengo, M.; Megeath, T.; Backman, D.; van Cleve, J.

    2004-12-01

    The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability with imaging bands at 24, 70, and 160 um. We will present the MIPS images of the Fabulous Four Debris Disks: Beta Pictoris (A5 V), Epsilon Eridani (K2 V), Fomalhaut (A3 V) and Vega (A0 V). These systems discovered by IRAS possess large far-infrared excess emission above photosphere, indicating the existence of a circumstellar dusty disk. Given the main-sequence ages of these stars ( ˜12 Myr for Beta Pictoris, ˜730 Myr for Epsilon Eridani, ˜200 Myr for Fomalhaut, and ˜350 Myr for Vega), the dust in the systems could not be primordial as it would have been removed by radiation pressure and Poynting-Robertson drag on relatively short time scales ( ˜1E4 yr). The second-generation dust in such debris disks is thought to arise primarily from collisions between planetesimals (asteroids) and from cometary activity; however, details about the debris formation and evolution are not well understood. With the sensitivity and angular resolution of the Spitizer Space Telescope, the structures of these nearby debris disks were mapped in great detail to study the disks' spatial structures at mid- to far-infrared wavelengths. These high spatial resolution images provide unprecedented new constraints on the the dust properties in the systems and limits on the origin of dusty debris. Support for this work was provided by NASA through Contract Number 960785 issued by JPL/Caltech.

  10. Apically-extruded debris using the ProTaper system.

    Science.gov (United States)

    Azar, Nasim Gheshlaghi; Ebrahimi, Gholamreza

    2005-04-01

    The purpose of this in vitro study was to determine the quantity of debris and irrigant extruded apically using the ProTaper system compared to ProFiles and K-Flexofiles. Thirty-six mesio-buccal root canals of human mandibular molars were selected and divided into three groups of twelve canals. Two groups were instrumented with ProFiles and ProTapers according to the manufacturer's instructions. The other group was instrumented with K-Flexofiles using the step-back technique. A standard amount of irrigant was used for each canal. Apically-extruded debris and irrigant was collected in pre-weighed vials. The mean weight of extruded debris and irrigant for each group was statistically analysed using Student's t-test and one-way ANOVA. All instrumentation techniques produced extruded debris and irrigant. Although the mean amount of extrusion with the step-back technique was higher than the two rotary systems, there was no significant difference between the three groups (p > 0.05). NiTi rotary systems were associated with less apical extrusion, but were not significantly better than hand file instrumentation. All techniques extruded debris.

  11. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    Science.gov (United States)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  12. VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS

    International Nuclear Information System (INIS)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Rujopakarn, Wiphu; Ivanov, Valentin D.; Vanzi, Leonardo

    2012-01-01

    Debris disks with extremely large infrared excesses (fractional luminosities >10 –2 ) are rare. Those with ages between 30 and 130 Myr are of interest because their evolution has progressed well beyond that of protoplanetary disks (which dissipate with a timescale of order 3 Myr), yet they represent a period when dynamical models suggest that terrestrial planet building may still be progressing through large, violent collisions that could yield large amounts of debris and large infrared excesses. For example, our Moon was formed through a violent collision of two large protoplanets during this age range. We report two disks around the solar-like stars ID8 and HD 23514 in this age range where the 24 μm infrared excesses vary on timescales of a few years, even though the stars are not variable in the optical. Variations this rapid are difficult to understand if the debris is produced by collisional cascades, as it is for most debris disks. It is possible that the debris in these two systems arises in part from condensates from silicate-rich vapor produced in a series of violent collisions among relatively large bodies. If their evolution is rapid, the rate of detection of extreme excesses would indicate that major collisions may be relatively common in this age range.

  13. Apparent rotation properties of space debris extracted from photometric measurements

    Science.gov (United States)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  14. Debris flows susceptibility mapping under tropical rain conditions in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri

    2017-04-01

    Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.

  15. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  16. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  17. Simulation of water quality for Salt Creek in northeastern Illinois

    Science.gov (United States)

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  18. Numerical modelling of floating debris in the world's oceans.

    Science.gov (United States)

    Lebreton, L C-M; Greer, S D; Borrero, J C

    2012-03-01

    A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN

    2003-01-01

    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  20. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  1. Protecting Spacecraft Fragments from Exposure to Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable debris. In case of possible collision with the observed debris an avoidance manoeuvre is provided. The situation with unobservable debris is worse, its dimensions ranging from 100 mm to several microns. This debris is formed as a result of explosions of dead space objects and at collisions of destroyed spacecraft fragments against each other. This debris moves along arbitrary trajectories at different speeds.At collision of a spacecraft with fragments of small-size space debris, various consequences are possible: the device can immediately fail, suffer damages, which will have effect later and damages, which break no bones to the aircraft. Anyway, the spacecraft collision with small-size debris particles is undesirable. The protective shields are used to protect the aircraft from damage. Development of shield construction is complicated because the high cost of launch makes it impossible to conduct field tests of shields in space. All the work is carried out in the laboratory, with particles having co-impact speeds up to 10 km/s (possible speeds are up to 20 km/s and spherically shaped particles of 0.8 ... 3 mm in diameter.Various materials are used to manufacture shields. These are aluminum sheet, sandwich panels, metal mesh, metal foam, and woven materials (ballistic fabric. The paper considers single-layer (from sheet metal sandwich materials and multilayer shield designs. As experimental studies show, a single-layer shield protects colliding at speeds

  2. Mechanics of debris flows and rock avalanches: Chapter 43

    Science.gov (United States)

    Iverson, Richard M.; Fernando, Harindra Joseph

    2012-01-01

    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  3. Floating tumor debris. A cause of intermittent biliary obstruction.

    Science.gov (United States)

    Roslyn, J J; Kuchenbecker, S; Longmire, W P; Tompkins, R K

    1984-11-01

    Tumor debris, free-floating in the major biliary ductal system, is a cause of intermittent biliary obstruction that has previously not been recognized. Six patients had hepatic neoplasms with episodic jaundice and/or cholangitis due to floating tumor debris. Diagnosis included metastatic adenocarcinoma of the colon (n = 3), cholangiocarcinoma (n = 1), hepatocellular carcinoma (n = 1), and cavernous hemangioma (n = 1). All patients underwent biliary exploration, with hepatic resection and transhepatic intubation in two and T-tube placement in four. One patient died in the early postoperative period, and the major complication rate in the five survivors was 0%. Four of the five survivors had no further episodes suggestive of major bile duct obstruction. Our experience emphasizes the importance of distinguishing extrahepatic obstruction secondary to tumor debris from the more common causes of jaundice in patients with tumors and suggests that safe and effective palliation can be achieved in these patients.

  4. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    Science.gov (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  5. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  6. Debris Avalanches and Debris Flows Transformed from Collapses in the Trans-Mexican Volcanic Belt, México.

    Science.gov (United States)

    Capra, L.; Macias, J.; Scott, K.; Abrams, M.; Garduño, V.

    2001-12-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene time. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlated with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and north-east, probably reflecting the tectonic regime of active E-W and NNW faults. The different mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the case of the smaller failures. High mobility is related to factors such as water and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). Both debris-avalanches and debris-flows are volcanic hazards that occur from both active volcanoes, as well as those that are inactive or dormant volcanoes, and may by triggered by earthquakes, precipitation, or simple gravity. There will be no precursory warning in such non-volcanic cases.

  7. Types and Origins of Debris Found on Maui Shorelines: Implications for Mitigation Policies and Strategies

    Science.gov (United States)

    Blickley, L.; Currie, J. J.; Kaufman, G. D.

