Poisson Spot with Magnetic Levitation
Hoover, Matthew; Everhart, Michael; D'Arruda, Jose
2010-01-01
In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.
da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos
2016-12-01
Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.
Easy Demonstration of the Poisson Spot
Gluck, Paul
2010-01-01
Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…
Poisson-Spot Intensity Reduction with a Partially-Transparent Petal-Shaped Optical Mask
Shiri, Shahram; Wasylkiwskyj, Wasyl
2013-01-01
The presence of Poisson's spot, also known as the spot of Arago, formed along the optical axis in the geometrical shadow behind an obstruction, has been known since the 18th century. The presence of this spot can best be described as the consequence of constructive interference of light waves diffracted on the edge of the obstruction where its central position can··be determined by the symmetry of the object More recently, the elimination of this spot has received attention in the fields of particle physics, high-energy lasers, astronomy and lithography. In this paper, we introduce a novel, partially transparent petaled mask shape that suppresses the bright spot by up to 10 orders of magnitude in intensity, with powerful applications to many of the above fields. The optimization technique formulated in this design can identify mask shapes having partial transparency only near the petal tips.
Particle-wave discrimination in Poisson spot experiments
International Nuclear Information System (INIS)
Reisinger, T; Bracco, G; Holst, B
2011-01-01
Matter-wave interferometry has been used extensively over the last few years to demonstrate the quantum-mechanical wave nature of increasingly larger and more massive particles. We have recently suggested the use of the historical Poisson spot setup to test the diffraction properties of larger objects. In this paper, we present the results of a classical particle van der Waals (vdW) force model for a Poisson spot experimental setup and compare these to Fresnel diffraction calculations with a vdW phase term. We include the effect of disc-edge roughness in both models. Calculations are performed with D 2 and with C 70 using realistic parameters. We find that the sensitivity of the on-axis interference/focus spot to disc-edge roughness is very different in the two cases. We conclude that by measuring the intensity on the optical axis as a function of disc-edge roughness, it can be determined whether the objects behave as de Broglie waves or classical particles. The scaling of the Poisson spot experiment to larger molecular masses is, however, not as favorable as in the case of near-field light-grating-based interferometers. Instead, we discuss the possibility of studying the Casimir-Polder potential using the Poisson spot setup.
Identifying traffic accident black spots with Poisson-Tweedie models
DEFF Research Database (Denmark)
Debrabant, Birgit; Halekoh, Ulrich; Bonat, Wagner Hugo
2018-01-01
This paper aims at the identification of black spots for traffic accidents, i.e. locations with accident counts beyond what is usual for similar locations, using spatially and temporally aggregated hospital records from Funen, Denmark. Specifically, we apply an autoregressive Poisson-Tweedie model...... considered calendar years and calculated by simulations a probability of p=0.03 for these to be chance findings. Altogether, our results recommend these sites for further investigation and suggest that our simple approach could play a role in future area based traffic accident prevention planning....
Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchhoff, Fourier Propagation and Poisson's Spot
National Research Council Canada - National Science Library
Lucke, Robert
2004-01-01
.... But when this approximation is not valid, FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson s spot provides a critical test, a test passed by RS and failed by FK. FK fails because (a) convergence of the integral depends on how it is evaluated and (b) when the convergence problem is xed, the predicted amplitude at points near the obscuring disk is not consistent with the assumed boundary conditions.
Directory of Open Access Journals (Sweden)
Rodrigues-Motta Mariana
2008-07-01
Full Text Available Abstract Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep.
Deposition of sol-gel sensor spots by nanoimprint lithography and hemi-wicking
DEFF Research Database (Denmark)
Mikkelsen, Morten Bo Lindholm; Marie, Rodolphe; Hansen, Jan H.
2011-01-01
We present a method for homogeneous deposition of sol-gel sensor materials, which enable fabrication of sensor spots for optical pH and oxygen measurements inside plastic containers. A periodic pattern of posts is imprinted into a polycarbonate substrate and, using the principle of hemi-wicking, ......We present a method for homogeneous deposition of sol-gel sensor materials, which enable fabrication of sensor spots for optical pH and oxygen measurements inside plastic containers. A periodic pattern of posts is imprinted into a polycarbonate substrate and, using the principle of hemi...
Przybysz, Raymond; Bunch, Martin
2017-01-01
Our study looked at out-of-hospital sudden cardiac arrest events in the City of Toronto. These are relatively rare events, yet present a serious global clinical and public health problem. We report on the application of spatial methods and tools that, although relatively well known to geographers and natural resource scientists, need to become better known and used more frequently by health care researchers. Our data came from the population-based Rescu Epistry cardiac arrest database. We limited it to the residents of the City of Toronto who experienced sudden arrest in 2010. The data was aggregated at the Dissemination Area level, and population rates were calculated. Poisson kriging was carried out on one year of data using three different spatial weights. Kriging estimates were then compared in Hot Spot analyses. Spatial analysis revealed that Poisson kriging can yield reliable rates using limited data of high quality. We observed the highest rates of sudden arrests in the north and central parts of Etobicoke, western parts of North York as well as the central and southwestern parts of Scarborough while the lowest rates were found in north and eastern parts of Scarborough, downtown Toronto, and East York as well as east central parts of North York. Influence of spatial neighbours on the results did not extend past two rings of adjacent units. Poisson kriging has the potential to be applied to a wide range of healthcare research, particularly on rare events. This approach can be successfully combined with other spatial methods. More applied research, is needed to establish a wider acceptance for this method, especially among healthcare researchers and epidemiologists.
Bakshi, Vivek
2018-01-01
Extreme ultraviolet lithography (EUVL) is the principal lithography technology-beyond the current 193-nm-based optical lithography-aiming to manufacture computer chips, and recent progress has been made on several fronts: EUV light sources, scanners, optics, contamination control, masks and mask handling, and resists. This book covers the fundamental and latest status of all aspects of EUVL used in the field. Since 2008, when SPIE Press published the first edition of EUVL Lithography, much progress has taken place in the development of EUVL as the choice technology for next-generation lithography. In 2008, EUVL was a prime contender to replace 193-nm-based optical lithography in leading-edge computer chip making, but not everyone was convinced at that point. Switching from 193-nm to 13.5-nm wavelengths was a much bigger jump than the industry had attempted before. It brought several difficult challenges in all areas of lithography-light source, scanner, mask, mask handling, optics, optics metrology, resist, c...
Hallin, M.; Piegorsch, W.; El Shaarawi, A.
2012-01-01
The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...
Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W.
2007-01-01
The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
2009-01-01
In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Landis, Stefan
2013-01-01
Lithography is an extremely complex tool - based on the concept of "imprinting" an original template version onto mass output - originally using relatively simple optical exposure, masking, and etching techniques, and now extended to include exposure to X-rays, high energy UV light, and electron beams - in processes developed to manufacture everyday products including those in the realms of consumer electronics, telecommunications, entertainment, and transportation, to name but a few. In the last few years, researchers and engineers have pushed the envelope of fields including optics, physics,
Terashima, Yuji
2008-01-01
In this paper, defining Poisson functions on super manifolds, we show that the graphs of Poisson functions are Dirac structures, and find Poisson functions which include as special cases both quasi-Poisson structures and twisted Poisson structures.
Einspruch, Norman G
1987-01-01
VLSI Electronics Microstructure Science, Volume 16: Lithography for VLSI treats special topics from each branch of lithography, and also contains general discussion of some lithographic methods.This volume contains 8 chapters that discuss the various aspects of lithography. Chapters 1 and 2 are devoted to optical lithography. Chapter 3 covers electron lithography in general, and Chapter 4 discusses electron resist exposure modeling. Chapter 5 presents the fundamentals of ion-beam lithography. Mask/wafer alignment for x-ray proximity printing and for optical lithography is tackled in Chapter 6.
Plasmonic direct writing lithography with a macroscopical contact probe
Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling
2018-05-01
In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.
Manipulation of heat-diffusion channel in laser thermal lithography.
Wei, Jingsong; Wang, Yang; Wu, Yiqun
2014-12-29
Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.
Metrology for Grayscale Lithography
International Nuclear Information System (INIS)
Murali, Raghunath
2007-01-01
Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed
Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.
2004-01-01
Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to
Laser Interference Lithography
van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.
In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Homogeneous Poisson structures
International Nuclear Information System (INIS)
Shafei Deh Abad, A.; Malek, F.
1993-09-01
We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs
International Nuclear Information System (INIS)
Littlejohn, R.G.
1982-01-01
The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular
On poisson-stopped-sums that are mixed poisson
Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep
2013-01-01
Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Cumulative Poisson Distribution Program
Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert
1990-01-01
Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.
International Nuclear Information System (INIS)
Harwood, L.H.
1981-01-01
At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed
Poisson Processes in Free Probability
An, Guimei; Gao, Mingchu
2015-01-01
We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso...
Development of Blue Laser Direct-Write Lithography System
Directory of Open Access Journals (Sweden)
Hao-Wen Chang
2012-01-01
Full Text Available The optical lithography system researched in this study adopted the laser direct-write lithography technology with nano-positioning stage by using retailing blue ray optical pickup head contained 405nm wavelength and 0.85 numerical aperture of focus lens as the system lighting source. The system employed a photodiode received the focusing error signal reflected by the glass substrate to identify specimen position and automatic focused control with voice coil motor. The pattern substrate was loaded on a nano-positioning stage; input pattern path automatically and collocate with inner program at the same time. This research has successfully developed a blue laser lithography process system. The single spot size can be narrowed down to 3.07 μm and the linewidth is 3.3μm, time of laser control can reach to 450 ns and the exposure pattern can be controlled by program as well.
International Nuclear Information System (INIS)
Harriott, L.; Liddle, A.
1997-01-01
As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)
International Nuclear Information System (INIS)
Harriott, L.; Liddle, A.
1997-01-01
As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Scaling the Poisson Distribution
Farnsworth, David L.
2014-01-01
We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.
Extended Poisson Exponential Distribution
Directory of Open Access Journals (Sweden)
Anum Fatima
2015-09-01
Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.
Poisson branching point processes
International Nuclear Information System (INIS)
Matsuo, K.; Teich, M.C.; Saleh, B.E.A.
1984-01-01
We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers
... skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun ...
International Nuclear Information System (INIS)
Malek, C.K.
1989-01-01
Any type of lithography is a means of printing a pattern. The suitable lithographic tool is defined according to what kind of application the replication technique is aimed at, that is to say, what size of pattern, on what type of substrate and how many substrates are desired. The trend in all the fields of science and fabrication is to go towards smaller dimensions. Especially in the case of advanced device fabrication in the semiconductor industry, the reduction of dimensions results in a higher density of integrated circuits that will result in lower cost per function and improved performance. Lithography is used to define areas that are usually protected by a resist pattern in relief on a substrate and is followed by a process which transfers the aerial pattern from the resist to the bulk substrate as, for example, in microelectronics, in between two steps of the process or levels that are used for selective diffusion of impurities to produce the desired electrical characteristics, etching, metallization
Plasma sources for EUV lithography exposure tools
International Nuclear Information System (INIS)
Banine, Vadim; Moors, Roel
2004-01-01
The source is an integral part of an extreme ultraviolet lithography (EUVL) tool. Such a source, as well as the EUVL tool, has to fulfil extremely high demands both technical and cost oriented. The EUVL tool operates at a wavelength in the range 13-14 nm, which requires a major re-thinking of state-of-the-art lithography systems operating in the DUV range. The light production mechanism changes from conventional lamps and lasers to relatively high temperature emitting plasmas. The light transport, mainly refractive for DUV, should become reflective for EUV. The source specifications are derived from the customer requirements for the complete tool, which are: throughput, cost of ownership (CoO) and imaging quality. The EUVL system is considered as a follow up of the existing DUV based lithography technology and, while improving the feature resolution, it has to maintain high wafer throughput performance, which is driven by the overall CoO picture. This in turn puts quite high requirements on the collectable in-band power produced by an EUV source. Increased, due to improved feature resolution, critical dimension (CD) control requirements, together with reflective optics restrictions, necessitate pulse-to-pulse repeatability, spatial stability control and repetition rates, which are substantially better than those of current optical systems. All together the following aspects of the source specification will be addressed: the operating wavelength, the EUV power, the hot spot size, the collectable angle, the repetition rate, the pulse-to-pulse repeatability and the debris induced lifetime of components
Fractional Poisson process (II)
International Nuclear Information System (INIS)
Wang Xiaotian; Wen Zhixiong; Zhang Shiying
2006-01-01
In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution
Formal equivalence of Poisson structures around Poisson submanifolds
Marcut, I.T.
2012-01-01
Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson
Programmable imprint lithography template
Cardinale, Gregory F [Oakland, CA; Talin, Albert A [Livermore, CA
2006-10-31
A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.
Surface enhanced thermo lithography
Coluccio, Maria Laura
2017-01-13
We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.
Surface enhanced thermo lithography
Coluccio, Maria Laura; Alabastri, Alessandro; Bonanni, Simon; Majewska, Roksana; Dattoli, Elisabetta; Barberio, Marianna; Candeloro, Patrizio; Perozziello, Gerardo; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Gentile, Francesco
2017-01-01
We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.
Poisson brackets of orthogonal polynomials
Cantero, María José; Simon, Barry
2009-01-01
For the standard symplectic forms on Jacobi and CMV matrices, we compute Poisson brackets of OPRL and OPUC, and relate these to other basic Poisson brackets and to Jacobians of basic changes of variable.
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)
2014-06-02
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-01-01
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
Branes in Poisson sigma models
International Nuclear Information System (INIS)
Falceto, Fernando
2010-01-01
In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component.
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
Ifremer
1992-01-01
Vous trouverez dans ce document les 24 poissons les plus courants de Guyane (sur un nombre d'espèces approchant les 200) avec leurs principales caractéristiques, leurs noms scientifiques, français, anglais et espagnol et leurs photographies. Ils sont classés, de l'acoupa au vivaneau ti yeux, par ordre alphabétique. Si vous ne trouvez pas de chiffres sur la production de telle ou telle espèce, c'est parce qu'ils n'existent pas, mais aussi et surtout parce qu'ils ne signifieraient rien, l...
Seamless-merging-oriented parallel inverse lithography technology
International Nuclear Information System (INIS)
Yang Yiwei; Shi Zheng; Shen Shanhu
2009-01-01
Inverse lithography technology (ILT), a promising resolution enhancement technology (RET) used in next generations of IC manufacture, has the capability to push lithography to its limit. However, the existing methods of ILT are either time-consuming due to the large layout in a single process, or not accurate enough due to simply block merging in the parallel process. The seamless-merging-oriented parallel ILT method proposed in this paper is fast because of the parallel process; and most importantly, convergence enhancement penalty terms (CEPT) introduced in the parallel ILT optimization process take the environment into consideration as well as environmental change through target updating. This method increases the similarity of the overlapped area between guard-bands and work units, makes the merging process approach seamless and hence reduces hot-spots. The experimental results show that seamless-merging-oriented parallel ILT not only accelerates the optimization process, but also significantly improves the quality of ILT.
Photoinhibition superresolution lithography
Forman, Darren Lawrence
While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy
Nonhomogeneous fractional Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)
2007-01-15
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)
Nonhomogeneous fractional Poisson processes
International Nuclear Information System (INIS)
Wang Xiaotian; Zhang Shiying; Fan Shen
2007-01-01
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)
SOR Lithography in West Germany
Heuberger, Anton
1989-08-01
The 64 Mbit DRAM will represent the first generation of integrated circuits which cannot be produced reasonably by means of optical lithography techniques. X-ray lithography using synchrotron radiation seems to be the most promising method in overcoming the problems in the sub-0.5 micron range. The first year of production of the 64 Mbit DRAM will be 1995 or 1996. This means that X-ray lithography has to show its applicability in an industrial environment by 1992 and has to prove that the specifications of a 64 Mbit DRAM technology can actually be achieved. Part of this task is a demonstration of production suitable equipment such as the X-ray stepper, including an appropriate X-ray source and measurement and inspection tools. The most important bottlenecks on the way toward reaching these goals are linked to the 1 x scale mask technology, especially the pattern definition accuracy and zero level of printing defects down to the order of magnitude of 50 nm. Specifically, fast defect detection methods on the basis of high resolution e-beam techniques and repair methods have to be developed. The other problems of X-ray lithography, such as high quality single layer X-ray resists, X-ray sources and stepper including alignment are either well on the way or are already solved.
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra
Lecoutre, César
2014-01-01
We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...
Non-equal-time Poisson brackets
Nikolic, H.
1998-01-01
The standard definition of the Poisson brackets is generalized to the non-equal-time Poisson brackets. Their relationship to the equal-time Poisson brackets, as well as to the equal- and non-equal-time commutators, is discussed.
Smartphone Sensors for Stone Lithography Authentication
Directory of Open Access Journals (Sweden)
Giuseppe Schirripa Spagnolo
2014-05-01
Full Text Available Nowadays mobile phones include quality photo and video cameras, access to wireless networks and the internet, GPS assistance and other innovative systems. These facilities open them to innovative uses, other than the classical telephonic communication one. Smartphones are a more sophisticated version of classic mobile phones, which have advanced computing power, memory and connectivity. Because fake lithographs are flooding the art market, in this work, we propose a smartphone as simple, robust and efficient sensor for lithograph authentication. When we buy an artwork object, the seller issues a certificate of authenticity, which contains specific details about the artwork itself. Unscrupulous sellers can duplicate the classic certificates of authenticity, and then use them to “authenticate” non-genuine works of art. In this way, the buyer will have a copy of an original certificate to attest that the “not original artwork” is an original one. A solution for this problem would be to insert a system that links together the certificate and the related specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this article we propose an innovative method for the authentication of stone lithographs. We use the color spots distribution captured by means of a smartphone camera as a non-cloneable texture of the specific artworks and an information management system for verifying it in mobility stone lithography.
Ahu Yorulmaz,; Seray Kulcu Cakmak; Esra Ar?; Ferda Artuz
2015-01-01
Also called as physiologic anemic macules, Bier spots are small, hypopigmented irregularly shaped macules against a background of diffuse erythema, which creates an appearance of speckled vascular mottling of the skin. Bier spots most commonly appear on distal portions of the limbs though there are case reports describing diffuse involvement, which also affect trunk and mucous membranes of the patient. Although the exact pathophysiological mechanisms underlying Bier spots still need to be elu...
Interference Lithography for Vertical Photovoltaics
Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert
2009-10-01
We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.
Newton/Poisson-Distribution Program
Bowerman, Paul N.; Scheuer, Ernest M.
1990-01-01
NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.
Nanoimprint lithography for microfluidics manufacturing
Kreindl, Gerald; Matthias, Thorsten
2013-12-01
The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.
POISSON SUPERFISH, Poisson Equation Solver for Radio Frequency Cavity
International Nuclear Information System (INIS)
Colman, J.
2001-01-01
1 - Description of program or function: POISSON, SUPERFISH is a group of (1) codes that solve Poisson's equation and are used to compute field quality for both magnets and fixed electric potentials and (2) RF cavity codes that calculate resonant frequencies and field distributions of the fundamental and higher modes. The group includes: POISSON, PANDIRA, SUPERFISH, AUTOMESH, LATTICE, FORCE, MIRT, PAN-T, TEKPLOT, SF01, and SHY. POISSON solves Poisson's (or Laplace's) equation for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, the stored energy, and performs harmonic (multipole) analysis of the potential. PANDIRA is similar to POISSON except it allows anisotropic and permanent magnet materials and uses a different numerical method to obtain the potential. SUPERFISH solves for the accelerating (TM) and deflecting (TE) resonant frequencies and field distributions in an RF cavity with two-dimensional Cartesian or three-dimensional cylindrical symmetry. Only the azimuthally symmetric modes are found for cylindrically symmetric cavities. AUTOMESH prepares input for LATTICE from geometrical data describing the problem, (i.e., it constructs the 'logical' mesh and generates (x,y) coordinate data for straight lines, arcs of circles, and segments of hyperbolas). LATTICE generates an irregular triangular (physical) mesh from the input data, calculates the 'point current' terms at each mesh point in regions with distributed current density, and sets up the mesh point relaxation order needed to write the binary problem file for the equation-solving POISSON, PANDIRA, or SUPERFISH. FORCE calculates forces and torques on coils and iron regions from POISSON or PANDIRA solutions for the potential. MIRT optimizes magnet profiles, coil shapes, and current densities from POISSON output based on a
Coordination of Conditional Poisson Samples
Directory of Open Access Journals (Sweden)
Grafström Anton
2015-12-01
Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.
Zhao, Yiping; Berenschot, Johan W.; de Boer, M.; de Boer, Meint J.; Jansen, Henricus V.; Tas, Niels Roelof; Huskens, Jurriaan; Elwenspoek, Michael Curt
2008-01-01
The fabrication of a stamp reinforced with silicon nitride is presented for its use in nanoimprint lithography. The fabrication process is based on edge lithography using conventional optical lithography and wet anisotropic etching of 110 silicon wafers. SiO2 nano-ridges of 20 nm in width were
Lithography requirements in complex VLSI device fabrication
International Nuclear Information System (INIS)
Wilson, A.D.