    2016-02-01

    Marine debris is an identified concern for coastal areas and is known to accumulate in large quantities in the North Pacific Ocean. The proximity of the Main Hawaiian Islands to these "garbage patches" represents an ongoing concern with little understanding of debris origins or efficacy of current mitigation policies. Debris accumulation surveys were conducted monthly between October 2013 and August 2014 and daily during January 2015 at 3 beaches on Maui's coastline. Debris accumulation rates, loads, and sources varied between sites and were influenced by both environmental and anthropogenic factors. Debris accumulation was strongly influenced by the temporal scale of sampling, with daily surveys showing a significant increase in accumulation rate. Plastics were the most common debris item at each site ranging from local, land-based debris including cigarette butts, straws, and food wrappers, to foreign, ocean-based debris such as oyster spacer tubes and hagfish traps. The results of this study indicate that the passage of a tobacco free beaches bill on Maui has not significantly reduced the amount of tobacco related debris. Alternatively, a ban on plastic grocery bags has eliminated this type of debris from Maui's shorelines, with no bags found at any of the sampling sites. The wide spread origins of collected debris further suggests that mitigation strategies to reduce debris will need to take place across hundreds of local municipalities. The efficacy of marine debris policies furthermore depends on enforcement and implementation strategy, as current results suggest policy enforcement at the producer level affords more effective results than that at the consumer level. Local debris mitigation actions have nevertheless been shown to affect debris loads, and municipalities are therefore encouraged to adopt a holistic combination of policy, community-based debris removal programs, increased public awareness, and ongoing monitoring to address marine debris.

  8. Energy balance, carbon emissions, and costs of sortyard debris disposal

    International Nuclear Information System (INIS)

    MacDonald, A.J.

    2001-01-01

    The Forest Engineering Research Institute of Canada (FERIC), with funding from Natural Resources Canada, conducted this study to determine the main environmental and energy use issues regarding the landfilling, burning or processing of dryland sortyard debris accumulated in the wood products industry. The wood residues that are generated when logs are processed, sorted and remanufactured, have traditionally been burned or landfilled. This is no longer appropriate. Converting the large woody debris into usable products such as hog fuel or compost requires grinding, smashing or chipping into small pieces to facilitate transportation. In order to make smart decisions about alternative methods of handling sortyard debris, information is needed about the comparative amount of fuel used and carbon dioxide produced. This study compared the treatment alternatives with respect to fuel consumption, net energy balance, carbon dioxide emissions and environmental impact. Recommendations were then presented for the treatment of debris from the point of view of net energy balance and environmental impact. Life cycle techniques were used to determine the environmental impact of alternatives for managing sortyard debris. It was determined that wood wastes are valuable as hog fuel for power generation. Burning hog fuel to recover its energy offsets the need to supply energy from other sources such as natural gas. This reduces the total carbon emissions by the amount of debris that would have been burned as waste. Annual carbon emissions can be reduced by nearly half by switching from a maximize burn strategy to a maximize hog strategy that combines composting of fine materials. 2 refs., 1 tab., 1 fig

  9. The Relationship Between Debris and Grain Growth in Polycrystalline Ice

    Science.gov (United States)

    Rivera, A.; McCarthy, C.

    2017-12-01

    An understanding of the mechanisms of ice flow, as well as the factors that affect it, must be improved in order to make more accurate predictions of glacial melting rates, and hence, sea level rise. Both field and laboratory studies have made an association between smaller grain sizes of ice and more rapid deformation. Therefore, it is essential to understand the different factors that affect grain size. Observations from ice cores have shown a correlation between debris content in layers of ice with smaller grain sizes, whereas layers with very little debris have larger grain sizes. Static grain growth rates for both pure ice and ice containing bubbles are well constrained, but the effect of small rock/dust particles has received less attention. We tested the relationship between debris and grain growth in polycrystalline ice with controlled annealing at -5°C and microstructural characterization. Three samples, two containing fine rock powder and one without, were fabricated, annealed, and imaged over time. The samples containing powder had different initial grain sizes due to solidification temperature during fabrication. Microstructural analysis was done on all samples after initial fabrication and at various times during the anneal using a light microscope housed in a cold room. Microstructural images were analyzed by the linear-intercept method. When comparing average grain size over time between pure ice and ice with debris, it was found that the rate of growth for the pure ice was larger than the rate of growth for the ice with debris at both initial grain sizes. These results confirm the observations seen in nature, and suggest that small grain size is indeed influenced by debris content. By understanding this, scientists could gain a more in-depth understanding of internal ice deformation and the mechanisms of ice flow. This, in turn, helps improve the accuracy of glacial melting predictions, and sea level rise in the future.

  10. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  11. Drift simulation of MH370 debris using superensemble techniques

    Science.gov (United States)

    Jansen, Eric; Coppini, Giovanni; Pinardi, Nadia

    2016-07-01

    On 7 March 2014 (UTC), Malaysia Airlines flight 370 vanished without a trace. The aircraft is believed to have crashed in the southern Indian Ocean, but despite extensive search operations the location of the wreckage is still unknown. The first tangible evidence of the accident was discovered almost 17 months after the disappearance. On 29 July 2015, a small piece of the right wing of the aircraft was found washed up on the island of Réunion, approximately 4000 km from the assumed crash site. Since then a number of other parts have been found in Mozambique, South Africa and on Rodrigues Island. This paper presents a numerical simulation using high-resolution oceanographic and meteorological data to predict the movement of floating debris from the accident. Multiple model realisations are used with different starting locations and wind drag parameters. The model realisations are combined into a superensemble, adjusting the model weights to best represent the discovered debris. The superensemble is then used to predict the distribution of marine debris at various moments in time. This approach can be easily generalised to other drift simulations where observations are available to constrain unknown input parameters. The distribution at the time of the accident shows that the discovered debris most likely originated from the wide search area between 28 and 35° S. This partially overlaps with the current underwater search area, but extends further towards the north. Results at later times show that the most probable locations to discover washed-up debris are along the African east coast, especially in the area around Madagascar. The debris remaining at sea in 2016 is spread out over a wide area and its distribution changes only slowly.

  12. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  13. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  14. As main meal for sperm whales: plastics debris.

    Science.gov (United States)

    de Stephanis, Renaud; Giménez, Joan; Carpinelli, Eva; Gutierrez-Exposito, Carlos; Cañadas, Ana

    2013-04-15

    Marine debris has been found in marine animals since the early 20th century, but little is known about the impacts of the ingestion of debris in large marine mammals. In this study we describe a case of mortality of a sperm whale related to the ingestion of large amounts of marine debris in the Mediterranean Sea (4th published case worldwide to our knowledge), and discuss it within the context of the spatial distribution of the species and the presence of anthropogenic activities in the area that could be the source of the plastic debris found inside the sperm whale. The spatial distribution modelled for the species in the region shows that these animals can be seen in two distinct areas: near the waters of Almería, Granada and Murcia and in waters near the Strait of Gibraltar. The results shows how these animals feed in waters near an area completely flooded by the greenhouse industry, making them vulnerable to its waste products if adequate treatment of this industry's debris is not in place. Most types of these plastic materials have been found in the individual examined and cause of death was presumed to be gastric rupture following impaction with debris, which added to a previous problem of starvation. The problem of plastics arising from greenhouse agriculture should have a relevant section in the conservation plans and should be a recommendation from ACCOBAMS due to these plastics' and sperm whales' high mobility in the Mediterranean Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach

    Science.gov (United States)

    Hürlimann, Marcel; Copons, Ramon; Altimir, Joan

    2006-08-01

    In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude-frequency relationship, and a geomorphologic-geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience

  16. A methodology for selective removal of orbital debris

    Science.gov (United States)

    Ash, R. L.; Odonoghue, P. J.; Chambers, E. J.; Raney, J. P.

    1992-01-01

    Earth-orbiting objects, large enough to be tracked, were surveyed for possible systematic debris removal. Based upon the statistical collision studies of others, it was determined that objects in orbits approximately 1000 km above the Earth's surface are at greatest collisional risk. Russian C-1B boosters were identified as the most important target of opportunity for debris removal. Currently, more than 100 in tact boosters are orbiting the Earth with apogees between 950 km and 1050 km. Using data provided by Energia USA, specific information on the C-1B booster, in terms of rendezvous and capture strategies, was discussed.

  17. Mount Baker lahars and debris flows, ancient, modern, and future

    Science.gov (United States)

    Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott

    2014-01-01

    The Middle Fork Nooksack River drains the southwestern slopes of the active Mount Baker stratovolcano in northwest Washington State. The river enters Bellingham Bay at a growing delta 98 km to the west. Various types of debris flows have descended the river, generated by volcano collapse or eruption (lahars), glacial outburst floods, and moraine landslides. Initial deposition of sediment during debris flows occurs on the order of minutes to a few hours. Long-lasting, down-valley transport of sediment, all the way to the delta, occurs over a period of decades, and affects fish habitat, flood risk, gravel mining, and drinking water.

  18. Engineering and Technology Challenges for Active Debris Removal

    Science.gov (United States)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  19. Lower end fitting debris collector and end cap spacer grid

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1990-01-01

    This patent describes a nuclear reactor having fuel assemblies including an upper end fitting and spaced nuclear fuel rod spacer grids for supporting and spacing a plurality of elongated nuclear fuel rods. Each includes a hollow active portion of nuclear fuel filled cladding intermediate the rod ends and tapering end cap of solid material with a circumferential groove on the rod end which first encounters reactor coolant flow, a lower end filtering debris collector and end cap spacer grid for capturing and retaining deleterious debris carried by reactor coolant before it enters the active region of a fuel assembly and creates fuel rod cladding damage

  20. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  1. White Oak Creek embayment sediment retention structure design and construction

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Kimmell, B.L.; Page, D.G.; Wilkerson, R.B.; Hudson, G.R.; Kauschinger, J.L.; Zocolla, M.

    1994-01-01

    White Oak Creek is the major surface water drainage throughout the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium 137 and lower level of Cobalt 60 in near surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBs. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC) agreed to initiate a time critical removal action in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent the transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work

  2. Hydrologic data for North Creek, Trinity River basin, Texas, 1976

    Science.gov (United States)

    Kidwell, C.C.

    1978-01-01

    This report contains rainfall and runoff data collected during the 1976 water year for a 21.6-square mile area above the stream-gaging station on North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are used to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations, including hydrographs and mass curves, are included for two storm periods during the 1976 water year at the stream-gaging station. (Woodard-USGS)

  3. Hydrologic data for North Creek, Trinity River basin, Texas, 1979

    Science.gov (United States)

    Kidwell, C.C.

    1981-01-01

    This report contains rainfall and runoff data collected during the 1979 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for one storm during the 1979 water year at the stream-gaging station. (USGS)

  4. Retran simulation of Oyster Creek generator trip startup test

    International Nuclear Information System (INIS)

    Alammar, M.A.

    1987-01-01

    RETRAN simulation of Oyster Creek generator trip startup test was carried out as part of Oyster Creek RETRAN model qualification program for reload licensing applications. The objective of the simulation was to qualify the turbine model and its interface with the control valve and bypass systems under severe transients. The test was carried out by opening the main breakers at rated power. The turbine speed governor closed the control valves and the pressure regulator opened the bypass valves within 0.5 sec. The stop valves closed by a no-load turbine trip, before the 10 percent overspeed trip was reached and the reactor scrammed on high APRM neutron flux. The simulation resulted in qualifying a normalized hydraulic torque for the turbine model and a 0.3 sec, delay block for the bypass model to account for the different delays in the hydraulic linkages present in the system. One-dimensional kinetics was used in this simulation

  5. Water quality monitoring report for the White Oak Creek Embayment

    International Nuclear Information System (INIS)

    Ford, C.J.; Wefer, M.T.

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described

  6. Numerical simulation of flow in Brush Creek Valley, Colorado

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Lee, R.L.

    1987-06-01

    In this paper, we present some results from our three-dimensional, non-hydrostatic, finite element model applied to simulations of flow in Brush Creek Valley. These simulations are not intended to reproduce any particular experiment, but rather are to evaluate the qualitative performance of the model, to explore the major difficulties involved, and to begin sensitivity studies of the flows of interest. 2 refs., 11 figs

  7. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    Science.gov (United States)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  8. NITRATE REDUCTION PROGRAM AT THE LINE CREEK OPERATION

    OpenAIRE

    Jeff W Hawley

    2015-01-01

    Blasting activities at the Line Creek operation are releasing oxides of nitrogen and arecontributing to chemical changes in the surrounding watersheds. Through analysis of themechanisms of nitrogen release, history of explosive usage, historical nitrate release, changingregulatory requirements, strategy analysis and social impacts associated with the release ofnitrates a nitrate reduction plan will be established.The paper develops the framework for engineering groups, operations groups andma...

  9. Draft Updates to the Planning for Natural Disaster Debris Guidance and to Related Documents

    Science.gov (United States)

    EPA is requesting comment on the draft update of the Planning for Natural Disaster Debris Guidance, along with two other documents. This Guidance is an update of the Planning for Natural Disaster Debris guidance that EPA published in March 2008.

  10. An in vitro comparison of apically extruded debris using three rotary nickel-titanium instruments

    Directory of Open Access Journals (Sweden)

    Tamer Tasdemir

    2010-09-01

    Conclusion: According to this study, all instrumentation techniques apically extruded debris through the apical foramen. However, the BioRaCe instruments induced less extruded debris than the ProTaper Universal and Mtwo rotary systems.

  11. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).

    Science.gov (United States)

    Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental

    2018-03-01

    Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Determination of Volatility and Element Fractionation in Glassy Fallout Debris by SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Todd L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tenner, Travis Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bonamici, Chloe Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollington, Anthony Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    The purpose of this report is to characterize glassy fallout debris using the Trinity Test and then characterize the U-isotopes of U3O8 reference materials that contain weaponized debris.

  13. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    Science.gov (United States)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  14. The feeding habit of sea turtles influences their reaction to artificial marine debris

    OpenAIRE

    Takuya Fukuoka; Misaki Yamane; Chihiro Kinoshita; Tomoko Narazaki; Greg J. Marshall; Kyler J. Abernathy; Nobuyuki Miyazaki; Katsufumi Sato

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris...

  15. Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009

    OpenAIRE

    Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito

    2012-01-01

    Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...

  16. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    Science.gov (United States)

    2014-09-01

    debris for accurate propagation under perturbations”, in Proceedings of 65th International Astronautical Congress (IAC 2014), Toronto, Canada , 2014...Surveillance Network ( SSN ) was able to detect more than 900 pieces of debris that were at risk to damage operational spacecraft. In February 10, 2009...created two large debris clouds and the SSN reported that 382 pieces of debris from Iridium 33 and 893 pieces from Cosmos 2251 were created, and

  17. Stability of a sand spit due to dredging in an adjacent creek

    Digital Repository Service at National Institute of Oceanography (India)

    Patgaonkar, R.S.; Ilangovan, D.; Vethamony, P.; Babu, M.T.; Jayakumar, S.; Rajagopal, M.D.

    , safety factor 1. Introduction The Jatadharmohan creek (hereinafter referred to as JMC) is a tidal creek oriented in the NE-SW direction (Fig. 1) and lies to the south of Paradip, along the east coast of India. This creek runs almost parallel... cor = 15 + (Nobs -15)/2, for Nobs > 15 b) Overburden correction: Ncor = Nobs x 350/ (? + 70) where, ? = overburden pressure The critical circular failure surface is the one for which factor of safety is the least. This is arrived...

  18. Restoration Potential of a Mining-Impacted Urban Stream: Horseshoe Branch of Lion Creek, Oakland, CA

    OpenAIRE

    Hackenjos, Bethany; Woelfle-Erskine, Cleo; Wood, Jacob

    2010-01-01

    Horseshoe Creek, located in the Oakland Hills of California, flows through a remnant oak and redwood forests in Horseshoe Canyon. From the 1880s through the 1930s, nearby Leona sulfur mine deposited massive tailings piles in the valleys east of Horseshoe Creek. During that time, clear-cut logging of redwoods denuded and destabilized the surrounding hillsides. Today, most of Horseshoe Creekʼs upper and middle reaches are either culverted or transformed into an engineered channel, and Merritt C...

  19. Feasibility Report and Environmental Statement for Water Resources Development, Cache Creek Basin, California

    Science.gov (United States)

    1979-02-01

    classified as Porno , Lake Miwok, and Patwin. Recent surveys within the Clear Lake-Cache Creek Basin have located 28 archeological sites, some of which...additional 8,400 acre-feet annually to the Lakeport area. Porno Reservoir on Kelsey Creek, being studied by Lake County, also would supplement M&l water...project on Scotts Creek could provide 9,100 acre- feet annually of irrigation water. Also, as previously discussed, Porno Reservoir would furnish

  20. History, physical effects, and management implications of large organic debris in western Oregon streams.

    Science.gov (United States)

    Frederick Swanson; George W. Lienkaemper; James R. Sedell

    1976-01-01

    Large organic debris has historically been an important element in small mountain streams of the Pacific Northwest. The debris serves to slow the movement of water and inorganic and fine organic matter through the channel. Debris may remain in the channel for decades or longer, and tends to stabilize some sections of a streambed and stream banks while destabilizing...