1985-01-01
Fabrication of complex very large scale integration (VLSI) circuits requires continual advances in lithography to satisfy: decreasing minimum linewidths, larger chip sizes, tighter linewidth and overlay control, increasing topography to linewidth ratios, higher yield demands, increased throughput, harsher device processing, lower lithography cost, and a larger part number set with quick turn-around time. Where optical, electron beam, x-ray, and ion beam lithography can be applied to judiciously satisfy the complex VLSI circuit fabrication requirements is discussed and those areas that are in need of major further advances are addressed. Emphasis will be placed on advanced electron beam and storage ring x-ray lithography
Maskless, resistless ion beam lithography
Energy Technology Data Exchange (ETDEWEB)
Ji, Qing [Univ. of California, Berkeley, CA (United States)
2003-01-01
As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O_{2}^{+}, BF_{2}^{+}, P^{+} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF_{2}^{+}, over 90% of O_{2}^{+} and P^{+} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He^{+} beam is as high as 440 A/cm^{2} • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O_{2}^{+} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O_{2}^{+} ions with the dose of 10^{15} cm^{-2}. The oxide can then serve as a hard mask for patterning of the Si film. The
Maskless, resistless ion beam lithography
International Nuclear Information System (INIS)
Ji, Qing
2003-01-01
As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O 2 + , BF 2 + , P + etc., for surface modification and doping applications. With optimized source condition, around 85% of BF 2 + , over 90% of O 2 + and P + have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He + beam is as high as 440 A/cm 2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O 2 + ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O 2 + ions with the dose of 10 15 cm -2 . The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P
Topological Poisson Sigma models on Poisson-Lie groups
International Nuclear Information System (INIS)
Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David
2003-01-01
We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)
Directory of Open Access Journals (Sweden)
Ahu Yorulmaz,
2015-10-01
Full Text Available Also called as physiologic anemic macules, Bier spots are small, hypopigmented irregularly shaped macules against a background of diffuse erythema, which creates an appearance of speckled vascular mottling of the skin. Bier spots most commonly appear on distal portions of the limbs though there are case reports describing diffuse involvement, which also affect trunk and mucous membranes of the patient. Although the exact pathophysiological mechanisms underlying Bier spots still need to be elucidated, Bier spots have been suggested to be a vascular anomaly caused by vasoconstriction of small vessels. In addition, several diseases have been proposed to be associated with Bier spots, including scleroderma renal crisis, cryoglobulinemia, Peutz-Jeghers syndrome, alopecia areata and hypoplasia of the aorta, although it has not been shown whether these associations are casual or coincidental. The clinical presentation of Bier spots is quite typical. These tiny whitish macules easily become prominent when the affected limb is placed in a dependent position and fade away when the limb is raised. Here we report a case of Bier spots in a 32-year-old male patient with characteristical clinical manifestations.
... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Age Spots Treatment Options Learn more about treatment ...
International Nuclear Information System (INIS)
Matsuda, Tomohiro
2010-01-01
We describe new scenarios for generating curvature perturbations when inflaton (curvaton) has significant interactions. We consider a ''spot'', which arises from interactions associated with an enhanced symmetric point (ESP) on the trajectory. Our first example uses the spot to induce a gap in the field equation. We observe that the gap in the field equation may cause generation of curvature perturbation if it does not appear simultaneous in space. The mechanism is similar to the scenario of inhomogeneous phase transition. Then we observe that the spot interactions may initiate warm inflation in the cold Universe. Creation of cosmological perturbation is discussed in relation to the inflaton dynamics and the modulation associated with the spot interactions
Comparison of Poisson structures and Poisson-Lie dynamical r-matrices
Enriquez, B.; Etingof, P.; Marshall, I.
2004-01-01
We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla.
NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM
Bowerman, P. N.
1994-01-01
The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988.
Design for manufacturability with advanced lithography
Yu, Bei
2016-01-01
This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level, or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms. Enables readers to tackle the challenge of layout decompositions for different patterning techniques; Presents a coherent framework, including standard cell compliance and detailed placement, to enable Triple Patterning Lithography (TPL) friendly design; Includes coverage of the design for manufacturability with E-Beam lithography.
Manipulation and simulations of thermal field profiles in laser heat-mode lithography
Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long
2017-12-01
Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio.
Directory of Open Access Journals (Sweden)
Jin Woo Lee
Full Text Available Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR. NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts.
Fabrication of sub-wavelength photonic structures by nanoimprint lithography
Energy Technology Data Exchange (ETDEWEB)
Kontio, J.
2013-11-01
Nanoimprint lithography (NIL) is a novel but already a mature lithography technique. In this thesis it is applied to the fabrication of nanophotonic devices using its main advantage: the fast production of sub-micron features in high volume in a cost-effective way. In this thesis, fabrication methods for conical metal structures for plasmonic applications and sub-wavelength grating based broad-band mirrors are presented. Conical metal structures, nanocones, with plasmonic properties are interesting because they enable concentrating the energy of light in very tight spots resulting in very high local intensities of electromagnetic energy. The nanocone formation process is studied with several metals. Enhanced second harmonic generation using gold nanocones is presented. Bridged-nanocones are used to enhance Raman scattering from a dye solution. The sub-wavelength grating mirror is an interesting structure for photonics because it is very simple to fabricate and its reflectivity can be extended to the far infrared wavelength range. It also has polarization dependent properties which are used in this thesis to stabilize the output beam of infrared semiconductor disk laser. NIL is shown to be useful a technique in the fabrication of nanophotonic devices in the novel and rapidly growing field of plasmonics and also in more traditional, but still developing, semiconductor laser applications (orig.)
Smith, Jason T.; Welsh, Sam J.; Farinetti, Antonio L.; Wegner, Tim; Blakeslee, James; Deboeck, Toni F.; Dyer, Daniel; Corley, Bryan M.; Ollivierre, Jarmaine; Kramer, Leonard;
2010-01-01
A Spacecraft Position Optimal Tracking (SPOT) program was developed to process Global Positioning System (GPS) data, sent via telemetry from a spacecraft, to generate accurate navigation estimates of the vehicle position and velocity (state vector) using a Kalman filter. This program uses the GPS onboard receiver measurements to sequentially calculate the vehicle state vectors and provide this information to ground flight controllers. It is the first real-time ground-based shuttle navigation application using onboard sensors. The program is compact, portable, self-contained, and can run on a variety of UNIX or Linux computers. The program has a modular objec-toriented design that supports application-specific plugins such as data corruption remediation pre-processing and remote graphics display. The Kalman filter is extensible to additional sensor types or force models. The Kalman filter design is also strong against data dropouts because it uses physical models from state and covariance propagation in the absence of data. The design of this program separates the functionalities of SPOT into six different executable processes. This allows for the individual processes to be connected in an a la carte manner, making the feature set and executable complexity of SPOT adaptable to the needs of the user. Also, these processes need not be executed on the same workstation. This allows for communications between SPOT processes executing on the same Local Area Network (LAN). Thus, SPOT can be executed in a distributed sense with the capability for a team of flight controllers to efficiently share the same trajectory information currently being computed by the program. SPOT is used in the Mission Control Center (MCC) for Space Shuttle Program (SSP) and International Space Station Program (ISSP) operations, and can also be used as a post -flight analysis tool. It is primarily used for situational awareness, and for contingency situations.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Resistless Fabrication of Nanoimprint Lithography (NIL Stamps Using Nano-Stencil Lithography
Directory of Open Access Journals (Sweden)
Juergen Brugger
2013-10-01
Full Text Available In order to keep up with the advances in nano-fabrication, alternative, cost-efficient lithography techniques need to be implemented. Two of the most promising are nanoimprint lithography (NIL and stencil lithography. We explore here the possibility of fabricating the stamp using stencil lithography, which has the potential for a cost reduction in some fabrication facilities. We show that the stamps reproduce the membrane aperture patterns within ±10 nm and we validate such stamps by using them to fabricate metallic nanowires down to 100 nm in size.
Independent production and Poisson distribution
International Nuclear Information System (INIS)
Golokhvastov, A.I.
1994-01-01
The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained. 11 refs
A generalized gyrokinetic Poisson solver
International Nuclear Information System (INIS)
Lin, Z.; Lee, W.W.
1995-03-01
A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poisson denoising on the sphere
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Singularities of Poisson structures and Hamiltonian bifurcations
Meer, van der J.C.
2010-01-01
Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography
International Nuclear Information System (INIS)
Li, Li; Zhang, Ziang; Yu, Miao; Song, Zhengxun; Weng, Zhankun; Wang, Zuobin; Li, Wenjun; Wang, Dapeng; Zhao, Le; Peng, Kuiqing
2015-01-01
Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arrays with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ 0 = 1064 nm. The minimal feature size is only several nanometers (sub λ 0 /100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser
Masks for extreme ultraviolet lithography
International Nuclear Information System (INIS)
Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y.
1998-01-01
In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed
Poisson's ratio of fiber-reinforced composites
Christiansson, Henrik; Helsing, Johan
1996-05-01
Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.
Singular reduction of Nambu-Poisson manifolds
Das, Apurba
The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Non-holonomic dynamics and Poisson geometry
International Nuclear Information System (INIS)
Borisov, A V; Mamaev, I S; Tsiganov, A V
2014-01-01
This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie-Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles
Information content of poisson images
International Nuclear Information System (INIS)
Cederlund, J.
1979-04-01
One major problem when producing images with the aid of Poisson distributed quanta is how best to compromise between spatial and contrast resolution. Increasing the number of image elements improves spatial resolution, but at the cost of fewer quanta per image element, which reduces contrast resolution. Information theory arguments are used to analyse this problem. It is argued that information capacity is a useful concept to describe an important property of the imaging device, but that in order to compute the information content of an image produced by this device some statistical properties (such as the a priori probability of the densities) of the object to be depicted must be taken into account. If these statistical properties are not known one cannot make a correct choice between spatial and contrast resolution. (author)
Data sharing system for lithography APC
Kawamura, Eiichi; Teranishi, Yoshiharu; Shimabara, Masanori
2007-03-01
We have developed a simple and cost-effective data sharing system between fabs for lithography advanced process control (APC). Lithography APC requires process flow, inter-layer information, history information, mask information and so on. So, inter-APC data sharing system has become necessary when lots are to be processed in multiple fabs (usually two fabs). The development cost and maintenance cost also have to be taken into account. The system handles minimum information necessary to make trend prediction for the lots. Three types of data have to be shared for precise trend prediction. First one is device information of the lots, e.g., process flow of the device and inter-layer information. Second one is mask information from mask suppliers, e.g., pattern characteristics and pattern widths. Last one is history data of the lots. Device information is electronic file and easy to handle. The electronic file is common between APCs and uploaded into the database. As for mask information sharing, mask information described in common format is obtained via Wide Area Network (WAN) from mask-vender will be stored in the mask-information data server. This information is periodically transferred to one specific lithography-APC server and compiled into the database. This lithography-APC server periodically delivers the mask-information to every other lithography-APC server. Process-history data sharing system mainly consists of function of delivering process-history data. In shipping production lots to another fab, the product-related process-history data is delivered by the lithography-APC server from the shipping site. We have confirmed the function and effectiveness of data sharing systems.
On (co)homology of Frobenius Poisson algebras
Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo
2014-01-01
In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...
POISSON, Analysis Solution of Poisson Problems in Probabilistic Risk Assessment
International Nuclear Information System (INIS)
Froehner, F.H.
1986-01-01
1 - Description of program or function: Purpose of program: Analytic treatment of two-stage Poisson problem in Probabilistic Risk Assessment. Input: estimated a-priori mean failure rate and error factor of system considered (for calculation of stage-1 prior), number of failures and operating times for similar systems (for calculation of stage-2 prior). Output: a-posteriori probability distributions on linear and logarithmic time scale (on specified time grid) and expectation values of failure rate and error factors are calculated for: - stage-1 a-priori distribution, - stage-1 a-posteriori distribution, - stage-2 a-priori distribution, - stage-2 a-posteriori distribution. 2 - Method of solution: Bayesian approach with conjugate stage-1 prior, improved with experience from similar systems to yield stage-2 prior, and likelihood function from experience with system under study (documentation see below under 10.). 3 - Restrictions on the complexity of the problem: Up to 100 similar systems (including the system considered), arbitrary number of problems (failure types) with same grid
Square root approximation to the poisson channel
Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.
2013-01-01
Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
Poisson geometry from a Dirac perspective
Meinrenken, Eckhard
2018-03-01
We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...
Solvent-vapor-assisted imprint lithography
Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich
2007-01-01
Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity
EUV lithography : historical perspective and road ahead
Banine, V.Y.
2014-01-01
Lithography, in the form of carved type printing, can be dated as far back as the 3rd century AD. Starting from the 19th century it played a major role as the basis for dissemination and preservation of knowledge in the form of printed books, maps, newspapers, etc. In the mid 20th century, with the
Helium ion lithography principles and performance
Drift, E. van der; Maas, D.J.
2012-01-01
Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From
Directory of Open Access Journals (Sweden)
Lusi Eka Afri
2017-03-01
Full Text Available Regresi Binomial Negatif dan regresi Conway-Maxwell-Poisson merupakan solusi untuk mengatasi overdispersi pada regresi Poisson. Kedua model tersebut merupakan perluasan dari model regresi Poisson. Menurut Hinde dan Demetrio (2007, terdapat beberapa kemungkinan terjadi overdispersi pada regresi Poisson yaitu keragaman hasil pengamatan keragaman individu sebagai komponen yang tidak dijelaskan oleh model, korelasi antar respon individu, terjadinya pengelompokan dalam populasi dan peubah teramati yang dihilangkan. Akibatnya dapat menyebabkan pendugaan galat baku yang terlalu rendah dan akan menghasilkan pendugaan parameter yang bias ke bawah (underestimate. Penelitian ini bertujuan untuk membandingan model Regresi Binomial Negatif dan model regresi Conway-Maxwell-Poisson (COM-Poisson dalam mengatasi overdispersi pada data distribusi Poisson berdasarkan statistik uji devians. Data yang digunakan dalam penelitian ini terdiri dari dua sumber data yaitu data simulasi dan data kasus terapan. Data simulasi yang digunakan diperoleh dengan membangkitkan data berdistribusi Poisson yang mengandung overdispersi dengan menggunakan bahasa pemrograman R berdasarkan karakteristik data berupa , peluang munculnya nilai nol (p serta ukuran sampel (n. Data dibangkitkan berguna untuk mendapatkan estimasi koefisien parameter pada regresi binomial negatif dan COM-Poisson. Kata Kunci: overdispersi, regresi binomial negatif, regresi Conway-Maxwell-Poisson Negative binomial regression and Conway-Maxwell-Poisson regression could be used to overcome over dispersion on Poisson regression. Both models are the extension of Poisson regression model. According to Hinde and Demetrio (2007, there will be some over dispersion on Poisson regression: observed variance in individual variance cannot be described by a model, correlation among individual response, and the population group and the observed variables are eliminated. Consequently, this can lead to low standard error
A twisted generalization of Novikov-Poisson algebras
Yau, Donald
2010-01-01
Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.
Speech parts as Poisson processes.
Badalamenti, A F
2001-09-01
This paper presents evidence that six of the seven parts of speech occur in written text as Poisson processes, simple or recurring. The six major parts are nouns, verbs, adjectives, adverbs, prepositions, and conjunctions, with the interjection occurring too infrequently to support a model. The data consist of more than the first 5000 words of works by four major authors coded to label the parts of speech, as well as periods (sentence terminators). Sentence length is measured via the period and found to be normally distributed with no stochastic model identified for its occurrence. The models for all six speech parts but the noun significantly distinguish some pairs of authors and likewise for the joint use of all words types. Any one author is significantly distinguished from any other by at least one word type and sentence length very significantly distinguishes each from all others. The variety of word type use, measured by Shannon entropy, builds to about 90% of its maximum possible value. The rate constants for nouns are close to the fractions of maximum entropy achieved. This finding together with the stochastic models and the relations among them suggest that the noun may be a primitive organizer of written text.
Constructions and classifications of projective Poisson varieties
Pym, Brent
2018-03-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Constructions and classifications of projective Poisson varieties.
Pym, Brent
2018-01-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Collision prediction models using multivariate Poisson-lognormal regression.
El-Basyouny, Karim; Sayed, Tarek
2009-07-01
This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.
Poisson-Hopf limit of quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2009-01-01
The Poisson-Hopf analogue of an arbitrary quantum algebra U z (g) is constructed by introducing a one-parameter family of quantizations U z,ℎ (g) depending explicitly on ℎ and by taking the appropriate ℎ → 0 limit. The q-Poisson analogues of the su(2) algebra are discussed and the novel su q P (3) case is introduced. The q-Serre relations are also extended to the Poisson limit. This approach opens the perspective for possible applications of higher rank q-deformed Hopf algebras in semiclassical contexts
The Poisson equation on Klein surfaces
Directory of Open Access Journals (Sweden)
Monica Rosiu
2016-04-01
Full Text Available We obtain a formula for the solution of the Poisson equation with Dirichlet boundary condition on a region of a Klein surface. This formula reveals the symmetric character of the solution.
Poisson point processes imaging, tracking, and sensing
Streit, Roy L
2010-01-01
This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.
Mask-induced aberration in EUV lithography
Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko
2009-04-01
We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.
Electron Beam Lithography for nano-patterning
DEFF Research Database (Denmark)
Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena
2014-01-01
in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke......, the room temperature is controlled to an accuracy of 0.1 degrees in order to minimize the thermally induced drift of the beam during pattern writing. We present process results in a standard positive tone resist and pattern transfer through etch to a Silicon substrate. Even though the electron beam...... of electrons in the substrate will influence the patterning. We present solutions to overcome these obstacles....
Scanning probe lithography for nanoimprinting mould fabrication
International Nuclear Information System (INIS)
Luo Gang; Xie Guoyong; Zhang Yongyi; Zhang Guoming; Zhang Yingying; Carlberg, Patrick; Zhu Tao; Liu Zhongfan
2006-01-01
We propose a rational fabrication method for nanoimprinting moulds by scanning probe lithography. By wet chemical etching, different kinds of moulds are realized on Si(110) and Si(100) surfaces according to the Si crystalline orientation. The structures have line widths of about 200 nm with a high aspect ratio. By reactive ion etching, moulds with patterns free from the limitation of Si crystalline orientation are also obtained. With closed-loop scan control of a scanning probe microscope, the length of patterned lines is more than 100 μm by integrating several steps of patterning. The fabrication process is optimized in order to produce a mould pattern with a line width about 10 nm. The structures on the mould are further duplicated into PMMA resists through the nanoimprinting process. The method of combining scanning probe lithography with wet chemical etching or reactive ion etching (RIE) provides a resistless route for the fabrication of nanoimprinting moulds
Noncommutative gauge theory for Poisson manifolds
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2000-09-25
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
Noncommutative gauge theory for Poisson manifolds
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2000-01-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem
Principles of applying Poisson units in radiology
International Nuclear Information System (INIS)
Benyumovich, M.S.
2000-01-01
The probability that radioactive particles hit particular space patterns (e.g. cells in the squares of a count chamber net) and time intervals (e.g. radioactive particles hit a given area per time unit) follows the Poisson distribution. The mean is the only parameter from which all this distribution depends. A metrological base of counting the cells and radioactive particles is a property of the Poisson distribution assuming equality of a standard deviation to a root square of mean (property 1). The application of Poisson units in counting of blood formed elements and cultured cells was proposed by us (Russian Federation Patent No. 2126230). Poisson units relate to the means which make the property 1 valid. In a case of cells counting, the square of these units is equal to 1/10 of one of count chamber net where they count the cells. Thus one finds the means from the single cell count rate divided by 10. Finding the Poisson units when counting the radioactive particles should assume determination of a number of these particles sufficient to make equality 1 valid. To this end one should subdivide a time interval used in counting a single particle count rate into different number of equal portions (count numbers). Next one should pick out the count number ensuring the satisfaction of equality 1. Such a portion is taken as a Poisson unit in the radioactive particles count. If the flux of particles is controllable one should set up a count rate sufficient to make equality 1 valid. Operations with means obtained by with the use of Poisson units are performed on the base of approximation of the Poisson distribution by a normal one. (author)
Multivariate fractional Poisson processes and compound sums
Beghin, Luisa; Macci, Claudio
2015-01-01
In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.
Interference lithography for optical devices and coatings
Juhl, Abigail Therese
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self
Hard-tip, soft-spring lithography.
Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A
2011-01-27
Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.
Compact synchrotron radiation depth lithography facility
Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.
1992-01-01
X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.
Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere
International Nuclear Information System (INIS)
Sheu, A.J.L.
1991-01-01
We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)
Regular cell design approach considering lithography-induced process variations
Gómez Fernández, Sergio
2014-01-01
The deployment delays for EUVL, forces IC design to continue using 193nm wavelength lithography with innovative and costly techniques in order to faithfully print sub-wavelength features and combat lithography induced process variations. The effect of the lithography gap in current and upcoming technologies is to cause severe distortions due to optical diffraction in the printed patterns and thus degrading manufacturing yield. Therefore, a paradigm shift in layout design is mandatory towards ...