  1. Coastal debris analysis in beaches of Chonburi Province, eastern of Thailand as implications for coastal conservation

    International Nuclear Information System (INIS)

    Thushari, Gajahin Gamage Nadeeka; Chavanich, Suchana; Yakupitiyage, Amararatne

    2017-01-01

    This study quantified coastal debris along 3 beaches (Angsila, Bangsaen, Samaesarn) in eastern coast of Thailand. Debris samples were collected from lower and upper strata of these beaches during wet and dry seasons. The results showed that Bangsaen had the highest average debris density (15.5 m −2 ) followed by Samaesarn (8.10 m −2 ), and Angsila (5.54 m −2 ). Among the 12 debris categories, the most abundant debris type was plastics (> 45% of the total debris) in all beach locations. Coastal debris distribution was related to economic activities in the vicinity. Fishery and shell-fish aquaculture activities were primary sources of debris in Angsila while tourism activities were main sources in Bangsaen and Samaesarn. Site-specific pollution control mechanisms (environmental awareness, reuse and recycling) are recommended to reduce public littering. Management actions in Angsila should focus on fishery and shell-fish culture practices, while Bangsaen and Samaesarn should be directed toward leisure activities promoting waste management. - Highlights: • Beach debris assessment was conducted in Chonburi Province, the eatern part of Thailand. • Coastal debris accumulation rates and sizes in the study sites depended on beach characteristics and seasons. • Anthropogenic sources were major contributors of coastal debris in the study sites. • Debris control programs need to focus on site specific coastal pollution issues for effective pollution management actions.

  2. Report: Complaints Regarding Debris Management at the West, Texas, Fertilizer Plant Explosion Have Been Addressed

    Science.gov (United States)

    Report #14-P-0123, February 24, 2014. Debris from a fertilizer plant explosion was moved without EPA or TCEQ knowledge but is being managed. A water main break existed under the debris but has been addressed. The debris was found to be non-hazardous.

  3. Assessing the debris around glaciers using remote sensing and random sets

    NARCIS (Netherlands)

    Bandishoev, Mus; Dilo, Arta; Stein, A.; Fonte, C.C.; Goncalves, L.M.S.; Goncalves, G.

    2011-01-01

    Glacier mapping from satellite multispectral image data is hampered by debris cover on glacier surfaces. Information on the spatial distribution and spatial-temporal dynamics of debris, however, bears various kinds of uncertainties. Debris exhibits the same spectral properties as lateral and

  4. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  5. River Debris Management System using Off-Grid Photovoltaic Module

    Directory of Open Access Journals (Sweden)

    Saadon Intan Mastura

    2017-01-01

    Full Text Available In Malaysia, Malacca River has long been the tourism attraction in Malacca. However, due to negligence, the river has been polluted by the litters thrown by tourists and even local residents, thus reflects a negative perception on Malacca. Therefore, this paper discusses about a fully automated river debris management system development using a stand-alone photovoltaic system. The concept design is to be stand alone in the river and automatically pull debris towards it for disposal. An off-grid stand-alone photovoltaic solar panel is used as renewable energy source connected to water pump and Arduino Uno microcontroller. The water pump rotates a water wheel and at the same time moves a conveyor belt; which is connected to the water wheel by a gear for debris collection. The solar system sizing suitable for the whole system is shown in this paper. The dumpster barge is equipped with an infrared sensor to monitor maximum height for debris, and instruct Arduino Uno to turn off the water pump. This system is able to power up using solar energy on sunny days and using battery otherwise.

  6. Coarse woody debris metrics in a California oak woodland

    Science.gov (United States)

    William D. Tietje; Michael A. Hardy; Christopher C. Yim

    2015-01-01

    Little information is available on the metrics of coarse woody debris (CWD) in California oak woodland, most notably at the scale of the stand and woodland type. In a remote part of the National Guard Post, Camp Roberts, that has not burned in over a half century, we tallied 314 pieces of CWD in a blue oak (Quercus douglasii)-coast live oak (

  7. A global inventory of small floating plastic debris

    NARCIS (Netherlands)

    Sebille, van Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; Franeker, van J.A.; Eriksen, Marcus; Siegel, David; Galgani, F.; Law, Kara Lavender

    2015-01-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on

  8. A global inventory of small floating plastic debris

    NARCIS (Netherlands)

    Van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; Van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Law, Kara Lavender

    2015-01-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North

  9. Measuring the gypsum content of C&D debris fines.

    Science.gov (United States)

    Musson, Stephen E; Xu, Qiyong; Townsend, Timothy G

    2008-11-01

    Construction and demolition (C&D) debris recycling facilities often produce a screened material intended for use as alternative daily cover (ADC) at active landfills or for shaping and grading at closed landfills. This product contains soil and small pieces of wood, concrete, gypsum drywall, shingles and other components of C&D debris. Concerns have been raised over the contribution of gypsum drywall in C&D debris fines to odor problems at landfills where the product is used. To address such concerns, limitations may be placed on the percentage of gypsum (or sulfate) that can occur, and standardized testing procedures are required to permit valid compliance testing. A test procedure was developed for measuring the gypsum content in C&D debris fines. The concentration of sulfate leached in an aqueous solution was used to estimate the initial gypsum content of the sample. The impact of sample size and leaching time were evaluated. Precision and accuracy increased with increasing gypsum content. Results from replicate samples had an average relative standard deviation of 9%. The gypsum content of fines obtained from different facilities in the US varied widely from 1% to over 25%. These variations not only occurred between differing facilities, but within batches produced within a single facility.

  10. SNAG AND LARGE WOODY DEBRIS DYNAMICS IN RIPARIAN FORESTS

    Science.gov (United States)

    Important components of riparian forests are snags and streamside large woody debris (LWD) because they are functional in maintaining water quality and providing habitat for numerous plants and animals. To effectively manage riparian forests, it is important to understand the dy...

  11. A statistical description of explosion produced debris dispersion

    NARCIS (Netherlands)

    Voort, M.M. van der; Weerheijm, J.

    2013-01-01

    The handling of explosives and ammunition introduces a safety risk for personnel and third parties. Accidents related to storage, transport and transshipment may result in severe injury and material damage. Dispersion of structural debris is one of the main hazards resulting from detonations inside

  12. Sampling and Analysis Plan for K Basins Debris

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2000-01-01

    This Sampling and Analysis Plan presents the rationale and strategy for sampling and analysis activities to support removal of debris from the K-East and K-West Basins located in the 100K Area at the Hanford Site. This project is focused on characterization to support waste designation for disposal of waste at the Environmental Restoration Disposal Facility (ERDF). This material has previously been dispositioned at the Hanford Low-Level Burial Grounds or Central Waste Complex. The structures that house the basins are classified as radioactive material areas. Therefore, all materials removed from the buildings are presumed to be radioactively contaminated. Because most of the materials that will be addressed under this plan will be removed from the basins, and because of the cost associated with screening materials for release, it is anticipated that all debris will be managed as low-level waste. Materials will be surveyed, however, to estimate radionuclide content for disposal and to determine that the debris is not contaminated with levels of transuranic radionuclides that would designate the debris as transuranic waste

  13. In-vessel core debris retention experiments. Final report

    International Nuclear Information System (INIS)

    1998-10-01

    The in-vessel cooling experimental program (Phase 1 and 2) was motivated by the survivability of the TMI lower vessel head during the TMI-2 accident. During that accident, molten debris relocation into the water filled lower head resulted in a localized hot spot in the lower head, but no lower head failure occurred. A postulated set of mechanisms which could be involved in and responsible for the survivability of the TMI lower head were identified and experimentally investigated as part of this program. These mechanisms included: the formation of a gap (contact resistance) between the relocated and frozen debris and the vessel wall was a key aspect of the in-vessel cooling mechanism; wall heatup due to the relocated debris in the presence of wall stress due to a pressure gradient across the vessel wall; gap growth due to a lack of debris adherence to the vessel wall and material creep of the heated vessel wall; and the potential for enhanced wall cooling due to gap growth. Each of these postulated mechanisms was investigated in this experimental program. This report summarizes the several insights and conclusions that were obtained from this experimental program. This report documents the entire set of five experiments completed in Phase 2 of this experimental program. Results from the Phase 1 effort were used to plan and select the Phase 2 test matrix. Conclusions from the Phase 1 and 2 experiments are identified and recommendations for future work are provided

  14. Transporting fuel debris from TMI-2 to INEL

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.; Bixby, W.W.; McIntosh, T.W.; McGoff, O.J.; Barkonic, R.J.; Henrie, J.O.

    1986-06-01

    Transportation of the damaged fuel from Unit 2 of Three Mile Island (TMI-2) presented noteworthy technical challenges involving complex institutional issues. The program resulted from both a need to package and remove the accident debris and also the opportunity to receive and study damaged core components. These combined to establish the safe transport of the TMI-2 fuel debris as a high priority for many diverse organizations. The capability of the sending and receiving facilities to handle spent fuel transport casks in the most cost-effective manner was assessed and resulted in the development by Nuclear Packaging Inc. (NuPac) of the NuPac 125-B rail cask. This paper reviews the technical challenges in preparation of the TMI-2 core debris for transport from TMI-2 to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that material at INEL. Challenges discussed include design and testing of fuel debris canisters; design, fabrication and licensing of a new rail cask for spent fuel transport; cask loading operations, equipment and facilities at TMI-2; transportation logistics; and, receipt, storage and core examination operations at INEL. 10 refs

  15. Assessing debris flow activity in a changing climate : open access

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  16. Managing coarse woody debris in forests of the Rocky Mountains

    Science.gov (United States)

    Russell T. Graham; Alan E. Harvey; Martin F. Jurgensen; Theresa B. Jain; Jonalea R. Tonn; Deborah S. Page-Dumroese

    1994-01-01

    Recommendations for managing coarse woody debris after timber harvest were developed for 14 habitat types, ranging from ponderosa pine (Pinus ponderosa) habitat types of Arizona to subalpine fir (Abies lasiocarpa) habitat types of western Montana. Ectomycorrhizae were used as a bioindicator of healthy, productive forest soils....

  17. Catastrophic debris flows near Machu Picchu village (Aguas Calientes), Peru

    Czech Academy of Sciences Publication Activity Database

    Vilímek, V.; Klimeš, Jan; Vlčko, J.; Carreno, R.

    2006-01-01

    Roč. 50, č. 7 (2006), s. 1041-1052 ISSN 0943-0105 Institutional research plan: CEZ:AV0Z30460519 Keywords : debris flows * Machu Picchu Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.610, year: 2006

  18. Soil slips and debris flows on terraced slopes

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  19. Baseline for beached marine debris on Sand Island, Midway Atoll

    Science.gov (United States)

    Ribic, Christine; Seba B. Sheavly,; John Klavitter,

    2012-01-01

    Baseline measurements were made of the amount and weight of beached marine debris on Sand Island, Midway Atoll, June 2008–July 2010. On 23 surveys, 32,696 total debris objects (identifiable items and pieces) were collected; total weight was 740.4 kg. Seventy-two percent of the total was pieces; 91% of the pieces were made of plastic materials. Pieces were composed primarily of polyethylene and polypropylene. Identifiable items were 28% of the total; 88% of the identifiable items were in the fishing/aquaculture/shipping-related and beverage/household products-related categories. Identifiable items were lowest during April–August, while pieces were at their lowest during June–August. Sites facing the North Pacific Gyre received the most debris and proportionately more pieces. More debris tended to be found on Sand Island when the Subtropical Convergence Zone was closer to the Atoll. This information can be used for potential mitigation and to understand the impacts of large-scale events such as the 2011 Japanese tsunami.

  20. Apical extrusion of debris using reciprocating files and rotary ...

    African Journals Online (AJOL)

    Procedure: Sixty extracted human mandibular premolars were used. The root canals were instrumented using reciprocating (WaveOne, Reciproc, SafeSider) or rotary ... and cross‑sections, and kinematics, and this situation may influence the amount of apically extruded debris through the apical foramen.[15]. The aim of this ...

  1. Self-leveling onset criteria in debris beds

    International Nuclear Information System (INIS)

    Zhang, Bin; Harada, Tetsushi; Hirahara, Daisuke; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2010-01-01

    In a core-disruptive accident of a sodium-cooled fast breeder reactor, core debris may settle on the core-support structure and/or in the lower inlet plenum of the reactor vessel because of rapid quenching and fragmentation of molten core materials in the subcooled sodium plenum. Coolant boiling is the mechanism driving the self-leveling of a debris bed that causes significant changes in the heat-removal capability of the beds. In the present study, we develop criteria establishing the onset of this self-leveling behavior that we base on a force balance model assuming a debris bed with a single-sized spherical particle. The model considers drag, buoyancy, and gravity acting on each particle. A series of experiments with simulant materials verified the applicability of this description of self-leveling. Particle size (between 0.5-6 mm), shape (spherical and nonspherical), density (namely of alumina, zirconia, lead, and stainless steel), along with boiling intensity, bed volume, and even experimental methods were taken into consideration to obtain general characteristics of the self-leveling process. We decided to use depressurization boiling to simulate an axially increasing void distribution in the debris bed, although bottom heating was also used to validate the use of the depressurization method. On the self-leveling onset issues, we obtained good agreement between model predictions and experimental results. Extrapolation of our model to actual reactor conditions is discussed. (author)

  2. Metallic witness packs for behind-armour debris characterization

    NARCIS (Netherlands)

    Verolme, J.L.; Szymczak, M.; Broos, J.P.F.

    1999-01-01

    For the experimental characterization of behind-armour debris so-called metallic witness packs can be used. A metallic witness pack consists of an array of metallic plates interspaced by polystyrene foam sheets. To quantify the fragment mass and velocity from the corresponding hole area and position

  3. A distance limited method for sampling downed coarse woody debris

    Science.gov (United States)

    Jeffrey H. Gove; Mark J. Ducey; Harry T. Valentine; Michael S. Williams

    2012-01-01

    A new sampling method for down coarse woody debris is proposed based on limiting the perpendicular distance from individual pieces to a randomly chosen sample point. Two approaches are presented that allow different protocols to be used to determine field measurements; estimators for each protocol are also developed. Both protocols are compared via simulation against...

  4. Numerical module for debris behavior under severe accident conditions

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2005-01-01

    The late phase of a hypothetical severe accident in a nuclear reactor is characterized by the appearance of porous debris and liquid pools in core region and lower head of the reactor vessel. Thermal hydraulics and heat transfer in these regions are very important for adequate analysis of severe accident dynamics. The purpose of this work is to develop a universal module which is able to model above-mentioned phenomena on the basis of modern physical concepts. The original approach for debris evolution is developed from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The calculation results of several tests on modeling of porous debris behavior, including the MP-1 experiment, are presented in comparison with experimental data. The results are obtained using this module implemented into the Russian best estimate code, RATEG/SVECHA/HEFEST, which was developed for modeling severe accident thermal hydraulics and late phase phenomena in VVER nuclear power plants. (author)

  5. The Orbital Debris Problem and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, J.-C.

    2014-01-01

    LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.

  6. Aggregates for quality concrete from debris using optimised crushing

    NARCIS (Netherlands)

    van de Wouw, P.M.F.; Florea, M.V.A.; Buyle, G.; Brouwers, H.J.H.

    2015-01-01

    Worldwide, natural disasters and conflicts result in damaged or collapsed buildings requesting clearing of debris and reconstruction. The on‐site recycling of concrete waste into new structural concrete reduces the utilization of raw materials, decreases transport and production energy cost, and

  7. Processing disaster debris liberating aggregates for structural concrete

    NARCIS (Netherlands)

    van de Wouw, P.M.F.; Florea, M.V.A.; Brouwers, H.J.H.; Schmidt, W.; Msinjili, N.S.