Dynamic Properties of Individual Carbon Nanotube Emitters for Maskless Lithography
National Research Council Canada - National Science Library
Ribaya, Bryan P; Niemann, Darrell L; Makarewicz, Joseph; Gunther, Norman G; Nguyen, Cattien V; Rahman, Mahmud
2008-01-01
.... The individual CNT's low electron beam energy spread and high brightness values make it particularly desirable for advanced applications such as electron microscopy and electron beam lithography...
High-resolution imprint and soft lithography for patterning self-assembling systems
Duan, X.
2010-01-01
This thesis contributes to the continuous development of patterning strategies in several different areas of unconventional nanofabrication. A series of soft lithography approaches (microcontact printing, nanomolding in capillaries), nanoimprint lithography (NIL), and capillary force lithography
DEFF Research Database (Denmark)
Kaulakiene, Dalia; Thomsen, Christian; Pedersen, Torben Bach
2015-01-01
by Amazon Web Services (AWS). The users aiming for the spot market are presented with many instance types placed in multiple datacenters in the world, and thus it is difficult to choose the optimal deployment. In this paper, we propose the framework SpotADAPT (Spot-Aware (re-)Deployment of Analytical...... of typical analytical workloads and real spot price traces. SpotADAPT's suggested deployments are comparable to the theoretically optimal ones, and in particular, it shows good cost benefits for the budget optimization -- on average SpotADAPT is at most 0.3% more expensive than the theoretically optimal...
... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...
Selective Contrast Adjustment by Poisson Equation
Directory of Open Access Journals (Sweden)
Ana-Belen Petro
2013-09-01
Full Text Available Poisson Image Editing is a new technique permitting to modify the gradient vector field of an image, and then to recover an image with a gradient approaching this modified gradient field. This amounts to solve a Poisson equation, an operation which can be efficiently performed by Fast Fourier Transform (FFT. This paper describes an algorithm applying this technique, with two different variants. The first variant enhances the contrast by increasing the gradient in the dark regions of the image. This method is well adapted to images with back light or strong shadows, and reveals details in the shadows. The second variant of the same Poisson technique enhances all small gradients in the image, thus also sometimes revealing details and texture.
High order Poisson Solver for unbounded flows
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2015-01-01
This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...
Poisson-Jacobi reduction of homogeneous tensors
International Nuclear Information System (INIS)
Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P
2004-01-01
The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N
The BRST complex of homological Poisson reduction
Müller-Lennert, Martin
2017-02-01
BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.
Estimation of Poisson noise in spatial domain
Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana
2017-09-01
This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.
Image-projection ion-beam lithography
International Nuclear Information System (INIS)
Miller, P.A.
1989-01-01
Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fabrication of biopolymer cantilevers using nanoimprint lithography
DEFF Research Database (Denmark)
Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis
2011-01-01
The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...... challenge was the high adhesion between PLLA and silicon stamp. Optimized stamp fabrication and the deposition of a 125 nm thick fluorocarbon anti-stiction coating on the PLLA allowed the fabrication of biopolymer cantilevers. Resonance frequency measurements were used to estimate the Young’s modulus...
Roll-to-roll UV imprint lithography for flexible electronics
Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.
2011-01-01
We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography
Bayesian regression of piecewise homogeneous Poisson processes
Directory of Open Access Journals (Sweden)
Diego Sevilla
2015-12-01
Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015
An electron undulating ring for VLSI lithography
International Nuclear Information System (INIS)
Tomimasu, T.; Mikado, T.; Noguchi, T.; Sugiyama, S.; Yamazaki, T.
1985-01-01
The development of the ETL storage ring ''TERAS'' as an undulating ring has been continued to achieve a wide area exposure of synchrotron radiation (SR) in VLSI lithography. Stable vertical and horizontal undulating motions of stored beams are demonstrated around a horizontal design orbit of TERAS, using two small steering magnets of which one is used for vertical undulating and another for horizontal one. Each steering magnet is inserted into one of the periodic configulation of guide field elements. As one of useful applications of undulaing electron beams, a vertically wide exposure of SR has been demonstrated in the SR lithography. The maximum vertical deviation from the design orbit nCcurs near the steering magnet. The maximum vertical tilt angle of the undulating beam near the nodes is about + or - 2mrad for a steering magnetic field of 50 gauss. Another proposal is for hith-intensity, uniform and wide exposure of SR from a wiggler installed in TERAS, using vertical and horizontal undulating motions of stored beams. A 1.4 m long permanent magnet wiggler has been installed for this purpose in this April
Wafer-shape metrics based foundry lithography
Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng
2017-03-01
As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.
Advanced coatings for next generation lithography
Naujok, P.; Yulin, S.; Kaiser, N.; Tünnermann, A.
2015-03-01
Beyond EUV lithography at 6.X nm wavelength has a potential to extend EUVL beyond the 11 nm node. To implement B-based mirrors and to enable their industrial application in lithography tools, a reflectivity level of > 70% has to be reached in near future. The authors will prove that transition from conventional La/B4C to promising LaN/B4C multilayer coatings leads to enhanced optical properties. Currently a near normal-incidence reflectivity of 58.1% @ 6.65 nm is achieved by LaN/B4C multilayer mirrors. The introduction of ultrathin diffusion barriers into the multilayer design to reach the targeted reflectivity of 70% was also tested. The optimization of multilayer design and deposition process for interface-engineered La/C/B4C multilayer mirrors resulted in peak reflectivity of 56.8% at the wavelength of 6.66 nm. In addition, the thermal stability of several selected multilayers was investigated and will be discussed.
Poisson processes and a Bessel function integral
Steutel, F.W.
1985-01-01
The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Measuring Poisson Ratios at Low Temperatures
Boozon, R. S.; Shepic, J. A.
1987-01-01
Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.
Affine Poisson Groups and WZW Model
Directory of Open Access Journals (Sweden)
Ctirad Klimcík
2008-01-01
Full Text Available We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
Quantum fields and Poisson processes. Pt. 2
International Nuclear Information System (INIS)
Bertrand, J.; Gaveau, B.; Rideau, G.
1985-01-01
Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.)
Evolutionary inference via the Poisson Indel Process.
Bouchard-Côté, Alexandre; Jordan, Michael I
2013-01-22
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-01-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)
Poisson brackets for fluids and plasmas
International Nuclear Information System (INIS)
Morrison, P.J.
1982-01-01
Noncanonical yet Hamiltonian descriptions are presented of many of the non-dissipative field equations that govern fluids and plasmas. The dynamical variables are the usually encountered physical variables. These descriptions have the advantage that gauge conditions are absent, but at the expense of introducing peculiar Poisson brackets. Clebsch-like potential descriptions that reverse this situations are also introduced
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-06-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering
Coherent transform, quantization, and Poisson geometry
Novikova, E; Itskov, V; Karasev, M V
1998-01-01
This volume contains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Efficient information transfer by Poisson neurons
Czech Academy of Sciences Publication Activity Database
Košťál, Lubomír; Shinomoto, S.
2016-01-01
Roč. 13, č. 3 (2016), s. 509-520 ISSN 1547-1063 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : information capacity * Poisson neuron * metabolic cost * decoding error Subject RIV: BD - Theory of Information Impact factor: 1.035, year: 2016
Innovative SU-8 Lithography Techniques and Their Applications
Directory of Open Access Journals (Sweden)
Jeong Bong Lee
2014-12-01
Full Text Available SU-8 has been widely used in a variety of applications for creating structures in micro-scale as well as sub-micron scales for more than 15 years. One of the most common structures made of SU-8 is tall (up to millimeters high-aspect-ratio (up to 100:1 3D microstructure, which is far better than that made of any other photoresists. There has been a great deal of efforts in developing innovative unconventional lithography techniques to fully utilize the thick high aspect ratio nature of the SU-8 photoresist. Those unconventional lithography techniques include inclined ultraviolet (UV exposure, back-side UV exposure, drawing lithography, and moving-mask UV lithography. In addition, since SU-8 is a negative-tone photoresist, it has been a popular choice of material for multiple-photon interference lithography for the periodic structure in scales down to deep sub-microns such as photonic crystals. These innovative lithography techniques for SU-8 have led to a lot of unprecedented capabilities for creating unique micro- and nano-structures. This paper reviews such innovative lithography techniques developed in the past 15 years or so.
Extension of optical lithography by mask-litho integration with computational lithography
Takigawa, T.; Gronlund, K.; Wiley, J.
2010-05-01
Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.
Immersion lithography defectivity analysis at DUV inspection wavelength
Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.
2007-03-01
Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
International Nuclear Information System (INIS)
Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.
2016-01-01
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
Energy Technology Data Exchange (ETDEWEB)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
Development of an MeV ion beam lithography system in Jyvaeskylae
Energy Technology Data Exchange (ETDEWEB)
Gorelick, Sergey [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)]. E-mail: Sergey.Gorelick@phys.jyu.fi; Ylimaeki, Tommi [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sagari, A.R.A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Whitlow, Harry J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)
2007-07-15
A lithographic facility for writing patterns with ion beams from cyclotron beams is under development for the Jyvaeskylae cyclotron. Instead of focusing and deflecting the beam with electrostatic and magnetic fields a different approach is used. Here a small rectangular beam spot is defined by the shadow of a computer-controlled variable aperture in close proximity to the sample. This allows parallel exposure of rectangular pattern elements of 5-500 {mu}m side with protons up to 6 MeV and heavy ions ({sup 20}Ne, {sup 85}Kr) up to few 100 MeV. Here we present a short overview of the system under construction and development of the aperture design, which is a critical aspect for all ion beam lithography systems.
Workshop on compact storage ring technology: applications to lithography
International Nuclear Information System (INIS)
1986-01-01
Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems
Laplace-Laplace analysis of the fractional Poisson process
Gorenflo, Rudolf; Mainardi, Francesco
2013-01-01
We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities.
Sequential infiltration synthesis for advanced lithography
Energy Technology Data Exchange (ETDEWEB)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing
2017-10-10
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.
Recent advances in X-ray lithography
International Nuclear Information System (INIS)
Cerrina, F.
1992-01-01
We report some significant developments in the area of X-ray technology, in the area of the modeling of image formation, in distortion control and in mask replication. Early simple models have been replaced by complete optical calculations based on physical optics and including all relevant factors. These models provide good agreement with the available experimental results. In the area of mask distortions, the use of finite element analysis models has clarified the roles played by the various sources of stress and explained in greater detail the origin of temperature changes. These progress have paved the way to the optimization of the exposure system and to the achievement of the large exposure latitude potential of X-ray lithography. (author)
Inclined nanoimprinting lithography for 3D nanopatterning
International Nuclear Information System (INIS)
Liu Zhan; Bucknall, David G; Allen, Mark G
2011-01-01
We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.
Illumination system for X-ray lithography
International Nuclear Information System (INIS)
Buckley, W.D.
1989-01-01
An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation
Accelerated yield learning in agressive lithography
Monahan, Kevin M.; Ashkenaz, Scott M.; Chen, Xing; Lord, Patrick J.; Merrill, Mark A.; Quattrini, Rich; Wiley, James N.
2000-06-01
As exposure wavelengths decrease from 248 nm to 193, 157, and even 13 nm (EUV), small process defects can cause collapse of the lithographic process window near the limits of resolution, particularly for the gate and contact structures in high- performance devices. Such sensitivity poses a challenge for lithography process module control. In this work, we show that yield loss can be caused by a combination of macro, micro, CD, and overlay defects. A defect is defined as any yield- affecting process variation. Each defect, regardless of cause, is assumed to have a specific 'kill potential.' The accuracy of the lithographic yield model can be improved by identifying those defects with the highest kill potential or, more importantly, those that pose the highest economic risk. Such economic considerations have led us to develop a simple heuristic model for understanding sampling strategies in defect metrology and for linking metrology capability to yield and profitability.
A simple electron-beam lithography system
DEFF Research Database (Denmark)
Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter
2005-01-01
A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....
Photonic integrated circuits: new challenges for lithography
Bolten, Jens; Wahlbrink, Thorsten; Prinzen, Andreas; Porschatis, Caroline; Lerch, Holger; Giesecke, Anna Lena
2016-10-01
In this work routes towards the fabrication of photonic integrated circuits (PICs) and the challenges their fabrication poses on lithography, such as large differences in feature dimension of adjacent device features, non-Manhattan-type features, high aspect ratios and significant topographic steps as well as tight lithographic requirements with respect to critical dimension control, line edge roughness and other key figures of merit not only for very small but also for relatively large features, are highlighted. Several ways those challenges are faced in today's low-volume fabrication of PICs, including the concept multi project wafer runs and mix and match approaches, are presented and possible paths towards a real market uptake of PICs are discussed.
Integrating nanosphere lithography in device fabrication
Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.
2016-03-01
This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.
METHOD OF FOREST FIRES PROBABILITY ASSESSMENT WITH POISSON LAW
Directory of Open Access Journals (Sweden)
A. S. Plotnikova
2016-01-01
Full Text Available The article describes the method for the forest fire burn probability estimation on a base of Poisson distribution. The λ parameter is assumed to be a mean daily number of fires detected for each Forest Fire Danger Index class within specific period of time. Thus, λ was calculated for spring, summer and autumn seasons separately. Multi-annual daily Forest Fire Danger Index values together with EO-derived hot spot map were input data for the statistical analysis. The major result of the study is generation of the database on forest fire burn probability. Results were validated against EO daily data on forest fires detected over Irkutsk oblast in 2013. Daily weighted average probability was shown to be linked with the daily number of detected forest fires. Meanwhile, there was found a number of fires which were developed when estimated probability was low. The possible explanation of this phenomenon was provided.
Poisson equation for weak gravitational lensing
International Nuclear Information System (INIS)
Kling, Thomas P.; Campbell, Bryan
2008-01-01
Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system
International Nuclear Information System (INIS)
Unge, Rikard von
2002-01-01
We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author)
Linear odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
1999-01-01
A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
The Fractional Poisson Process and the Inverse Stable Subordinator
Meerschaert, Mark; Nane, Erkan; Vellaisamy, P.
2011-01-01
The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extend...
Reduction of Nambu-Poisson Manifolds by Regular Distributions
Das, Apurba
2018-03-01
The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.
Comparing two Poisson populations sequentially: an application
International Nuclear Information System (INIS)
Halteman, E.J.
1986-01-01
Rocky Flats Plant in Golden, Colorado monitors each of its employees for radiation exposure. Excess exposure is detected by comparing the means of two Poisson populations. A sequential probability ratio test (SPRT) is proposed as a replacement for the fixed sample normal approximation test. A uniformly most efficient SPRT exists, however logistics suggest using a truncated SPRT. The truncated SPRT is evaluated in detail and shown to possess large potential savings in average time spent by employees in the monitoring process
Poisson filtering of laser ranging data
Ricklefs, Randall L.; Shelus, Peter J.
1993-01-01
The filtering of data in a high noise, low signal strength environment is a situation encountered routinely in lunar laser ranging (LLR) and, to a lesser extent, in artificial satellite laser ranging (SLR). The use of Poisson statistics as one of the tools for filtering LLR data is described first in a historical context. The more recent application of this statistical technique to noisy SLR data is also described.
Irreversible thermodynamics of Poisson processes with reaction.
Méndez, V; Fort, J
1999-11-01
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.
Degenerate odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
2000-01-01
A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra
Poisson/Superfish codes for personal computers
International Nuclear Information System (INIS)
Humphries, S.
1992-01-01
The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs
Computation of solar perturbations with Poisson series
Broucke, R.
1974-01-01
Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.
Alternative Forms of Compound Fractional Poisson Processes
Directory of Open Access Journals (Sweden)
Luisa Beghin
2012-01-01
Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.
Exterior differentials in superspace and Poisson brackets
International Nuclear Information System (INIS)
Soroka, Dmitrij V.; Soroka, Vyacheslav A.
2003-01-01
It is shown that two definitions for an exterior differential in superspace, giving the same exterior calculus, yet lead to different results when applied to the Poisson bracket. A prescription for the transition with the help of these exterior differentials from the given Poisson bracket of definite Grassmann parity to another bracket is introduced. It is also indicated that the resulting bracket leads to generalization of the Schouten-Nijenhuis bracket for the cases of superspace and brackets of diverse Grassmann parities. It is shown that in the case of the Grassmann-odd exterior differential the resulting bracket is the bracket given on exterior forms. The above-mentioned transition with the use of the odd exterior differential applied to the linear even/odd Poisson brackets, that correspond to semi-simple Lie groups, results, respectively, in also linear odd/even brackets which are naturally connected with the Lie superalgebra. The latter contains the BRST and anti-BRST charges and can be used for calculation of the BRST operator cogomology. (author)
Duality and modular class of a Nambu-Poisson structure
International Nuclear Information System (INIS)
Ibanez, R.; Leon, M. de; Lopez, B.; Marrero, J.C.; Padron, E.
2001-01-01
In this paper we introduce cohomology and homology theories for Nambu-Poisson manifolds. Also we study the relation between the existence of a duality for these theories and the vanishing of a particular Nambu-Poisson cohomology class, the modular class. The case of a regular Nambu-Poisson structure and some singular examples are discussed. (author)
Reverse-contact UV nanoimprint lithography for multilayered structure fabrication
DEFF Research Database (Denmark)
Kehagias, N.; Reboud, V.; Chansin, G.
2007-01-01
In this paper, we report results on a newly developed nanofabrication technique, namely reverse-contact UV nanoimprint lithography. This technique is a combination of nanoimprint lithography and contact printing lithography. In this process, a lift-off resist and a UV cross-linkable polymer...... are spin-coated successively onto a patterned UV mask-mould. These thin polymer films are then transferred from the mould to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mould and the substrate, the unexposed...... polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp. This method delivers resist pattern transfer without a residual layer, thereby rending unnecessary the etching steps typically needed in the imprint lithography techniques for three...
Applications of Cold Cathode PIG Ion Source in Lithography
International Nuclear Information System (INIS)
Bassal, N.I.
2012-01-01
The cold cathode Penning ion source (PIG) of axial type could be modified to produce ion and electron beam with a considerable amount to use it in the lithography process. Lithography is a new applications of ion/electron beam at which one can use the ion/ or electron beam as a pencil to write and draw on a metal surface. The electron beam takes 1/3 the time needed for ion beam to make good picture. So that with the help of ion/or electron beam lithography one can mark tools, parts, instruments, and equipment with names, numbers, designs, trademark or brand name in few seconds. It is an easy process, quick and an inexpensive method. Firstly, operating characteristics of this ion source is studied. Lithography application of ion source with optimum conditions is done. Later, the hardness and the tensile strength is measured and each of them increases with increasing time
Laser interference lithography with highly accurate interferometric alignment
van Soest, Frank J.; van Wolferen, Hendricus A.G.M.; Hoekstra, Hugo; de Ridder, R.M.; Worhoff, Kerstin; Lambeck, Paul
It is shown experimentally that in laser interference lithography, by using a reference grating, respective grating layers can be positioned with high relative accuracy. A 0.001 degree angular and a few nanometers lateral resolution have been demonstrated.
Reverse-contact UV nanoimprint lithography for multilayered structure fabrication
International Nuclear Information System (INIS)
Kehagias, N; Reboud, V; Chansin, G; Zelsmann, M; Jeppesen, C; Schuster, C; Kubenz, M; Reuther, F; Gruetzner, G; Torres, C M Sotomayor
2007-01-01
In this paper, we report results on a newly developed nanofabrication technique, namely reverse-contact UV nanoimprint lithography. This technique is a combination of nanoimprint lithography and contact printing lithography. In this process, a lift-off resist and a UV cross-linkable polymer are spin-coated successively onto a patterned UV mask-mould. These thin polymer films are then transferred from the mould to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mould and the substrate, the unexposed polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp. This method delivers resist pattern transfer without a residual layer, thereby rending unnecessary the etching steps typically needed in the imprint lithography techniques for three-dimensional patterning. Three-dimensional woodpile-like structures were successfully fabricated with this new technique
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
International Nuclear Information System (INIS)
Colhoun, C.
1982-01-01
The spot market is always quoted for the price of uranium because little information is available about long-term contracts. A review of the development of spot market prices shows the same price curve swings that occur with all raw materials. Future long-term contracts will probably be lower to reflect spot market prices, which are currently in the real-value range of $30-$35. An upswing in the price of uranium could come in the next few months as utilities begin making purchases and trading from stockpiles. The US, unlike Europe and Japan, has already reached a supply and demand point where the spot market share is increasing. Forecasters cannot project the market price, they can only predict the presence of an oscillating spot or a secondary market. 5 figures
International Nuclear Information System (INIS)
Hoshino, Takayuki; Mabuchi, Kunihiko
2013-01-01
Highlights: ► An electron beam lithography (EBL) was used as an in situ nano processing for a living cell. ► A synchronized optics was containing an inverted EBL and an optical microscope. ► This system visualized real-time images of the EB-induced nano processing. ► We demonstrated the nano processing for a culturing cell with 200–300 nm resolution. ► Our system would be able to provide high resolution display of virtual environments. -- Abstract: The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components. First, we designed the opposed co-axial dual optics containing inverted electron beam lithography (I-EBL) system and a fluorescent optical microscope. This system could provide in situ nano processing for a culturing living cell on a 100-nm-thick SiN nanomembrane, which was placed between the I-EBL and the fluorescent optical microscope. Then we demonstrated the EB-induced chemical direct nano processing for a culturing cell with hundreds of nanometer resolution and visualized real-time images of the scanning spot of the EB-induced luminescent emission and chemical processing using a high sensitive camera mounted on the optical microscope. We concluded that our closed-loop in situ nano processing would be able to provide a nanometer resolution display of virtual molecule environments to study functional changes of bio-molecule systems
Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials
Le Boulbar, E. D.; Chausse, P. J. P.; Lis, S.; Shields, P. A.