    2016-01-01

    Worldwide, the removal of debris and reconstruction is requested when natural disasters and conflicts cause damaged or collapsed buildings. The on-site recycling of concrete waste into new structural concrete decreases transport and production energy costs, reduces the utilization of raw materials,

  8. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  9. Mechanical properties of fuel debris for defueling toward decommissioning

    International Nuclear Information System (INIS)

    Hoshino, Takanori; Kitagaki, Toru; Yano, Kimihiko; Okamura, Nobuo; Koizumi, Kenji; Ohara, Hiroshi; Fukasawa, Tetsuo

    2015-01-01

    In the decommissioning of the Fukushima Daiichi Nuclear Power Plant (1F), safe and steady defueling work is required. Before defueling 1F, it is necessary to evaluate fuel debris for properties related to the defueling procedure and technology. While defueling after the Three Mile Island Nuclear Power Plant Unit 2 (TMI-2) accident, a core boring system played an important role. Considering the working principle of core boring, hardness, elastic modulus, and fracture toughness were found to be important fuel debris properties that had a profound effect on the performance of the boring machine. It is speculated that uranium and zirconium oxide solid solution ((U,Zr)O_2) is one of the major materials of fuel debris in 1F, according to the TMI-2 accident experience and the results of past severe accident studies. In addition, the Zr content of 1F fuel debris is expected to be higher than that of TMI-2 debris, because the 1F reactors were boiling-water reactor (BWR). In this report, the mechanical properties of (U,Zr)O_2 are evaluated in the ZrO_2 content range from 10% to 65%. The hardness, elastic modulus, and fracture toughness were measured by Vickers test, ultrasonic pulse echo method, and indentation fracture method, respectively. In the ZrO_2 content range under 50%, the Vickers hardness and fracture toughness of (U,Zr)O_2 increased, and the elastic modulus decreased slightly with ZrO_2 content. In the case of 55% and 65% ZrO_2, all of those measures increased slightly with ZrO_2 content. Summarizing those results, ZrO_2 content affects mechanical properties significantly in the case of low ZrO_2 content. Higher Zr content (exceeding 50%) has little effect on mechanical properties. In the future, nonradioactive surrogate debris will be necessary for small-scale functional and large-scale mockup tests of various defueling technologies. These results are useful to select the material for surrogate debris. (author)

  10. Experimental investigation of particulate debris spreading in a pool

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, A., E-mail: kono@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Basso, S., E-mail: simoneb@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Kudinov, P., E-mail: pkudinov@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH) , Roslagstullsbacken 21, Stockholm 106 91 (Sweden); Yakush, S.E., E-mail: yakush@ipmnet.ru [Institute for Problems in Mechanics of the Russian Academy of Sciences, Ave. Vernadskogo 101 Bldg 1, Moscow 119526 (Russian Federation)

    2016-02-15

    Termination of severe accident progression by core debris cooling in a deep pool of water under reactor vessel is considered in several designs of light water reactors. However, success of this accident mitigation strategy is contingent upon the effectiveness of heat removal by natural circulation from the debris bed. It is assumed that a porous bed will be formed in the pool in the process of core melt fragmentation and quenching. Debris bed coolability depends on its properties and system conditions. The properties of the bed, including its geometry are the outcomes of the debris bed formation process. Spreading of the debris particles in the pool by two-phase turbulent flows induced by the heat generated in the bed can affect the shape of the bed and thus influence its coolability. The goal of this work is to provide experimental data on spreading of solid particles in the pool by large-scale two-phase flow. The aim is to provide data necessary for understanding of separate effects and for development and validation of models and codes. Validated codes can be then used for prediction of debris bed formation under prototypic severe accident conditions. In PDS-P (Particulate Debris Spreading in the Pool) experiments, air injection at the bottom of the test section is employed as a means to create large-scale flow in the pool in isothermal conditions. The test section is a rectangular tank with a 2D slice geometry, it has fixed width (72 mm), adjustable length (up to 1.5 m) and allows water filling to the depth of up to 1 m. Variable pool length and depth allows studying two-phase circulating flows of different characteristic sizes and patterns. The average void fraction in the pool is determined by video recording and subsequent image processing. Particles are supplied from the top of the facility above the water surface. Results of several series of PDS-P experiments are reported in this paper. The influence of the gas flow rate, pool dimensions, particle density

  11. Coarse-grained debris flow dynamics on erodible beds

    Science.gov (United States)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  12. Experimental study of head loss and filtration for LOCA debris

    International Nuclear Information System (INIS)

    Rao, D.V.; Souto, F.J.

    1996-02-01

    A series of controlled experiments were conducted to obtain head loss and filtration characteristics of debris beds formed of NUKON trademark fibrous fragments, and obtain data to validate the semi-theoretical head loss model developed in NUREG/CR-6224. A thermally insulated closed-loop test set-up was used to conduct experiments using beds formed of fibers only and fibers intermixed with particulate debris. A total of three particulate mixes were used to simulate the particulate debris. The head loss data were obtained for theoretical fiber bed thicknesses of 0.125 inches to 4.0 inches; approach velocities of 0.15 to 1.5 ft/s; temperatures of 75 F and 125 F; and sludge-to-fiber nominal concentration ratios of 0 to 60. Concentration measurements obtained during the first flushing cycle were used to estimate the filtration efficiencies of the debris beds. For test conditions where the beds are fairly uniform, the head loss data were predictable within an acceptable accuracy range by the semi-theoretical model. The model was equally applicable for both pure fiber beds and the mixed beds. Typically the model over-predicted the head losses for very thin beds and for thin beds at high sludge-to-fiber mass ratios. This is attributable to the non-uniformity of such debris beds. In this range the correlation can be interpreted to provide upper bound estimates of head loss. This is pertinent for loss of coolant accidents in boiling water reactors

  13. 2D model for melt progression through rods and debris

    International Nuclear Information System (INIS)

    Fichot, F.

    2001-01-01

    During the degradation of a nuclear core in a severe accident scenario, the high temperatures reached lead to the melting of materials. The formation of liquid mixtures at various elevations is followed by the flow of molten materials through the core. Liquid mixture may flow under several configurations: axial relocation along the rods, horizontal motion over a plane surface such as the core support plate or a blockage of material, 2D relocation through a debris bed, etc.. The two-dimensional relocation of molten material through a porous debris bed, implemented for the simulation of late degradation phases, has opened a new way to the elaboration of the relocation model for the flow of liquid mixture along the rods. It is based on a volume averaging method, where wall friction and capillary effects are taken into account by introducing effective coefficients to characterize the solid matrix (rods, grids, debris, etc.). A local description of the liquid flow is necessary to derive the effective coefficients. Heat transfers are modelled in a similar way. The derivation of the conservation equations for the liquid mixture falling flow (momentum) in two directions (axial and radial-horizontal) and for the heat exchanges (energy) are the main points of this new model for simulating melt progression. In this presentation, the full model for the relocation and solidification of liquid materials through a rod bundle or a debris bed is described. It is implemented in the ICARE/CATHARE code, developed by IPSN in Cadarache. The main improvements and advantages of the new model are: A single formulation for liquid mixture relocation, in 2D, either through a rod bundle or a porous debris bed, Extensions to complex structures (grids, by-pass, etc..), The modeling of relocation of a liquid mixture over plane surfaces. (author)

  14. NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Kiss, Cs. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Balog, Z.; Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Csengeri, T. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Juhász, A., E-mail: moor@konkoly.hu [Institute of Astronomy, Madingley Road, Cambridge CB3, OHA (United Kingdom)

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μ m observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory . None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μ m Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  15. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Paik, S.

    1998-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  16. Quantitative assessment of apical debris extrusion and intracanal debris in the apical third, using hand instrumentation and three rotary instrumentation systems.