2017-06-01
Nanostructured materials are essential for many recent electronic, magnetic and optical devices. Lithography is the most common step used to fabricate organized and well calibrated nanostructures. However, feature sizes less than 200 nm usually require access to deep ultraviolet photolithography, e-beam lithography or soft lithography (nanoimprinting), which are either expensive, have low-throughput or are sensitive to defects. Low-cost, high-throughput and low-defect-density techniques are therefore of interest for the fabrication of nanostructures. In this study, we investigate the potential of displacement Talbot lithography for the fabrication of specific structures of interest within plasmonic and metamaterial research fields. We demonstrate that nanodash arrays and `fishnet'-like structures can be fabricated by using a double exposure of two different linear grating phase masks. Feature sizes can be tuned by varying the exposure doses. Such lithography has been used to fabricate metallic `fishnet'-like structures using a lift-off technique. This proof of principle paves the way to a low-cost, high-throughput, defect-free and large-scale technique for the fabrication of structures that could be useful for metamaterial and plasmonic metasurfaces. With the development of deep ultraviolet displacement Talbot lithography, the feature dimensions could be pushed lower and used for the fabrication of optical metamaterials in the visible range.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Single-spot e-beam lithography for defining large arrays of nano-holes
DEFF Research Database (Denmark)
Højlund-Nielsen, Emil; Greibe, Tine; Mortensen, N. Asger
2014-01-01
V prototype EBL system for speed and pattern fidelity to a minimum writing time of around 30 min/cm2 for 200 nm periods in 2D lattices. The machine time and feasibility of the method are assessed in terms of the trade-off between high current and large writing field. © 2014 Elsevier B.V. All rights reserved....
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
On the fractal characterization of Paretian Poisson processes
Eliazar, Iddo I.; Sokolov, Igor M.
2012-06-01
Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.
Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Hougaard, P; Lee, M L; Whitmore, G A
1997-12-01
Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.
The transverse Poisson's ratio of composites.
Foye, R. L.
1972-01-01
An expression is developed that makes possible the prediction of Poisson's ratio for unidirectional composites with reference to any pair of orthogonal axes that are normal to the direction of the reinforcing fibers. This prediction appears to be a reasonable one in that it follows the trends of the finite element analysis and the bounding estimates, and has the correct limiting value for zero fiber content. It can only be expected to apply to composites containing stiff, circular, isotropic fibers bonded to a soft matrix material.
Risk Sensitive Filtering with Poisson Process Observations
International Nuclear Information System (INIS)
Malcolm, W. P.; James, M. R.; Elliott, R. J.
2000-01-01
In this paper we consider risk sensitive filtering for Poisson process observations. Risk sensitive filtering is a type of robust filtering which offers performance benefits in the presence of uncertainties. We derive a risk sensitive filter for a stochastic system where the signal variable has dynamics described by a diffusion equation and determines the rate function for an observation process. The filtering equations are stochastic integral equations. Computer simulations are presented to demonstrate the performance gain for the risk sensitive filter compared with the risk neutral filter
Moments analysis of concurrent Poisson processes
International Nuclear Information System (INIS)
McBeth, G.W.; Cross, P.
1975-01-01
A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)
Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchhoff, Fourier Propagation and Poisson's Spot
National Research Council Canada - National Science Library
Lucke, Robert
2004-01-01
.... These problems are absent in the Rayleigh- Sommerfeld (RS) solution. The difference between RS and FK is in the inclination factor and is usually immaterial because the inclination factor is approximated by unity...
Weak interfaces for UV cure nanoimprint lithography
Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa
2008-03-01
Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.
Evaporative Lithography in Open Microfluidic Channel Networks
Lone, Saifullah
2017-02-24
We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.
STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY
Directory of Open Access Journals (Sweden)
Mária Domonkos
2014-10-01
Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin ﬁlms is demonstrated. The structuring of the diamond ﬁlms is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.
Nanosphere lithography applied to magnetic thin films
Gleason, Russell
Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.
Reflective masks for extreme ultraviolet lithography
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)
1994-05-01
Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.
Directory of Open Access Journals (Sweden)
Manuel R. Gonçalves
2011-08-01
Full Text Available We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost.Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.
Nonhomogeneous Poisson process with nonparametric frailty
International Nuclear Information System (INIS)
Slimacek, Vaclav; Lindqvist, Bo Henry
2016-01-01
The failure processes of heterogeneous repairable systems are often modeled by non-homogeneous Poisson processes. The common way to describe an unobserved heterogeneity between systems is to multiply the basic rate of occurrence of failures by a random variable (a so-called frailty) having a specified parametric distribution. Since the frailty is unobservable, the choice of its distribution is a problematic part of using these models, as are often the numerical computations needed in the estimation of these models. The main purpose of this paper is to develop a method for estimation of the parameters of a nonhomogeneous Poisson process with unobserved heterogeneity which does not require parametric assumptions about the heterogeneity and which avoids the frequently encountered numerical problems associated with the standard models for unobserved heterogeneity. The introduced method is illustrated on an example involving the power law process, and is compared to the standard gamma frailty model and to the classical model without unobserved heterogeneity. The derived results are confirmed in a simulation study which also reveals several not commonly known properties of the gamma frailty model and the classical model, and on a real life example. - Highlights: • A new method for estimation of a NHPP with frailty is introduced. • Introduced method does not require parametric assumptions about frailty. • The approach is illustrated on an example with the power law process. • The method is compared to the gamma frailty model and to the model without frailty.
Renewal characterization of Markov modulated Poisson processes
Directory of Open Access Journals (Sweden)
Marcel F. Neuts
1989-01-01
Full Text Available A Markov Modulated Poisson Process (MMPP M(t defined on a Markov chain J(t is a pure jump process where jumps of M(t occur according to a Poisson process with intensity λi whenever the Markov chain J(t is in state i. M(t is called strongly renewal (SR if M(t is a renewal process for an arbitrary initial probability vector of J(t with full support on P={i:λi>0}. M(t is called weakly renewal (WR if there exists an initial probability vector of J(t such that the resulting MMPP is a renewal process. The purpose of this paper is to develop general characterization theorems for the class SR and some sufficiency theorems for the class WR in terms of the first passage times of the bivariate Markov chain [J(t,M(t]. Relevance to the lumpability of J(t is also studied.
Binomial vs poisson statistics in radiation studies
International Nuclear Information System (INIS)
Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff
1983-01-01
The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.)
Variational Gaussian approximation for Poisson data
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Monospot test; Heterophile antibody test; Heterophile agglutination test; Paul-Bunnell test; Forssman antibody test ... The mononucleosis spot test is done when symptoms of mononucleosis are ... Fatigue Fever Large spleen (possibly) Sore throat Tender ...
Low leaching and low LWR photoresist development for 193 nm immersion lithography
Ando, Nobuo; Lee, Youngjoon; Miyagawa, Takayuki; Edamatsu, Kunishige; Takemoto, Ichiki; Yamamoto, Satoshi; Tsuchida, Yoshinobu; Yamamoto, Keiko; Konishi, Shinji; Nakano, Katsushi; Tomoharu, Fujiwara
2006-03-01
With no apparent showstopper in sight, the adoption of ArF immersion technology into device mass production is not a matter of 'if' but a matter of 'when'. As the technology matures at an unprecedented speed, many of initial technical difficulties have been cleared away and the use of a protective layer known as top coat, initially regarded as a must, now becomes optional, for example. Our focus of interest has also sifted to more practical and production related issues such as defect reducing and performance enhancement. Two major types of immersion specific defects, bubbles and a large number of microbridges, were observed and reported elsewhere. The bubble defects seem to decrease by improvement of exposure tool. But the other type defect - probably from residual water spots - is still a problem. We suspect that the acid leaching from resist film causes microbridges. When small water spots were remained on resist surface after exposure, acid catalyst in resist film is leaching into the water spots even though at room temperature. After water from the spot is dried up, acid molecules are condensed at resist film surface. As a result, in the bulk of resist film, acid depletion region is generated underneath the water spot. Acid catalyzed deprotection reaction is not completed at this acid shortage region later in the PEB process resulting in microbridge type defect formation. Similar mechanism was suggested by Kanna et al, they suggested the water evaporation on PEB plate. This hypothesis led us to focus on reducing acid leaching to decrease residual water spot-related defect. This paper reports our leaching measurement results and low leaching photoresist materials satisfying the current leaching requirements outlined by tool makers without topcoat layer. On the other hand, Nakano et al reported that the higher receding contact angle reduced defectivity. The higher receding contact angle is also a key item to increase scan speed. The effort to increase the
International Nuclear Information System (INIS)
Schrade, H.O.
1989-01-01
Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory
The partial coherence modulation transfer function in testing lithography lens
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action
Chekhov, L. O.; Mazzocco, M.
2017-12-01
Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.
PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON
Directory of Open Access Journals (Sweden)
PUTU SUSAN PRADAWATI
2013-09-01
Full Text Available Poisson regression was used to analyze the count data which Poisson distributed. Poisson regression analysis requires state equidispersion, in which the mean value of the response variable is equal to the value of the variance. However, there are deviations in which the value of the response variable variance is greater than the mean. This is called overdispersion. If overdispersion happens and Poisson Regression analysis is being used, then underestimated standard errors will be obtained. Negative Binomial Regression can handle overdispersion because it contains a dispersion parameter. From the simulation data which experienced overdispersion in the Poisson Regression model it was found that the Negative Binomial Regression was better than the Poisson Regression model.
A test of inflated zeros for Poisson regression models.
He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan
2017-01-01
Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.
A Method of Poisson's Ration Imaging Within a Material Part
Roth, Don J. (Inventor)
1994-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.
Method of Poisson's ratio imaging within a material part
Roth, Don J. (Inventor)
1996-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.
Compound Poisson Approximations for Sums of Random Variables
Serfozo, Richard F.
1986-01-01
We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...
Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography
Kwak, Rhokyun; Jeong, Hoon Eui; Suh, Kahp Y.
2009-01-01
Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold
DEFF Research Database (Denmark)
Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei
2006-01-01
We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....
Graphene nanoribbon superlattices fabricated via He ion lithography
International Nuclear Information System (INIS)
Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto
2014-01-01
Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He + -beam lithography can texture graphene with less damage
Graphene nanoribbon superlattices fabricated via He ion lithography
Energy Technology Data Exchange (ETDEWEB)
Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Fragneaud, Benjamin [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil); Gustavo Cançado, Luiz [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Winston, Donald [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Miao, Feng [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); National Laboratory of Solid State Microstructures, School of Physics, National Center of Microstructures and Quantum Manipulation, Nanjing University, Nanjing 210093 (China); Alberto Achete, Carlos [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de janeiro, Rio de Janeiro RJ 21941-972 (Brazil); Medeiros-Ribeiro, Gilberto [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States)
2014-05-12
Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.
The application of synchrotron radiation to X-ray lithography
International Nuclear Information System (INIS)
Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.
1976-06-01
Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de
Semi-Poisson statistics in quantum chaos.
García-García, Antonio M; Wang, Jiao
2006-03-01
We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques.
Surface reconstruction through poisson disk sampling.
Directory of Open Access Journals (Sweden)
Wenguang Hou
Full Text Available This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective.
Thinning spatial point processes into Poisson processes
DEFF Research Database (Denmark)
Møller, Jesper; Schoenberg, Frederic Paik
2010-01-01
are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....
Thinning spatial point processes into Poisson processes
DEFF Research Database (Denmark)
Møller, Jesper; Schoenberg, Frederic Paik
, and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....
Periodic Poisson Solver for Particle Tracking
International Nuclear Information System (INIS)
Dohlus, M.; Henning, C.
2015-05-01
A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.
Nonlinear poisson brackets geometry and quantization
Karasev, M V
2012-01-01
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.
Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels
Energy Technology Data Exchange (ETDEWEB)
Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana; Menon, Rajesh [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Pollock, Benjamin J.; Andrew, Trisha L. [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Soppera, Olivier [Mulhouse Institute for Material Sciences, CNRS LRC 7228, BP2488, Mulhouse 68200 (France)
2016-06-15
Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes the underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.
Lithography for enabling advances in integrated circuits and devices.
Garner, C Michael
2012-08-28
Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
Investigation of the physics of diamond MEMS : diamond allotrope lithography
International Nuclear Information System (INIS)
Zalizniak, I.; Olivero, P.; Jamieson, D.N.; Prawer, S.; Reichart, P.; Rubanov, S.; Petriconi, S.
2005-01-01
We propose a novel lithography process in which ion induced phase transfomations of diamond form sacrificial layers allowing the fabrication of small structures including micro-electromechanical systems (MEMS). We have applied this novel lithography to the fabrication of diamond microcavities, cantilevers and optical waveguides. In this paper we present preliminary experiments directed at the fabrication of suspended diamond disks that have the potential for operation as optical resonators. Such structures would be very durable and resistant to chemical attack with potential applications as novel sensors for extreme environments or high temperature radiation detectors. (author). 3 refs., 3 figs
Quantum lithography beyond the diffraction limit via Rabi-oscillations
Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail
2011-03-01
We propose a quantum optical method to do the sub-wavelength lithography. Our method is similar to the traditional lithography but adding a critical step before dissociating the chemical bound of the photoresist. The subwavelength pattern is achieved by inducing the multi-Rabi-oscillation between the two atomic levels. The proposed method does not require multiphoton absorption and the entanglement of photons. This method is expected to be realizable using current technology. This work is supported by a grant from the Qatar National Research Fund (QNRF) under the NPRP project and a grant from the King Abdulaziz City for Science and Technology (KACST).
Functionalized SU-8 patterned with X-ray Lithography
DEFF Research Database (Denmark)
Balslev, Søren; Romanato, F.
2005-01-01
spontaneous emission light source that couples out light normal to the chip plane. In addition we examine the influence of the x-ray irradiation on the fluorescence of thin films of dye doped SU-8. The dye embedded in the SU-8 is optically excited during, characterization by an external light source tuned......In this work we demonstrate the feasibility of x-ray lithography on SU-8 photoresist doped with the laser dye Rhodamine 6G, while retaining the photoactive properties of the embedded dye. Two kinds of structures are fabricated via soft x-ray lithography and characterized: a laser and in amplified...
International Nuclear Information System (INIS)
Altun, Ali Ozhan; Jeong, Jun-Ho; Rha, Jong-Joo; Kim, Ki-Don; Lee, Eung-Sug
2007-01-01
Cubic boron nitride (c-BN) is one of the hardest known materials (second after diamond). It has a high level of chemical resistance and high UV transmittance. In this study, a stamp for ultra-violet nanoimprint lithography (UV-NIL) was fabricated using a bi-layered BN film deposited on a quartz substrate. Deposition of the BN was done using RF magnetron sputtering. A hexagonal boron nitride (h-BN) layer was deposited for 30 min before c-BN was deposited for 30 min. The thickness of the film was measured as 160 nm. The phase of the c-BN layer was investigated using Fourier transform infrared (FTIR) spectrometry, and it was found that the c-BN layer has a 40% cubic phase. The deposited film was patterned using focused ion beam (FIB) lithography for use as a UV-NIL stamp. Line patterns were fabricated with the line width and line distance set at 150 and 150 nm, respectively. The patterning process was performed by applying different currents to observe the effect of the current value on the pattern profile. The fabricated patterns were investigated using AFM, and it was found that the pattern fabricated by applying a current value of 50 picoamperes (pA) has a better profile with a 65 nm line depth. The UV transmittance of the 160 nm thick film was measured to be 70-86%. The hardness and modulus of the BN was measured to be 12 and 150 GPa, respectively. The water contact angle of the stamp surface was measured at 75 0 . The stamp was applied to UV-NIL without coating with an anti-adhesion layer. Successful imprinting was proved via scanning electron microscope (SEM) images of the imprinted resin
Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.
Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew
2014-12-26
Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.
Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems
International Nuclear Information System (INIS)
Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo
2009-01-01
The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems
Submicron hollow spot generation by solid immersion lens and structured illumination
International Nuclear Information System (INIS)
Kim, M-S; Scharf, T; Herzig, H P; Assafrao, A C; Wachters, A J H; Pereira, S F; Urbach, H P; Brun, M; Olivier, S; Nicoletti, S
2012-01-01
We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (μ-SIL) made of SiO 2 . Such structured focal spots are characterized by a doughnut-shaped intensity distribution, whose central dark region is of great interest for optical trapping of nano-size particles, super-resolution microscopy and lithography. In this work, we have used a high-resolution interference microscopy technique to measure the structured immersed focal spots, whose dimensions were found to be significantly reduced due to the immersion effect of the μ-SIL. In particular, a reduction of 37% of the dark central region was verified. The measurements were compared with a rigorous finite element method model for the μ-SIL, revealing excellent agreement between them. (paper)
Estimation of a Non-homogeneous Poisson Model: An Empirical ...
African Journals Online (AJOL)
This article aims at applying the Nonhomogeneous Poisson process to trends of economic development. For this purpose, a modified Nonhomogeneous Poisson process is derived when the intensity rate is considered as a solution of stochastic differential equation which satisfies the geometric Brownian motion. The mean ...
Formulation of Hamiltonian mechanics with even and odd Poisson brackets
International Nuclear Information System (INIS)
Khudaverdyan, O.M.; Nersesyan, A.P.
1987-01-01
A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs
Double generalized linear compound poisson models to insurance claims data
DEFF Research Database (Denmark)
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.N.; Serra, P.; van Zanten, H.
2015-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain
Quantum algebras and Poisson geometry in mathematical physics
Karasev, M V
2005-01-01
This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.
Cluster X-varieties, amalgamation, and Poisson-Lie groups
DEFF Research Database (Denmark)
Fock, V. V.; Goncharov, A. B.
2006-01-01
In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...
Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets
Carlet, Guido; Casati, Matteo; Shadrin, Sergey
2017-04-01
We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial.
Avoiding negative populations in explicit Poisson tau-leaping.
Cao, Yang; Gillespie, Daniel T; Petzold, Linda R
2005-08-01
The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure.
Unimodularity criteria for Poisson structures on foliated manifolds
Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury
2018-03-01
We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.
Poisson-Boltzmann-Nernst-Planck model
International Nuclear Information System (INIS)
Zheng Qiong; Wei Guowei
2011-01-01
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Poisson-Boltzmann-Nernst-Planck model.
Zheng, Qiong; Wei, Guo-Wei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
3D Simulation of Nano-Imprint Lithography
DEFF Research Database (Denmark)
Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole
2010-01-01
A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...
Report on the fifth workshop on synchrotron x ray lithography
Williams, G. P.; Godel, J. B.; Brown, G. S.; Liebmann, W.
Semiconductors comprise a greater part of the United States economy than the aircraft, steel, and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990s. X ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin, and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the exposure tool, that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x ray lithography and set a time frame, the other to focus on sources.
Fabrication of periodically ordered diamond nanostructures by microsphere lithography
Czech Academy of Sciences Publication Activity Database
Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Kromka, Alexander
2014-01-01
Roč. 251, č. 12 (2014), s. 2587-2592 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : CVD growth * diamond * microsphere lithography * selective area deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014
Structure formation in atom lithography using geometric collimation
Meijer, T.; Beardmore, J.P.; Fabrie, C.G.C.H.M.; van Lieshout, J.P.; Notermans, R.P.M.J.W.; Sang, R.T.; Vredenbregt, E.J.D.; Leeuwen, van K.A.H.
2011-01-01
Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally
From 2D Lithography to 3D Patterning
Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.
2010-01-01
Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the
Combined electron beam and UV lithography in SU-8
DEFF Research Database (Denmark)
Gersborg-Hansen, Morten; Thamdrup, Lasse Højlund; Mironov, Andrej
2007-01-01
We present combined electron beam and UV lithography (CEUL) in SU-8 as a fast and flexible lithographic technique for prototyping of functional polymer devices and pattern transfer applications. CEUL is a lithographic technique suitable for defining both micrometer and nanometer scale features...
Silicon Nanowire Fabrication Using Edge and Corner Lithography
Yagubizade, H.; Berenschot, Johan W.; Jansen, Henricus V.; Elwenspoek, Michael Curt; Tas, Niels Roelof
2010-01-01
This paper presents a wafer scale fabrication method of single-crystalline silicon nanowires (SiNWs) bound by <111> planes using a combination of edge and corner lithography. These are methods of unconventional nanolithography for wafer scale nano-patterning which determine the size of nano-features
Fabrication of nanoparticle and protein nanostructures using nanoimprint lithography
Maury, P.A.
2007-01-01
Nanoimprint lithography (NIL) was used as a tool to pattern self-assembled monolayers (SAMs) on silicon substrates because of its ability to pattern in the micrometer and nanometer ranges. The resulting polymer template behaved as a physical barrier preventing the formation of a SAM in the covered
Fast thermal nanoimprint lithography by a stamp with integrated heater
DEFF Research Database (Denmark)
Tormen, Massimo; Malureanu, Radu; Pedersen, Rasmus Haugstrup
2008-01-01
We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 μs 25 Hz...
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Laurençot, P.
2007-01-01
Roč. 88, - (2007), s. 325-349 ISSN 0021-7824 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier- Poisson system * Smoluchowski- Poisson system * singular limit Subject RIV: BA - General Mathematics Impact factor: 1.118, year: 2007
TiO2/ CNT hetero-structure with variable electron beam diameter suitable for nano lithography
International Nuclear Information System (INIS)
Barati, F.; Abdi, Y.; Arzi, E.
2012-01-01
We report fabrication of a novel TiO 2 /carbon nano tube based field emission device suitable for nano lithography and fabrication of transistor. The growth of carbon nano tubes is performed on silicon substrates using plasma-enhanced chemical vapor deposition method. The vertically grown carbon nano tubes are encapsulated by TiO 2 using an atmospheric pressure chemical vapor deposition system. Field emission from the carbon nano tubes is realized by mechanical polishing of the prepared nano structure. The possibility of the application of such nano structures as a lithography tool with variable electron beam diameter was investigated. The obtained results show that spot size of less than 30 nm can be obtained by applying a proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of this nano structure for the fabrication of field emission based field effect transistor. By applying a voltage between the gate and the cathode electrode, the emission current from carbon nano tubes shows a significant drop, indicating proper control of gate on the emission current.
El-bakly, S
1994-09-01
The Information, Education and Communication (IEC) Center of the State Information Service was established in 1979 for the purpose of providing information to the people on the population issue. The Ministry of Information has accorded the State Information Service free TV and radio air time for family planning dramas and spots. In the early years information campaigns were organized to make people aware of the population problem by slogans, songs, and cartoons. Around 1984 misconceptions about family planning and contraceptives were attacked through a number of TV and radio spots. A few years later 21 spots on specific contraceptive methods were broadcast which were aired for three years over 3000 times. They were extremely successful. The impact of these TV spots was one of the major reasons why the contraceptive prevalence rate increased from 30% in 1984 to 38% in 1988 and 47% in 1992. Spots were also broadcast about the social implications of large families. The TV soap opera "And The Nile Flows On", with the family planning message interwoven into it, was very well received by the target audience. A program entitled "Wedding of the Month" features couples who know family planning well. The most successful radio program is a 15-20 minute long quiz show for residents of the villages where the Select Villages Project is being implemented. The State Information Service has 60 local information centers in the 26 governorates of Egypt that make plans for the family planning campaign. In 1992 the Minya Initiative, a family planning project was implemented in the Minya Governorate. As a result, the contraceptive prevalence rate rose from 22% to 30% over 18 months. A new project, the Select Village Project, was developed in 1993 that replicates the Minya Initiative on the village level in other governorates. This new project that was implemented in sixteen governorates.
Protein assay structured on paper by using lithography
Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.
2015-03-01
There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.
Roth spots in pernicious anaemia
Macauley, Mavin; Nag, Satyajit
2011-01-01
Roth spots are white-centred retinal haemorrhages, previously thought to be pathognomonic for subacute bacterial endocarditis. A number of other conditions can be associated with Roth spots. In this case, the authors describe the association of Roth spots and pernicious anaemia. This association has been rarely described in the medical literature. Correct diagnosis and treatment with intramuscular vitamin B12 injections resulted in complete resolution of the anaemia and Roth spots. The author...
Test of Poisson Process for Earthquakes in and around Korea
International Nuclear Information System (INIS)
Noh, Myunghyun; Choi, Hoseon
2015-01-01
Since Cornell's work on the probabilistic seismic hazard analysis (hereafter, PSHA), majority of PSHA computer codes are assuming that the earthquake occurrence is Poissonian. To the author's knowledge, it is uncertain who first opened the issue of the Poisson process for the earthquake occurrence. The systematic PSHA in Korea, led by the nuclear industry, were carried out for more than 25 year with the assumption of the Poisson process. However, the assumption of the Poisson process has never been tested. Therefore, the test is of significance. We tested whether the Korean earthquakes follow the Poisson process or not. The Chi-square test with the significance level of 5% was applied. The test turned out that the Poisson process could not be rejected for the earthquakes of magnitude 2.9 or larger. However, it was still observed in the graphical comparison that some portion of the observed distribution significantly deviated from the Poisson distribution. We think this is due to the small earthquake data. The earthquakes of magnitude 2.9 or larger occurred only 376 times during 34 years. Therefore, the judgment on the Poisson process derived in the present study is not conclusive
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
The Poisson alignment reference system implementation at the Advanced Photon Source
International Nuclear Information System (INIS)
Feier, I.
1998-01-01
The Poisson spot was established using a collimated laser beam from a 3-mW diode laser. It was monitored on a quadrant detector and found to be very sensitive to vibration and air disturbances. Therefore, for future work we strongly recommend a sealed vacuum tube in which the Poisson line may be propagated. A digital single-axis feedback system was employed to generate an straight line reference (SLR) on the X axis. Pointing accuracy was better than 8 ± 2 microns at a distance of 5 m. The digital system was found to be quite slow with a maximum bandwidth of 47 ± 9 Hz. Slow drifts were easily corrected but any vibration over 5 Hz was not. We recommend an analog proportional-integral-derivative (PID) controller for high bandwidth and smooth operation of the kinematic mirror. Although the Poisson alignment system (PAS) at the Advanced Photon Source is still in its infancy, it already shows great promise as a possible alignment system for the low-energy undulator test line (LEUTL). Since components such as wigglers and quadruples will initially be aligned with respect to each other using conventional means and mounted on some kind of rigid rail, the goal would be to align six to ten such rails over a distance of about 30 m. The PAS could be used to align these rails by mounting a sphere at the joint between two rails. These spheres would need to be in a vacuum pipe to eliminate the refractive effects of air. Each sphere would not be attached to either rail but instead to a flange connecting the vacuum pipes of each rail. Thus the whole line would be made up of straight, rigid segments that could be aligned by moving the joints. Each sphere would have its own detector, allowing the operators to actively monitor the position of each joint and therefore the overall alignment of the system
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Intertime jump statistics of state-dependent Poisson processes.
Daly, Edoardo; Porporato, Amilcare
2007-01-01
A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.
Network Traffic Monitoring Using Poisson Dynamic Linear Models
Energy Technology Data Exchange (ETDEWEB)
Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-05-09
In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.
Poisson solvers for self-consistent multi-particle simulations
International Nuclear Information System (INIS)
Qiang, J; Paret, S
2014-01-01
Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation
Boundary Lax pairs from non-ultra-local Poisson algebras
International Nuclear Information System (INIS)
Avan, Jean; Doikou, Anastasia
2009-01-01
We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.
DEFF Research Database (Denmark)
Harrod, Steven; Kelton, W. David
2006-01-01
Nonstationary Poisson processes are appropriate in many applications, including disease studies, transportation, finance, and social policy. The authors review the risks of ignoring nonstationarity in Poisson processes and demonstrate three algorithms for generation of Poisson processes...
Male, Alan; Butterfield, Moira
2000-01-01
This a children's non-fiction, knowledge bearing picture book that is part of a Reader's Digest series called 'On the Spot'. The series deals with a range of topics related to the natural world and this one introduces its young audience to the ecosystems of the oceans. \\ud The publication was illustrated and designed by the author (Alan Male) and is technically described as a board book with interactive 'pop up' features, specifically conceived to engage children's discovery and learning thro...
Directory of Open Access Journals (Sweden)
Palma Peña-Jiménez
2011-01-01
Full Text Available l spot político tiene durante la campaña un objetivo final inequívoco: la consecución del voto favorable. Se dirige al cuerpo electoral a través de la televisión y de Internet, y presenta, en muchos casos, un planteamiento negativo, albergando mensajes destinados a la crítica frontal contra el adversario, más que a la exposición de propuestas propias. Este artículo se centra en el análisis del spot electoral negativo, en aquellas producciones audiovisuales construidas sin más causa que la reprobación del contrincante. Se trata de vídeos que, lejos de emplearse en difundir las potencialidades de la organización y las virtudes de su candidato –además de su programa electoral–, consumen su tiempo en descalificar al oponente mediante la transmisión de mensajes, muchas veces, ad hominem. Repasamos el planteamiento negativo del spot electoral desde su primera manifestación, que en España data de 1996, año de emisión del conocido como vídeo del dóberman, sin olvidar otros ejemplos que completan el objeto de estudio.
Roth spots in pernicious anaemia.
Macauley, Mavin; Nag, Satyajit
2011-04-19
Roth spots are white-centred retinal haemorrhages, previously thought to be pathognomonic for subacute bacterial endocarditis. A number of other conditions can be associated with Roth spots. In this case, the authors describe the association of Roth spots and pernicious anaemia. This association has been rarely described in the medical literature. Correct diagnosis and treatment with intramuscular vitamin B(12) injections resulted in complete resolution of the anaemia and Roth spots. The authors hope to alert clinicians to think of various differentials of Roth spots, and initiate prompt investigation and management.
Investigation of the AZ 5214E photoresist by the laser interference, EBDW and NSOM lithographies
Energy Technology Data Exchange (ETDEWEB)
Škriniarová, J., E-mail: jaroslava.skriniarova@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Pudiš, D. [Department of Physics, University of Žilina, Žilina (Slovakia); Andok, R. [Department of E-Beam Lithography, Institute of Informatics, Slovak Academy of Sciences, Bratislava (Slovakia); Lettrichová, I. [Department of Physics, University of Žilina, Žilina (Slovakia); Uherek, F. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia)
2017-02-15
Highlights: • Applicability of the AZ 5214E photoresist for three different lithographies. • Useful for the fabrication of 1D and 2D periodic and irregular structures. • 2D structures with 260 nm period achieved by the laser interference lithography. • Structures with period below 500 nm achieved with the e-beam direct-write lithography. • Holes of 270 nm diameter made by the near-field scanning optical microscopy lithography. - Abstract: In this paper we show a comparison of chosen lithographies used for the AZ 5214E photoresist, which is normally UV sensitive but has also been investigated for its sensitivity to e-beam exposure. Three lithographies, the E-Beam Direct Write lithography (EBDW), laser Interference Lithography (IL) and the non-contact Near-field Scanning Optical Microscopy (NSOM) lithography, are discussed here and the results on exposed arrays of simple patterns are shown. With the EBDW and IL we achieved periods of the structures around half-micron, and we demonstrate attainability of dimensions smaller or comparable than usually achieved by a standard optical photolithography with the investigated photoresist. With the non-contact NSOM lithography structures with periods slightly above a micron were achieved.
Energy Technology Data Exchange (ETDEWEB)
Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu; Rai, V. N.; Srivastava, A. K.; Naik, P. A. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Porwal, S. [Solid State Lasers Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Bhartiya, S. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Laser Materials Development and Device Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Rao, B. T. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Sharma, T. K. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Solid State Lasers Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)
2016-07-28
The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. The maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.
Contravariant gravity on Poisson manifolds and Einstein gravity
International Nuclear Information System (INIS)
Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi
2017-01-01
A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.
Zhang, Jiachao; Hirakawa, Keigo
2017-04-01
This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.
Transforming spatial point processes into Poisson processes using random superposition
DEFF Research Database (Denmark)
Møller, Jesper; Berthelsen, Kasper Klitgaaard
with a complementary spatial point process Y to obtain a Poisson process X∪Y with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...
The applicability of the Poisson distribution in radiochemical measurements
International Nuclear Information System (INIS)
Luthardt, M.; Proesch, U.
1980-01-01
The fact that, on principle, the Poisson distribution describes the statistics of nuclear decay is generally accepted. The applicability of this distribution to nuclear radiation measurements has recently been questioned. Applying the chi-squared test for goodness of fit on the analogy of the moving average, at least 3 cases may be distinguished, which lead to an incorrect rejection of the Poisson distribution for measurements. Examples are given. Distributions, which make allowance for special parameters, should only be used after careful examination of the data with regard to other interfering effects. The Poisson distribution will further on be applicable to many simple measuring operations. Some basic equations for the analysis of poisson-distributed data are given. (author)
Modeling laser velocimeter signals as triply stochastic Poisson processes
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
Optimal linear filtering of Poisson process with dead time
International Nuclear Information System (INIS)
Glukhova, E.V.
1993-01-01
The paper presents a derivation of an integral equation defining the impulsed transient of optimum linear filtering for evaluation of the intensity of the fluctuating Poisson process with allowance for dead time of transducers
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2013-01-01
. The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....
Comparison between two bivariate Poisson distributions through the ...
African Journals Online (AJOL)
These two models express themselves by their probability mass function. ... To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive.
Statistics of weighted Poisson events and its applications
International Nuclear Information System (INIS)
Bohm, G.; Zech, G.
2014-01-01
The statistics of the sum of random weights where the number of weights is Poisson distributed has important applications in nuclear physics, particle physics and astrophysics. Events are frequently weighted according to their acceptance or relevance to a certain type of reaction. The sum is described by the compound Poisson distribution (CPD) which is shortly reviewed. It is shown that the CPD can be approximated by a scaled Poisson distribution (SPD). The SPD is applied to parameter estimation in situations where the data are distorted by resolution effects. It performs considerably better than the normal approximation that is usually used. A special Poisson bootstrap technique is presented which permits to derive confidence limits for observations following the CPD
Formality theory from Poisson structures to deformation quantization
Esposito, Chiara
2015-01-01
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
Analyzing hospitalization data: potential limitations of Poisson regression.
Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R
2015-08-01
Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Poisson structure of the equations of ideal multispecies fluid electrodynamics
International Nuclear Information System (INIS)
Spencer, R.G.
1984-01-01
The equations of the two- (or multi-) fluid model of plasma physics are recast in Hamiltonian form, following general methods of symplectic geometry. The dynamical variables are the fields of physical interest, but are noncanonical, so that the Poisson bracket in the theory is not the standard one. However, it is a skew-symmetric bilinear form which, from the method of derivation, automatically satisfies the Jacobi identity; therefore, this noncanonical structure has all the essential properties of a canonical Poisson bracket
Null canonical formalism 1, Maxwell field. [Poisson brackets, boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Wodkiewicz, K [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej
1975-01-01
The purpose of this paper is to formulate the canonical formalism on null hypersurfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null variables of the Maxwell field is obtained. The asymptotic properties of the theory are investigated. The Poisson bracket relations for the news-functions of the Maxwell field are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these news-functions is obtained.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
A Note On the Estimation of the Poisson Parameter
Directory of Open Access Journals (Sweden)
S. S. Chitgopekar
1985-01-01
distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.
2D Poisson sigma models with gauged vectorial supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)
2015-08-12
In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.
On the Fedosov deformation quantization beyond the regular Poisson manifolds
International Nuclear Information System (INIS)
Dolgushev, V.A.; Isaev, A.P.; Lyakhovich, S.L.; Sharapov, A.A.
2002-01-01
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane
XUV free-electron laser-based projection lithography systems
Energy Technology Data Exchange (ETDEWEB)
Newnam, B.E.
1990-01-01
Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.
A new lithography of functional plasma polymerized thin films
International Nuclear Information System (INIS)
Kim, Sung-O
2001-01-01
The preparation of the resist for the vacuum lithography was carried out by plasma polymerization. The resist manufactured by plasma polymerization is a monomer produced by MMA (Methyl methacrylate). The functional groups of MMA appeared in the PPMMA (Plasma Polymerized Methyl methacrylate) as well, and this was confirmed through an analysis using FT-IR. The polymerization rate increased as a function of the plasma power and decreased as a function of the system pressure. The sensitivity and contrast of the plasma polymerized thin films were 15 μC/cm2 and 4.3 respectively. The size of the pattern manufactured by Vacuum Lithography using the plasma polymerized thin films was 100 nm
Challenges of anamorphic high-NA lithography and mask making
Hsu, Stephen D.; Liu, Jingjing
2017-06-01
Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10
Maskless, parallel patterning with zone-plate array lithography
International Nuclear Information System (INIS)
Carter, D. J. D.; Gil, Dario; Menon, Rajesh; Mondol, Mark K.; Smith, Henry I.; Anderson, Erik H.
1999-01-01
Zone-plate array lithography (ZPAL) is a maskless lithography scheme that uses an array of shuttered zone plates to print arbitrary patterns on a substrate. An experimental ultraviolet ZPAL system has been constructed and used to simultaneously expose nine different patterns with a 3x3 array of zone plates in a quasidot-matrix fashion. We present exposed patterns, describe the system design and construction, and discuss issues essential to a functional ZPAL system. We also discuss another ZPAL system which operates with 4.5 nm x radiation from a point source. We present simulations which show that, with our existing x-ray zone plates and this system, we should be able to achieve 55 nm resolution. (c) 1999 American Vacuum Society
Soft X-ray microscopy and lithography with synchrotron radiation
International Nuclear Information System (INIS)
Gudat, W.
1977-12-01
Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de
Metal layer mask patterning by force microscopy lithography
International Nuclear Information System (INIS)
Filho, H.D. Fonseca; Mauricio, M.H.P.; Ponciano, C.R.; Prioli, R.
2004-01-01
The nano-lithography of a metallic surface in air by atomic force microscopy while operated in contact mode and equipped with a diamond tip is presented. The aluminum mask was prepared by thermal deposition on arsenic sulfide films. The analysis of the scratches performed by the tip on the metallic mask show that the depth of the lithographed pattern increases with the increase of the applied normal force. The scanning velocity is also shown to influence the AFM patterning process. As the scanning velocity increases, the scratch depth and width decreases. Nano-indentations performed with the diamond tip show that the plastically deformed surface increases with the increase of the duration of the applied force. The use of the nano-lithography method to create nano-structures is discussed
V-groove plasmonic waveguides fabricated by nanoimprint lithography
DEFF Research Database (Denmark)
Fernandez-Cuesta, I.; Nielsen, R.B.; Boltasseva, Alexandra
2007-01-01
Propagation of channel plasmon-polariton modes in the bottom of a metal V groove has been recently demonstrated. It provides a unique way of manipulating light at nanometer length scale. In this work, we present a method based on nanoimprint lithography that allows parallel fabrication of integra...... of integrated optical devices composed of metal V grooves. This method represents an improvement with respect to previous works, where the V grooves were fabricated by direct milling of the metal, in terms of robustness and throughput. © 2007 American Vacuum Society......Propagation of channel plasmon-polariton modes in the bottom of a metal V groove has been recently demonstrated. It provides a unique way of manipulating light at nanometer length scale. In this work, we present a method based on nanoimprint lithography that allows parallel fabrication...
Limitations of Poisson statistics in describing radioactive decay.
Sitek, Arkadiusz; Celler, Anna M
2015-12-01
The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Background stratified Poisson regression analysis of cohort data.
Richardson, David B; Langholz, Bryan
2012-03-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
Background stratified Poisson regression analysis of cohort data
International Nuclear Information System (INIS)
Richardson, David B.; Langholz, Bryan
2012-01-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)
The superconducting x-ray lithography source program at Brookhaven
Energy Technology Data Exchange (ETDEWEB)
Williams, G. P.; Heese, R. N.; Vignola, G.; Murphy, J. B.; Godel, J. B.; Hsieh, H.; Galayda, J.; Seifert, A.; Knotek, M. L.
1989-07-01
A compact electron storage ring with superconducting dipole magnets, is being developed at the National Synchrotron Light Source at Brookhaven. The parameters of the source have been optimized for its future use as an x-ray source for lithography. This first ring is a prototype which will be used to study the operating characteristics of machines of this type with particular attention being paid to low-energy injection and long beam lifetime.
ILT optimization of EUV masks for sub-7nm lithography
Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin
2017-06-01
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
Topology optimization for optical projection lithography with manufacturing uncertainties
DEFF Research Database (Denmark)
Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole
2014-01-01
to manufacturing without additional optical proximity correction (OPC). The performance of the optimized device is robust toward the considered process variations. With the proposed unified approach, the design for photolithography is achieved by considering the optimal device performance and manufacturability......This article presents a topology optimization approach for micro-and nano-devices fabricated by optical projection lithography. Incorporating the photolithography process and the manufacturing uncertainties into the topology optimization process results in a binary mask that can be sent directly...
450mm wafer patterning with jet and flash imprint lithography
Thompson, Ecron; Hellebrekers, Paul; Hofemann, Paul; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.