    Science.gov (United States)

    H K, Sowmya; T S, Subhash; Goel, Beena Rani; T N, Nandini; Bhandi, Shilpa H

    2014-02-01

    Decreased apical extrusion of debris and apical one third debris have strong implications for decreased incidence of postoperative inflammation and pain. Thus, the aim of this study was to assess quantitatively the apical extrusion of debris and intracanal debris in the apical third during root canal instrumentation using hand and three different types of rotary instruments. Sixty freshly extracted single rooted human teeth were randomly divided into four groups. Canal preparation was done using step-back with hand instrumentation, crown-down technique with respect to ProTaper and K3, and hybrid technique with LightSpeed LSX. Irrigation was done with NaOCl, EDTA, and normal saline and for final irrigation, EndoVac system was used. The apically extruded debris was collected on the pre-weighed Millipore plastic filter disk and weighed using microbalance. The teeth were submitted to the histological processing. Sections from the apical third were analyzed by a trinocular research microscope that was coupled to a computer where the images were captured and analyzed using image proplus V4.1.0.0 software. The mean weight of extruded debris for each group and intracanal debris in the root canal was statistically analyzed by a Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. The result showed that, hand instrumentation using K files showed the highest amount of debris extrusion apically when compared to ProTaper, K3 and LightSpeed LSX. The result also showed that there was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. Based on the results, all instrumentation techniques produced debris extrusion. The engine driven Ni-Ti systems extruded significantly less apical debris than hand instrumentation. There was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third.

  17. Comparison of debris environment models (MASTER-2005, 2001, ORDEM2000): For international standardization of process based implementation of meteoroid and debris environmental models

    OpenAIRE

    Fukushige, Shinya; Akahoshi, Yasuhiro; Kitazawa, Yukihito; Goka, Tateo; 福重 進也; 赤星 保浩; 北澤 幸人; 五家 建夫

    2007-01-01

    Space agencies of some countries have space debris environment model for design of spacecrafts. These models can estimate debris flux as a function of the size, relative impact velocity, and impact angle in a spacecraft orbit. However, it is known calculation results of models are not always consistent with each other. Therefore, international common implementation process of debris environment model is required. In this paper, as the first step of international standardization of implementat...

  18. Experimental study on coolability of particulate core-metal debris bed with oxidization, (2). Fragmentation and enhanced heat transfer in zircaloy debris bed

    International Nuclear Information System (INIS)

    Su, Guanghui; Sugiyama, Ken-ichiro; Aoki, Hiroomi; Kimura, Iichi

    2006-01-01

    The oxidization and coolability characteristics of the particulate Zircaloy debris bed, which is deposited under the hard debris and through which first vapor penetrates and then water penetrates, are studied in the present paper. In the vapor penetration experiments, it is found that Zircaloy debris particles are effectively broken into small pieces after making thick oxidized layer with deep clacks by rapid oxidization under the condition that vapor with 20 cm/s penetrates for 30 to 70 min at an initial debris bed temperature of 1,030degC. It is also confirmed in the water penetration experiments that the oxidized particle debris bed has potentially of high coolability when water penetrates through the fully oxidized particle bed because of a high capillary force originating from those particles with deep cracks on their surfaces. Based on the present study, a new scenario for the appearance and disappearance of the hot spot in the TMI-2 accident is possible. The particulate core-metal core-metal debris bed is first heated up by rapid oxidization with heat generation when vapor can penetrate through the debris bed with porosities. This corresponds to the appearance of the hot spot. The resultant oxidized particulate debris bed causes a high coolability due to its high capillary force when the water can touch the debris bed at wet condition. This corresponds to the disappearance of the hot spot. (author)

  19. Effect of excess pore pressure on the long runout of debris flows over low gradient channels: A case study of the Dongyuege debris flow in Nu River, China

    Science.gov (United States)

    Zhou, Zhen-Hua; Ren, Zhe; Wang, Kun; Yang, Kui; Tang, Yong-Jun; Tian, Lin; Xu, Ze-Min

    2018-05-01

    Debris flows with long reaches are one of the major natural hazards to human life and property on alluvial fans, as shown by the debris flow that occurred in the Dongyuege (DYG) Gully in August 18, 2010, and caused 96 deaths. The travel distance and the runout distance of the DYG large-scale tragic debris flow were 11 km and 9 km, respectively. In particular, the runout distance over the low gradient channel (channel slope sediment and water are related to the maximum grain size (MGS), gradation and mineralogy of clay-size particles of the sediment. The layer-lattice silicates in clay particles can be the typical clay minerals, including kaolinite, montmorillonite and illite, and also the unrepresentative clay minerals such as muscovite and chlorite. Moreover, small woody debris can also contribute to the slurrying of sediments and maintenance of debris flows in well vegetated mountainous areas and the boulders suspended in debris flows can elevate excess pore pressure and extend debris-flow mobility. The parameters, including Id, Kp, R and etc., are affected by the intrinsic properties of debris. They, therefore, can reflect the slurrying susceptibility of sediments, and can also be applied to the research on the occurrence mechanisms and risk assessment of other debris flows.

  20. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  1. NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris

    Science.gov (United States)

    1995-01-01

    Collision with orbital debris is a hazard of growing concern as historically accepted practices and procedures have allowed man-made objects to accumulate in orbit. To limit future debris generation, NASA Management Instruction (NMI) 1700.8, 'Policy to Limit Orbital Debris Generation,' was issued in April of 1993. The NMI requires each program to conduct a formal assessment of the potential to generate orbital debris. This document serves as a companion to NMI 1700.08 and provides each NASA program with specific guidelines and assessment methods to assure compliance with the NMI. Each main debris assessment issue (e.g., Post Mission Disposal) is developed in a separate chapter.

  2. Superstorm Sandy marine debris wash-ups on Long Island - What happened to them?

    Science.gov (United States)

    Swanson, R Lawrence; Lwiza, Kamazima; Willig, Kaitlin; Morris, Kaitlin

    2016-07-15

    Superstorm Sandy generated huge quantities of debris in the Long Island, NY coastal zone. However, little appears to have been washed offshore to eventually be returned to Long Island's beaches as marine debris wash-ups. Information for our analysis includes debris collection statistics, very high resolution satellite images, along with wind and sea level data. Rigorous debris collection efforts along with meteorological conditions following the storm appear to have reduced the likelihood of debris wash-ups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Image processing improvement for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  4. Development of anti-debris filter for WWER-440 working fuel assembly

    International Nuclear Information System (INIS)

    Kolosovsky, V.; Aksyonov, P.; Kukushkin, Y.; Molchanov, V.; Kolobaev, A.

    2006-01-01

    Mechanical damaging of the fuel rod claddings caused by debris is one of the main reasons for fuel assembly failures. The paper focuses on the program and results of experimental and design activities carried out by Russian organizations relating to the development and investigation of operational characteristics of anti-debris filters for WWER-440 working fuel assemblies. Lead working fuel assemblies equipped with anti-debris filters have been loaded in the core of Kola-2 NPP. The results obtained can be used for making the decision concerning the application of anti-debris filter for WWER-440 working fuel assemblies with the purpose of enhancing their debris-resistance properties. (authors)

  5. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  6. Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes.

    Science.gov (United States)

    Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell

    2007-04-01

    Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.

  7. An Estimation of Construction and Demolition Debris in Seoul, Korea: Waste Amount, Type, and Estimating Model.

    Science.gov (United States)

    Seo, Seongwon; Hwang, Yongwoo

    1999-08-01

    Construction and demolition (C&D) debris is generated at the site of various construction activities. However, the amount of the debris is usually so large that it is necessary to estimate the amount of C&D debris as accurately as possible for effective waste management and control in urban areas. In this paper, an effective estimation method using a statistical model was proposed. The estimation process was composed of five steps: estimation of the life span of buildings; estimation of the floor area of buildings to be constructed and demolished; calculation of individual intensity units of C&D debris; and estimation of the future C&D debris production. This method was also applied in the city of Seoul as an actual case, and the estimated amount of C&D debris in Seoul in 2021 was approximately 24 million tons. Of this total amount, 98% was generated by demolition, and the main components of debris were concrete and brick.

  8. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand

    2015-05-01

    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  9. Comparison of apical debris extrusion using a conventional and two rotary techniques.

    Science.gov (United States)

    Adl, Alireza; Sahebi, Safoora; Moazami, Fariborz; Niknam, Mahnaz

    2009-01-01

    Preparation techniques and instruments produce and push debris out of canals. This can induce inflammation within the periapical area. Therefore, instrumentation that causes less extrusion of debris is more desirable. The purpose of this in vitro study was to evaluate the quantity of debris extruded from the apical foramen during root canal preparation by using one hand, and two rotary instrumentation techniques. Three different groups each with 12 mesiobuccal roots of human maxillary first molar were instrumented using either step-back technique with hand instruments, FlexMaster or Mtwo rotary system. Debris extruded from the apical foramen during canal preparation was collected. The mean dry weights of debris were compared using one-way ANOVA. Step-back group had a significantly greater mean weight of debris compared to the other two groups (Pengine driven techniques were associated with less apical debris extrusion. [Iranian Endodontic Journal 2009;4(4):135-8].