2013-09-01
The next step in the evolution of wafer size is 450mm. Any transition in sizing is an enormous task that must account for fabrication space, environmental health and safety concerns, wafer standards, metrology capability, individual process module development and device integration. For 450mm, an aggressive goal of 2018 has been set, with pilot line operation as early as 2016. To address these goals, consortiums have been formed to establish the infrastructure necessary to the transition, with a focus on the development of both process and metrology tools. Central to any process module development, which includes deposition, etch and chemical mechanical polishing is the lithography tool. In order to address the need for early learning and advance process module development, Molecular Imprints Inc. has provided the industry with the first advanced lithography platform, the Imprio® 450, capable of patterning a full 450mm wafer. The Imprio 450 was accepted by Intel at the end of 2012 and is now being used to support the 450mm wafer process development demands as part of a multi-year wafer services contract to facilitate the semiconductor industry's transition to lower cost 450mm wafer production. The Imprio 450 uses a Jet and Flash Imprint Lithography (J-FILTM) process that employs drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for markets including NAND Flash memory, patterned media for hard disk drives and displays. This paper reviews the recent performance of the J-FIL technology (including overlay, throughput and defectivity), mask development improvements provided by Dai Nippon Printing, and the application of the technology to a 450mm lithography platform.
1983-05-20
Poisson processes is introduced: the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown how such a model can be identified from experimental data. (Author)
Imprint lithography: lab curiosity or the real NGL
Resnick, Douglas J.; Dauksher, William J.; Mancini, David P.; Nordquist, Kevin J.; Bailey, Todd C.; Johnson, Stephen C.; Stacey, Nicholas A.; Ekerdt, John G.; Willson, C. Grant; Sreenivasan, S. V.; Schumaker, Norman E.
2003-06-01
The escalating cost for Next Generation Lithography (NGL) tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990s, several resarech groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as Step and Flash Imprint Lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of teh wafer and template. This paper traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry.
Low Cost Lithography Tool for High Brightness LED Manufacturing
Energy Technology Data Exchange (ETDEWEB)
Andrew Hawryluk; Emily True
2012-06-30
The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.
32nm 1-D regular pitch SRAM bitcell design for interference-assisted lithography
Greenway, Robert T.; Jeong, Kwangok; Kahng, Andrew B.; Park, Chul-Hong; Petersen, John S.
2008-10-01
As optical lithography advances into the 45nm technology node and beyond, new manufacturing-aware design requirements have emerged. We address layout design for interference-assisted lithography (IAL), a double exposure method that combines maskless interference lithography (IL) and projection lithography (PL); cf. hybrid optical maskless lithography (HOMA) in [2] and [3]. Since IL can generate dense but regular pitch patterns, a key challenge to deployment of IAL is the conversion of existing designs to regular-linewidth, regular-pitch layouts. In this paper, we propose new 1-D regular pitch SRAM bitcell layouts which are amenable to IAL. We evaluate the feasibility of our bitcell designs via lithography simulations and circuit simulations, and confirm that the proposed bitcells can be successfully printed by IAL and that their electrical characteristics are comparable to those of existing bitcells.
The Spotting Distribution of Wildfires
Directory of Open Access Journals (Sweden)
Jonathan Martin
2016-06-01
Full Text Available In wildfire science, spotting refers to non-local creation of new fires, due to downwind ignition of brands launched from a primary fire. Spotting is often mentioned as being one of the most difficult problems for wildfire management, because of its unpredictable nature. Since spotting is a stochastic process, it makes sense to talk about a probability distribution for spotting, which we call the spotting distribution. Given a location ahead of the fire front, we would like to know how likely is it to observe a spot fire at that location in the next few minutes. The aim of this paper is to introduce a detailed procedure to find the spotting distribution. Most prior modelling has focused on the maximum spotting distance, or on physical subprocesses. We will use mathematical modelling, which is based on detailed physical processes, to derive a spotting distribution. We discuss the use and measurement of this spotting distribution in fire spread, fire management and fire breaching. The appendix of this paper contains a comprehensive review of the relevant underlying physical sub-processes of fire plumes, launching fire brands, wind transport, falling and terminal velocity, combustion during transport, and ignition upon landing.
DEFF Research Database (Denmark)
Reinau, Kristian Hegner
Traditionally, focus in the transport field, both politically and scientifically, has been on private cars and public transport. Freight transport has been a neglected topic. Recent years has seen an increased focus upon congestion as a core issue across Europe, resulting in a great need for know...... speed data for freight. Secondly, the analytical methods used, space-time cubes and emerging hot spot analysis, are also new in the freight transport field. The analysis thus estimates precisely how fast freight moves on the roads in Northern Jutland and how this has evolved over time....
International Nuclear Information System (INIS)
2005-02-01
This reports the seminar on Lithography in 2005, which includes these contents; Introduction of Lithography, equipment in NNFC, Exposure technology with fabrication, basic and application optics, RET and Lens aberrations, Alignment and Overlay and Metrology, Resist process with prime, mechanism, issues, resist technology and track system, Mask and OPC such as mask, fabrication, mask technology, proximity effect and OPC, Next generation, Lithography with NGL, Immersion and imprint. In the last, there are questions and answers.
Low cost ESR based X-ray beamline for lithography experimentation
Energy Technology Data Exchange (ETDEWEB)
Kovacs, S.; Doumas, A.; Truncale, M. (Grumman Corp., Bethpage, NY (United States). Space and Electronics Div.)
1992-08-01
Any application of the electron storage ring (ESR) based X-ray lithography technology requires an X-ray radiation transport system to transfer the synchrotron radiation into a spectrum defined by the lithography process requirements. Structure of this transport system (i.e. the beamline) depends on the nature of the application. In this paper a beamline conceptual design will be discussed. The beamline is intended for the developmment of X-ray lithography technology. (orig.).
2010-12-28
... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644
Lithography alternatives meet design style reality: How do they "line" up?
Smayling, Michael C.
2016-03-01
Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Poisson sigma model with branes and hyperelliptic Riemann surfaces
International Nuclear Information System (INIS)
Ferrario, Andrea
2008-01-01
We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P n with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions
Poisson image reconstruction with Hessian Schatten-norm regularization.
Lefkimmiatis, Stamatios; Unser, Michael
2013-11-01
Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.
Seasonally adjusted birth frequencies follow the Poisson distribution.
Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A
2015-12-15
Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.
Four-dimensional gravity as an almost-Poisson system
Ita, Eyo Eyo
2015-04-01
In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.
The coupling of Poisson sigma models to topological backgrounds
Energy Technology Data Exchange (ETDEWEB)
Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)
2016-12-13
We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.
Modified Poisson eigenfunctions for electrostatic Bernstein--Greene--Kruskal equilibria
International Nuclear Information System (INIS)
Ling, K.; Abraham-Shrauner, B.
1981-01-01
The stability of an electrostatic Bernstein--Greene--Kruskal equilibrium by Lewis and Symon's general linear stability analysis for spatially inhomogeneous Vlasov equilibria, which employs eigenfunctions and eigenvalues of the equilibrium Liouville operator and the modified Poisson operator, is considered. Analytic expressions for the Liouville eigenfuctions and eigenvalues have already been given; approximate analytic expressions for the dominant eigenfunction and eigenvalue of the modified Poisson operator are given. In the kinetic limit three methods are given: (i) the perturbation method, (ii) the Rayleigh--Ritz method, and (iii) a method based on a Hill's equation. In the fluid limit the Rayleigh--Ritz method is used. The dominant eigenfunction and eigenvalue are then substituted in the dispersion relation and the growth rate calculated. The growth rate agrees very well with previous results found by numerical simulation and by modified Poisson eigenfunctions calculated numerically
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
Poisson structures for reduced non-holonomic systems
International Nuclear Information System (INIS)
Ramos, Arturo
2004-01-01
Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank 2 and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of the Poisson structures and extend their domain of definition. We apply the theory to the rolling disc, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...
Markov modulated Poisson process models incorporating covariates for rainfall intensity.
Thayakaran, R; Ramesh, N I
2013-01-01
Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.
Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions
Directory of Open Access Journals (Sweden)
Liu Jinn-Liang
2017-10-01
Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.
International Nuclear Information System (INIS)
Mullan, D.J.
1983-01-01
Laboratory experiments in recent years have shown that there are many more ways to drive a plasma out of equilibrium than to preserve equilibrium. In that sense, it is perhaps easier to understand why flares should occur in a stellar atmosphere than why a long-lived feature such as a dark spot should persist. The author summarizes work on the equilibrium structure of cool spots in the sun and stars. Since spots involve complex interactions between convective flows and magnetic fields, he needs to refer to observations for help in identifying the dominant processes which should enter into the modelling. His summary therefore begins by discussing certain relevant properties of spots in the solar atmosphere. The next sections deal with the magnetic fields in spots, the stability of spots, spot cooling and missing flux. The author concludes that spots should be viewed not simply as cool areas, but rather as engines which do the work of converting the energy of convective flows into flare-compatible form. (Auth.)
Schram, Sarah E; Willey, Andrea; Lee, Peter K; Bohjanen, Kimberly A; Warshaw, Erin M
2008-01-01
In black-spot poison ivy dermatitis, a black lacquerlike substance forms on the skin when poison ivy resin is exposed to air. Although the Toxicodendron group of plants is estimated to be the most common cause of allergic contact dermatitis in the United States, black-spot poison ivy dermatitis is relatively rare.
Rocky Mountain spotted fever, Colombia.
Hidalgo, Marylin; Orejuela, Leonora; Fuya, Patricia; Carrillo, Pilar; Hernandez, Jorge; Parra, Edgar; Keng, Colette; Small, Melissa; Olano, Juan P; Bouyer, Donald; Castaneda, Elizabeth; Walker, David; Valbuena, Gustavo
2007-07-01
We investigated 2 fatal cases of Rocky Mountain spotted fever that occurred in 2003 and 2004 near the same locality in Colombia where the disease was first reported in the 1930s. A retrospective serosurvey of febrile patients showed that > 21% of the serum samples had antibodies aaainst spotted fever group rickettsiae.
Advances in spot curing technology
International Nuclear Information System (INIS)
Burga, R.
1999-01-01
A brief review of spot curing technology was presented. The process which a spot of energy of a specific wavelength bandwidth and irradiance is used to cause a coating, encapsulant or adhesive to change from a liquid to a solid state
Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography
Directory of Open Access Journals (Sweden)
Cian Cummins
2017-09-01
Full Text Available The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP feature patterning. An elegant route is demonstrated using directed self-assembly (DSA of BCPs for the fabrication of aligned tungsten trioxide (WO3 nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL silsesquioxane (SSQ-based trenches were utilized in order to align a cylinder forming poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP BCP soft template. We outline WO3 nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm contacted WO3 nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.
Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography.
Cummins, Cian; Bell, Alan P; Morris, Michael A
2017-09-30
The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO₃) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)- block -poly(4-vinylpyridine) (PS- b -P4VP) BCP soft template. We outline WO₃ nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO₃ nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.
Imbalance aware lithography hotspot detection: a deep learning approach
Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei
2017-07-01
With the advancement of very large scale integrated circuits (VLSI) technology nodes, lithographic hotspots become a serious problem that affects manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with the extreme scaling of transistor feature size and layout patterns growing in complexity, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. We present a deep convolutional neural network (CNN) that targets representative feature learning in lithography hotspot detection. We carefully analyze the impact and effectiveness of different CNN hyperparameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always in the minority in VLSI mask design, the training dataset is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from a high number of false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply hotspot upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.
Inspection of imprint lithography patterns for semiconductor and patterned media
Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.
2010-03-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology
Durable diamond-like carbon templates for UV nanoimprint lithography
International Nuclear Information System (INIS)
Tao, L; Ramachandran, S; Nelson, C T; Overzet, L J; Goeckner, M; Lee, G; Hu, W; Lin, M; Willson, C G; Wu, W
2008-01-01
The interaction between resist and template during the separation process after nanoimprint lithography (NIL) can cause the formation of defects and damage to the templates and resist patterns. To alleviate these problems, fluorinated self-assembled monolayers (F-SAMs, i.e. tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane or FDTS) have been employed as template release coatings. However, we find that the FDTS coating undergoes irreversible degradation after only 10 cycles of UV nanoimprint processes with SU-8 resist. The degradation includes a 28% reduction in surface F atoms and significant increases in the surface roughness. In this paper, diamond-like carbon (DLC) films were investigated as an alternative material not only for coating but also for direct fabrication of nanoimprint templates. DLC films deposited on quartz templates in a plasma enhanced chemical vapor deposition system are shown to have better chemical and physical stability than FDTS. After the same 10 cycles of UV nanoimprints, the surface composition as well as the roughness of DLC films were found to be unchanged. The adhesion energy between the DLC surface and SU-8 is found to be smaller than that of FDTS despite the slightly higher total surface energy of DLC. DLC templates with 40 nm features were fabricated using e-beam lithography followed by Cr lift-off and reactive ion etching. UV nanoimprinting using the directly patterned DLC templates in SU-8 resist demonstrates good pattern transfer fidelity and easy template-resist separation. These results indicate that DLC is a promising material for fabricating durable templates for UV nanoimprint lithography
Efficient maximal Poisson-disk sampling and remeshing on surfaces
Guo, Jianwei; Yan, Dongming; Jia, Xiaohong; Zhang, Xiaopeng
2015-01-01
Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.
Robust iterative observer for source localization for Poisson equation
Majeed, Muhammad Usman
2017-01-05
Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.
Gyrokinetic energy conservation and Poisson-bracket formulation
International Nuclear Information System (INIS)
Brizard, A.
1989-01-01
An integral expression for the gyrokinetic total energy of a magnetized plasma, with general magnetic field configuration perturbed by fully electromagnetic fields, was recently derived through the use of a gyrocenter Lie transformation. It is shown that the gyrokinetic energy is conserved by the gyrokinetic Hamiltonian flow to all orders in perturbed fields. An explicit demonstration that a gyrokinetic Hamiltonian containing quadratic nonlinearities preserves the gyrokinetic energy up to third order is given. The Poisson-bracket formulation greatly facilitates this demonstration with the help of the Jacobi identity and other properties of the Poisson brackets
Dilaton gravity, Poisson sigma models and loop quantum gravity
International Nuclear Information System (INIS)
Bojowald, Martin; Reyes, Juan D
2009-01-01
Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.
? filtering for stochastic systems driven by Poisson processes
Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya
2015-01-01
This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.
Poisson's theorem and integrals of KdV equation
International Nuclear Information System (INIS)
Tasso, H.
1978-01-01
Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)
Robust iterative observer for source localization for Poisson equation
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2017-01-01
Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.
Efficient maximal Poisson-disk sampling and remeshing on surfaces
Guo, Jianwei
2015-02-01
Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.
Adaptive maximal poisson-disk sampling on surfaces
Yan, Dongming
2012-01-01
In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which is the key ingredient of the adaptive maximal Poisson-disk sampling framework. Moreover, we adapt the presented sampling framework for remeshing applications. Several novel and efficient operators are developed for improving the sampling/meshing quality over the state-of-theart. © 2012 ACM.
Efficient triangulation of Poisson-disk sampled point sets
Guo, Jianwei
2014-05-06
In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches. © 2014 Springer-Verlag Berlin Heidelberg.
Modifications in the AUTOMESH and other POISSON Group Codes
International Nuclear Information System (INIS)
Gupta, R.C.
1986-01-01
Improvements in the POISSON Group Codes are discussed. These improvements allow one to compute magnetic field to an accuracy of a few parts in 100,000 in quite complicated geometries with a reduced requirement on computational time and computer memory. This can be accomplished mainly by making the mesh dense at some places and sparse at other places. AUTOMESH has been modified so that one can use variable mesh size conveniently and efficiently at a number of places. We will present an example to illustrate these techniques. Several other improvements in the codes AUTOMESH, LATTICE and POISSON will also be discussed
Quadratic Hamiltonians on non-symmetric Poisson structures
International Nuclear Information System (INIS)
Arribas, M.; Blesa, F.; Elipe, A.
2007-01-01
Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases
Subwavelength optical lithography via classical light: A possible implementation
You, Jieyu; Liao, Zeyang; Hemmer, P. R.; Zubairy, M. Suhail
2018-04-01
The resolution of an interferometric optical lithography system is about the half wavelength of the illumination light. We proposed a method based on Doppleron resonance to achieve a resolution beyond half wavelength [Phys. Rev. Lett. 96, 163603 (2006), 10.1103/PhysRevLett.96.163603]. Here, we analyze a possible experimental demonstration of this method in the negatively charged silicon-vacancy (SiV-) system by considering realistic experimental parameters. Our results show that quarter wavelength resolution and beyond can be achieved in this system even in room temperature without using perturbation theory.
Application status and prospect of X-ray lithography technology
International Nuclear Information System (INIS)
Xie Changqing; Chen Dapeng; Liu Ming; Ye Tianchun; Yi Futing
2004-01-01
Because of its many merits, such as high resolution, large depth of focus, large field size, high throughput, large process latitude, easy extendibility to 50 nm and below ground rule, and so on, the Proximity X-ray Lithography (PXL) is very attractive for the 100 nm and smaller ground rule integrated circuit manufacturing. In this paper, the international research and development status of PXL is briefly introduced firstly, and both its application status and prospect in nanoelectronics research, Monolithic Microwave Integrated Circuits (MMIC) production and silicon-based Ultra Large Scale Integrated Circuits (ULSIC) production are described, and the recent research progress in home PXL is also presented briefly. (authors)
Multichannel silicon WDM ring filters fabricated with DUV lithography
Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock
2008-09-01
We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.
Masks for high aspect ratio x-ray lithography
International Nuclear Information System (INIS)
Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.
1997-01-01
Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding
Shadow edge lithography for nanoscale patterning and manufacturing
International Nuclear Information System (INIS)
Bai, John G; Chang, C-L; Chung, Jae-Hyun; Lee, Kyong-Hoon
2007-01-01
We demonstrate a wafer-scale nanofabrication method using the shadow effect in physical vapor deposition. An analytical model is presented to predict the formation of nanoscale gaps created by the shadow effect of a prepatterned edge on a deposition plane. The theoretical prediction agrees quantitatively with the widths of the fabricated nanogaps and nanochannels. In the diffusion experiments, both λ-DNA and fluorescein molecules were successfully introduced into the nanochannels. The proposed shadow edge lithography has potential to be a candidate for mass-producing nanostructures
Combined e-beam lithography using different energies
Czech Academy of Sciences Publication Activity Database
Krátký, Stanislav; Kolařík, Vladimír; Horáček, Miroslav; Meluzín, Petr; Král, Stanislav
2017-01-01
Roč. 177, JUN (2017), s. 30-34 ISSN 0167-9317 R&D Projects: GA TA ČR TE01020233; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : grayscale e-beam lithography * mix and match process * absorbed energy density * resist sensitivity * micro-optical elements Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 1.806, year: 2016
Makhotkin, Igor Alexandrovich; Zoethout, E.; Louis, Eric; Yakunin, A.M.; Muellender, S.; Bijkerk, Frederik
2012-01-01
Reducing the operating wavelength in advanced photolitho- graphy while maintaining the lithography machine’s produc- tivity has been a traditional way to enable improved imaging for the last 20 years. The transition from 13.5 nm to 6.5 to 6.9 nm optical lithography offers a possibility to combine
Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography
Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.
2015-01-01
Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index
Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton
2018-03-13
The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.
International Nuclear Information System (INIS)
Kim, Jungkwun; Allen, Mark G; Yoon, Yong-Kyu
2016-01-01
This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array. (paper)
Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems
International Nuclear Information System (INIS)
Chang, Liu; Peng, Chang; Shi-Xing, Liu; Yong-Xin, Guo
2010-01-01
This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost-Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noncanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion
Spotting psychopaths using technology.
Hulbert, Sarah; Adeli, Hojjat
2015-01-01
For the past three and a half decades, the Psychopathy Checklist-Revised (PCL-R) and the self-report Psychopathic Personality Inventory-Revised (PPI-R) have been the standard measures for the diagnosis of psychopathy. Technological approaches can enhance these diagnostic methodologies. The purpose of this paper is to present a state-of-the-art review of various technological approaches for spotting psychopathy, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), functional MRI (fMRI), transcranial magnetic stimulation (TMS), and other measures. Results of EEG event-related potential (ERP) experiments support the theory that impaired amygdala function may be responsible for abnormal fear processing in psychopathy, which can ultimately manifest as psychopathic traits, as outlined by the PCL-R or PPI-R. Imaging studies, in general, point to reduced fear processing capabilities in psychopathic individuals. While the human element, introduced through researcher/participant interactions, can be argued as unequivocally necessary for diagnosis, these purely objective technological approaches have proven to be useful in conjunction with the subjective interviewing and questionnaire methods for differentiating psychopaths from non-psychopaths. Furthermore, these technologies are more robust than behavioral measures, which have been shown to fail.
Multi-parameter full waveform inversion using Poisson
Oh, Juwon
2016-07-21
In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.
Steady state solution of the Poisson-Nernst-Planck equations
International Nuclear Information System (INIS)
Golovnev, A.; Trimper, S.
2010-01-01
The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.
Coefficient Inverse Problem for Poisson's Equation in a Cylinder
Solov'ev, V. V.
2011-01-01
The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the
Poisson equation in the Kohn-Sham Coulomb problem
Manby, F. R.; Knowles, Peter James
2001-01-01
We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.
Poisson and Gaussian approximation of weighted local empirical processes
Einmahl, J.H.J.
1995-01-01
We consider the local empirical process indexed by sets, a greatly generalized version of the well-studied uniform tail empirical process. We show that the weak limit of weighted versions of this process is Poisson under certain conditions, whereas it is Gaussian in other situations. Our main
An application of the Autoregressive Conditional Poisson (ACP) model
CSIR Research Space (South Africa)
Holloway, Jennifer P
2010-11-01
Full Text Available When modelling count data that comes in the form of a time series, the static Poisson regression and standard time series models are often not appropriate. A current study therefore involves the evaluation of several observation-driven and parameter...
Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)
DEFF Research Database (Denmark)
Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis
We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2012-01-01
This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....
Monitoring Poisson time series using multi-process models
DEFF Research Database (Denmark)
Engebjerg, Malene Dahl Skov; Lundbye-Christensen, Søren; Kjær, Birgitte B.
aspects of health resource management may also be addressed. In this paper we center on the detection of outbreaks of infectious diseases. This is achieved by a multi-process Poisson state space model taking autocorrelation and overdispersion into account, which has been applied to a data set concerning...
Area-to-Area Poisson Kriging and Spatial Bayesian Analysis
Asmarian, Naeimehossadat; Jafari-Koshki, Tohid; Soleimani, Ali; Taghi Ayatollahi, Seyyed Mohammad
2016-10-01
Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Areato- area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran. Creative Commons Attribution License
Ruin probabilities for a regenerative Poisson gap generated risk process
DEFF Research Database (Denmark)
Asmussen, Søren; Biard, Romain
A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is deﬁned for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F...
Optimality of Poisson Processes Intensity Learning with Gaussian Processes
Kirichenko, A.; van Zanten, H.
2015-01-01
In this paper we provide theoretical support for the so-called "Sigmoidal Gaussian Cox Process" approach to learning the intensity of an inhomogeneous Poisson process on a d-dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.
2013-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is
Nonparametric Bayesian inference for multidimensional compound Poisson processes
Gugushvili, S.; van der Meulen, F.; Spreij, P.
2015-01-01
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,
Poisson processes on groups and Feynamn path integrals
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Aix-Marseille-2 Univ., 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.
1980-01-01
We give an expression for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems. (orig.)
Some applications of the fractional Poisson probability distribution
International Nuclear Information System (INIS)
Laskin, Nick
2009-01-01
Physical and mathematical applications of the recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states has been introduced and studied. As mathematical applications, we have developed the fractional generalization of Bell polynomials, Bell numbers, and Stirling numbers of the second kind. The appearance of fractional Bell polynomials is natural if one evaluates the diagonal matrix element of the evolution operator in the basis of newly introduced quantum coherent states. Fractional Stirling numbers of the second kind have been introduced and applied to evaluate the skewness and kurtosis of the fractional Poisson probability distribution function. A representation of the Bernoulli numbers in terms of fractional Stirling numbers of the second kind has been found. In the limit case when the fractional Poisson probability distribution becomes the Poisson probability distribution, all of the above listed developments and implementations turn into the well-known results of the quantum optics and the theory of combinatorial numbers.
Poisson processes on groups and Feynman path integrals
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.
1979-09-01
An expression is given for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems
Poisson's equation in de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Pessa, E [Rome Univ. (Italy). Ist. di Matematica
1980-11-01
Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.
Is it safe to use Poisson statistics in nuclear spectrometry?
International Nuclear Information System (INIS)
Pomme, S.; Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.
2000-01-01
The boundary conditions in which Poisson statistics can be applied in nuclear spectrometry are investigated. Improved formulas for the uncertainty of nuclear counting with deadtime and pulse pileup are presented. A comparison is made between the expected statistical uncertainty for loss-free counting, fixed live-time and fixed real-time measurements. (author)
Poisson sampling - The adjusted and unadjusted estimator revisited
Michael S. Williams; Hans T. Schreuder; Gerardo H. Terrazas
1998-01-01
The prevailing assumption, that for Poisson sampling the adjusted estimator "Y-hat a" is always substantially more efficient than the unadjusted estimator "Y-hat u" , is shown to be incorrect. Some well known theoretical results are applicable since "Y-hat a" is a ratio-of-means estimator and "Y-hat u" a simple unbiased estimator...
Characterization and global analysis of a family of Poisson structures
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito
2006-01-01
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given
Characterization and global analysis of a family of Poisson structures
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es
2006-06-26
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.
A Poisson type formula for Hardy classes on Heisenberg's group
Directory of Open Access Journals (Sweden)
Lopushansky O.V.
2010-06-01
Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.
Boundary singularity of Poisson and harmonic Bergman kernels
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2015-01-01
Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170
Adaptive maximal poisson-disk sampling on surfaces
Yan, Dongming; Wonka, Peter
2012-01-01
In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which
Quadratic Poisson brackets compatible with an algebra structure
Balinsky, A. A.; Burman, Yu.
1994-01-01
Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.
On covariant Poisson brackets in classical field theory
International Nuclear Information System (INIS)
Forger, Michael; Salles, Mário O.
2015-01-01
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra
On covariant Poisson brackets in classical field theory
Energy Technology Data Exchange (ETDEWEB)
Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)
2015-10-15
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.
Poisson-generalized gamma empirical Bayes model for disease ...
African Journals Online (AJOL)
In spatial disease mapping, the use of Bayesian models of estimation technique is becoming popular for smoothing relative risks estimates for disease mapping. The most common Bayesian conjugate model for disease mapping is the Poisson-Gamma Model (PG). To explore further the activity of smoothing of relative risk ...
Poisson's Ratio and Auxetic Properties of Natural Rocks
Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.
2018-02-01
Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.
Hierarchy of Poisson brackets for elements of a scattering matrix
International Nuclear Information System (INIS)
Konopelchenko, B.G.; Dubrovsky, V.G.
1984-01-01
The infinite family of Poisson brackets [Ssub(i1k1) (lambda 1 ), Ssub(i2k2) (lambda 2 )]sub(n) (n=0, 1, 2, ...) between the elements of a scattering matrix is calculated for the linear matrix spectral problem. (orig.)
Nambu-Poisson reformulation of the finite dimensional dynamical systems
International Nuclear Information System (INIS)
Baleanu, D.; Makhaldiani, N.
1998-01-01
A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures
Poisson statistics application in modelling of neutron detection
International Nuclear Information System (INIS)
Avdic, S.; Marinkovic, P.
1996-01-01
The main purpose of this study is taking into account statistical analysis of the experimental data which were measured by 3 He neutron spectrometer. The unfolding method based on principle of maximum likelihood incorporates the Poisson approximation of counting statistics applied (aithor)
Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial.
Chen, Xi; Zhang, Cheng; Yang, Fan; Liang, Gaofeng; Li, Qiaochu; Guo, L Jay
2017-10-24
In this work, a special hyperbolic metamaterial (HMM) metamaterial is investigated for plasmonic lithography of period reduction patterns. It is a type II HMM (ϵ ∥ 0) whose tangential component of the permittivity ϵ ∥ is close to zero. Due to the high anisotropy of the type II epsilon-near-zero (ENZ) HMM, only one plasmonic mode can propagate horizontally with low loss in a waveguide system with ENZ HMM as its core. This work takes the advantage of a type II ENZ HMM composed of aluminum/aluminum oxide films and the associated unusual mode to expose a photoresist layer in a specially designed lithography system. Periodic patterns with a half pitch of 58.3 nm were achieved due to the interference of third-order diffracted light of the grating. The lines were 1/6 of the mask with a period of 700 nm and ∼1/7 of the wavelength of the incident light. Moreover, the theoretical analyses performed are widely applicable to structures made of different materials such as silver as well as systems working at deep ultraviolet wavelengths including 193, 248, and 365 nm.
New self-assembly strategies for next generation lithography
Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.
2010-04-01
Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.
Fabrication of nanochannels on polyimide films using dynamic plowing lithography
Stoica, Iuliana; Barzic, Andreea Irina; Hulubei, Camelia
2017-12-01
Three distinct polyimide films were analyzed from the point of view of their morphology in order to determine if their surface features can be adapted for applications where surface anisotropy is mandatory. Channels of nanometric dimensions were created on surface of the specimens by using a less common atomic force microscopy (AFM) method, namely Dynamic Plowing Lithography (DPL). The changes generated by DPL procedure were monitored through the surface texture and other functional parameters, denoting the surface orientation degree and also bearing and fluid retention properties. The results revealed that in the same nanolithography conditions, the diamine and dianhydride moieties have affected the characteristics of the nanochannels. This was explained based on the aliphatic/aromatic nature of the monomers and the backbone flexibility. The reported data are of great importance in designing custom nanostructures with enhanced anisotropy on surface of polyimide films for liquid crystal orientation or guided cell growth purposes. At the end, to track the effect of the nanolithography process on the tip sharpness, degradation and contamination, the blind tip reconstruction was performed on AFM probe, before and after lithography experiments, using TGT1 test grating AFM image.
The DARPA compact Superconducting X-Ray Lithography Source features
International Nuclear Information System (INIS)
Heese, R.; Kalsi, S.; Leung, E.
1991-01-01
Under DARPA sponsorship, a compact Superconducting X-Ray Lithography Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. This source is optimized for lithography work for sub-micron high density computer chips, and is about the size of a billiard table (1.5 m x 4.0 m). The machine has a racetrack configuration with two 180 degree bending magnets being designed and built by General Dynamics under a subcontract with Grumman Corporation. The machine will have 18 photon ports which would deliver light peaked at a wave length of 10 Angstroms. Grumman is commercializing the SXLS device and plans to book orders for delivery of industrialized SXLS (ISXLS) versions in 1995. This paper will describe the major features of this device. The commercial machine will be equipped with a fully automated user-friendly control systems, major features of which are already working on a compact warm dipole ring at BNL. This ring has normal dipole magnets with dimensions identical to the SXLS device, and has been successfully commissioned
Layout compliance for triple patterning lithography: an iterative approach
Yu, Bei; Garreton, Gilda; Pan, David Z.
2014-10-01
As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.
Integrated lithography to prepare periodic arrays of nano-objects
International Nuclear Information System (INIS)
Sipos, Áron; Szalai, Anikó; Csete, Mária
2013-01-01
We present an integrated lithography method to prepare versatile nano-objects with variable shape and nano-scaled substructure, in wavelength-scaled periodic arrays with arbitrary symmetry. The idea is to illuminate colloid sphere monolayers by polarized beams possessing periodic lateral intensity modulations. Finite element method was applied to determine the effects of the wavelength, polarization and angle of incidence of the incoming beam, and to predict the characteristics of nano-objects, which can be fabricated on thin metal layer covered substrates due to the near-field enhancement under silica colloid spheres. The inter-object distance is controlled by varying the relative orientation of the periodic intensity modulation with respect to the silica colloid sphere monolayer. It is shown that illuminating silica colloid sphere monolayers by two interfering beams, linear patterns made of elliptical holes appear in case of linear polarization, while circularly polarized beams result in co-existent rounded objects, as more circular nano-holes and nano-crescents. The size of the nano-objects and their sub-structure is determined by the spheres diameter and by the wavelength. We present various complex plasmonic patterns made of versatile nano-objects that can be uniquely fabricated applying the inherent symmetry breaking possibilities in the integrated lithography method.
X-ray lithography for micro and nanotechnology at RRCAT
International Nuclear Information System (INIS)
Shukla, Rahul; Dhamgaye, V.P.; Jain, V.K.; Lodha, G.S.
2013-01-01
At Indus-2 Soft and Deep X-ray Lithography beamline (BL-07) is functional and is capable of developing various high aspect ratio and high resolution structures at micro and nano scale. These micro and nano structures can be made to work as a mechanism, sensor, actuator and transducer for varieties of applications and serve as basic building blocks for the development of X-ray and IR optics, LASERs, lab-on-a-chip, micromanipulators and nanotechnology. To achieve these goals we have started developing high aspect ratio comb-drives, electrostatic micromotors, micro fluidic channels, X-ray optics and novel transducers for RF applications by Deep X-ray Lithography (DXRL). Comb-drive is one of most studied electrostatic device in MEMS (Micro Electro-Mechanical Systems). It can be used as a sensor, actuator, resonator, energy harvester and filter. Analysis and simulation shows that the comb actuator of aspect ratio 16 (air gap 50 μm) will produce nearly 1.25 μm displacement when DC voltage of 100 V is applied. For fabrication, first time in India, Polyimide X-ray mask is realized and exposure and development is done at BL-7 at RRCAT. The displacement increases as gap between comb finger decreases. Further refinement is in progress to get higher output from high aspect ratio (∼ 80) comb actuators (i.e. 1 μm at 5V). The other important design parameters like resonance frequency, capacitance will also be discussed. (author)
Integral characteristics of spectra of ions important for EUV lithography
International Nuclear Information System (INIS)
Karazija, R; Kucas, S; Momkauskaite, A
2006-01-01
The emission spectrum corresponding to the 4p 5 4d N+1 + 4p 6 4d N-1 4f → 4p 6 4d N transition array is concentrated in a narrow interval of wavelengths. That is due to the existence of an approximate selection rule and quenching of some lines by configuration mixing. Thus such emission of elements near Z = 50 is considered to be the main candidate for the EUV lithography source at λ = 13.5 nm. In the present work the regularities of these transition arrays are considered using their integral characteristics: average energy, total line strength, variance and interval of array containing some part of the total transition probability. Calculations for various ions of elements In, Sn, Sb, Te, I and Xe have been performed in a two-configuration pseudorelativistic approximation, which describes fairly well the main features of the spectra. The variation in the values of the main integral characteristics of the spectra with atomic number and ionization degree gives the possibility of comparing quantitatively the suitability of the emission of various ions for EUV lithography
Direct modification of silicon surface by nanosecond laser interference lithography
Energy Technology Data Exchange (ETDEWEB)
Wang, Dapeng [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Wang, Zuobin, E-mail: wangz@cust.edu.cn [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Zhang, Ziang [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); Yue, Yong [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Li, Dayou [JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Maple, Carsten [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom)
2013-10-01
Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.
Dr.LiTHO: a development and research lithography simulator
Fühner, Tim; Schnattinger, Thomas; Ardelean, Gheorghe; Erdmann, Andreas
2007-03-01
This paper introduces Dr.LiTHO, a research and development oriented lithography simulation environment developed at Fraunhofer IISB to flexibly integrate our simulation models into one coherent platform. We propose a light-weight approach to a lithography simulation environment: The use of a scripting (batch) language as an integration platform. Out of the great variety of different scripting languages, Python proved superior in many ways: It exhibits a good-natured learning-curve, it is efficient, available on virtually any platform, and provides sophisticated integration mechanisms for existing programs. In this paper, we will describe the steps, required to provide Python bindings for existing programs and to finally generate an integrated simulation environment. In addition, we will give a short introduction into selected software design demands associated with the development of such a framework. We will especially focus on testing and (both technical and user-oriented) documentation issues. Dr.LiTHO Python files contain not only all simulation parameter settings but also the simulation flow, providing maximum flexibility. In addition to relatively simple batch jobs, repetitive tasks can be pooled in libraries. And as Python is a full-blown programming language, users can add virtually any functionality, which is especially useful in the scope of simulation studies or optimization tasks, that often require masses of evaluations. Furthermore, we will give a short overview of the numerous existing Python packages. Several examples demonstrate the feasibility and productiveness of integrating Python packages into custom Dr.LiTHO scripts.
Business dynamics of lithography at very low k1 factors
Harrell, Sam; Preil, Moshe E.
1999-07-01
Lithography is the largest capital investment and the largest operating cost component of leading edge semiconductor fabs. In addition, it is the dominant factor in determining the performance of a semiconductor device and is important in determining the yield and thus the economics of a semiconductor circuit. To increase competitiveness and broaden adoption of circuits and the end products in which they are used, there has been and continues to be a dramatic acceleration in the industry roadmap. A critical factor in the acceleration is driving the lithographic images to smaller feature size. There has always been economic tension between the pace of change and the resultant circuit cost. The genius of the semiconductor industry has been in its ability to balance its technology with economic factors and deliver outstanding value to those using the circuits to add value to their end products. The critical question today is whether optical lithography can be successfully and economically extended to maintain and improve the economic benefits of higher complexity circuits. In this paper we will discuss some of these significant tradeoffs required to maintain optically based lithographic progress on the roadmap at acceptable cost.
Fabrication of biomimetic dry-adhesion structures through nanosphere lithography
Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.
2018-03-01
Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.
Mask Materials and Designs for Extreme Ultra Violet Lithography
Kim, Jung Sik; Ahn, Jinho
2018-03-01
Extreme ultra violet lithography (EUVL) is no longer a future technology but is going to be inserted into mass production of semiconductor devices of 7 nm technology node in 2018. EUVL is an extension of optical lithography using extremely short wavelength (13.5 nm). This short wavelength requires major modifications in the optical systems due to the very strong absorption of EUV light by materials. Refractive optics can no longer be used, and reflective optics is the only solution to transfer image from mask to wafer. This is why we need the multilayer (ML) mirror-based mask as well as an oblique incident angle of light. This paper discusses the principal theory on the EUV mask design and its component materials including ML reflector and EUV absorber. Mask shadowing effect (or mask 3D effect) is explained and its technical solutions like phase shift mask is reviewed. Even though not all the technical issues on EUV mask are handled in this review paper, you will be able to understand the principles determining the performance of EUV masks.
Large area nanoimprint by substrate conformal imprint lithography (SCIL)
Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert
2017-06-01
Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.
Integration of plant viruses in electron beam lithography nanostructures
International Nuclear Information System (INIS)
Alonso, Jose M; Bittner, Alexander M; Ondarçuhu, Thierry
2013-01-01
Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes. (paper)
Pattern Definition with DUV-Lithography at DTU Danchip
DEFF Research Database (Denmark)
Keil, Matthias; Khomtchenko, Elena; Nyholt, Henrik
2014-01-01
Deep ultra violet (DUV) illumination generated with the help of a KrF laser can be utilized to produce components having sizes of some hundreds of nanometers. This light source with its 248nm wavelength is exploited in the DUV-lithography equipment at DTU Danchip in order to fill the resolution gap...... - as shown in fig. 2 - utilizing the possibility of beam shape variations that enables to adapt the resolution and the depth of focus of the stepper to the requirements of the fabricated device. However, generally the highest achievable resolution is dependent on the pattern type - as e.g. pillar, line...... or hole comprising patterns -, its symmetry and the separations between the different structures. The projection lithography tool FPA-3000EX4 from Canon (max. NA=0,6; 1:5 reduction) produces patterns on the wafer within a maximum chip area of 22x22mm2 that can be stitched together with an accuracy of 3σ...
Poisson Regression Analysis of Illness and Injury Surveillance Data
Energy Technology Data Exchange (ETDEWEB)
Frome E.L., Watkins J.P., Ellis E.D.
2012-12-12
The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson
Spot Welding of Honeycomb Structures
Cohal, V.
2017-08-01
Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.
Poisson traces, D-modules, and symplectic resolutions.
Etingof, Pavel; Schedler, Travis
2018-01-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Poisson structure of dynamical systems with three degrees of freedom
Gümral, Hasan; Nutku, Yavuz
1993-12-01
It is shown that the Poisson structure of dynamical systems with three degrees of freedom can be defined in terms of an integrable one-form in three dimensions. Advantage is taken of this fact and the theory of foliations is used in discussing the geometrical structure underlying complete and partial integrability. Techniques for finding Poisson structures are presented and applied to various examples such as the Halphen system which has been studied as the two-monopole problem by Atiyah and Hitchin. It is shown that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a nontrivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of three-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the SL(2,R) structure is a quadratic unfolding of an integrable one-form in 3+1 dimensions. It is shown that the existence of a vector field compatible with the flow is a powerful tool in the investigation of Poisson structure and some new techniques for incorporating arbitrary constants into the Poisson one-form are presented herein. This leads to some extensions, analogous to q extensions, of Poisson structure. The Kermack-McKendrick model and some of its generalizations describing the spread of epidemics, as well as the integrable cases of the Lorenz, Lotka-Volterra, May-Leonard, and Maxwell-Bloch systems admit globally integrable bi-Hamiltonian structure.
Poisson traces, D-modules, and symplectic resolutions
Etingof, Pavel; Schedler, Travis
2018-03-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Poisson-type inequalities for growth properties of positive superharmonic functions.
Luan, Kuan; Vieira, John
2017-01-01
In this paper, we present new Poisson-type inequalities for Poisson integrals with continuous data on the boundary. The obtained inequalities are used to obtain growth properties at infinity of positive superharmonic functions in a smooth cone.
Numerical optimisation in spot detector design
van der Heijden, Ferdinand; Apperloo, W.; Spreeuwers, Lieuwe Jan
1997-01-01
Spots are image details resulting from objects, the projections of which are so small that the inner structure of these objects cannot be resolved from their image. Spot detectors are image operators aiming at the detection and localisation of spots in the image. Most spot detectors can be tuned
Managing emerging threats to spotted owls
Ho Yi Wan; Joseph L. Ganey; Christina D. Vojta; Samuel A. Cushman
2018-01-01
The 3 spotted owl (Strix occidentalis) subspecies in North America (i.e., northern spotted owl [S. o. caurina], California spotted owl [S. o. occidentalis], Mexican spotted owl [S. o. lucida]) have all experienced population declines over the past century due to habitat loss and fragmentation from logging. Now, the emerging influences of climate change, high-severity...
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Spot audit. 149.4 Section 149.4... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.4 Spot audit. (a) In addition to regularly scheduled site audits, certified production sites will be subject to spot audits. (1) Random spot...
DWDM laser arrays fabricated using thermal nanoimprint lithography on Indium Phosphide substrates
DEFF Research Database (Denmark)
Smistrup, K.; Nørregaard, J.; Mironov, A.
2013-01-01
by including a lambda quarter shift at the center of the grating. The need for phase shifts and multiple wavelengths eliminates some lithography methods such as holography. Typically, these lasers are produced by e-beam lithography (EBL). We present a production method based on thermal nanoimprint lithography...... during the imprint process and the narrow temperature window for imprint and separation (80°C and 55°C) ensures minimal issues with thermal mismatch between the InP substrate and the Si stamp. The imprinted InP wafers were processed in NeoPhotonics standard process line to create working lasers...
Accurate lithography simulation model based on convolutional neural networks
Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki
2017-07-01
Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.
X-ray lithography source (SXLS) vacuum system
International Nuclear Information System (INIS)
Schuchman, J.C.; Aloia, J.; Hsieh, H.; Kim, T.; Pjerov, S.
1989-01-01
In 1988 Brookhaven National Laboratory (BNL) was awarded a contract to design and construct a compact light source for x-ray lithography. This award is part of a technology transfer-to-American-industry program. The contract is for an electron storage ring designed for 690 MeV-500 ma operations. It has a racetrack configuration with a circumference to 8.5 meters. The machine is to be constructed in two phases. Phase I (200 MeV-500ma) will primarily be for low energy injection studies and will incorporate all room temperature magnets. For Phase II the two room temperature dipole magnets will be replaced with (4T) superconducting magnets and operation will be at 690 MeV. This paper describes the vacuum system for this machine. 9 refs
Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography
International Nuclear Information System (INIS)
Alayo, Nerea; Bausells, Joan; Pérez-Murano, Francesc; Conde-Rubio, Ana; Labarta, Amilcar; Batlle, Xavier; Borrisé, Xavier
2015-01-01
Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition. (paper)
Method for the protection of extreme ultraviolet lithography optics
Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.
2010-06-22
A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.
Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling
International Nuclear Information System (INIS)
Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael
2015-01-01
Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)
A poly(dimethylsiloxane)-coated flexible mold for nanoimprint lithography
International Nuclear Information System (INIS)
Lee, Nae Yoon; Kim, Youn Sang
2007-01-01
In this paper, we introduce an anti-adhesion poly(dimethylsiloxane) (PDMS)-coated flexible mold and its applications for room-temperature imprint lithography. The flexible mold is fabricated using an ultraviolet-curable prepolymer on a flexible substrate, and its surface is passivated with a thin layer of PDMS to impart an anti-adhesion property. The highly flexible mold enables conformal contact with a substrate on which a low-viscosity polymer resist is spin-cast in a thin layer. Large-area imprinting is then realized at room temperature under significantly reduced pressure. The mold was durable even after repetitive imprinting of over 200 times. Also, we show a double imprinting on the substrate with a PDMS-coated replica polymeric mold having 500 nm line patterns. This enables the formation of matrix patterns with varying feature heights in less than 7 min
Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.
Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc
2015-11-06
Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.
A 3D-printed device for polymer nanoimprint lithography
Caño-García, Manuel; Geday, Morten A.; Gil-Valverde, Manuel; Megías Zarco, Antonio; Otón, José M.; Quintana, Xabier
2018-02-01
Nanoimprint lithography (NIL) is an imprinting technique which has experienced an increasing popularity due to its versatility in fabrication processes. Commercial NIL machines are readily available achieving high quality results; however, these machines involve a relatively high investment. Hence, small laboratories often choose to perform NIL copies in a more rudimentary and cheaper way. A new simple system is presented in this document. It is based on two devices which can be made in-house in plastic by using a 3D printer or in aluminum. Thus, the overall manufacturing complexity is vastly reduced. The presented system includes pressure control and potentially temperature control. Replicas have been made using a sawtooth grating master with a pitch around half micrometre. High quality patterns with low density of imperfections have been achieved in 2.25 cm2 surfaces. The material chosen for the negative intermediary mould is PDMS. Tests of the imprint have been performed using the commercial hybrid polymer Ormostamp®.
High speed hydraulic scanner for deep x-ray lithography
International Nuclear Information System (INIS)
Milne, J.C.; Johnson, E.D.
1997-07-01
From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline
Joint optimization of source, mask, and pupil in optical lithography
Li, Jia; Lam, Edmund Y.
2014-03-01
Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.
Vitreous carbon mask substrate for X-ray lithography
Aigeldinger, Georg [Livermore, CA; Skala, Dawn M [Fremont, CA; Griffiths, Stewart K [Livermore, CA; Talin, Albert Alec [Livermore, CA; Losey, Matthew W [Livermore, CA; Yang, Chu-Yeu Peter [Dublin, CA
2009-10-27
The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.
High speed hydraulic scanner for deep x-ray lithography
Energy Technology Data Exchange (ETDEWEB)
Milne, J.C.; Johnson, E.D.
1997-07-01
From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline.
Solid state microcavity dye lasers fabricated by nanoimprint lithography
DEFF Research Database (Denmark)
Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders
2004-01-01
propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...
Interpreting cost of ownership for mix-and-match lithography
Levine, Alan L.; Bergendahl, Albert S.
1994-05-01
Cost of ownership modeling is a critical and emerging tool that provides significant insight into the ways to optimize device manufacturing costs. The development of a model to deal with a particular application, mix-and-match lithography, was performed in order to determine the level of cost savings and the optimum ways to create these savings. The use of sensitivity analysis with cost of ownership allows the user to make accurate trade-offs between technology and cost. The use and interpretation of the model results are described in this paper. Parameters analyzed include several manufacturing considerations -- depreciation, maintenance, engineering and operator labor, floorspace, resist, consumables and reticles. Inherent in this study is the ability to customize this analysis for a particular operating environment. Results demonstrate the clear advantages of a mix-and-match approach for three different operating environments. These case studies also demonstrate various methods to efficiently optimize cost savings strategies.
Uniformity across 200 mm silicon wafers printed by nanoimprint lithography
International Nuclear Information System (INIS)
Gourgon, C; Perret, C; Tallal, J; Lazzarino, F; Landis, S; Joubert, O; Pelzer, R
2005-01-01
Uniformity of the printing process is one of the key parameters of nanoimprint lithography. This technique has to be extended to large size wafers to be useful for several industrial applications, and the uniformity of micro and nanostructures has to be guaranteed on large surfaces. This paper presents results of printing on 200 mm diameter wafers. The residual thickness uniformity after printing is demonstrated at the wafer scale in large patterns (100 μm), in smaller lines of 250 nm and in sub-100 nm features. We show that a mould deformation occurs during the printing process, and that this deformation is needed to guarantee printing uniformity. However, the mould deformation is also responsible for the potential degradation of the patterns
Polystyrene negative resist for high-resolution electron beam lithography
Directory of Open Access Journals (Sweden)
Ma Siqi
2011-01-01
Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.
Improved mesh generator for the POISSON Group Codes
International Nuclear Information System (INIS)
Gupta, R.C.
1987-01-01
This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries
Histogram bin width selection for time-dependent Poisson processes
International Nuclear Information System (INIS)
Koyama, Shinsuke; Shinomoto, Shigeru
2004-01-01
In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method
Histogram bin width selection for time-dependent Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Koyama, Shinsuke; Shinomoto, Shigeru [Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
2004-07-23
In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method.
Nonlocal surface plasmons by Poisson Green's function matching
International Nuclear Information System (INIS)
Morgenstern Horing, Norman J
2006-01-01
The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field
Reference manual for the POISSON/SUPERFISH Group of Codes
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finite number of points on a mesh in the plane.
Invariants and labels for Lie-Poisson Systems
International Nuclear Information System (INIS)
Thiffeault, J.L.; Morrison, P.J.
1998-04-01
Reduction is a process that uses symmetry to lower the order of a Hamiltonian system. The new variables in the reduced picture are often not canonical: there are no clear variables representing positions and momenta, and the Poisson bracket obtained is not of the canonical type. Specifically, we give two examples that give rise to brackets of the noncanonical Lie-Poisson form: the rigid body and the two-dimensional ideal fluid. From these simple cases, we then use the semidirect product extension of algebras to describe more complex physical systems. The Casimir invariants in these systems are examined, and some are shown to be linked to the recovery of information about the configuration of the system. We discuss a case in which the extension is not a semidirect product, namely compressible reduced MHD, and find for this case that the Casimir invariants lend partial information about the configuration of the system
2D sigma models and differential Poisson algebras
International Nuclear Information System (INIS)
Arias, Cesar; Boulanger, Nicolas; Sundell, Per; Torres-Gomez, Alexander
2015-01-01
We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to a worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.
Critical elements on fitting the Bayesian multivariate Poisson Lognormal model
Zamzuri, Zamira Hasanah binti
2015-10-01
Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.
A physiologically based nonhomogeneous Poisson counter model of visual identification
DEFF Research Database (Denmark)
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus
2018-01-01
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are ......A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects...... that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model...
International Nuclear Information System (INIS)
Tang, F.
1983-01-01
Mount Wilson sunspot drawings from 1966 through 1980 were used in conjunction with Hα filtergrams from Big Bear Solar Observatory to examine the origin of delta spots, spots with bipolar umbrae within one penumbra. Of the six cases we studied, five were formed by the union of non-paired spots. They are either shoved into one another by two neighboring growing bipoles or by a new spot born piggy-back style on an existing spot of opposite polarity. Proper motions of the growing spots take on curvilinear paths around one another to avoid a collision. This is the shear motion observed in delta spots (Tanaka, 1979). In the remaining case, the delta spot was formed by spots that emerged as a pair. Our findings indicate no intrinsic differences in the formation or the behavior between delta spots of normal magnetic configuration. (orig.)
Rapid fabrication of microneedles using magnetorheological drawing lithography.
Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun
2018-01-01
Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask
Lithography-induced limits to scaling of design quality
Kahng, Andrew B.
2014-03-01
Quality and value of an IC product are functions of power, performance, area, cost and reliability. The forthcoming 2013 ITRS roadmap observes that while manufacturers continue to enable potential Moore's Law scaling of layout densities, the "realizable" scaling in competitive products has for some years been significantly less. In this paper, we consider aspects of the question, "To what extent should this scaling gap be blamed on lithography?" Non-ideal scaling of layout densities has been attributed to (i) layout restrictions associated with multi-patterning technologies (SADP, LELE, LELELE), as well as (ii) various ground rule and layout style choices that stem from misalignment, reliability, variability, device architecture, and electrical performance vs. power constraints. Certain impacts seem obvious, e.g., loss of 2D flexibility and new line-end placement constraints with SADP, or algorithmically intractable layout stitching and mask coloring formulations with LELELE. However, these impacts may well be outweighed by weaknesses in design methodology and tooling. Arguably, the industry has entered a new era in which many new factors - (i) standard-cell library architecture, and layout guardbanding for automated place-and-route: (ii) performance model guardbanding and signoff analyses: (iii) physical design and manufacturing handoff algorithms spanning detailed placement and routing, stitching and RET; and (iv) reliability guardbanding - all contribute, hand in hand with lithography, to a newly-identified "design capability gap". How specific aspects of process and design enablements limit the scaling of design quality is a fundamental question whose answer must guide future RandD investment at the design-manufacturing interface. terface.
International Nuclear Information System (INIS)
Hannequin, Pascal; Mas, Jacky
2002-01-01
Poisson noise is one of the factors degrading scintigraphic images, especially at low count level, due to the statistical nature of photon detection. We have developed an original procedure, named statistical and heuristic image noise extraction (SHINE), to reduce the Poisson noise contained in the scintigraphic images, preserving the resolution, the contrast and the texture. The SHINE procedure consists in dividing the image into 4 x 4 blocks and performing a correspondence analysis on these blocks. Each block is then reconstructed using its own significant factors which are selected using an original statistical variance test. The SHINE procedure has been validated using a line numerical phantom and a hot spots and cold spots real phantom. The reference images are the noise-free simulated images for the numerical phantom and an extremely high counts image for the real phantom. The SHINE procedure has then been applied to the Jaszczak phantom and clinical data including planar bone scintigraphy, planar Sestamibi scintigraphy and Tl-201 myocardial SPECT. The SHINE procedure reduces the mean normalized error between the noisy images and the corresponding reference images. This reduction is constant and does not change with the count level. The SNR in a SHINE processed image is close to that of the corresponding raw image with twice the number of counts. The visual results with the Jaszczak phantom SPECT have shown that SHINE preserves the contrast and the resolution of the slices well. Clinical examples have shown no visual difference between the SHINE images and the corresponding raw images obtained with twice the acquisition duration. SHINE is an entirely automatic procedure which enables halving the acquisition time or the injected dose in scintigraphic acquisitions. It can be applied to all scintigraphic images, including PET data, and to all low-count photon images
Investigation of Random Switching Driven by a Poisson Point Process
DEFF Research Database (Denmark)
Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef
2015-01-01
This paper investigates the switching mechanism of a two-dimensional switched system, when the switching events are generated by a Poisson point process. A model, in the shape of a stochastic process, for such a system is derived and the distribution of the trajectory's position is developed...... together with marginal density functions for the coordinate functions. Furthermore, the joint probability distribution is given explicitly....
Events in time: Basic analysis of Poisson data
International Nuclear Information System (INIS)
Engelhardt, M.E.
1994-09-01
The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given
Application of Poisson random effect models for highway network screening.
Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer
2014-02-01
In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
On terminating Poisson processes in some shock models
Energy Technology Data Exchange (ETDEWEB)
Finkelstein, Maxim, E-mail: FinkelMI@ufs.ac.z [Department of Mathematical Statistics, University of the Free State, Bloemfontein (South Africa); Max Planck Institute for Demographic Research, Rostock (Germany); Marais, Francois, E-mail: fmarais@csc.co [CSC, Cape Town (South Africa)
2010-08-15
A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.
On terminating Poisson processes in some shock models
International Nuclear Information System (INIS)
Finkelstein, Maxim; Marais, Francois
2010-01-01
A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.
Density of states, Poisson's formula of summation and Walfisz's formula
International Nuclear Information System (INIS)
Fucho, P.
1980-06-01
Using Poisson's formula for summation, we obtain an expression for density of states of d-dimensional scalar Helmoholtz's equation under various boundary conditions. Likewise, we also obtain formulas of Walfisz's type. It becomes evident that the formulas obtained by Pathria et al. in connection with ideal bosons in a finite system are exactly the same as those obtained by utilizing the formulas for density of states. (author)
Generalized Poisson processes in quantum mechanics and field theory
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille
1981-01-01
In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models. (orig.)
Estimation of Poisson-Dirichlet Parameters with Monotone Missing Data
Directory of Open Access Journals (Sweden)
Xueqin Zhou
2017-01-01
Full Text Available This article considers the estimation of the unknown numerical parameters and the density of the base measure in a Poisson-Dirichlet process prior with grouped monotone missing data. The numerical parameters are estimated by the method of maximum likelihood estimates and the density function is estimated by kernel method. A set of simulations was conducted, which shows that the estimates perform well.
Group-buying inventory policy with demand under Poisson process
Directory of Open Access Journals (Sweden)
Tammarat Kleebmek
2016-02-01
Full Text Available The group-buying is the modern business of selling in the uncertain market. With an objective to minimize costs for sellers arising from ordering and reordering, we present in this paper the group buying inventory model, with the demand governed by a Poisson process and the product sale distributed as Binomial distribution. The inventory level is under continuous review, while the lead time is fixed. A numerical example is illustrated.
Poisson noise removal with pyramidal multi-scale transforms
Woiselle, Arnaud; Starck, Jean-Luc; Fadili, Jalal M.
2013-09-01
In this paper, we introduce a method to stabilize the variance of decimated transforms using one or two variance stabilizing transforms (VST). These VSTs are applied to the 3-D Meyer wavelet pyramidal transform which is the core of the first generation 3D curvelets. This allows us to extend these 3-D curvelets to handle Poisson noise, that we apply to the denoising of a simulated cosmological volume.
Experimental dead-time distortions of Poisson processes
International Nuclear Information System (INIS)
Faraci, G.; Pennisi, A.R.; Consiglio Nazionale delle Ricerche, Catania
1983-01-01
In order to check the distortions, introduced by a non-extended dead time on the Poisson statistics, accurate experiments have been made in single channel counting. At a given measuring time, the dependence on the choice of the time origin and on the width of the dead time has been verified. An excellent agreement has been found between the theoretical expressions and the experimental curves. (orig.)
Events in time: Basic analysis of Poisson data
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, M.E.
1994-09-01
The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.
Poisson-Like Spiking in Circuits with Probabilistic Synapses
Moreno-Bote, Rubén
2014-01-01
Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705
Differential expression analysis for RNAseq using Poisson mixed models.
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang
2017-06-20
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A physiologically based nonhomogeneous Poisson counter model of visual identification.
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren
2018-04-30
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Modeling environmental noise exceedances using non-homogeneous Poisson processes.
Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R
2014-10-01
In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.
Blind beam-hardening correction from Poisson measurements
Gu, Renliang; Dogandžić, Aleksandar
2016-02-01
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.
A generalized Poisson solver for first-principles device simulations
Energy Technology Data Exchange (ETDEWEB)
Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Nanoscale Simulations, ETH Zürich, 8093 Zürich (Switzerland); Brück, Sascha; Luisier, Mathieu [Integrated Systems Laboratory, ETH Zürich, 8092 Zürich (Switzerland)
2016-01-28
Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.
Complete synchronization of the global coupled dynamical network induced by Poisson noises.
Guo, Qing; Wan, Fangyi
2017-01-01
The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.
Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes
2012-06-10
ESTIMATING BIRD/AIRCRAFT COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE...AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES Brady J. Vaira, BS, MS Major, USAF Approved
A comparison of Poisson-one-inflated power series distributions for ...
African Journals Online (AJOL)
A class of Poisson-one-inflated power series distributions (the binomial, the Poisson, the negative binomial, the geometric, the log-series and the misrecorded Poisson) are proposed for modeling rural out-migration at the household level. The probability mass functions of the mixture distributions are derived and fitted to the ...
Action-angle variables and a KAM theorem for b-Poisson manifolds
Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey
2015-01-01
In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.
A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture
Van Nguyen, Thu
2011-01-01
In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."
Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography
Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn
2012-02-01
In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1-1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.
Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography
International Nuclear Information System (INIS)
Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn
2012-01-01
In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1–1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.
Waldbaur, Ansgar; Waterkotte, Björn; Leuthold, Juerg; Schmitz, Katja; Rapp, Bastian E.
2013-03-01
MEMS/MOEMS based systems are increasingly applied in the biological and biomedical context, e.g. in form of biosensors or substrates for monitoring biological responses such as cell migration. For such applications, technical surfaces have to be provided with suitable biochemical functionalization. Typical functionalization procedures include wet-chemical techniques based on self-assembled monolayers of thiols on gold or silanes on glass. These processes create binary patterns and are often of limited use if spatially constrained non-binary patterns like surface bound biochemical gradients have to be provided. In order to create gradients or patterns, methods such as direct spotting or dip pen nanolithography can be used. Here, gradients can be emulated by varying the spot density or the concentration of the solutions employed. However, these methods are serial in nature and are thus of limited use if large surface areas have to be patterned. We present a technique to generate gradients of biochemical function by a photobleaching-based process allowing fast large-scale patterning. The process is based on photobleaching resulting in light-induced coupling of a fluorescently tagged biomolecule to a technical surface by concerted bleaching of the fluorophore. We custom designed a maskless projection lithography system based on a digital mirror device that allows the rapid creation of 8-bit grayscale protein patterns on any technical surface from digital data (e.g. bitmap files). We demonstrate how this process can be used to obtain patterns of several cm2 lateral size at micrometer resolution within minutes.
Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry
Energy Technology Data Exchange (ETDEWEB)
Marcuse, W.
1987-01-01
This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)
Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication
Wan, Weiwei; Lin, Liang; Xu, Yelong; Guo, Xu; Liu, Xiaoping; Ge, Haixiong; Lu, Minghui; Cui, Bo; Chen, Yanfeng
2014-01-01
manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage
Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures
Energy Technology Data Exchange (ETDEWEB)
Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ, Incheon (Korea, Republic of)
2016-08-15
Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.
Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures
International Nuclear Information System (INIS)
Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee
2016-01-01
Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed
Laser based spot weld characterization
Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias
2016-02-01
Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.
Is this Red Spot the Blue Spot (locus ceruleum)?
Energy Technology Data Exchange (ETDEWEB)
Choe, Won Sick; Lee, Yu Kyung; Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of)
2010-06-15
The authors report brain images of 18F-FDG-PET in a case of schizophrenia. The images showed strikingly increased bilateral uptake in the locus ceruleum. The locus ceruleum is called the blue spot and known to be a center of the norepinephrinergic system.