  10. Simulant - water experiments to characterize the debris bed formed in severe core melt accidents

    International Nuclear Information System (INIS)

    Mathai, Amala M.; Anandan, J.; Sharma, Anil Kumar; Murthy, S.S.; Malarvizhi, B.; Lydia, G.; Das, Sanjay Kumar; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Molten Fuel Coolant Interaction (WO) and debris bed configuration on the core catcher plate assumes importance in assessing the Post Accident Heat Removal (PARR) of a heat generating debris bed. The key factors affecting the coolability of the debris bed are the bed porosity, morphology of the fragmented particles, degree of spreading/heaping of the debris on the core catcher and the fraction of lump formed. Experiments are conducted to understand the fragmentation kinetics and subsequent debris bed formation of molten woods metal in water at interface temperatures near the spontaneous nucleation temperature of water. Morphology of the debris particles is investigated to understand the fragmentation mechanisms involved. The spreading behavior of the debris on the catcher plate and the particle size distribution are presented for 5 kg and 10 kg melt inventories. Porosity of the undisturbed bed on the catcher plate is evaluated using a LASER sensor technique. (author)

  11. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  12. Radium 226 in waters of the Magela creek, Northern Australia

    International Nuclear Information System (INIS)

    Sauerland, C.; Medley, P.; Martin, P.

    2004-01-01

    The Magela Creek is located in the tropical monsoonal belt of Australia, which is characterised by contrasting wet (December to March) and dry (April to November) seasons. Magela Creek drains a catchment of which about half of the total area lies upstream of the open-cut Ranger uranium mine. The main risk identified for ecosystems surrounding this mine site is from dispersion of mine waste waters during the wet season. Monitoring of biological indicator organisms, water quality (physical and chemical) and radionuclide concentrations in surface water, groundwater and biota is conducted upstream and downstream of the Ranger mine to measure possible environmental impacts of mining. Of special interest is the radionuclide radium-226, as it is predicted to dominate the effective dose to members of the critical group (i.e. the Aboriginal population living downstream of the mining site) resulting from any release of waters from the mine site, in particular through intake of food items such as freshwater mussels and fish. Receiving water standards for radium-226 have been set for the mine on the basis of radiological dose assessments in accordance with the recommendations of the International Commission on Radiological Protection (ICRP 1996). It is proposed in this paper to compare trigger values based on ICRP recommendations with trigger values developed in line with the philosophy of the new Australian Water Quality Guidelines (ANZECC and ARMCANZ 2000). Total Ra-226 activity concentrations were determined in Magela creek both upstream and downstream of the Ranger uranium mine, using alpha spectrometry with a detection limit of about 0.5 mBq/L. According to the new Water Quality Guidelines site-specific trigger values for total Ra-226 activity concentrations were statistically derived from a reference dataset. They are intended to provide an early warning system for the management of a pollutant source for the purpose of environmental protection of downstream ecosystems

  13. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    International Nuclear Information System (INIS)

    Witthar, S.R.

    1998-01-01

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite

  14. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  15. Empirical closures for particulate debris bed spreading induced by gas–liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S., E-mail: simoneb@kth.se; Konovalenko, A.; Kudinov, P.

    2016-02-15

    Highlights: • Experimental study of the debris bed self-leveling phenomenon. • A scaling approach and a non-dimensional model to describe particle flow rate are proposed. • The model is validated against experiments with particles of different properties and at different gas injection conditions. - Abstract: Efficient removal of decay heat from the nuclear reactor core debris is paramount for termination of severe accident progression. One of the strategies is based on melt fragmentation, quenching and cooling in a deep pool of water under the reactor vessel. Geometrical configuration of the debris bed is among the important factors which determine possibility of removing the decay heat from the debris bed by natural circulation of the coolant. For instance, a tall mound-shape debris bed can be non-coolable, while the same debris can be coolable if spread uniformly. Decay heat generates a significant amount of thermal energy which goes to production of steam inside the debris bed. Two-phase flow escaping through the top layer of the bed becomes a source of mechanical energy which can move the particulate debris along the slope of the bed. The motion of the debris will lead to flattening of the bed. Such process is often called “self-leveling” phenomenon. Spreading of the debris bed by the self-leveling process can take significant time, depending on the initial debris bed configuration and other parameters. There is a competition between the time scales for reaching (i) a coolable configuration of the bed, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local gas velocity and local slope angle of the bed. In this work we develop a scaling approach and a closure for prediction of debris spreading rate based on generalization of available experimental data. We demonstrate that introduced scaling criteria are universal for particles of different

  16. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    Science.gov (United States)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  17. Monitoring and research at Walnut Creek National Wildlife Refuge

    Science.gov (United States)

    Roelle, James E.; Hamilton, David B.

    1993-01-01

    Walnut Creek National Wildlife Refuge-Prairie Learning Center (Walnut Creek or the Refuge) is one of the newest additions to the National Wildlife Refuge System, which consists of over 480 units throughout the United States operated by the U.S. Department of the Interior, Fish and Wildlife Service (the Service). Located about 20 miles east of Des Moines, Iowa, the Refuge has an approved acquisition boundary containing 8,654 acres (Figure 1). Acquisition is from willing sellers only, and to date the Service has purchased approximately 5,000 acres. The acquisition boundary encompasses about 43% of the watershed of Walnut Creek, which bisects the Refuge and drains into the Des Moines River to the southeast. Approximately 25%-30% of the Walnut Creek watershed is downstream of the Refuge. As authorized by Congress in 1990, the purposes of the Refuge are to (U.S. Fish and Wildlife Service 1992): • restore native tallgrass pairie, wetland, and woodland habitats for breeding and migratory waterfowl and resident wildlife; • serve as a major environmental education center providing opportunities for study; • provide outdoor recreation benefits to the public; and • provide assistance to local landowners to improve their lands for wildlife habitat. To implement these purposes authorized by Congress, the Refuge has established the goal of recreating as nearly as possible the natural communities that existed at the time of settlement by Euro-Americans (circa 1840). Current land use is largely agricultural, including 69% cropland, 17% grazed pasture, and 7.5% grassland (dominantly brome) enrolled in the Conservation Reserve Program). About 1,395 acres of relict native communities also exist on the Refuge, including prairie (725 acres), oak savanna and woodland (450 acres), and riparian or wetland areas (220 acres). Some of these relicts are highly restorable; others contain only a few prairie plants in a matrix of brome and will be more difficult to restore. When the

  18. Leith Creek, Scotland County, North Carolina, Detailed Project Report. Revised.

    Science.gov (United States)

    1977-07-01

    of Leith Creek within the study limits. Climate in the area is characteristic of the warm temperate zone. In summer, the days are generally hot and...RESOURCES B-2 TERRAIN AND LAND USE B-4 S CLIMATE B-4 ARCHEOLOGiCAL CONSIDERATIONS B-4 NATURAL RESOURCES B-5 0 HUMAN RESOURCES 8-6 POPULATION...irtoved cnd it ions jere corcp’-ted11, >.ve pti Vn (CI card) of the Hydr- aulic Enqincerinq Cm tt ’ .. ~ v.’Water- Surface Profi les’. Improved profil

  19. The meaning of alcohol to traditional Muscogee Creek Indians.

    Science.gov (United States)

    Wing, D M; Thompson, T

    1996-01-01

    The purpose of this study was to learn the meaning of alcohol to the traditional Muscogee Creek Indians of eastern Oklahoma. Using Leininger's theory of culture care diversity and universality as the theoretical base, the authors conducted interviews of 24 traditional people to elicit both emic and etic meanings of alcohol. The conceptualization of alcohol as a dichotomy of power to do both good and evil emerged as the central theme. Other meanings of alcohol were explicated in relation to five social structure dimensions. The findings suggest culturally competent nursing implications for preserving, accommodating, and repatterning the meaning of alcohol.

  20. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability