#### Sample records for poisson regression showed

1. Understanding poisson regression.

Science.gov (United States)

Hayat, Matthew J; Higgins, Melinda

2014-04-01

Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

2. Modified Regression Correlation Coefficient for Poisson Regression Model

Science.gov (United States)

Kaengthong, Nattacha; Domthong, Uthumporn

2017-09-01

This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

3. Poisson Mixture Regression Models for Heart Disease Prediction.

Science.gov (United States)

Mufudza, Chipo; Erol, Hamza

2016-01-01

Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

4. A Seemingly Unrelated Poisson Regression Model

OpenAIRE

King, Gary

1989-01-01

This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

5. Poisson Mixture Regression Models for Heart Disease Prediction

Science.gov (United States)

Erol, Hamza

2016-01-01

Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

6. Bayesian regression of piecewise homogeneous Poisson processes

Directory of Open Access Journals (Sweden)

Diego Sevilla

2015-12-01

Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015

7. A test of inflated zeros for Poisson regression models.

Science.gov (United States)

He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

2017-01-01

Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

8. Background stratified Poisson regression analysis of cohort data.

Science.gov (United States)

Richardson, David B; Langholz, Bryan

2012-03-01

Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

9. Background stratified Poisson regression analysis of cohort data

International Nuclear Information System (INIS)

Richardson, David B.; Langholz, Bryan

2012-01-01

Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

10. Analyzing hospitalization data: potential limitations of Poisson regression.

Science.gov (United States)

Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R

2015-08-01

Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

11. Modeling the number of car theft using Poisson regression

Science.gov (United States)

Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura

2016-10-01

Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.

12. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

Science.gov (United States)

Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

2011-11-01

To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

13. Poisson Regression Analysis of Illness and Injury Surveillance Data

Energy Technology Data Exchange (ETDEWEB)

Frome E.L., Watkins J.P., Ellis E.D.

2012-12-12

The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson

14. A generalized right truncated bivariate Poisson regression model with applications to health data.

Science.gov (United States)

Islam, M Ataharul; Chowdhury, Rafiqul I

2017-01-01

A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

15. Collision prediction models using multivariate Poisson-lognormal regression.

Science.gov (United States)

El-Basyouny, Karim; Sayed, Tarek

2009-07-01

This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

16. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

Science.gov (United States)

Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

2011-01-01

Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

17. Development of planning level transportation safety tools using Geographically Weighted Poisson Regression.

Science.gov (United States)

Hadayeghi, Alireza; Shalaby, Amer S; Persaud, Bhagwant N

2010-03-01

A common technique used for the calibration of collision prediction models is the Generalized Linear Modeling (GLM) procedure with the assumption of Negative Binomial or Poisson error distribution. In this technique, fixed coefficients that represent the average relationship between the dependent variable and each explanatory variable are estimated. However, the stationary relationship assumed may hide some important spatial factors of the number of collisions at a particular traffic analysis zone. Consequently, the accuracy of such models for explaining the relationship between the dependent variable and the explanatory variables may be suspected since collision frequency is likely influenced by many spatially defined factors such as land use, demographic characteristics, and traffic volume patterns. The primary objective of this study is to investigate the spatial variations in the relationship between the number of zonal collisions and potential transportation planning predictors, using the Geographically Weighted Poisson Regression modeling technique. The secondary objective is to build on knowledge comparing the accuracy of Geographically Weighted Poisson Regression models to that of Generalized Linear Models. The results show that the Geographically Weighted Poisson Regression models are useful for capturing spatially dependent relationships and generally perform better than the conventional Generalized Linear Models. Copyright 2009 Elsevier Ltd. All rights reserved.

18. Exploring factors associated with traumatic dental injuries in preschool children: a Poisson regression analysis.

Science.gov (United States)

Feldens, Carlos Alberto; Kramer, Paulo Floriani; Ferreira, Simone Helena; Spiguel, Mônica Hermann; Marquezan, Marcela

2010-04-01

This cross-sectional study aimed to investigate the factors associated with dental trauma in preschool children using Poisson regression analysis with robust variance. The study population comprised 888 children aged 3- to 5-year-old attending public nurseries in Canoas, southern Brazil. Questionnaires assessing information related to the independent variables (age, gender, race, mother's educational level and family income) were completed by the parents. Clinical examinations were carried out by five trained examiners in order to assess traumatic dental injuries (TDI) according to Andreasen's classification. One of the five examiners was calibrated to assess orthodontic characteristics (open bite and overjet). Multivariable Poisson regression analysis with robust variance was used to determine the factors associated with dental trauma as well as the strengths of association. Traditional logistic regression was also performed in order to compare the estimates obtained by both methods of statistical analysis. 36.4% (323/888) of the children suffered dental trauma and there was no difference in prevalence rates from 3 to 5 years of age. Poisson regression analysis showed that the probability of the outcome was almost 30% higher for children whose mothers had more than 8 years of education (Prevalence Ratio = 1.28; 95% CI = 1.03-1.60) and 63% higher for children with an overjet greater than 2 mm (Prevalence Ratio = 1.63; 95% CI = 1.31-2.03). Odds ratios clearly overestimated the size of the effect when compared with prevalence ratios. These findings indicate the need for preventive orientation regarding TDI, in order to educate parents and caregivers about supervising infants, particularly those with increased overjet and whose mothers have a higher level of education. Poisson regression with robust variance represents a better alternative than logistic regression to estimate the risk of dental trauma in preschool children.

19. A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries

OpenAIRE

Tierney, Heather L.R.; Pan, Bing

2010-01-01

A new area of research involves the use of Google data, which has been normalized and scaled to predict economic activity. This new source of data holds both many advantages as well as disadvantages, which are discussed through the use of daily and weekly data. Daily and weekly data are employed to show the effect of aggregation as it pertains to Google data, which can lead to contradictory findings. In this paper, Poisson regressions are used to explore the relationship between the online...

20. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

Science.gov (United States)

Yelland, Lisa N; Salter, Amy B; Ryan, Philip

2011-10-15

Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

1. [Application of detecting and taking overdispersion into account in Poisson regression model].

Science.gov (United States)

Bouche, G; Lepage, B; Migeot, V; Ingrand, P

2009-08-01

Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.

2. Non-Poisson Processes: Regression to Equilibrium Versus Equilibrium Correlation Functions

Science.gov (United States)

2004-07-07

ARTICLE IN PRESSPhysica A 347 (2005) 268–2880378-4371/- doi:10.1016/j Correspo E-mail adwww.elsevier.com/locate/physaNon- Poisson processes : regression...05.40.a; 89.75.k; 02.50.Ey Keywords: Stochastic processes; Non- Poisson processes ; Liouville and Liouville-like equations; Correlation function...which is not legitimate with renewal non- Poisson processes , is a correct property if the deviation from the exponential relaxation is obtained by time 3. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models Science.gov (United States) Amalia, Junita; Purhadi, Otok, Bambang Widjanarko 2017-11-01 Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method. 4. A SAS-macro for estimation of the cumulative incidence using Poisson regression DEFF Research Database (Denmark) Waltoft, Berit Lindum 2009-01-01 the hazard rates, and the hazard rates are often estimated by the Cox regression. This procedure may not be suitable for large studies due to limited computer resources. Instead one uses Poisson regression, which approximates the Cox regression. Rosthøj et al. presented a SAS-macro for the estimation...... of the cumulative incidences based on the Cox regression. I present the functional form of the probabilities and variances when using piecewise constant hazard rates and a SAS-macro for the estimation using Poisson regression. The use of the macro is demonstrated through examples and compared to the macro presented... 5. Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method Science.gov (United States) Prahutama, Alan; Sudarno 2018-05-01 The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9). 6. Poisson regression for modeling count and frequency outcomes in trauma research. Science.gov (United States) Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T 2008-10-01 The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared. 7. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling. Science.gov (United States) Chatzis, Sotirios P; Andreou, Andreas S 2015-11-01 Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets. 8. Methods for estimating disease transmission rates: Evaluating the precision of Poisson regression and two novel methods DEFF Research Database (Denmark) Kirkeby, Carsten Thure; Hisham Beshara Halasa, Tariq; Gussmann, Maya Katrin 2017-01-01 the transmission rate. We use data from the two simulation models and vary the sampling intervals and the size of the population sampled. We devise two new methods to determine transmission rate, and compare these to the frequently used Poisson regression method in both epidemic and endemic situations. For most...... tested scenarios these new methods perform similar or better than Poisson regression, especially in the case of long sampling intervals. We conclude that transmission rate estimates are easily biased, which is important to take into account when using these rates in simulation models.... 9. Detecting overdispersion in count data: A zero-inflated Poisson regression analysis Science.gov (United States) Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Nor, Maria Elena; Mohamed, Maryati; Ismail, Norradihah 2017-09-01 This study focusing on analysing count data of butterflies communities in Jasin, Melaka. In analysing count dependent variable, the Poisson regression model has been known as a benchmark model for regression analysis. Continuing from the previous literature that used Poisson regression analysis, this study comprising the used of zero-inflated Poisson (ZIP) regression analysis to gain acute precision on analysing the count data of butterfly communities in Jasin, Melaka. On the other hands, Poisson regression should be abandoned in the favour of count data models, which are capable of taking into account the extra zeros explicitly. By far, one of the most popular models include ZIP regression model. The data of butterfly communities which had been called as the number of subjects in this study had been taken in Jasin, Melaka and consisted of 131 number of subjects visits Jasin, Melaka. Since the researchers are considering the number of subjects, this data set consists of five families of butterfly and represent the five variables involve in the analysis which are the types of subjects. Besides, the analysis of ZIP used the SAS procedure of overdispersion in analysing zeros value and the main purpose of continuing the previous study is to compare which models would be better than when exists zero values for the observation of the count data. The analysis used AIC, BIC and Voung test of 5% level significance in order to achieve the objectives. The finding indicates that there is a presence of over-dispersion in analysing zero value. The ZIP regression model is better than Poisson regression model when zero values exist. 10. Systematic review of treatment modalities for gingival depigmentation: a random-effects poisson regression analysis. Science.gov (United States) Lin, Yi Hung; Tu, Yu Kang; Lu, Chun Tai; Chung, Wen Chen; Huang, Chiung Fang; Huang, Mao Suan; Lu, Hsein Kun 2014-01-01 Repigmentation variably occurs with different treatment methods in patients with gingival pigmentation. A systemic review was conducted of various treatment modalities for eliminating melanin pigmentation of the gingiva, comprising bur abrasion, scalpel surgery, cryosurgery, electrosurgery, gingival grafts, and laser techniques, to compare the recurrence rates (Rrs) of these treatment procedures. Electronic databases, including PubMed, Web of Science, Google, and Medline were comprehensively searched, and manual searches were conducted for studies published from January 1951 to June 2013. After applying inclusion and exclusion criteria, the final list of articles was reviewed in depth to achieve the objectives of this review. A Poisson regression was used to analyze the outcome of depigmentation using the various treatment methods. The systematic review was based on case reports mainly. In total, 61 eligible publications met the defined criteria. The various therapeutic procedures showed variable clinical results with a wide range of Rrs. A random-effects Poisson regression showed that cryosurgery (Rr = 0.32%), electrosurgery (Rr = 0.74%), and laser depigmentation (Rr = 1.16%) yielded superior result, whereas bur abrasion yielded the highest Rr (8.89%). Within the limit of the sampling level, the present evidence-based results show that cryosurgery exhibits the optimal predictability for depigmentation of the gingiva among all procedures examined, followed by electrosurgery and laser techniques. It is possible to treat melanin pigmentation of the gingiva with various methods and prevent repigmentation. Among those treatment modalities, cryosurgery, electrosurgery, and laser surgery appear to be the best choices for treating gingival pigmentation. © 2014 Wiley Periodicals, Inc. 11. A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA NARCIS (Netherlands) WEDEL, M; DESARBO, WS; BULT, [No Value; RAMASWAMY, [No Value 1993-01-01 In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing 12. Poisson regression approach for modeling fatal injury rates amongst Malaysian workers International Nuclear Information System (INIS) Kamarulzaman Ibrahim; Heng Khai Theng 2005-01-01 Many safety studies are based on the analysis carried out on injury surveillance data. The injury surveillance data gathered for the analysis include information on number of employees at risk of injury in each of several strata where the strata are defined in terms of a series of important predictor variables. Further insight into the relationship between fatal injury rates and predictor variables may be obtained by the poisson regression approach. Poisson regression is widely used in analyzing count data. In this study, poisson regression is used to model the relationship between fatal injury rates and predictor variables which are year (1995-2002), gender, recording system and industry type. Data for the analysis were obtained from PERKESO and Jabatan Perangkaan Malaysia. It is found that the assumption that the data follow poisson distribution has been violated. After correction for the problem of over dispersion, the predictor variables that are found to be significant in the model are gender, system of recording, industry type, two interaction effects (interaction between recording system and industry type and between year and industry type). Introduction Regression analysis is one of the most popular 13. Analysis of Relationship Between Personality and Favorite Places with Poisson Regression Analysis Directory of Open Access Journals (Sweden) Yoon Song Ha 2018-01-01 Full Text Available A relationship between human personality and preferred locations have been a long conjecture for human mobility research. In this paper, we analyzed the relationship between personality and visiting place with Poisson Regression. Poisson Regression can analyze correlation between countable dependent variable and independent variable. For this analysis, 33 volunteers provided their personality data and 49 location categories data are used. Raw location data is preprocessed to be normalized into rates of visit and outlier data is prunned. For the regression analysis, independent variables are personality data and dependent variables are preprocessed location data. Several meaningful results are found. For example, persons with high tendency of frequent visiting to university laboratory has personality with high conscientiousness and low openness. As well, other meaningful location categories are presented in this paper. 14. PEMODELAN JUMLAH ANAK PUTUS SEKOLAH DI PROVINSI BALI DENGAN PENDEKATAN SEMI-PARAMETRIC GEOGRAPHICALLY WEIGHTED POISSON REGRESSION Directory of Open Access Journals (Sweden) GUSTI AYU RATIH ASTARI 2013-11-01 Full Text Available Dropout number is one of the important indicators to measure the human progress resources in education sector. This research uses the approaches of Semi-parametric Geographically Weighted Poisson Regression to get the best model and to determine the influencing factors of dropout number for primary education in Bali. The analysis results show that there are no significant differences between the Poisson regression model with GWPR and Semi-parametric GWPR. Factors which significantly influence the dropout number for primary education in Bali are the ratio of students to school, ratio of students to teachers, the number of families with the latest educational fathers is elementary or junior high school, illiteracy rates, and the average number of family members. 15. A coregionalization model can assist specification of Geographically Weighted Poisson Regression: Application to an ecological study. Science.gov (United States) Ribeiro, Manuel Castro; Sousa, António Jorge; Pereira, Maria João 2016-05-01 The geographical distribution of health outcomes is influenced by socio-economic and environmental factors operating on different spatial scales. Geographical variations in relationships can be revealed with semi-parametric Geographically Weighted Poisson Regression (sGWPR), a model that can combine both geographically varying and geographically constant parameters. To decide whether a parameter should vary geographically, two models are compared: one in which all parameters are allowed to vary geographically and one in which all except the parameter being evaluated are allowed to vary geographically. The model with the lower corrected Akaike Information Criterion (AICc) is selected. Delivering model selection exclusively according to the AICc might hide important details in spatial variations of associations. We propose assisting the decision by using a Linear Model of Coregionalization (LMC). Here we show how LMC can refine sGWPR on ecological associations between socio-economic and environmental variables and low birth weight outcomes in the west-north-central region of Portugal. Copyright © 2016 Elsevier Ltd. All rights reserved. 16. Poisson regression analysis of the mortality among a cohort of World War II nuclear industry workers International Nuclear Information System (INIS) Frome, E.L.; Cragle, D.L.; McLain, R.W. 1990-01-01 A historical cohort mortality study was conducted among 28,008 white male employees who had worked for at least 1 month in Oak Ridge, Tennessee, during World War II. The workers were employed at two plants that were producing enriched uranium and a research and development laboratory. Vital status was ascertained through 1980 for 98.1% of the cohort members and death certificates were obtained for 96.8% of the 11,671 decedents. A modified version of the traditional standardized mortality ratio (SMR) analysis was used to compare the cause-specific mortality experience of the World War II workers with the U.S. white male population. An SMR and a trend statistic were computed for each cause-of-death category for the 30-year interval from 1950 to 1980. The SMR for all causes was 1.11, and there was a significant upward trend of 0.74% per year. The excess mortality was primarily due to lung cancer and diseases of the respiratory system. Poisson regression methods were used to evaluate the influence of duration of employment, facility of employment, socioeconomic status, birth year, period of follow-up, and radiation exposure on cause-specific mortality. Maximum likelihood estimates of the parameters in a main-effects model were obtained to describe the joint effects of these six factors on cause-specific mortality of the World War II workers. We show that these multivariate regression techniques provide a useful extension of conventional SMR analysis and illustrate their effective use in a large occupational cohort study 17. Analisis Faktor – Faktor yang Mempengaruhi Jumlah Kejahatan Pencurian Kendaraan Bermotor (Curanmor) Menggunakan Model Geographically Weighted Poisson Regression (Gwpr) OpenAIRE Haris, Muhammad; Yasin, Hasbi; Hoyyi, Abdul 2015-01-01 Theft is an act taking someone else's property, partially or entierely, with intention to have it illegally. Motor vehicle theft is one of the most highlighted crime type and disturbing the communities. Regression analysis is a statistical analysis for modeling the relationships between response variable and predictor variable. If the response variable follows a Poisson distribution or categorized as a count data, so the regression model used is Poisson regression. Geographically Weighted Poi... 18. Zero inflated Poisson and negative binomial regression models: application in education. Science.gov (United States) Salehi, Masoud; Roudbari, Masoud 2015-01-01 The number of failed courses and semesters in students are indicators of their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of students. This cross-sectional study performed in 2008-2009 at Iran University of Medical Sciences (IUMS) with a population of almost 6000 students, 670 students selected using stratified random sampling. The educational and demographical data were collected using the University records. The study design was approved at IUMS and the students' data kept confidential. The descriptive statistics and ZI Poisson and negative binomial regressions were used to analyze the data. The data were analyzed using STATA. In the number of failed semesters, Poisson and negative binomial distributions with ZI, students' total average and quota system had the most roles. For the number of failed courses, total average, and being in undergraduate or master levels had the most effect in both models. In all models the total average have the most effect on the number of failed courses or semesters. The next important factor is quota system in failed semester and undergraduate and master levels in failed courses. Therefore, average has an important inverse effect on the numbers of failed courses and semester. 19. Use of Poisson spatiotemporal regression models for the Brazilian Amazon Forest: malaria count data Directory of Open Access Journals (Sweden) Jorge Alberto Achcar 2011-12-01 Full Text Available INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts. 20. Use of Poisson spatiotemporal regression models for the Brazilian Amazon Forest: malaria count data. Science.gov (United States) Achcar, Jorge Alberto; Martinez, Edson Zangiacomi; Souza, Aparecida Doniseti Pires de; Tachibana, Vilma Mayumi; Flores, Edilson Ferreira 2011-01-01 Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using bayesian spatiotemporal methods. We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the bayesian paradigm is a good strategy for modeling malaria counts. 1. A Spline-Based Lack-Of-Fit Test for Independent Variable Effect in Poisson Regression. Science.gov (United States) Li, Chin-Shang; Tu, Wanzhu 2007-05-01 In regression analysis of count data, independent variables are often modeled by their linear effects under the assumption of log-linearity. In reality, the validity of such an assumption is rarely tested, and its use is at times unjustifiable. A lack-of-fit test is proposed for the adequacy of a postulated functional form of an independent variable within the framework of semiparametric Poisson regression models based on penalized splines. It offers added flexibility in accommodating the potentially non-loglinear effect of the independent variable. A likelihood ratio test is constructed for the adequacy of the postulated parametric form, for example log-linearity, of the independent variable effect. Simulations indicate that the proposed model performs well, and misspecified parametric model has much reduced power. An example is given. 2. Climate changes and their effects in the public health: use of poisson regression models Directory of Open Access Journals (Sweden) Jonas Bodini Alonso 2010-08-01 Full Text Available In this paper, we analyze the daily number of hospitalizations in São Paulo City, Brazil, in the period of January 01, 2002 to December 31, 2005. This data set relates to pneumonia, coronary ischemic diseases, diabetes and chronic diseases in different age categories. In order to verify the effect of climate changes the following covariates are considered: atmosphere pressure, air humidity, temperature, year season and also a covariate related to the week day when the hospitalization occurred. The possible effects of the assumed covariates in the number of hospitalization are studied using a Poisson regression model in the presence or not of a random effect which captures the possible correlation among the hospitalization accounting for the different age categories in the same day and the extra-Poisson variability for the longitudinal data. The inferences of interest are obtained using the Bayesian paradigm and MCMC (Markov chain Monte Carlo methods.Neste artigo, analisamos os dados relativos aos números diários de hospitalizações na cidade de São Paulo, Brasil no período de 01/01/2002 a 31/12/2005 devido a pneumonia, doenças isquêmicas, diabetes e doenças crônicas e de acordo com a faixa etária. Com o objetivo de estudar o efeito de mudanças climáticas são consideradas algumas covariáveis climáticas os índices diários de pressão atmosférica, umidade do ar, temperatura e estação do ano, e uma covariável relacionada ao dia da semana da ocorrência de hospitalização. Para verificar os efeitos das covariáveis nas respostas dadas pelo numero de hospitalizações, consideramos um modelo de regressão de Poisson na presença ou não de um efeito aleatório que captura a possível correlação entre as contagens para as faixas etárias de um mesmo dia e a variabilidade extra-poisson para os dados longitudinais. As inferências de interesse são obtidas usando o paradigma bayesiano e métodos de simulação MCMC (Monte Carlo 3. A comparison between Poisson and zero-inflated Poisson regression models with an application to number of black spots in Corriedale sheep Directory of Open Access Journals (Sweden) Rodrigues-Motta Mariana 2008-07-01 Full Text Available Abstract Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep. 4. Association between large strongyle genera in larval cultures--using rare-event poisson regression. Science.gov (United States) Cao, X; Vidyashankar, A N; Nielsen, M K 2013-09-01 Decades of intensive anthelmintic treatment has caused equine large strongyles to become quite rare, while the cyathostomins have developed resistance to several drug classes. The larval culture has been associated with low to moderate negative predictive values for detecting Strongylus vulgaris infection. It is unknown whether detection of other large strongyle species can be statistically associated with presence of S. vulgaris. This remains a statistical challenge because of the rare occurrence of large strongyle species. This study used a modified Poisson regression to analyse a dataset for associations between S. vulgaris infection and simultaneous occurrence of Strongylus edentatus and Triodontophorus spp. In 663 horses on 42 Danish farms, the individual prevalences of S. vulgaris, S. edentatus and Triodontophorus spp. were 12%, 3% and 12%, respectively. Both S. edentatus and Triodontophorus spp. were significantly associated with S. vulgaris infection with relative risks above 1. Further, S. edentatus was associated with use of selective therapy on the farms, as well as negatively associated with anthelmintic treatment carried out within 6 months prior to the study. The findings illustrate that occurrence of S. vulgaris in larval cultures can be interpreted as indicative of other large strongyles being likely to be present. 5. Modeling both of the number of pausibacillary and multibacillary leprosy patients by using bivariate poisson regression Science.gov (United States) Winahju, W. S.; Mukarromah, A.; Putri, S. 2015-03-01 Leprosy is a chronic infectious disease caused by bacteria of leprosy (Mycobacterium leprae). Leprosy has become an important thing in Indonesia because its morbidity is quite high. Based on WHO data in 2014, in 2012 Indonesia has the highest number of new leprosy patients after India and Brazil with a contribution of 18.994 people (8.7% of the world). This number makes Indonesia automatically placed as the country with the highest number of leprosy morbidity of ASEAN countries. The province that most contributes to the number of leprosy patients in Indonesia is East Java. There are two kind of leprosy. They consist of pausibacillary and multibacillary. The morbidity of multibacillary leprosy is higher than pausibacillary leprosy. This paper will discuss modeling both of the number of multibacillary and pausibacillary leprosy patients as responses variables. These responses are count variables, so modeling will be conducted by using bivariate poisson regression method. Unit experiment used is in East Java, and predictors involved are: environment, demography, and poverty. The model uses data in 2012, and the result indicates that all predictors influence significantly. 6. On Poisson functions OpenAIRE Terashima, Yuji 2008-01-01 In this paper, defining Poisson functions on super manifolds, we show that the graphs of Poisson functions are Dirac structures, and find Poisson functions which include as special cases both quasi-Poisson structures and twisted Poisson structures. 7. The Poisson-exponential regression model under different latent activation schemes OpenAIRE Louzada, Francisco; Cancho, Vicente G; Barriga, Gladys D.C 2012-01-01 In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activationschemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Infer... 8. Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models. Science.gov (United States) Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I 2018-01-01 Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components. 9. Predictors of the number of under-five malnourished children in Bangladesh: application of the generalized poisson regression model. Science.gov (United States) Islam, Mohammad Mafijul; Alam, Morshed; Tariquzaman, Md; Kabir, Mohammad Alamgir; Pervin, Rokhsona; Begum, Munni; Khan, Md Mobarak Hossain 2013-01-08 Malnutrition is one of the principal causes of child mortality in developing countries including Bangladesh. According to our knowledge, most of the available studies, that addressed the issue of malnutrition among under-five children, considered the categorical (dichotomous/polychotomous) outcome variables and applied logistic regression (binary/multinomial) to find their predictors. In this study malnutrition variable (i.e. outcome) is defined as the number of under-five malnourished children in a family, which is a non-negative count variable. The purposes of the study are (i) to demonstrate the applicability of the generalized Poisson regression (GPR) model as an alternative of other statistical methods and (ii) to find some predictors of this outcome variable. The data is extracted from the Bangladesh Demographic and Health Survey (BDHS) 2007. Briefly, this survey employs a nationally representative sample which is based on a two-stage stratified sample of households. A total of 4,460 under-five children is analysed using various statistical techniques namely Chi-square test and GPR model. The GPR model (as compared to the standard Poisson regression and negative Binomial regression) is found to be justified to study the above-mentioned outcome variable because of its under-dispersion (variance variable namely mother's education, father's education, wealth index, sanitation status, source of drinking water, and total number of children ever born to a woman. Consistencies of our findings in light of many other studies suggest that the GPR model is an ideal alternative of other statistical models to analyse the number of under-five malnourished children in a family. Strategies based on significant predictors may improve the nutritional status of children in Bangladesh. 10. Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest Science.gov (United States) Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K. 2018-04-01 Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction. 11. The analysis of incontinence episodes and other count data in patients with overactive bladder by Poisson and negative binomial regression. Science.gov (United States) Martina, R; Kay, R; van Maanen, R; Ridder, A 2015-01-01 Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd. 12. Using poisson regression to compare rates of unsatisfactory pap smears among gynecologists and to evaluate a performance improvement plan. Science.gov (United States) Wachtel, Mitchell S; Hatley, Warren G; de Riese, Cornelia 2009-01-01 To evaluate impact of a performance improvement (PI) plan implemented after initial analysis, comparing 7 gynecologists working in 2 clinics. From January to October 2005, unsatisfactory rates for gynecologists and clinics were calculated. A PI plan was instituted at the end of the first quarter of 2006. Unsatisfactory rates for each quarter of 2006 and the first quarter of 2007 were calculated. Poisson regression analyzed results. A total of 100 ThinPrep Pap smears initially deemed unsatisfactory underwent reprocessing and revaluation. The study's first part evaluated 2890 smears. Clinic unsatisfactory rates, 2.7% and 2.6%, were similar (p > 0.05). Gynecologists' unsatisfactory rates were 4.8-0.6%; differences between each of the highest 2 and lowest rates were significant (p improvement. Reprocessing ThinPrep smears is an important means of reducing unsatisfactory rates but should not be a substitute for attention to quality in sampling. 13. The Use of a Poisson Regression to Evaluate Antihistamines and Fatal Aircraft Mishaps in Instrument Meteorological Conditions. Science.gov (United States) Gildea, Kevin M; Hileman, Christy R; Rogers, Paul; Salazar, Guillermo J; Paskoff, Lawrence N 2018-04-01 Research indicates that first-generation antihistamine usage may impair pilot performance by increasing the likelihood of vestibular illusions, spatial disorientation, and/or cognitive impairment. Second- and third-generation antihistamines generally have fewer impairing side effects and are approved for pilot use. We hypothesized that toxicological findings positive for second- and third-generation antihistamines are less likely to be associated with pilots involved in fatal mishaps than first-generation antihistamines. The evaluated population consisted of 1475 U.S. civil pilots fatally injured between September 30, 2008, and October 1, 2014. Mishap factors evaluated included year, weather conditions, airman rating, recent airman flight time, quarter of year, and time of day. Due to the low prevalence of positive antihistamine findings, a count-based model was selected, which can account for rare outcomes. The means and variances were close for both regression models supporting the assumption that the data follow a Poisson distribution; first-generation antihistamine mishap airmen (N = 582, M = 0.17, S2 = 0.17) with second- and third-generation antihistamine mishap airmen (N = 116, M = 0.20, S2 = 0.18). The data indicate fewer airmen with second- and third-generation antihistamines than first-generation antihistamines in their system are fatally injured while flying in IMC conditions. Whether the lower incidence is a factor of greater usage of first-generation antihistamines versus second- and third-generation antihistamines by the pilot population or fewer deleterious side effects with second- and third-generation antihistamines is unclear. These results engender cautious optimism, but additional research is necessary to determine why these differences exist.Gildea KM, Hileman CR, Rogers P, Salazar GJ, Paskoff LN. The use of a Poisson regression to evaluate antihistamines and fatal aircraft mishaps in instrument meteorological conditions. Aerosp Med Hum Perform 14. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Science.gov (United States) Wang, Chenggang; Jiang, Baofa; Fan, Jingchun; Wang, Furong; Liu, Qiyong 2014-01-01 The aim of this study is to develop a model that correctly identifies and quantifies the relationship between dengue and meteorological factors in Guangzhou, China. By cross-correlation analysis, meteorological variables and their lag effects were determined. According to the epidemic characteristics of dengue in Guangzhou, those statistically significant variables were modeled by a zero-inflated Poisson regression model. The number of dengue cases and minimum temperature at 1-month lag, along with average relative humidity at 0- to 1-month lag were all positively correlated with the prevalence of dengue fever, whereas wind velocity and temperature in the same month along with rainfall at 2 months' lag showed negative association with dengue incidence. Minimum temperature at 1-month lag and wind velocity in the same month had a greater impact on the dengue epidemic than other variables in Guangzhou. 15. Impact of a New Law to Reduce the Legal Blood Alcohol Concentration Limit - A Poisson Regression Analysis and Descriptive Approach. Science.gov (United States) Nistal-Nuño, Beatriz 2017-03-31 In Chile, a new law introduced in March 2012 lowered the blood alcohol concentration (BAC) limit for impaired drivers from 0.1% to 0.08% and the BAC limit for driving under the influence of alcohol from 0.05% to 0.03%, but its effectiveness remains uncertain. The goal of this investigation was to evaluate the effects of this enactment on road traffic injuries and fatalities in Chile. A retrospective cohort study. Data were analyzed using a descriptive and a Generalized Linear Models approach, type of Poisson regression, to analyze deaths and injuries in a series of additive Log-Linear Models accounting for the effects of law implementation, month influence, a linear time trend and population exposure. A review of national databases in Chile was conducted from 2003 to 2014 to evaluate the monthly rates of traffic fatalities and injuries associated to alcohol and in total. It was observed a decrease by 28.1 percent in the monthly rate of traffic fatalities related to alcohol as compared to before the law (Plaw (Plaw implemented in 2012 in Chile. Chile experienced a significant reduction in alcohol-related traffic fatalities and injuries, being a successful public health intervention. 16. Misspecified poisson regression models for large-scale registry data: inference for 'large n and small p'. Science.gov (United States) Grøn, Randi; Gerds, Thomas A; Andersen, Per K 2016-03-30 Poisson regression is an important tool in register-based epidemiology where it is used to study the association between exposure variables and event rates. In this paper, we will discuss the situation with 'large n and small p', where n is the sample size and p is the number of available covariates. Specifically, we are concerned with modeling options when there are time-varying covariates that can have time-varying effects. One problem is that tests of the proportional hazards assumption, of no interactions between exposure and other observed variables, or of other modeling assumptions have large power due to the large sample size and will often indicate statistical significance even for numerically small deviations that are unimportant for the subject matter. Another problem is that information on important confounders may be unavailable. In practice, this situation may lead to simple working models that are then likely misspecified. To support and improve conclusions drawn from such models, we discuss methods for sensitivity analysis, for estimation of average exposure effects using aggregated data, and a semi-parametric bootstrap method to obtain robust standard errors. The methods are illustrated using data from the Danish national registries investigating the diabetes incidence for individuals treated with antipsychotics compared with the general unexposed population. Copyright © 2015 John Wiley & Sons, Ltd. 17. Comparing the cancer in Ninawa during three periods (1980-1990, 1991-2000, 2001-2010 using Poisson regression Directory of Open Access Journals (Sweden) Muzahem Mohammed Yahya AL-Hashimi 2013-01-01 Full Text Available Background: Iraq fought three wars in three consecutive decades, Iran-Iraq war (1980-1988, Persian Gulf War in 1991, and the Iraq′s war in 2003. In the nineties of the last century and up to the present time, there have been anecdotal reports of increase in cancer in Ninawa as in all provinces of Iraq, possibly as a result of exposure to depleted uranium used by American troops in the last two wars. This paper deals with cancer incidence in Ninawa, the most importance province in Iraq, where many of her sons were soldiers in the Iraqi army, and they have participated in the wars. Materials and Methods: The data was derived from the Directorate of Health in Ninawa. The data was divided into three sub periods: 1980-1990, 1991-2000, and 2001-2010. The analyses are performed using Poisson regressions. The response variable is the cancer incidence number. Cancer cases, age, sex, and years were considered as the explanatory variables. The logarithm of the population of Ninawa is used as an offset. The aim of this paper is to model the cancer incidence data and estimate the cancer incidence rate ratio (IRR to illustrate the changes that have occurred of incidence cancer in Ninawa in these three periods. Results: There is evidence of a reduction in the cancer IRR in Ninawa in the third period as well as in the second period. Our analyses found that breast cancer remained the first common cancer; while the lung, trachea, and bronchus the second in spite of decreasing as dramatically. Modest increases in incidence of prostate, penis, and other male genitals for the duration of the study period and stability in incidence of colon in the second and third periods. Modest increases in incidence of placenta and metastatic tumors, while the highest increase was in leukemia in the third period relates to the second period but not to the first period. The cancer IRR in men was decreased from more than 33% than those of females in the first period, more than 39 18. Comparing the cancer in Ninawa during three periods (1980-1990, 1991-2000, 2001-2010) using Poisson regression. Science.gov (United States) Al-Hashimi, Muzahem Mohammed Yahya; Wang, Xiangjun 2013-12-01 Iraq fought three wars in three consecutive decades, Iran-Iraq war (1980-1988), Persian Gulf War in 1991, and the Iraq's war in 2003. In the nineties of the last century and up to the present time, there have been anecdotal reports of increase in cancer in Ninawa as in all provinces of Iraq, possibly as a result of exposure to depleted uranium used by American troops in the last two wars. This paper deals with cancer incidence in Ninawa, the most importance province in Iraq, where many of her sons were soldiers in the Iraqi army, and they have participated in the wars. The data was derived from the Directorate of Health in Ninawa. The data was divided into three sub periods: 1980-1990, 1991-2000, and 2001-2010. The analyses are performed using Poisson regressions. The response variable is the cancer incidence number. Cancer cases, age, sex, and years were considered as the explanatory variables. The logarithm of the population of Ninawa is used as an offset. The aim of this paper is to model the cancer incidence data and estimate the cancer incidence rate ratio (IRR) to illustrate the changes that have occurred of incidence cancer in Ninawa in these three periods. There is evidence of a reduction in the cancer IRR in Ninawa in the third period as well as in the second period. Our analyses found that breast cancer remained the first common cancer; while the lung, trachea, and bronchus the second in spite of decreasing as dramatically. Modest increases in incidence of prostate, penis, and other male genitals for the duration of the study period and stability in incidence of colon in the second and third periods. Modest increases in incidence of placenta and metastatic tumors, while the highest increase was in leukemia in the third period relates to the second period but not to the first period. The cancer IRR in men was decreased from more than 33% than those of females in the first period, more than 39% in the second period, and regressed to 9.56% in the third 19. Comparison of In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycle Outcome in Patients with and without Polycystic Ovary Syndrome: A Modified Poisson Regression Model. Science.gov (United States) Almasi-Hashiani, Amir; Mansournia, Mohammad Ali; Sepidarkish, Mahdi; Vesali, Samira; Ghaheri, Azadeh; Esmailzadeh, Arezoo; Omani-Samani, Reza 2018-01-01 Polycystic ovary syndrome (PCOS) is a frequent condition in reproductive age women with a prevalence rate of 5-10%. This study intends to determine the relationship between PCOS and the outcome of assisted reproductive treatment (ART) in Tehran, Iran. In this historical cohort study, we included 996 infertile women who referred to Royan Institute (Tehran, Iran) between January 2012 and December 2013. PCOS, as the main variable, and other potential confounder variables were gathered. Modified Poisson Regression was used for data analysis. Stata software, version 13 was used for all statistical analyses. Unadjusted analysis showed a significantly lower risk for failure in PCOS cases compared to cases without PCOS [risk ratio (RR): 0.79, 95% confidence intervals (CI): 0.66-0.95, P=0.014]. After adjusting for the confounder variables, there was no difference between risk of non-pregnancy in women with and without PCOS (RR: 0.87, 95% CI: 0.72-1.05, P=0.15). Significant predictors of the ART outcome included the treatment protocol type, numbers of embryos transferred (grades A and AB), numbers of injected ampules, and age. The results obtained from this model showed no difference between patients with and without PCOS according to the risk for non-pregnancy. Therefore, other factors might affect conception in PCOS patients. Copyright© by Royan Institute. All rights reserved. 20. Poisson Coordinates. Science.gov (United States) Li, Xian-Ying; Hu, Shi-Min 2013-02-01 Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions. 1. A Poisson regression approach to model monthly hail occurrence in Northern Switzerland using large-scale environmental variables Science.gov (United States) Madonna, Erica; Ginsbourger, David; Martius, Olivia 2018-05-01 In Switzerland, hail regularly causes substantial damage to agriculture, cars and infrastructure, however, little is known about its long-term variability. To study the variability, the monthly number of days with hail in northern Switzerland is modeled in a regression framework using large-scale predictors derived from ERA-Interim reanalysis. The model is developed and verified using radar-based hail observations for the extended summer season (April-September) in the period 2002-2014. The seasonality of hail is explicitly modeled with a categorical predictor (month) and monthly anomalies of several large-scale predictors are used to capture the year-to-year variability. Several regression models are applied and their performance tested with respect to standard scores and cross-validation. The chosen model includes four predictors: the monthly anomaly of the two meter temperature, the monthly anomaly of the logarithm of the convective available potential energy (CAPE), the monthly anomaly of the wind shear and the month. This model well captures the intra-annual variability and slightly underestimates its inter-annual variability. The regression model is applied to the reanalysis data back in time to 1980. The resulting hail day time series shows an increase of the number of hail days per month, which is (in the model) related to an increase in temperature and CAPE. The trend corresponds to approximately 0.5 days per month per decade. The results of the regression model have been compared to two independent data sets. All data sets agree on the sign of the trend, but the trend is weaker in the other data sets. 2. The Spatial Distribution of Hepatitis C Virus Infections and Associated Determinants--An Application of a Geographically Weighted Poisson Regression for Evidence-Based Screening Interventions in Hotspots. Science.gov (United States) Kauhl, Boris; Heil, Jeanne; Hoebe, Christian J P A; Schweikart, Jürgen; Krafft, Thomas; Dukers-Muijrers, Nicole H T M 2015-01-01 Hepatitis C Virus (HCV) infections are a major cause for liver diseases. A large proportion of these infections remain hidden to care due to its mostly asymptomatic nature. Population-based screening and screening targeted on behavioural risk groups had not proven to be effective in revealing these hidden infections. Therefore, more practically applicable approaches to target screenings are necessary. Geographic Information Systems (GIS) and spatial epidemiological methods may provide a more feasible basis for screening interventions through the identification of hotspots as well as demographic and socio-economic determinants. Analysed data included all HCV tests (n = 23,800) performed in the southern area of the Netherlands between 2002-2008. HCV positivity was defined as a positive immunoblot or polymerase chain reaction test. Population data were matched to the geocoded HCV test data. The spatial scan statistic was applied to detect areas with elevated HCV risk. We applied global regression models to determine associations between population-based determinants and HCV risk. Geographically weighted Poisson regression models were then constructed to determine local differences of the association between HCV risk and population-based determinants. HCV prevalence varied geographically and clustered in urban areas. The main population at risk were middle-aged males, non-western immigrants and divorced persons. Socio-economic determinants consisted of one-person households, persons with low income and mean property value. However, the association between HCV risk and demographic as well as socio-economic determinants displayed strong regional and intra-urban differences. The detection of local hotspots in our study may serve as a basis for prioritization of areas for future targeted interventions. Demographic and socio-economic determinants associated with HCV risk show regional differences underlining that a one-size-fits-all approach even within small geographic 3. Analyzing Seasonal Variations in Suicide With Fourier Poisson Time-Series Regression: A Registry-Based Study From Norway, 1969-2007. Science.gov (United States) Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo 2015-08-01 Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 4. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds Science.gov (United States) Martínez-Torres, David; Miranda, Eva 2018-01-01 We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds. 5. A case of parotid tumor showing remarkable regression following hyperthermo-chemo-radiotherapy International Nuclear Information System (INIS) Fujimura, Takashi; Yonemura, Yutaka; Kamata, Toru 1987-01-01 A 72-year-old woman developed adenocarcinoma of the left parotid gland. Because of the excessive size of her tumor and the fact that she suffered from severe liver dysfunction, she was treated by hyperthermo-chemo-radiotherapy (HCR therapy). After ten sessions of radiofrequency hyperthermia with HEH 500 (13.56 MHz radiofrequency wave), 50-Gy irradiation from a linac and administration of 33.0 g of tegafur in suppository form, the tumor mass showed remarkable regression decreasing in size by as much as 84 % on computed tomography. Histologically, the tumor which was resected under local anesthesia, showed almost total necrosis. The multidisciplinary HCR therapy was well tolerated and effective as a therapy for cancer in this case. (author) 6. Reprint of "Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression". Science.gov (United States) Shimaponda-Mataa, Nzooma M; Tembo-Mwase, Enala; Gebreslasie, Michael; Achia, Thomas N O; Mukaratirwa, Samson 2017-11-01 Although malaria morbidity and mortality are greatly reduced globally owing to great control efforts, the disease remains the main contributor. In Zambia, all provinces are malaria endemic. However, the transmission intensities vary mainly depending on environmental factors as they interact with the vectors. Generally in Africa, possibly due to the varying perspectives and methods used, there is variation on the relative importance of malaria risk determinants. In Zambia, the role climatic factors play on malaria case rates has not been determined in combination of space and time using robust methods in modelling. This is critical considering the reversal in malaria reduction after the year 2010 and the variation by transmission zones. Using a geoadditive or structured additive semiparametric Poisson regression model, we determined the influence of climatic factors on malaria incidence in four endemic provinces of Zambia. We demonstrate a strong positive association between malaria incidence and precipitation as well as minimum temperature. The risk of malaria was 95% lower in Lusaka (ARR=0.05, 95% CI=0.04-0.06) and 68% lower in the Western Province (ARR=0.31, 95% CI=0.25-0.41) compared to Luapula Province. North-western Province did not vary from Luapula Province. The effects of geographical region are clearly demonstrated by the unique behaviour and effects of minimum and maximum temperatures in the four provinces. Environmental factors such as landscape in urbanised places may also be playing a role. Copyright © 2017 Elsevier B.V. All rights reserved. 7. Estimating carbon and showing impacts of drought using satellite data in regression-tree models Science.gov (United States) Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G. 2018-01-01 Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics. 8. Poisson distribution NARCIS (Netherlands) Hallin, M.; Piegorsch, W.; El Shaarawi, A. 2012-01-01 The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that 9. Poisson Autoregression DEFF Research Database (Denmark) Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time... 10. Poisson Autoregression DEFF Research Database (Denmark) Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model... 11. Poisson processes NARCIS (Netherlands) Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W. 2007-01-01 The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the 12. Poisson Autoregression DEFF Research Database (Denmark) Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag 2009-01-01 In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric... 13. Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population Directory of Open Access Journals (Sweden) Fabyano Fonseca Silva 2011-01-01 Full Text Available Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. 14. Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr × Holstein F2 population Science.gov (United States) Silva, Fabyano Fonseca; Tunin, Karen P.; Rosa, Guilherme J.M.; da Silva, Marcos V.B.; Azevedo, Ana Luisa Souza; da Silva Verneque, Rui; Machado, Marco Antonio; Packer, Irineu Umberto 2011-01-01 Now a days, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr × Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. PMID:22215960 15. Branes in Poisson sigma models International Nuclear Information System (INIS) Falceto, Fernando 2010-01-01 In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component. 16. Erdheim-Chester disease in a child with MR imaging showing regression of marrow changes International Nuclear Information System (INIS) Joo, Chan Uhng; Go, Yang Sim; Kim, In Hwan; Kim, Chul Seong; Lee, Sang Yong 2005-01-01 Erdheim-Chester disease is a disseminated xanthogranulomatous infiltrative disease of unknown origin that generally presents in adulthood. A review of the English-language literature demonstrated that pediatric cases were extremely rare, and to our knowledge, only two cases, a 7- and 14-year-old, have been published. We report a case of Erdheim-Chester disease in a 10-year-old girl evaluated with MR imaging. Radiographs revealed typical bilateral, symmetric osteosclerosis of the metaphyseal regions of long bones of the upper and lower extremities. A histologic examination demonstrated foamy histiocytes in bone marrow smears. Bilateral symmetric low signal intensities of both proximal tibiae and distal femurs were demonstrated on T1-weighted MR images. After oral steroid therapy for 8 months, follow-up MR imaging showed remarkable restoration of normal high signal intensity in both the tibial and femoral metaphyses. To our knowledge, this may be the first case of Erdheim-Chester disease that showed normal restoration of the abnormal signal intensities in the metaphyses of long bones after steroid therapy. (orig.) 17. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008-2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion. Science.gov (United States) Liao, Jiaqiang; Yu, Shicheng; Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying 2016-01-01 Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008-2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse "V" shape and "V" shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across 18. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008–2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion Science.gov (United States) Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying 2016-01-01 Background Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. Methods The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008–2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. Results The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse “V” shape and “V” shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. Conclusion We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic 19. How to show that unicorn milk is a chronobiotic: the regression-to-the-mean statistical artifact. Science.gov (United States) Atkinson, G; Waterhouse, J; Reilly, T; Edwards, B 2001-11-01 Few chronobiologists may be aware of the regression-to-the-mean (RTM) statistical artifact, even though it may have far-reaching influences on chronobiological data. With the aid of simulated measurements of the circadian rhythm phase of body temperature and a completely bogus stimulus (unicorn milk), we explain what RTM is and provide examples relevant to chronobiology. We show how RTM may lead to erroneous conclusions regarding individual differences in phase responses to rhythm disturbances and how it may appear as though unicorn milk has phase-shifting effects and can successfully treat some circadian rhythm disorders. Guidelines are provided to ensure RTM effects are minimized in chronobiological investigations. 20. Perbandingan Regresi Binomial Negatif dan Regresi Conway-Maxwell-Poisson dalam Mengatasi Overdispersi pada Regresi Poisson Directory of Open Access Journals (Sweden) Lusi Eka Afri 2017-03-01 Full Text Available Regresi Binomial Negatif dan regresi Conway-Maxwell-Poisson merupakan solusi untuk mengatasi overdispersi pada regresi Poisson. Kedua model tersebut merupakan perluasan dari model regresi Poisson. Menurut Hinde dan Demetrio (2007, terdapat beberapa kemungkinan terjadi overdispersi pada regresi Poisson yaitu keragaman hasil pengamatan keragaman individu sebagai komponen yang tidak dijelaskan oleh model, korelasi antar respon individu, terjadinya pengelompokan dalam populasi dan peubah teramati yang dihilangkan. Akibatnya dapat menyebabkan pendugaan galat baku yang terlalu rendah dan akan menghasilkan pendugaan parameter yang bias ke bawah (underestimate. Penelitian ini bertujuan untuk membandingan model Regresi Binomial Negatif dan model regresi Conway-Maxwell-Poisson (COM-Poisson dalam mengatasi overdispersi pada data distribusi Poisson berdasarkan statistik uji devians. Data yang digunakan dalam penelitian ini terdiri dari dua sumber data yaitu data simulasi dan data kasus terapan. Data simulasi yang digunakan diperoleh dengan membangkitkan data berdistribusi Poisson yang mengandung overdispersi dengan menggunakan bahasa pemrograman R berdasarkan karakteristik data berupa , peluang munculnya nilai nol (p serta ukuran sampel (n. Data dibangkitkan berguna untuk mendapatkan estimasi koefisien parameter pada regresi binomial negatif dan COM-Poisson. Kata Kunci: overdispersi, regresi binomial negatif, regresi Conway-Maxwell-Poisson Negative binomial regression and Conway-Maxwell-Poisson regression could be used to overcome over dispersion on Poisson regression. Both models are the extension of Poisson regression model. According to Hinde and Demetrio (2007, there will be some over dispersion on Poisson regression: observed variance in individual variance cannot be described by a model, correlation among individual response, and the population group and the observed variables are eliminated. Consequently, this can lead to low standard error 1. On (co)homology of Frobenius Poisson algebras OpenAIRE Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo 2014-01-01 In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk... 2. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model. Science.gov (United States) Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah 2012-01-01 Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis. 3. PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON Directory of Open Access Journals (Sweden) PUTU SUSAN PRADAWATI 2013-09-01 Full Text Available Poisson regression was used to analyze the count data which Poisson distributed. Poisson regression analysis requires state equidispersion, in which the mean value of the response variable is equal to the value of the variance. However, there are deviations in which the value of the response variable variance is greater than the mean. This is called overdispersion. If overdispersion happens and Poisson Regression analysis is being used, then underestimated standard errors will be obtained. Negative Binomial Regression can handle overdispersion because it contains a dispersion parameter. From the simulation data which experienced overdispersion in the Poisson Regression model it was found that the Negative Binomial Regression was better than the Poisson Regression model. 4. The analysis of the radiation induced cancer risks of workers of the nuclear industry - Liquidators of the accident on Chernobyl Atomic Station on the basis of modified poisson regressions International Nuclear Information System (INIS) Shafransky, I.L.; Tukov, A.R. 2008-01-01 Full text: The purpose of work consisted in reception of adequate estimations for additional relative risk in recalculation on 1 Sv in two dose diapason: up to 200 mSv and up to 500 mSv on the basis of materials on prevalence of malignant disease of workers of the nuclear industry - liquidators of the accident on Chernobyl Atomic Station. For this purpose methods of cohort analysis were used. This method realized on the basis of Poisson regression has been used. Estimations ERR on 1 Sv have been calculated as under the traditional scheme with use of module AMFIT (software EPICURE), and under the modified formula offered Paretzke. The received results have shown, that in some cases estimations for the risks, received on the modified formula, are more realistic, in other cases both estimations have close values. Also the lead analysis has shown no correct the procedure of carry of estimations of the risk received on one dose interval, on another a dose interval in a kind of nonlinear dependence of function of risk from a doze. As a whole, it is possible to tell, on an interval up to 200 mSv estimations of risk demand use of more complexes, than regression, models. In a range of dozes up to 500 mSv and even up to 1000 mSv the estimation of risk under the modified formula is more adequate. In a range of small doses application of the traditional approach on the basis of Linear non-threshold concept cannot be statistically justified and correct. (author) 5. Antinomias do zoológico humano: sociabilidade selvagem, reality shows e regressão da consciência Directory of Open Access Journals (Sweden) Francisco Rüdiger 2008-11-01 Full Text Available Estuda-se no artigo as articulações ideológicas e sentido histórico dos chamados reality shows na sociedade brasileira contemporânea. Em primeiro, situamos o gênero numa perspectiva histórica, sublinhado suas raí­zes religiosas e populares em conexão com a formação do sistema de poder próprio do Ocidente. Depois, expõem-se alguns aspectos do fenômeno, chamando atenção para sua estrutura interna e seu sentido concreto em nossa organização societária, com base nas suas versões brasileiras. Em terceiro, focamos os textos nas relações de poder que se articulam por meio desses programas, discutindo algumas das várias teorizações a seu respeito. Adiante e continuando a recorrer a matérias de imprensa, procede-se a um julgamento dessas últimas, visando propor uma interpretação histórica de seu significado. A conclusão retorna ao marco inicial e oferece uma visão geral em que talvez se possa pensar melhor o que está em jogo nos reality shows. Palavras-chave reality shows no Brasil, programas de televisão, sociabilidade Abstract This article analyses the ideological connections and historical meaning of the so-called reality shows in the contemporary Brazillian society. At first, we locate this genre in a historical perspective, stressing its religious and popular roots but also the connections between it and the power systems that have built Western World. Secondly, the text expose the main features of this kind of television show, calling attention to its inner structure but also to its meaning in our social organization, making critical remarks about their Brazillian versions. Focusing on the power relations that are articulated in it, we discuss some theories made about them. The historical meaning of these shows in our present circumstances is projected in the fourth stage of the article, that explores some materials extracted from the press. Finally, we return to the larger historical context 6. Singular reduction of Nambu-Poisson manifolds Science.gov (United States) Das, Apurba The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced. 7. (Quasi-)Poisson enveloping algebras OpenAIRE Yang, Yan-Hong; Yao, Yuan; Ye, Yu 2010-01-01 We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra. 8. Topological Poisson Sigma models on Poisson-Lie groups International Nuclear Information System (INIS) Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David 2003-01-01 We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author) 9. Quasi-Poisson versus negative binomial regression models in identifying factors affecting initial CD4 cell count change due to antiretroviral therapy administered to HIV-positive adults in North-West Ethiopia (Amhara region). Science.gov (United States) Seyoum, Awoke; Ndlovu, Principal; Zewotir, Temesgen 2016-01-01 CD4 cells are a type of white blood cells that plays a significant role in protecting humans from infectious diseases. Lack of information on associated factors on CD4 cell count reduction is an obstacle for improvement of cells in HIV positive adults. Therefore, the main objective of this study was to investigate baseline factors that could affect initial CD4 cell count change after highly active antiretroviral therapy had been given to adult patients in North West Ethiopia. A retrospective cross-sectional study was conducted among 792 HIV positive adult patients who already started antiretroviral therapy for 1 month of therapy. A Chi square test of association was used to assess of predictor covariates on the variable of interest. Data was secondary source and modeled using generalized linear models, especially Quasi-Poisson regression. The patients' CD4 cell count changed within a month ranged from 0 to 109 cells/mm 3 with a mean of 15.9 cells/mm 3 and standard deviation 18.44 cells/mm 3 . The first month CD4 cell count change was significantly affected by poor adherence to highly active antiretroviral therapy (aRR = 0.506, P value = 2e -16 ), fair adherence (aRR = 0.592, P value = 0.0120), initial CD4 cell count (aRR = 1.0212, P value = 1.54e -15 ), low household income (aRR = 0.63, P value = 0.671e -14 ), middle income (aRR = 0.74, P value = 0.629e -12 ), patients without cell phone (aRR = 0.67, P value = 0.615e -16 ), WHO stage 2 (aRR = 0.91, P value = 0.0078), WHO stage 3 (aRR = 0.91, P value = 0.0058), WHO stage 4 (0876, P value = 0.0214), age (aRR = 0.987, P value = 0.000) and weight (aRR = 1.0216, P value = 3.98e -14 ). Adherence to antiretroviral therapy, initial CD4 cell count, household income, WHO stages, age, weight and owner of cell phone played a major role for the variation of CD4 cell count in our data. Hence, we recommend a close follow-up of patients to adhere the prescribed medication for 10. Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C. Science.gov (United States) Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed 2013-01-01 In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data. 11. Poisson's spot and Gouy phase Science.gov (United States) da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos 2016-12-01 Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules. 12. Nonhomogeneous fractional Poisson processes Energy Technology Data Exchange (ETDEWEB) Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China) 2007-01-15 In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t) 13. Nonhomogeneous fractional Poisson processes International Nuclear Information System (INIS) Wang Xiaotian; Zhang Shiying; Fan Shen 2007-01-01 In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t) 14. Homogeneous Poisson structures International Nuclear Information System (INIS) Shafei Deh Abad, A.; Malek, F. 1993-09-01 We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs 15. Singular Poisson tensors International Nuclear Information System (INIS) Littlejohn, R.G. 1982-01-01 The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular 16. On poisson-stopped-sums that are mixed poisson OpenAIRE Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep 2013-01-01 Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed 17. Cumulative Poisson Distribution Program Science.gov (United States) Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert 1990-01-01 Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C. 18. Modifications to POISSON International Nuclear Information System (INIS) Harwood, L.H. 1981-01-01 At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed 19. Poisson Processes in Free Probability OpenAIRE An, Guimei; Gao, Mingchu 2015-01-01 We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso... 20. Reduction of Nambu-Poisson Manifolds by Regular Distributions Science.gov (United States) Das, Apurba 2018-03-01 The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure. 1. On Poisson Nonlinear Transformations Directory of Open Access Journals (Sweden) Nasir Ganikhodjaev 2014-01-01 Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular. 2. Scaling the Poisson Distribution Science.gov (United States) Farnsworth, David L. 2014-01-01 We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented. 3. Extended Poisson Exponential Distribution Directory of Open Access Journals (Sweden) Anum Fatima 2015-09-01 Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution. 4. Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere International Nuclear Information System (INIS) Sheu, A.J.L. 1991-01-01 We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.) 5. Poisson branching point processes International Nuclear Information System (INIS) Matsuo, K.; Teich, M.C.; Saleh, B.E.A. 1984-01-01 We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers 6. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach. Science.gov (United States) Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza 2016-01-01 Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models. 7. The Fractional Poisson Process and the Inverse Stable Subordinator OpenAIRE Meerschaert, Mark; Nane, Erkan; Vellaisamy, P. 2011-01-01 The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extend... 8. Fractional Poisson process (II) International Nuclear Information System (INIS) Wang Xiaotian; Wen Zhixiong; Zhang Shiying 2006-01-01 In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution 9. Nonlocal Poisson-Fermi model for ionic solvent. Science.gov (United States) Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob 2016-07-01 We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution. 10. Formal equivalence of Poisson structures around Poisson submanifolds NARCIS (Netherlands) Marcut, I.T. 2012-01-01 Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson 11. Poisson brackets of orthogonal polynomials OpenAIRE Cantero, María José; Simon, Barry 2009-01-01 For the standard symplectic forms on Jacobi and CMV matrices, we compute Poisson brackets of OPRL and OPUC, and relate these to other basic Poisson brackets and to Jacobians of basic changes of variable. 12. On the fractal characterization of Paretian Poisson processes Science.gov (United States) Eliazar, Iddo I.; Sokolov, Igor M. 2012-06-01 Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities. 13. Nambu–Poisson gauge theory Energy Technology Data Exchange (ETDEWEB) Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic) 2014-06-02 We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model. 14. Nambu–Poisson gauge theory International Nuclear Information System (INIS) Jurčo, Branislav; Schupp, Peter; Vysoký, Jan 2014-01-01 We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model. 15. Normal forms in Poisson geometry NARCIS (Netherlands) Marcut, I.T. 2013-01-01 The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric 16. Les poissons de Guyane OpenAIRE Ifremer 1992-01-01 Vous trouverez dans ce document les 24 poissons les plus courants de Guyane (sur un nombre d'espèces approchant les 200) avec leurs principales caractéristiques, leurs noms scientifiques, français, anglais et espagnol et leurs photographies. Ils sont classés, de l'acoupa au vivaneau ti yeux, par ordre alphabétique. Si vous ne trouvez pas de chiffres sur la production de telle ou telle espèce, c'est parce qu'ils n'existent pas, mais aussi et surtout parce qu'ils ne signifieraient rien, l... 17. Compound Poisson Approximations for Sums of Random Variables OpenAIRE Serfozo, Richard F. 1986-01-01 We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of... 18. Poisson-Jacobi reduction of homogeneous tensors International Nuclear Information System (INIS) Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P 2004-01-01 The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N 19. Simulation on Poisson and negative binomial models of count road accident modeling Science.gov (United States) Sapuan, M. S.; Razali, A. M.; Zamzuri, Z. H.; Ibrahim, K. 2016-11-01 Accident count data have often been shown to have overdispersion. On the other hand, the data might contain zero count (excess zeros). The simulation study was conducted to create a scenarios which an accident happen in T-junction with the assumption the dependent variables of generated data follows certain distribution namely Poisson and negative binomial distribution with different sample size of n=30 to n=500. The study objective was accomplished by fitting Poisson regression, negative binomial regression and Hurdle negative binomial model to the simulated data. The model validation was compared and the simulation result shows for each different sample size, not all model fit the data nicely even though the data generated from its own distribution especially when the sample size is larger. Furthermore, the larger sample size indicates that more zeros accident count in the dataset. 20. Easy Demonstration of the Poisson Spot Science.gov (United States) Gluck, Paul 2010-01-01 Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and… 1. Poisson Spot with Magnetic Levitation Science.gov (United States) Hoover, Matthew; Everhart, Michael; D'Arruda, Jose 2010-01-01 In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow. 2. Poisson hierarchy of discrete strings International Nuclear Information System (INIS) Ioannidou, Theodora; Niemi, Antti J. 2016-01-01 The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed. 3. Poisson hierarchy of discrete strings Energy Technology Data Exchange (ETDEWEB) Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China) 2016-01-28 The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed. 4. Current and Predicted Fertility using Poisson Regression Model ... African Journals Online (AJOL) AJRH Managing Editor We used descriptive statistics and analysis of variance (ANOVA) to ... women and estimated the probabilities of a woman ... observed events, the probability of finding more than one ...... Fahrmeir L & Lang S. Bayesian inference for generalized. 5. Misspecified poisson regression models for large-scale registry data DEFF Research Database (Denmark) Grøn, Randi; Gerds, Thomas A.; Andersen, Per K. 2016-01-01 working models that are then likely misspecified. To support and improve conclusions drawn from such models, we discuss methods for sensitivity analysis, for estimation of average exposure effects using aggregated data, and a semi-parametric bootstrap method to obtain robust standard errors. The methods... 6. Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra OpenAIRE Lecoutre, César 2014-01-01 We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to... 7. Non-equal-time Poisson brackets OpenAIRE Nikolic, H. 1998-01-01 The standard definition of the Poisson brackets is generalized to the non-equal-time Poisson brackets. Their relationship to the equal-time Poisson brackets, as well as to the equal- and non-equal-time commutators, is discussed. 8. Unimodularity criteria for Poisson structures on foliated manifolds Science.gov (United States) Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury 2018-03-01 We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class. 9. Newton/Poisson-Distribution Program Science.gov (United States) Bowerman, Paul N.; Scheuer, Ernest M. 1990-01-01 NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C. 10. POISSON SUPERFISH, Poisson Equation Solver for Radio Frequency Cavity International Nuclear Information System (INIS) Colman, J. 2001-01-01 1 - Description of program or function: POISSON, SUPERFISH is a group of (1) codes that solve Poisson's equation and are used to compute field quality for both magnets and fixed electric potentials and (2) RF cavity codes that calculate resonant frequencies and field distributions of the fundamental and higher modes. The group includes: POISSON, PANDIRA, SUPERFISH, AUTOMESH, LATTICE, FORCE, MIRT, PAN-T, TEKPLOT, SF01, and SHY. POISSON solves Poisson's (or Laplace's) equation for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, the stored energy, and performs harmonic (multipole) analysis of the potential. PANDIRA is similar to POISSON except it allows anisotropic and permanent magnet materials and uses a different numerical method to obtain the potential. SUPERFISH solves for the accelerating (TM) and deflecting (TE) resonant frequencies and field distributions in an RF cavity with two-dimensional Cartesian or three-dimensional cylindrical symmetry. Only the azimuthally symmetric modes are found for cylindrically symmetric cavities. AUTOMESH prepares input for LATTICE from geometrical data describing the problem, (i.e., it constructs the 'logical' mesh and generates (x,y) coordinate data for straight lines, arcs of circles, and segments of hyperbolas). LATTICE generates an irregular triangular (physical) mesh from the input data, calculates the 'point current' terms at each mesh point in regions with distributed current density, and sets up the mesh point relaxation order needed to write the binary problem file for the equation-solving POISSON, PANDIRA, or SUPERFISH. FORCE calculates forces and torques on coils and iron regions from POISSON or PANDIRA solutions for the potential. MIRT optimizes magnet profiles, coil shapes, and current densities from POISSON output based on a 11. Coordination of Conditional Poisson Samples Directory of Open Access Journals (Sweden) Grafström Anton 2015-12-01 Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers. 12. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes Science.gov (United States) Orsingher, Enzo; Polito, Federico 2012-08-01 In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers. 13. Regression modeling methods, theory, and computation with SAS CERN Document Server Panik, Michael 2009-01-01 Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, 14. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. Science.gov (United States) Hougaard, P; Lee, M L; Whitmore, G A 1997-12-01 Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients. 15. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers Science.gov (United States) Neshveyev, Sergey; Tuset, Lars 2012-05-01 Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K). 16. Poisson equation for weak gravitational lensing International Nuclear Information System (INIS) Kling, Thomas P.; Campbell, Bryan 2008-01-01 Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system 17. Complete synchronization of the global coupled dynamical network induced by Poisson noises. Science.gov (United States) Guo, Qing; Wan, Fangyi 2017-01-01 The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis. 18. An application of the Autoregressive Conditional Poisson (ACP) model CSIR Research Space (South Africa) Holloway, Jennifer P 2010-11-01 Full Text Available When modelling count data that comes in the form of a time series, the static Poisson regression and standard time series models are often not appropriate. A current study therefore involves the evaluation of several observation-driven and parameter... 19. Poisson-Lie T-plurality International Nuclear Information System (INIS) Unge, Rikard von 2002-01-01 We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author) 20. Intertime jump statistics of state-dependent Poisson processes. Science.gov (United States) Daly, Edoardo; Porporato, Amilcare 2007-01-01 A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models. 1. Comparison of Poisson structures and Poisson-Lie dynamical r-matrices OpenAIRE Enriquez, B.; Etingof, P.; Marshall, I. 2004-01-01 We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla. 2. NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM Science.gov (United States) Bowerman, P. N. 1994-01-01 The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988. 3. Graded geometry and Poisson reduction OpenAIRE Cattaneo, A S; Zambon, M 2009-01-01 The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics 4. 2D Poisson sigma models with gauged vectorial supersymmetry Energy Technology Data Exchange (ETDEWEB) Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile) 2015-08-12 In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity. 5. Dual Regression OpenAIRE Spady, Richard; Stouli, Sami 2012-01-01 We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f... 6. Seasonally adjusted birth frequencies follow the Poisson distribution. Science.gov (United States) Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A 2015-12-15 Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends. 7. Normal forms for Poisson maps and symplectic groupoids around Poisson transversals. Science.gov (United States) Frejlich, Pedro; Mărcuț, Ioan 2018-01-01 Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras. 8. Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data. Science.gov (United States) Sim, Shin Zhu; Gupta, Ramesh C; Ong, Seng Huat 2018-01-09 In this paper, we study the zero-inflated Conway-Maxwell Poisson (ZICMP) distribution and develop a regression model. Score and likelihood ratio tests are also implemented for testing the inflation/deflation parameter. Simulation studies are carried out to examine the performance of these tests. A data example is presented to illustrate the concepts. In this example, the proposed model is compared to the well-known zero-inflated Poisson (ZIP) and the zero- inflated generalized Poisson (ZIGP) regression models. It is shown that the fit by ZICMP is comparable or better than these models. 9. Independent production and Poisson distribution International Nuclear Information System (INIS) Golokhvastov, A.I. 1994-01-01 The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained. 11 refs 10. A generalized gyrokinetic Poisson solver International Nuclear Information System (INIS) Lin, Z.; Lee, W.W. 1995-03-01 A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms 11. Relaxed Poisson cure rate models. Science.gov (United States) Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N 2016-03-01 The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 12. Poisson denoising on the sphere Science.gov (United States) Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M. 2009-08-01 In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data. 13. Singularities of Poisson structures and Hamiltonian bifurcations NARCIS (Netherlands) Meer, van der J.C. 2010-01-01 Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom 14. A Martingale Characterization of Mixed Poisson Processes. Science.gov (United States) 1985-10-01 03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht 15. Limitations of Poisson statistics in describing radioactive decay. Science.gov (United States) Sitek, Arkadiusz; Celler, Anna M 2015-12-01 The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. 16. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis. Science.gov (United States) Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio 2014-11-24 The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine 17. Differentiating regressed melanoma from regressed lichenoid keratosis. Science.gov (United States) Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A 2017-04-01 Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. 18. Log-normal frailty models fitted as Poisson generalized linear mixed models. Science.gov (United States) Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver 2016-12-01 The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. 19. Variational Gaussian approximation for Poisson data Science.gov (United States) Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen 2018-02-01 The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms. 20. Poisson structures for reduced non-holonomic systems International Nuclear Information System (INIS) Ramos, Arturo 2004-01-01 Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank 2 and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of the Poisson structures and extend their domain of definition. We apply the theory to the rolling disc, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder 1. Regression Phalanxes OpenAIRE Zhang, Hongyang; Welch, William J.; Zamar, Ruben H. 2017-01-01 Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi... 2. Poisson's ratio of fiber-reinforced composites Science.gov (United States) Christiansson, Henrik; Helsing, Johan 1996-05-01 Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made. 3. Nonlinear Poisson equation for heterogeneous media. Science.gov (United States) Hu, Langhua; Wei, Guo-Wei 2012-08-22 The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved. 4. Non-holonomic dynamics and Poisson geometry International Nuclear Information System (INIS) Borisov, A V; Mamaev, I S; Tsiganov, A V 2014-01-01 This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie-Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles 5. Information content of poisson images International Nuclear Information System (INIS) Cederlund, J. 1979-04-01 One major problem when producing images with the aid of Poisson distributed quanta is how best to compromise between spatial and contrast resolution. Increasing the number of image elements improves spatial resolution, but at the cost of fewer quanta per image element, which reduces contrast resolution. Information theory arguments are used to analyse this problem. It is argued that information capacity is a useful concept to describe an important property of the imaging device, but that in order to compute the information content of an image produced by this device some statistical properties (such as the a priori probability of the densities) of the object to be depicted must be taken into account. If these statistical properties are not known one cannot make a correct choice between spatial and contrast resolution. (author) 6. The coupling of Poisson sigma models to topological backgrounds Energy Technology Data Exchange (ETDEWEB) Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of) 2016-12-13 We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity. 7. A high order solver for the unbounded Poisson equation DEFF Research Database (Denmark) Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight... 8. Quadratic Hamiltonians on non-symmetric Poisson structures International Nuclear Information System (INIS) Arribas, M.; Blesa, F.; Elipe, A. 2007-01-01 Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases 9. POISSON, Analysis Solution of Poisson Problems in Probabilistic Risk Assessment International Nuclear Information System (INIS) Froehner, F.H. 1986-01-01 1 - Description of program or function: Purpose of program: Analytic treatment of two-stage Poisson problem in Probabilistic Risk Assessment. Input: estimated a-priori mean failure rate and error factor of system considered (for calculation of stage-1 prior), number of failures and operating times for similar systems (for calculation of stage-2 prior). Output: a-posteriori probability distributions on linear and logarithmic time scale (on specified time grid) and expectation values of failure rate and error factors are calculated for: - stage-1 a-priori distribution, - stage-1 a-posteriori distribution, - stage-2 a-priori distribution, - stage-2 a-posteriori distribution. 2 - Method of solution: Bayesian approach with conjugate stage-1 prior, improved with experience from similar systems to yield stage-2 prior, and likelihood function from experience with system under study (documentation see below under 10.). 3 - Restrictions on the complexity of the problem: Up to 100 similar systems (including the system considered), arbitrary number of problems (failure types) with same grid 10. Surface reconstruction through poisson disk sampling. Directory of Open Access Journals (Sweden) Wenguang Hou Full Text Available This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective. 11. Poisson and Gaussian approximation of weighted local empirical processes NARCIS (Netherlands) Einmahl, J.H.J. 1995-01-01 We consider the local empirical process indexed by sets, a greatly generalized version of the well-studied uniform tail empirical process. We show that the weak limit of weighted versions of this process is Poisson under certain conditions, whereas it is Gaussian in other situations. Our main 12. Square root approximation to the poisson channel NARCIS (Netherlands) Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J. 2013-01-01 Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding 13. Poisson geometry from a Dirac perspective Science.gov (United States) Meinrenken, Eckhard 2018-03-01 We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016. 14. Associative and Lie deformations of Poisson algebras OpenAIRE Remm, Elisabeth 2011-01-01 Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra. 15. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains Science.gov (United States) Wang, Fengwen 2018-05-01 This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable. 16. A twisted generalization of Novikov-Poisson algebras OpenAIRE Yau, Donald 2010-01-01 Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras. 17. Speech parts as Poisson processes. Science.gov (United States) Badalamenti, A F 2001-09-01 This paper presents evidence that six of the seven parts of speech occur in written text as Poisson processes, simple or recurring. The six major parts are nouns, verbs, adjectives, adverbs, prepositions, and conjunctions, with the interjection occurring too infrequently to support a model. The data consist of more than the first 5000 words of works by four major authors coded to label the parts of speech, as well as periods (sentence terminators). Sentence length is measured via the period and found to be normally distributed with no stochastic model identified for its occurrence. The models for all six speech parts but the noun significantly distinguish some pairs of authors and likewise for the joint use of all words types. Any one author is significantly distinguished from any other by at least one word type and sentence length very significantly distinguishes each from all others. The variety of word type use, measured by Shannon entropy, builds to about 90% of its maximum possible value. The rate constants for nouns are close to the fractions of maximum entropy achieved. This finding together with the stochastic models and the relations among them suggest that the noun may be a primitive organizer of written text. 18. Extension of the application of conway-maxwell-poisson models: analyzing traffic crash data exhibiting underdispersion. Science.gov (United States) Lord, Dominique; Geedipally, Srinivas Reddy; Guikema, Seth D 2010-08-01 The objective of this article is to evaluate the performance of the COM-Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM-Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over- or underdispersion. Over the last year, the COM-Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson-gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM-Poisson models were estimated using crash data collected at 162 railway-highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM-Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set. 19. Constructions and classifications of projective Poisson varieties Science.gov (United States) Pym, Brent 2018-03-01 This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds. 20. Constructions and classifications of projective Poisson varieties. Science.gov (United States) Pym, Brent 2018-01-01 This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds. 1. Autistic Regression Science.gov (United States) Matson, Johnny L.; Kozlowski, Alison M. 2010-01-01 Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of… 2. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images' DEFF Research Database (Denmark) de Nijs, Robin 2015-01-01 In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed...... by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all...... methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics... 3. Poisson-Hopf limit of quantum algebras International Nuclear Information System (INIS) Ballesteros, A; Celeghini, E; Olmo, M A del 2009-01-01 The Poisson-Hopf analogue of an arbitrary quantum algebra U z (g) is constructed by introducing a one-parameter family of quantizations U z,ℎ (g) depending explicitly on ℎ and by taking the appropriate ℎ → 0 limit. The q-Poisson analogues of the su(2) algebra are discussed and the novel su q P (3) case is introduced. The q-Serre relations are also extended to the Poisson limit. This approach opens the perspective for possible applications of higher rank q-deformed Hopf algebras in semiclassical contexts 4. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'. Science.gov (United States) de Nijs, Robin 2015-07-21 In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images. 5. Estimation of adjusted rate differences using additive negative binomial regression. Science.gov (United States) Donoghoe, Mark W; Marschner, Ian C 2016-08-15 Rate differences are an important effect measure in biostatistics and provide an alternative perspective to rate ratios. When the data are event counts observed during an exposure period, adjusted rate differences may be estimated using an identity-link Poisson generalised linear model, also known as additive Poisson regression. A problem with this approach is that the assumption of equality of mean and variance rarely holds in real data, which often show overdispersion. An additive negative binomial model is the natural alternative to account for this; however, standard model-fitting methods are often unable to cope with the constrained parameter space arising from the non-negativity restrictions of the additive model. In this paper, we propose a novel solution to this problem using a variant of the expectation-conditional maximisation-either algorithm. Our method provides a reliable way to fit an additive negative binomial regression model and also permits flexible generalisations using semi-parametric regression functions. We illustrate the method using a placebo-controlled clinical trial of fenofibrate treatment in patients with type II diabetes, where the outcome is the number of laser therapy courses administered to treat diabetic retinopathy. An R package is available that implements the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. 6. Area-to-Area Poisson Kriging and Spatial Bayesian Analysis Science.gov (United States) Asmarian, Naeimehossadat; Jafari-Koshki, Tohid; Soleimani, Ali; Taghi Ayatollahi, Seyyed Mohammad 2016-10-01 Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Areato- area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran. Creative Commons Attribution License 7. On covariant Poisson brackets in classical field theory International Nuclear Information System (INIS) Forger, Michael; Salles, Mário O. 2015-01-01 How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra 8. On covariant Poisson brackets in classical field theory Energy Technology Data Exchange (ETDEWEB) Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil) 2015-10-15 How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra. 9. Poisson's Ratio and Auxetic Properties of Natural Rocks Science.gov (United States) Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H. 2018-02-01 Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust. 10. Improving EWMA Plans for Detecting Unusual Increases in Poisson Counts Directory of Open Access Journals (Sweden) R. S. Sparks 2009-01-01 adaptive exponentially weighted moving average (EWMA plan is developed for signalling unusually high incidence when monitoring a time series of nonhomogeneous daily disease counts. A Poisson transitional regression model is used to fit background/expected trend in counts and provides “one-day-ahead” forecasts of the next day's count. Departures of counts from their forecasts are monitored. The paper outlines an approach for improving early outbreak data signals by dynamically adjusting the exponential weights to be efficient at signalling local persistent high side changes. We emphasise outbreak signals in steady-state situations; that is, changes that occur after the EWMA statistic had run through several in-control counts. 11. Linear regression CERN Document Server Olive, David J 2017-01-01 This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans... 12. The Poisson equation on Klein surfaces Directory of Open Access Journals (Sweden) Monica Rosiu 2016-04-01 Full Text Available We obtain a formula for the solution of the Poisson equation with Dirichlet boundary condition on a region of a Klein surface. This formula reveals the symmetric character of the solution. 13. Poisson point processes imaging, tracking, and sensing CERN Document Server Streit, Roy L 2010-01-01 This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection. 14. Exact solution for the Poisson field in a semi-infinite strip. Science.gov (United States) Cohen, Yossi; Rothman, Daniel H 2017-04-01 The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips. 15. Noncommutative gauge theory for Poisson manifolds Energy Technology Data Exchange (ETDEWEB) Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de 2000-09-25 A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem. 16. Noncommutative gauge theory for Poisson manifolds International Nuclear Information System (INIS) Jurco, Branislav; Schupp, Peter; Wess, Julius 2000-01-01 A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem 17. Principles of applying Poisson units in radiology International Nuclear Information System (INIS) Benyumovich, M.S. 2000-01-01 The probability that radioactive particles hit particular space patterns (e.g. cells in the squares of a count chamber net) and time intervals (e.g. radioactive particles hit a given area per time unit) follows the Poisson distribution. The mean is the only parameter from which all this distribution depends. A metrological base of counting the cells and radioactive particles is a property of the Poisson distribution assuming equality of a standard deviation to a root square of mean (property 1). The application of Poisson units in counting of blood formed elements and cultured cells was proposed by us (Russian Federation Patent No. 2126230). Poisson units relate to the means which make the property 1 valid. In a case of cells counting, the square of these units is equal to 1/10 of one of count chamber net where they count the cells. Thus one finds the means from the single cell count rate divided by 10. Finding the Poisson units when counting the radioactive particles should assume determination of a number of these particles sufficient to make equality 1 valid. To this end one should subdivide a time interval used in counting a single particle count rate into different number of equal portions (count numbers). Next one should pick out the count number ensuring the satisfaction of equality 1. Such a portion is taken as a Poisson unit in the radioactive particles count. If the flux of particles is controllable one should set up a count rate sufficient to make equality 1 valid. Operations with means obtained by with the use of Poisson units are performed on the base of approximation of the Poisson distribution by a normal one. (author) 18. Multivariate fractional Poisson processes and compound sums OpenAIRE Beghin, Luisa; Macci, Claudio 2015-01-01 In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes. 19. Poisson traces, D-modules, and symplectic resolutions. Science.gov (United States) Etingof, Pavel; Schedler, Travis 2018-01-01 We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require. 20. Poisson traces, D-modules, and symplectic resolutions Science.gov (United States) Etingof, Pavel; Schedler, Travis 2018-03-01 We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require. 1. Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method. Science.gov (United States) Zhang, Tingting; Kou, S C 2010-01-01 Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure. 2. Poisson-Boltzmann-Nernst-Planck model International Nuclear Information System (INIS) Zheng Qiong; Wei Guowei 2011-01-01 The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external 3. Poisson-Boltzmann-Nernst-Planck model. Science.gov (United States) Zheng, Qiong; Wei, Guo-Wei 2011-05-21 The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external 4. Events in time: Basic analysis of Poisson data International Nuclear Information System (INIS) Engelhardt, M.E. 1994-09-01 The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given 5. Numerical solution of dynamic equilibrium models under Poisson uncertainty DEFF Research Database (Denmark) Posch, Olaf; Trimborn, Timo 2013-01-01 We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households.... 6. Estimation of Poisson-Dirichlet Parameters with Monotone Missing Data Directory of Open Access Journals (Sweden) Xueqin Zhou 2017-01-01 Full Text Available This article considers the estimation of the unknown numerical parameters and the density of the base measure in a Poisson-Dirichlet process prior with grouped monotone missing data. The numerical parameters are estimated by the method of maximum likelihood estimates and the density function is estimated by kernel method. A set of simulations was conducted, which shows that the estimates perform well. 7. Events in time: Basic analysis of Poisson data Energy Technology Data Exchange (ETDEWEB) Engelhardt, M.E. 1994-09-01 The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given. 8. Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training Science.gov (United States) Baschera, Gian-Marco; Gross, Markus 2010-01-01 We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification… 9. A new non-commutative representation of the Wiener and Poisson processes International Nuclear Information System (INIS) Privault, N. 1996-01-01 Using two different constructions of the chaotic and variational calculus on Poisson space, we show that the Wiener and Poisson processes have a non-commutative representation which is different from the one obtained by transfer of the Fock space creation and annihilation operators. We obtain in this way an extension of the non-commutative It calculus. The associated commutation relations show a link between the geometric and exponential distributions. (author). 11 refs 10. Semiclassical limit and well-posedness of nonlinear Schrodinger-Poisson systems Directory of Open Access Journals (Sweden) Hailiang Li 2003-09-01 Full Text Available This paper concerns the well-posedness and semiclassical limit of nonlinear Schrodinger-Poisson systems. We show the local well-posedness and the existence of semiclassical limit of the two models for initial data with Sobolev regularity, before shocks appear in the limit system. We establish the existence of a global solution and show the time-asymptotic behavior of a classical solutions of Schrodinger-Poisson system for a fixed re-scaled Planck constant. 11. Selective Contrast Adjustment by Poisson Equation Directory of Open Access Journals (Sweden) Ana-Belen Petro 2013-09-01 Full Text Available Poisson Image Editing is a new technique permitting to modify the gradient vector field of an image, and then to recover an image with a gradient approaching this modified gradient field. This amounts to solve a Poisson equation, an operation which can be efficiently performed by Fast Fourier Transform (FFT. This paper describes an algorithm applying this technique, with two different variants. The first variant enhances the contrast by increasing the gradient in the dark regions of the image. This method is well adapted to images with back light or strong shadows, and reveals details in the shadows. The second variant of the same Poisson technique enhances all small gradients in the image, thus also sometimes revealing details and texture. 12. High order Poisson Solver for unbounded flows DEFF Research Database (Denmark) Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe 2015-01-01 This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing... 13. The BRST complex of homological Poisson reduction Science.gov (United States) Müller-Lennert, Martin 2017-02-01 BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure. 14. Estimation of Poisson noise in spatial domain Science.gov (United States) Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana 2017-09-01 This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction. 15. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Science.gov (United States) Wang, Yiyi; Kockelman, Kara M 2013-11-01 This work examines the relationship between 3-year pedestrian crash counts across Census tracts in Austin, Texas, and various land use, network, and demographic attributes, such as land use balance, residents' access to commercial land uses, sidewalk density, lane-mile densities (by roadway class), and population and employment densities (by type). The model specification allows for region-specific heterogeneity, correlation across response types, and spatial autocorrelation via a Poisson-based multivariate conditional auto-regressive (CAR) framework and is estimated using Bayesian Markov chain Monte Carlo methods. Least-squares regression estimates of walk-miles traveled per zone serve as the exposure measure. Here, the Poisson-lognormal multivariate CAR model outperforms an aspatial Poisson-lognormal multivariate model and a spatial model (without cross-severity correlation), both in terms of fit and inference. Positive spatial autocorrelation emerges across neighborhoods, as expected (due to latent heterogeneity or missing variables that trend in space, resulting in spatial clustering of crash counts). In comparison, the positive aspatial, bivariate cross correlation of severe (fatal or incapacitating) and non-severe crash rates reflects latent covariates that have impacts across severity levels but are more local in nature (such as lighting conditions and local sight obstructions), along with spatially lagged cross correlation. Results also suggest greater mixing of residences and commercial land uses is associated with higher pedestrian crash risk across different severity levels, ceteris paribus, presumably since such access produces more potential conflicts between pedestrian and vehicle movements. Interestingly, network densities show variable effects, and sidewalk provision is associated with lower severe-crash rates. Copyright © 2013 Elsevier Ltd. All rights reserved. 16. Evaluating the double Poisson generalized linear model. Science.gov (United States) Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique 2013-10-01 The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved. 17. Poisson-Like Spiking in Circuits with Probabilistic Synapses Science.gov (United States) Moreno-Bote, Rubén 2014-01-01 Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705 18. Differential expression analysis for RNAseq using Poisson mixed models. Science.gov (United States) Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang 2017-06-20 Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 19. Universal Poisson Statistics of mRNAs with Complex Decay Pathways. Science.gov (United States) Thattai, Mukund 2016-01-19 Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state distribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions. A mapping between mRNA dynamics and queueing theory highlights an identifiability problem: a measured Poisson steady state is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to transcriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. 20. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings Science.gov (United States) Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong 2018-06-01 Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer. 1. Application of Negative Binomial Regression for Assessing Public ... African Journals Online (AJOL) Because the variance was nearly two times greater than the mean, the negative binomial regression model provided an improved fit to the data and accounted better for overdispersion than the Poisson regression model, which assumed that the mean and variance are the same. The level of education and race were found 2. Prediction of forest fires occurrences with area-level Poisson mixed models. Science.gov (United States) Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo 2015-05-01 The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved. 3. Optimized thick-wall cylinders by virtue of Poisson's ratio selection International Nuclear Information System (INIS) Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N. 2011-01-01 The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials. 4. Logistic regression for dichotomized counts. Science.gov (United States) Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W 2016-12-01 Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014. 5. Application of Poisson random effect models for highway network screening. Science.gov (United States) Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer 2014-02-01 In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved. 6. Poisson processes and a Bessel function integral NARCIS (Netherlands) Steutel, F.W. 1985-01-01 The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily 7. Almost Poisson integration of rigid body systems International Nuclear Information System (INIS) Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang 1993-01-01 In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs 8. Measuring Poisson Ratios at Low Temperatures Science.gov (United States) Boozon, R. S.; Shepic, J. A. 1987-01-01 Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium. 9. Affine Poisson Groups and WZW Model Directory of Open Access Journals (Sweden) Ctirad Klimcík 2008-01-01 Full Text Available We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations. 10. Quantum fields and Poisson processes. Pt. 2 International Nuclear Information System (INIS) Bertrand, J.; Gaveau, B.; Rideau, G. 1985-01-01 Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.) 11. Evolutionary inference via the Poisson Indel Process. Science.gov (United States) Bouchard-Côté, Alexandre; Jordan, Michael I 2013-01-22 We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments. 12. Natural Poisson structures of nonlinear plasma dynamics International Nuclear Information System (INIS) Kaufman, A.N. 1982-01-01 Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.) 13. Poisson brackets for fluids and plasmas International Nuclear Information System (INIS) Morrison, P.J. 1982-01-01 Noncanonical yet Hamiltonian descriptions are presented of many of the non-dissipative field equations that govern fluids and plasmas. The dynamical variables are the usually encountered physical variables. These descriptions have the advantage that gauge conditions are absent, but at the expense of introducing peculiar Poisson brackets. Clebsch-like potential descriptions that reverse this situations are also introduced 14. Natural Poisson structures of nonlinear plasma dynamics International Nuclear Information System (INIS) Kaufman, A.N. 1982-06-01 Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering 15. Coherent transform, quantization, and Poisson geometry CERN Document Server Novikova, E; Itskov, V; Karasev, M V 1998-01-01 This volume contains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs. 16. Efficient information transfer by Poisson neurons Czech Academy of Sciences Publication Activity Database Košťál, Lubomír; Shinomoto, S. 2016-01-01 Roč. 13, č. 3 (2016), s. 509-520 ISSN 1547-1063 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : information capacity * Poisson neuron * metabolic cost * decoding error Subject RIV: BD - Theory of Information Impact factor: 1.035, year: 2016 17. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model]. Science.gov (United States) Zhang, Ling Yu; Liu, Zhao Gang 2017-12-01 Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number. 18. A multiresolution method for solving the Poisson equation using high order regularization DEFF Research Database (Denmark) Hejlesen, Mads Mølholm; Walther, Jens Honore 2016-01-01 We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches and regulari......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...... and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates... 19. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments International Nuclear Information System (INIS) Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N. 2016-01-01 The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes 20. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. Science.gov (United States) Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S 2016-01-07 The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes. 1. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments Energy Technology Data Exchange (ETDEWEB) Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland) 2016-01-07 The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes. 2. Laplace-Laplace analysis of the fractional Poisson process OpenAIRE Gorenflo, Rudolf; Mainardi, Francesco 2013-01-01 We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities. 3. Linear odd Poisson bracket on Grassmann variables International Nuclear Information System (INIS) Soroka, V.A. 1999-01-01 A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.) 4. Comparing two Poisson populations sequentially: an application International Nuclear Information System (INIS) Halteman, E.J. 1986-01-01 Rocky Flats Plant in Golden, Colorado monitors each of its employees for radiation exposure. Excess exposure is detected by comparing the means of two Poisson populations. A sequential probability ratio test (SPRT) is proposed as a replacement for the fixed sample normal approximation test. A uniformly most efficient SPRT exists, however logistics suggest using a truncated SPRT. The truncated SPRT is evaluated in detail and shown to possess large potential savings in average time spent by employees in the monitoring process 5. Poisson filtering of laser ranging data Science.gov (United States) Ricklefs, Randall L.; Shelus, Peter J. 1993-01-01 The filtering of data in a high noise, low signal strength environment is a situation encountered routinely in lunar laser ranging (LLR) and, to a lesser extent, in artificial satellite laser ranging (SLR). The use of Poisson statistics as one of the tools for filtering LLR data is described first in a historical context. The more recent application of this statistical technique to noisy SLR data is also described. 6. Irreversible thermodynamics of Poisson processes with reaction. Science.gov (United States) Méndez, V; Fort, J 1999-11-01 A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics. 7. Degenerate odd Poisson bracket on Grassmann variables International Nuclear Information System (INIS) Soroka, V.A. 2000-01-01 A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra 8. Poisson/Superfish codes for personal computers International Nuclear Information System (INIS) Humphries, S. 1992-01-01 The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs 9. Computation of solar perturbations with Poisson series Science.gov (United States) Broucke, R. 1974-01-01 Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained. 10. Alternative Forms of Compound Fractional Poisson Processes Directory of Open Access Journals (Sweden) Luisa Beghin 2012-01-01 Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one. 11. Exterior differentials in superspace and Poisson brackets International Nuclear Information System (INIS) Soroka, Dmitrij V.; Soroka, Vyacheslav A. 2003-01-01 It is shown that two definitions for an exterior differential in superspace, giving the same exterior calculus, yet lead to different results when applied to the Poisson bracket. A prescription for the transition with the help of these exterior differentials from the given Poisson bracket of definite Grassmann parity to another bracket is introduced. It is also indicated that the resulting bracket leads to generalization of the Schouten-Nijenhuis bracket for the cases of superspace and brackets of diverse Grassmann parities. It is shown that in the case of the Grassmann-odd exterior differential the resulting bracket is the bracket given on exterior forms. The above-mentioned transition with the use of the odd exterior differential applied to the linear even/odd Poisson brackets, that correspond to semi-simple Lie groups, results, respectively, in also linear odd/even brackets which are naturally connected with the Lie superalgebra. The latter contains the BRST and anti-BRST charges and can be used for calculation of the BRST operator cogomology. (author) 12. Duality and modular class of a Nambu-Poisson structure International Nuclear Information System (INIS) Ibanez, R.; Leon, M. de; Lopez, B.; Marrero, J.C.; Padron, E. 2001-01-01 In this paper we introduce cohomology and homology theories for Nambu-Poisson manifolds. Also we study the relation between the existence of a duality for these theories and the vanishing of a particular Nambu-Poisson cohomology class, the modular class. The case of a regular Nambu-Poisson structure and some singular examples are discussed. (author) 13. Gap processing for adaptive maximal poisson-disk sampling KAUST Repository Yan, Dongming 2013-10-17 In this article, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or when their radii are changed.We build on the concepts of regular triangulations and the power diagram. Third, we show how our analysis contributes to the state-of-the-art in surface remeshing. © 2013 ACM. 14. Gap processing for adaptive maximal poisson-disk sampling KAUST Repository Yan, Dongming; Wonka, Peter 2013-01-01 In this article, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or when their radii are changed.We build on the concepts of regular triangulations and the power diagram. Third, we show how our analysis contributes to the state-of-the-art in surface remeshing. © 2013 ACM. 15. Poisson-event-based analysis of cell proliferation. Science.gov (United States) Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul 2015-05-01 A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry. 16. Tutorial on Using Regression Models with Count Outcomes Using R Directory of Open Access Journals (Sweden) A. Alexander Beaujean 2016-02-01 Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix. 17. Introduction to the use of regression models in epidemiology. Science.gov (United States) Bender, Ralf 2009-01-01 Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research. 18. The transverse Poisson's ratio of composites. Science.gov (United States) Foye, R. L. 1972-01-01 An expression is developed that makes possible the prediction of Poisson's ratio for unidirectional composites with reference to any pair of orthogonal axes that are normal to the direction of the reinforcing fibers. This prediction appears to be a reasonable one in that it follows the trends of the finite element analysis and the bounding estimates, and has the correct limiting value for zero fiber content. It can only be expected to apply to composites containing stiff, circular, isotropic fibers bonded to a soft matrix material. 19. Risk Sensitive Filtering with Poisson Process Observations International Nuclear Information System (INIS) Malcolm, W. P.; James, M. R.; Elliott, R. J. 2000-01-01 In this paper we consider risk sensitive filtering for Poisson process observations. Risk sensitive filtering is a type of robust filtering which offers performance benefits in the presence of uncertainties. We derive a risk sensitive filter for a stochastic system where the signal variable has dynamics described by a diffusion equation and determines the rate function for an observation process. The filtering equations are stochastic integral equations. Computer simulations are presented to demonstrate the performance gain for the risk sensitive filter compared with the risk neutral filter 20. Moments analysis of concurrent Poisson processes International Nuclear Information System (INIS) McBeth, G.W.; Cross, P. 1975-01-01 A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.) 1. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements. Science.gov (United States) Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger 2016-11-01 In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption. 2. Prescription-induced jump distributions in multiplicative Poisson processes. Science.gov (United States) Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos 2011-06-01 Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data. 3. Prescription-induced jump distributions in multiplicative Poisson processes Science.gov (United States) Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos 2011-06-01 Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data. 4. Regression: A Bibliography. Science.gov (United States) Pedrini, D. T.; Pedrini, Bonnie C. Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.… 5. Nonhomogeneous Poisson process with nonparametric frailty International Nuclear Information System (INIS) Slimacek, Vaclav; Lindqvist, Bo Henry 2016-01-01 The failure processes of heterogeneous repairable systems are often modeled by non-homogeneous Poisson processes. The common way to describe an unobserved heterogeneity between systems is to multiply the basic rate of occurrence of failures by a random variable (a so-called frailty) having a specified parametric distribution. Since the frailty is unobservable, the choice of its distribution is a problematic part of using these models, as are often the numerical computations needed in the estimation of these models. The main purpose of this paper is to develop a method for estimation of the parameters of a nonhomogeneous Poisson process with unobserved heterogeneity which does not require parametric assumptions about the heterogeneity and which avoids the frequently encountered numerical problems associated with the standard models for unobserved heterogeneity. The introduced method is illustrated on an example involving the power law process, and is compared to the standard gamma frailty model and to the classical model without unobserved heterogeneity. The derived results are confirmed in a simulation study which also reveals several not commonly known properties of the gamma frailty model and the classical model, and on a real life example. - Highlights: • A new method for estimation of a NHPP with frailty is introduced. • Introduced method does not require parametric assumptions about frailty. • The approach is illustrated on an example with the power law process. • The method is compared to the gamma frailty model and to the model without frailty. 6. Renewal characterization of Markov modulated Poisson processes Directory of Open Access Journals (Sweden) Marcel F. Neuts 1989-01-01 Full Text Available A Markov Modulated Poisson Process (MMPP M(t defined on a Markov chain J(t is a pure jump process where jumps of M(t occur according to a Poisson process with intensity λi whenever the Markov chain J(t is in state i. M(t is called strongly renewal (SR if M(t is a renewal process for an arbitrary initial probability vector of J(t with full support on P={i:λi>0}. M(t is called weakly renewal (WR if there exists an initial probability vector of J(t such that the resulting MMPP is a renewal process. The purpose of this paper is to develop general characterization theorems for the class SR and some sufficiency theorems for the class WR in terms of the first passage times of the bivariate Markov chain [J(t,M(t]. Relevance to the lumpability of J(t is also studied. 7. Binomial vs poisson statistics in radiation studies International Nuclear Information System (INIS) Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff 1983-01-01 The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.) 8. Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection. Science.gov (United States) Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram 2017-02-01 In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells. 9. A modified Poisson-Boltzmann equation applied to protein adsorption. Science.gov (United States) Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto 2018-01-05 Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved. 10. Generalized master equations for non-Poisson dynamics on networks. Science.gov (United States) Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud 2012-10-01 The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature. 11. Wavelets, ridgelets, and curvelets for Poisson noise removal. Science.gov (United States) Zhang, Bo; Fadili, Jalal M; Starck, Jean-Luc 2008-07-01 In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods. 12. The Hitchin model, Poisson-quasi-Nijenhuis, geometry and symmetry reduction International Nuclear Information System (INIS) Zucchini, Roberto 2007-01-01 We revisit our earlier work on the AKSZ-like formulation of topological sigma model on generalized complex manifolds, or Hitchin model, [20]. We show that the target space geometry geometry implied by the BV master equations is Poisson-quasi-Nijenhuis geometry recently introduced and studied by Stienon and Xu (in the untwisted case) in [44]. Poisson-quasi-Nijenhuis geometry is more general than generalized complex geometry and comprises it as a particular case. Next, we show how gauging and reduction can be implemented in the Hitchin model. We find that the geometry resulting form the BV master equation is closely related to but more general than that recently described by Lin and Tolman in [40, 41], suggesting a natural framework for the study of reduction of Poisson-quasi-Nijenhuis manifolds 13. On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action Science.gov (United States) Chekhov, L. O.; Mazzocco, M. 2017-12-01 Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles. 14. Bayesian ARTMAP for regression. Science.gov (United States) Sasu, L M; Andonie, R 2013-10-01 Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved. 15. A Method of Poisson's Ration Imaging Within a Material Part Science.gov (United States) Roth, Don J. (Inventor) 1994-01-01 The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data. 16. Method of Poisson's ratio imaging within a material part Science.gov (United States) Roth, Don J. (Inventor) 1996-01-01 The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image. 17. On the Magnetic Shield for a Vlasov-Poisson Plasma Science.gov (United States) Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo 2017-12-01 We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved. 18. Semi-Poisson statistics in quantum chaos. Science.gov (United States) García-García, Antonio M; Wang, Jiao 2006-03-01 We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques. 19. Thinning spatial point processes into Poisson processes DEFF Research Database (Denmark) Møller, Jesper; Schoenberg, Frederic Paik 2010-01-01 are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered.... 20. Thinning spatial point processes into Poisson processes DEFF Research Database (Denmark) Møller, Jesper; Schoenberg, Frederic Paik , and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered.... 1. Periodic Poisson Solver for Particle Tracking International Nuclear Information System (INIS) Dohlus, M.; Henning, C. 2015-05-01 A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given. 2. Nonlinear poisson brackets geometry and quantization CERN Document Server Karasev, M V 2012-01-01 This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students. 3. Fiber-wise linear Poisson structures related to W∗-algebras Science.gov (United States) Odzijewicz, Anatol; Jakimowicz, Grzegorz; Sliżewska, Aneta 2018-01-01 In the framework of Banach differential geometry we investigate the fiber-wise linear Poisson structures as well as the Lie groupoid and Lie algebroid structures which are defined in the canonical way by the structure of a W∗-algebra (von Neumann algebra) M. The main role in this theory is played by the complex Banach-Lie groupoid G(M) ⇉ L(M) of partially invertible elements of M over the lattice L(M) of orthogonal projections of M. The Atiyah sequence and the predual Atiyah sequence corresponding to this groupoid are investigated from the point of view of Banach Poisson geometry. In particular we show that the predual Atiyah sequence fits in a short exact sequence of complex Banach sub-Poisson V B-groupoids with G(M) ⇉ L(M) as the side groupoid. 4. A test for judging the presence of additional scatter in a Poisson process International Nuclear Information System (INIS) Mueller, J.W. 1978-01-01 The effect of additional scatter on a Poisson process is studied. Possible causes for such fluctuations are insufficient stability of the detection efficiency or of the associated electronics. It is shown with a simple model that the presence of fluctuations results in a characteristic broadening of the counting distribution. Comparison of the observed distribution with the one expected for a Poisson process with the same mean value will show three different regions, each with predictable sign of the deviation; the presence of scatter can thus be decided upon by a sign test. Experimental results are in excellent agreement with this expectation 5. Better Autologistic Regression Directory of Open Access Journals (Sweden) Mark A. Wolters 2017-11-01 Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants. 6. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers. Science.gov (United States) Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew 2014-12-26 Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation. 7. Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems International Nuclear Information System (INIS) Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo 2009-01-01 The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems 8. An alternating minimization method for blind deconvolution from Poisson data International Nuclear Information System (INIS) Prato, Marco; La Camera, Andrea; Bonettini, Silvia 2014-01-01 Blind deconvolution is a particularly challenging inverse problem since information on both the desired target and the acquisition system have to be inferred from the measured data. When the collected data are affected by Poisson noise, this problem is typically addressed by the minimization of the Kullback-Leibler divergence, in which the unknowns are sought in particular feasible sets depending on the a priori information provided by the specific application. If these sets are separated, then the resulting constrained minimization problem can be addressed with an inexact alternating strategy. In this paper we apply this optimization tool to the problem of reconstructing astronomical images from adaptive optics systems, and we show that the proposed approach succeeds in providing very good results in the blind deconvolution of nondense stellar clusters 9. Study of some arithmetic properties of poisson distribution International Nuclear Information System (INIS) Freycenon, J. 1965-01-01 One considers a random number on following a Poisson probability distribution function, which is divided by a constant a (n = am + b) and one studies the probability distribution of the rest b and of the quotient m. The mean and mean squared values of m and b are computed. A numerical example shows that the distribution of the rest may be likened with a rectangular distribution when the divisor a is less than or equal to 2 5 for n = 1000: the knowledge of b is then non-significant of the measure of n until this value of a. If one may avoid to reset, between each trial, that part of the sealer which holds the rest, the mean value of the successive quotients is an unbiased measure of n/a. (author) [fr 10. A study on correlating reduction in Poisson's ratio with transverse crack and delamination through acoustic emission signals OpenAIRE Yılmaz, Çağatay; Yilmaz, Cagatay; Yıldız, Mehmet; Yildiz, Mehmet 2017-01-01 During the uniaxial loading of fiber reinforced polymer (FRP) composites, Poisson's ratio (νxy), which is a constant elastic property for isotropic materials, decreases significantly. Micro-damage created within FRP composites as a result of an applied stress causes this decrease. As the level of micro-damage increases, a greater level of reduction in Poisson's ratio occurs. FRP composites, in general, show three main micro-damage types under uniaxial tensile loading, namely, transverse crack... 11. Relaxed Simultaneous Tomographic Reconstruction and Segmentation with Class Priors for Poisson Noise DEFF Research Database (Denmark) Romanov, Mikhail; Dahl, Anders Bjorholm; Dong, Yiqiu : our new algorithm can handle Poisson noise in the data, and it can solve much larger problems since it does not store the matrix. We formulate this algorithm and test it on artificial test problems. Our results show that the algorithm performs well, and that we are able to produce reconstructions... 12. Estimation of a Non-homogeneous Poisson Model: An Empirical ... African Journals Online (AJOL) This article aims at applying the Nonhomogeneous Poisson process to trends of economic development. For this purpose, a modified Nonhomogeneous Poisson process is derived when the intensity rate is considered as a solution of stochastic differential equation which satisfies the geometric Brownian motion. The mean ... 13. Formulation of Hamiltonian mechanics with even and odd Poisson brackets International Nuclear Information System (INIS) Khudaverdyan, O.M.; Nersesyan, A.P. 1987-01-01 A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs 14. Double generalized linear compound poisson models to insurance claims data DEFF Research Database (Denmark) Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo 2017-01-01 This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances.... 15. Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes NARCIS (Netherlands) Belitser, E.N.; Serra, P.; van Zanten, H. 2015-01-01 We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain 16. Quantum algebras and Poisson geometry in mathematical physics CERN Document Server Karasev, M V 2005-01-01 This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc. 17. Cluster X-varieties, amalgamation, and Poisson-Lie groups DEFF Research Database (Denmark) Fock, V. V.; Goncharov, A. B. 2006-01-01 In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie... 18. Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets Science.gov (United States) Carlet, Guido; Casati, Matteo; Shadrin, Sergey 2017-04-01 We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial. 19. Avoiding negative populations in explicit Poisson tau-leaping. Science.gov (United States) Cao, Yang; Gillespie, Daniel T; Petzold, Linda R 2005-08-01 The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure. 20. Study of non-Hodgkin's lymphoma mortality associated with industrial pollution in Spain, using Poisson models Directory of Open Access Journals (Sweden) Lope Virginia 2009-01-01 Full Text Available Abstract Background Non-Hodgkin's lymphomas (NHLs have been linked to proximity to industrial areas, but evidence regarding the health risk posed by residence near pollutant industries is very limited. The European Pollutant Emission Register (EPER is a public register that furnishes valuable information on industries that release pollutants to air and water, along with their geographical location. This study sought to explore the relationship between NHL mortality in small areas in Spain and environmental exposure to pollutant emissions from EPER-registered industries, using three Poisson-regression-based mathematical models. Methods Observed cases were drawn from mortality registries in Spain for the period 1994–2003. Industries were grouped into the following sectors: energy; metal; mineral; organic chemicals; waste; paper; food; and use of solvents. Populations having an industry within a radius of 1, 1.5, or 2 kilometres from the municipal centroid were deemed to be exposed. Municipalities outside those radii were considered as reference populations. The relative risks (RRs associated with proximity to pollutant industries were estimated using the following methods: Poisson Regression; mixed Poisson model with random provincial effect; and spatial autoregressive modelling (BYM model. Results Only proximity of paper industries to population centres (>2 km could be associated with a greater risk of NHL mortality (mixed model: RR:1.24, 95% CI:1.09–1.42; BYM model: RR:1.21, 95% CI:1.01–1.45; Poisson model: RR:1.16, 95% CI:1.06–1.27. Spatial models yielded higher estimates. Conclusion The reported association between exposure to air pollution from the paper, pulp and board industry and NHL mortality is independent of the model used. Inclusion of spatial random effects terms in the risk estimate improves the study of associations between environmental exposures and mortality. The EPER could be of great utility when studying the effects of 1. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data KAUST Repository Sepú lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G 2013-01-01 Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd. 2. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data. Science.gov (United States) Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G 2013-02-26 The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 3. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data KAUST Repository Sepúlveda, Nuno 2013-02-26 Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd. 4. Simultaneous estimation of Poisson's ratio and Young's modulus using a single indentation: a finite element study International Nuclear Information System (INIS) Zheng, Y P; Choi, A P C; Ling, H Y; Huang, Y P 2009-01-01 Indentation is commonly used to determine the mechanical properties of different kinds of biological tissues and engineering materials. With the force–deformation data obtained from an indentation test, Young's modulus of the tissue can be calculated using a linear elastic indentation model with a known Poisson's ratio. A novel method for simultaneous estimation of Young's modulus and Poisson's ratio of the tissue using a single indentation was proposed in this study. Finite element (FE) analysis using 3D models was first used to establish the relationship between Poisson's ratio and the deformation-dependent indentation stiffness for different aspect ratios (indentor radius/tissue original thickness) in the indentation test. From the FE results, it was found that the deformation-dependent indentation stiffness linearly increased with the deformation. Poisson's ratio could be extracted based on the deformation-dependent indentation stiffness obtained from the force–deformation data. Young's modulus was then further calculated with the estimated Poisson's ratio. The feasibility of this method was demonstrated in virtue of using the indentation models with different material properties in the FE analysis. The numerical results showed that the percentage errors of the estimated Poisson's ratios and the corresponding Young's moduli ranged from −1.7% to −3.2% and 3.0% to 7.2%, respectively, with the aspect ratio (indentor radius/tissue thickness) larger than 1. It is expected that this novel method can be potentially used for quantitative assessment of various kinds of engineering materials and biological tissues, such as articular cartilage 5. On the application of nonhomogeneous Poisson process to the reliability analysis of service water pumps of nuclear power plants International Nuclear Information System (INIS) Cruz Saldanha, Pedro Luiz da. 1995-12-01 The purpose of this study is to evaluate the nonhomogeneous Poisson process as a model to rate of occurrence of failures when it is not constant, and the times between failures are not independent nor identically distributed. To this evaluation, an analyse of reliability of service water pumps of a typical nuclear power plant is made considering the model discussed in the last paragraph, as long as the pumps are effectively repairable components. Standard statistical techniques, such as maximum likelihood and linear regression, are applied to estimate parameters of nonhomogeneous Poisson process model. As a conclusion of the study, the nonhomogeneous Poisson process is adequate to model rate of occurrence of failures that are function of time, and can be used where the aging mechanisms are present in operation of repairable systems. (author). 72 refs., 45 figs., 21 tabs 6. Steganalysis using logistic regression Science.gov (United States) Lubenko, Ivans; Ker, Andrew D. 2011-02-01 We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets. 7. Reduced Rank Regression DEFF Research Database (Denmark) Johansen, Søren 2008-01-01 The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating... 8. Non-isothermal Smoluchowski-Poisson equation as a singular limit of the Navier-Stokes-Fourier-Poisson system Czech Academy of Sciences Publication Activity Database Feireisl, Eduard; Laurençot, P. 2007-01-01 Roč. 88, - (2007), s. 325-349 ISSN 0021-7824 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier- Poisson system * Smoluchowski- Poisson system * singular limit Subject RIV: BA - General Mathematics Impact factor: 1.118, year: 2007 9. Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions. Science.gov (United States) Khazraee, S Hadi; Johnson, Valen; Lord, Dominique 2018-08-01 The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients 10. Tumor regression patterns in retinoblastoma International Nuclear Information System (INIS) Zafar, S.N.; Siddique, S.N.; Zaheer, N. 2016-01-01 To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author) 11. Quantization of Poisson Manifolds from the Integrability of the Modular Function Science.gov (United States) Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M. 2014-10-01 We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras. 12. Test of Poisson Process for Earthquakes in and around Korea International Nuclear Information System (INIS) Noh, Myunghyun; Choi, Hoseon 2015-01-01 Since Cornell's work on the probabilistic seismic hazard analysis (hereafter, PSHA), majority of PSHA computer codes are assuming that the earthquake occurrence is Poissonian. To the author's knowledge, it is uncertain who first opened the issue of the Poisson process for the earthquake occurrence. The systematic PSHA in Korea, led by the nuclear industry, were carried out for more than 25 year with the assumption of the Poisson process. However, the assumption of the Poisson process has never been tested. Therefore, the test is of significance. We tested whether the Korean earthquakes follow the Poisson process or not. The Chi-square test with the significance level of 5% was applied. The test turned out that the Poisson process could not be rejected for the earthquakes of magnitude 2.9 or larger. However, it was still observed in the graphical comparison that some portion of the observed distribution significantly deviated from the Poisson distribution. We think this is due to the small earthquake data. The earthquakes of magnitude 2.9 or larger occurred only 376 times during 34 years. Therefore, the judgment on the Poisson process derived in the present study is not conclusive 13. Retro-regression--another important multivariate regression improvement. Science.gov (United States) Randić, M 2001-01-01 We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA. 14. Network Traffic Monitoring Using Poisson Dynamic Linear Models Energy Technology Data Exchange (ETDEWEB) Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) 2011-05-09 In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring. 15. Poisson solvers for self-consistent multi-particle simulations International Nuclear Information System (INIS) Qiang, J; Paret, S 2014-01-01 Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation 16. Boundary Lax pairs from non-ultra-local Poisson algebras International Nuclear Information System (INIS) Avan, Jean; Doikou, Anastasia 2009-01-01 We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example. 17. Numerical methods for realizing nonstationary Poisson processes with piecewise-constant instantaneous-rate functions DEFF Research Database (Denmark) Harrod, Steven; Kelton, W. David 2006-01-01 Nonstationary Poisson processes are appropriate in many applications, including disease studies, transportation, finance, and social policy. The authors review the risks of ignoring nonstationarity in Poisson processes and demonstrate three algorithms for generation of Poisson processes... 18. A Local Poisson Graphical Model for inferring networks from sequencing data. Science.gov (United States) Allen, Genevera I; Liu, Zhandong 2013-09-01 Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research. 19. Regression analysis by example CERN Document Server Chatterjee, Samprit 2012-01-01 Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded 20. Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model. Science.gov (United States) Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie 2017-07-01 For dose-response analysis in quantitative microbial risk assessment (QMRA), the exact beta-Poisson model is a two-parameter mechanistic dose-response model with parameters α>0 and β>0, which involves the Kummer confluent hypergeometric function. Evaluation of a hypergeometric function is a computational challenge. Denoting PI(d) as the probability of infection at a given mean dose d, the widely used dose-response model PI(d)=1-(1+dβ)-α is an approximate formula for the exact beta-Poisson model. Notwithstanding the required conditions α1, issues related to the validity and approximation accuracy of this approximate formula have remained largely ignored in practice, partly because these conditions are too general to provide clear guidance. Consequently, this study proposes a probability measure Pr(0 (22α̂)0.50 for 0.020.99) . This validity measure and rule of thumb were validated by application to all the completed beta-Poisson models (related to 85 data sets) from the QMRA community portal (QMRA Wiki). The results showed that the higher the probability Pr(0 Poisson model dose-response curve. © 2016 Society for Risk Analysis. 1. Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator. Science.gov (United States) Avila, Thomas R; Piephoff, D Evan; Cao, Jianshu 2017-08-24 Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a normalized measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (i.e., memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms. 2. Contravariant gravity on Poisson manifolds and Einstein gravity International Nuclear Information System (INIS) Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi 2017-01-01 A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper) 3. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise. Science.gov (United States) Zhang, Jiachao; Hirakawa, Keigo 2017-04-01 This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique. 4. Transforming spatial point processes into Poisson processes using random superposition DEFF Research Database (Denmark) Møller, Jesper; Berthelsen, Kasper Klitgaaard with a complementary spatial point process Y to obtain a Poisson process X∪Y with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking... 5. The applicability of the Poisson distribution in radiochemical measurements International Nuclear Information System (INIS) Luthardt, M.; Proesch, U. 1980-01-01 The fact that, on principle, the Poisson distribution describes the statistics of nuclear decay is generally accepted. The applicability of this distribution to nuclear radiation measurements has recently been questioned. Applying the chi-squared test for goodness of fit on the analogy of the moving average, at least 3 cases may be distinguished, which lead to an incorrect rejection of the Poisson distribution for measurements. Examples are given. Distributions, which make allowance for special parameters, should only be used after careful examination of the data with regard to other interfering effects. The Poisson distribution will further on be applicable to many simple measuring operations. Some basic equations for the analysis of poisson-distributed data are given. (author) 6. Modeling laser velocimeter signals as triply stochastic Poisson processes Science.gov (United States) Mayo, W. T., Jr. 1976-01-01 Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals. 7. Optimal linear filtering of Poisson process with dead time International Nuclear Information System (INIS) Glukhova, E.V. 1993-01-01 The paper presents a derivation of an integral equation defining the impulsed transient of optimum linear filtering for evaluation of the intensity of the fluctuating Poisson process with allowance for dead time of transducers 8. Doubly stochastic Poisson processes in artificial neural learning. Science.gov (United States) Card, H C 1998-01-01 This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits. 9. A high order solver for the unbounded Poisson equation DEFF Research Database (Denmark) Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe 2013-01-01 . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain.... 10. Comparison between two bivariate Poisson distributions through the ... African Journals Online (AJOL) These two models express themselves by their probability mass function. ... To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive. 11. Statistics of weighted Poisson events and its applications International Nuclear Information System (INIS) Bohm, G.; Zech, G. 2014-01-01 The statistics of the sum of random weights where the number of weights is Poisson distributed has important applications in nuclear physics, particle physics and astrophysics. Events are frequently weighted according to their acceptance or relevance to a certain type of reaction. The sum is described by the compound Poisson distribution (CPD) which is shortly reviewed. It is shown that the CPD can be approximated by a scaled Poisson distribution (SPD). The SPD is applied to parameter estimation in situations where the data are distorted by resolution effects. It performs considerably better than the normal approximation that is usually used. A special Poisson bootstrap technique is presented which permits to derive confidence limits for observations following the CPD 12. Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks KAUST Repository Ali, Konpal S. 2018-03-21 A network model is considered where Poisson distributed base stations transmit toN$power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate$\\\\mathcal{R}_{\\ m tot}$, for general$N$, constrained to: 1) a minimum rate$\\\\mathcal{T}$for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum$N$that maximizes the constrained$\\\\mathcal{R}_{\\ m tot}$given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters$N$, the constraints, and the ordering technique to balance the$\\\\mathcal{R}_{\\ m tot}$and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance. 13. Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks KAUST Repository Ali, Konpal S.; Haenggi, Martin; Elsawy, Hesham; Chaaban, Anas; Alouini, Mohamed-Slim 2018-01-01 A network model is considered where Poisson distributed base stations transmit to$N$power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate$\\mathcal{R}_{\\rm tot}$, for general$N$, constrained to: 1) a minimum rate$\\mathcal{T}$for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum$N$that maximizes the constrained$\\mathcal{R}_{\\rm tot}$given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters$N$, the constraints, and the ordering technique to balance the$\\mathcal{R}_{\\rm tot}\$ and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance.

14. Quantile Regression Methods

DEFF Research Database (Denmark)

Fitzenberger, Bernd; Wilke, Ralf Andreas

2015-01-01

if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...

15. Formality theory from Poisson structures to deformation quantization

CERN Document Server

Esposito, Chiara

2015-01-01

This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.

16. Poisson structure of the equations of ideal multispecies fluid electrodynamics

International Nuclear Information System (INIS)

Spencer, R.G.

1984-01-01

The equations of the two- (or multi-) fluid model of plasma physics are recast in Hamiltonian form, following general methods of symplectic geometry. The dynamical variables are the fields of physical interest, but are noncanonical, so that the Poisson bracket in the theory is not the standard one. However, it is a skew-symmetric bilinear form which, from the method of derivation, automatically satisfies the Jacobi identity; therefore, this noncanonical structure has all the essential properties of a canonical Poisson bracket

17. Null canonical formalism 1, Maxwell field. [Poisson brackets, boundary conditions

Energy Technology Data Exchange (ETDEWEB)

Wodkiewicz, K [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

1975-01-01

The purpose of this paper is to formulate the canonical formalism on null hypersurfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null variables of the Maxwell field is obtained. The asymptotic properties of the theory are investigated. The Poisson bracket relations for the news-functions of the Maxwell field are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these news-functions is obtained.

18. GEPOIS: a two dimensional nonuniform mesh Poisson solver

International Nuclear Information System (INIS)

Quintenz, J.P.; Freeman, J.R.

1979-06-01

A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces

19. A Note On the Estimation of the Poisson Parameter

Directory of Open Access Journals (Sweden)

S. S. Chitgopekar

1985-01-01

distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.

20. On the Fedosov deformation quantization beyond the regular Poisson manifolds

International Nuclear Information System (INIS)

Dolgushev, V.A.; Isaev, A.P.; Lyakhovich, S.L.; Sharapov, A.A.

2002-01-01

A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane

1. Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.

Science.gov (United States)

Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng

2018-06-01

The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.

2. Regression to Causality : Regression-style presentation influences causal attribution

DEFF Research Database (Denmark)

Bordacconi, Mats Joe; Larsen, Martin Vinæs

2014-01-01

of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

3. Identification d’une Classe de Processus de Poisson Filtres (Identification of a Class of Filtered Poisson Processes).

Science.gov (United States)

1983-05-20

Poisson processes is introduced: the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown how such a model can be identified from experimental data. (Author)

4. Optimized aspect ratios of restrained thick-wall cylinders by virtue of Poisson's ratio selection. Part two: Temperature application

International Nuclear Information System (INIS)

Whitty, J.P.M.; Henderson, B.; Francis, J.

2011-01-01

Highlights: → Incontrovertible evidence is presented that thermal stresses in cylindrical components which include nuclear reactors and containment vessels are shown to be highly dependent on the Poisson's ratio of the materials. → The key novelty is concerned with the identification of a new potential thermal applications for negative Poisson's ratio (auxetic) materials; i.e. those that get fatter when they are stretched. → Negative Poisson's ratio (auxetic) materials exhibit lower thermal stress build-up than conventional positive Poisson's ratio materials, this conjecture being proven using thermal surface plots. - Abstract: Analytical and numerical modelling have been employed to show that the choice of Poisson's ratio is one of the principal design criteria in order to reduce thermal stress build-up in isotropic materials. The modelling procedures are all twofold; consisting of a solution to a steady-state heat conduction problem followed by a linear static solution. The models developed take the form of simplistic thick-wall cylinders such model systems are applicable at macro-structural and micro-structural levels as the underlining formulations are based on the classical theory of elasticity. Generally, the results show that the Poisson's ratio of the material has a greater effect on the magnitude of the principal stresses than the aspect ratio of the cylinders investigated. Constraining the outside of these models significantly increases the thermal stresses induced. The most significant and original finding presented is that the for both freely expanding and constrained thick-wall cylinders the optimum Poisson's ratio is minus unity.

5. Understanding logistic regression analysis

OpenAIRE

Sperandei, Sandro

2014-01-01

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...

6. Introduction to regression graphics

CERN Document Server

Cook, R Dennis

2009-01-01

Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

7. Alternative Methods of Regression

CERN Document Server

Birkes, David

2011-01-01

Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s

8. Regression analysis with categorized regression calibrated exposure: some interesting findings

Directory of Open Access Journals (Sweden)

Hjartåker Anette

2006-07-01

Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

9. Unobserved heterogeneity in the power law nonhomogeneous Poisson process

International Nuclear Information System (INIS)

Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry

2015-01-01

A study of possible consequences of heterogeneity in the failure intensity of repairable systems is presented. The basic model studied is the nonhomogeneous Poisson process with power law intensity function. When several similar systems are under observation, the assumption that the corresponding processes are independent and identically distributed is often questionable. In practice there may be an unobserved heterogeneity among the systems. The heterogeneity is modeled by introduction of unobserved gamma distributed frailties. The relevant likelihood function is derived, and maximum likelihood estimation is illustrated. In a simulation study we then compare results when using a power law model without taking into account heterogeneity, with the corresponding results obtained when the heterogeneity is accounted for. A motivating data example is also given. - Highlights: • Consequences of overlooking heterogeneity in similar repairable systems are studied. • Likelihood functions are established for power law NHPP w/ and w/o heterogeneity. • ML estimators for parameters of power law NHPP with heterogeneity are derived. • A simulation study shows the effects of heterogeneity and its ignorance in models

10. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

Science.gov (United States)

Huang, Yanping; Rao, Rajesh P N

2016-08-01

Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

11. Cooperative HARQ with Poisson Interference and Opportunistic Routing

KAUST Repository

Kaveh, Mostafa

2014-01-06

This presentation considers reliable transmission of data from a source to a destination, aided cooperatively by wireless relays selected opportunistically and utilizing hybrid forward error correction/detection, and automatic repeat request (Hybrid ARQ, or HARQ). Specifically, we present a performance analysis of the cooperative HARQ protocol in a wireless adhoc multihop network employing spatial ALOHA. We model the nodes in such a network by a homogeneous 2-D Poisson point process. We study the tradeoff between the per-hop rate, spatial density and range of transmissions inherent in the network by optimizing the transport capacity with respect to the network design parameters, HARQ coding rate and medium access probability. We obtain an approximate analytic expression for the expected progress of opportunistic routing and optimize the capacity approximation by convex optimization. By way of numerical results, we show that the network design parameters obtained by optimizing the analytic approximation of transport capacity closely follows that of Monte Carlo based exact transport capacity optimization. As a result of the analysis, we argue that the optimal HARQ coding rate and medium access probability are independent of the node density in the network.

12. An inverse source problem of the Poisson equation with Cauchy data

Directory of Open Access Journals (Sweden)

Ji-Chuan Liu

2017-05-01

Full Text Available In this article, we study an inverse source problem of the Poisson equation with Cauchy data. We want to find iterative algorithms to detect the hidden source within a body from measurements on the boundary. Our goal is to reconstruct the location, the size and the shape of the hidden source. This problem is ill-posed, regularization techniques should be employed to obtain the regularized solution. Numerical examples show that our proposed algorithms are valid and effective.

13. Normal forms of dispersive scalar Poisson brackets with two independent variables

Science.gov (United States)

Carlet, Guido; Casati, Matteo; Shadrin, Sergey

2018-03-01

We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.

14. Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics

International Nuclear Information System (INIS)

Zhang, Y.Z.; Mahajan, S.M.

1987-10-01

The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs

15. A Generalized FDM for solving the Poisson's Equation on 3D Irregular Domains

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available In this paper a new method for solving the Poisson's equation with Dirichlet conditions on irregular domains is presented. For this purpose a generalized finite differences method is applied for numerical differentiation on irregular meshes. Three examples on cylindrical and spherical domains are considered. The numerical results are compared with analytical solution. These results show the performance and efficiency of the proposed method.

16. Poisson sigma model with branes and hyperelliptic Riemann surfaces

International Nuclear Information System (INIS)

Ferrario, Andrea

2008-01-01

We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P n with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions

17. Poisson image reconstruction with Hessian Schatten-norm regularization.

Science.gov (United States)

Lefkimmiatis, Stamatios; Unser, Michael

2013-11-01

Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.

18. Canonical variate regression.

Science.gov (United States)

Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

2016-07-01

In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

19. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study.

Science.gov (United States)

Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P

2014-06-26

To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.

20. Boosted beta regression.

Directory of Open Access Journals (Sweden)

Matthias Schmid

Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

1. Understanding logistic regression analysis.

Science.gov (United States)

Sperandei, Sandro

2014-01-01

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

2. Applied linear regression

CERN Document Server

Weisberg, Sanford

2013-01-01

Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

3. Applied logistic regression

CERN Document Server

Hosmer, David W; Sturdivant, Rodney X

2013-01-01

A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

4. Four-dimensional gravity as an almost-Poisson system

Science.gov (United States)

Ita, Eyo Eyo

2015-04-01

In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

5. Modified Poisson eigenfunctions for electrostatic Bernstein--Greene--Kruskal equilibria

International Nuclear Information System (INIS)

Ling, K.; Abraham-Shrauner, B.

1981-01-01

The stability of an electrostatic Bernstein--Greene--Kruskal equilibrium by Lewis and Symon's general linear stability analysis for spatially inhomogeneous Vlasov equilibria, which employs eigenfunctions and eigenvalues of the equilibrium Liouville operator and the modified Poisson operator, is considered. Analytic expressions for the Liouville eigenfuctions and eigenvalues have already been given; approximate analytic expressions for the dominant eigenfunction and eigenvalue of the modified Poisson operator are given. In the kinetic limit three methods are given: (i) the perturbation method, (ii) the Rayleigh--Ritz method, and (iii) a method based on a Hill's equation. In the fluid limit the Rayleigh--Ritz method is used. The dominant eigenfunction and eigenvalue are then substituted in the dispersion relation and the growth rate calculated. The growth rate agrees very well with previous results found by numerical simulation and by modified Poisson eigenfunctions calculated numerically

6. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

International Nuclear Information System (INIS)

Nutku, Yavuz

2003-01-01

Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems

7. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

Science.gov (United States)

Thayakaran, R; Ramesh, N I

2013-01-01

Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

8. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

Directory of Open Access Journals (Sweden)

Liu Jinn-Liang

2017-10-01

Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

9. Semiconductor device simulation by a new method of solving poisson, Laplace and Schrodinger equations

International Nuclear Information System (INIS)

2000-01-01

In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as poisson, Laplace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in several cases including the problem of finding electron concentration profile in the channel of a HEMT. In another section, we solve the Poisson equation by this method, choosing the problem of SBD as an example. Finally we solve the Laplace equation in two dimensions and as an example, we focus on the VED. In this paper, we have shown that, the method can get stable and precise results in solving all of these problems. Also the programs which have been written based on this method become considerably faster, more clear, and more abstract

10. Bayesian Estimation Of Shift Point In Poisson Model Under Asymmetric Loss Functions

Directory of Open Access Journals (Sweden)

uma srivastava

2012-01-01

Full Text Available The paper deals with estimating  shift point which occurs in any sequence of independent observations  of Poisson model in statistical process control. This shift point occurs in the sequence when  i.e. m  life data are observed. The Bayes estimator on shift point 'm' and before and after shift process means are derived for symmetric and asymmetric loss functions under informative and non informative priors. The sensitivity analysis of Bayes estimators are carried out by simulation and numerical comparisons with  R-programming. The results shows the effectiveness of shift in sequence of Poisson disribution .

11. Asymptotic Poisson distribution for the number of system failures of a monotone system

International Nuclear Information System (INIS)

Aven, Terje; Haukis, Harald

1997-01-01

It is well known that for highly available monotone systems, the time to the first system failure is approximately exponentially distributed. Various normalising factors can be used as the parameter of the exponential distribution to ensure the asymptotic exponentiality. More generally, it can be shown that the number of system failures is asymptotic Poisson distributed. In this paper we study the performance of some of the normalising factors by using Monte Carlo simulation. The results show that the exponential/Poisson distribution gives in general very good approximations for highly available components. The asymptotic failure rate of the system gives best results when the process is in steady state, whereas other normalising factors seem preferable when the process is not in steady state. From a computational point of view the asymptotic system failure rate is most attractive

12. Poisson and negative binomial item count techniques for surveys with sensitive question.

Science.gov (United States)

Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin

2017-04-01

Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.

13. Dependent Neyman type A processes based on common shock Poisson approach

Science.gov (United States)

2016-04-01

The Neyman type A process is used for describing clustered data since the Poisson process is insufficient for clustering of events. In a multivariate setting, there may be dependencies between multivarite Neyman type A processes. In this study, dependent form of the Neyman type A process is considered under common shock approach. Then, the joint probability function are derived for the dependent Neyman type A Poisson processes. Then, an application based on forest fires in Turkey are given. The results show that the joint probability function of the dependent Neyman type A processes, which is obtained in this study, can be a good tool for the probabilistic fitness for the total number of burned trees in Turkey.

14. Poisson structure and symmetry in the Chern-Simons formulation of (2 + 1)-dimensional gravity

International Nuclear Information System (INIS)

Meusburger, C; Schroers, B J

2003-01-01

In the formulation of (2 + 1)-dimensional gravity as a Chern-Simons gauge theory, the phase space is the moduli space of flat Poincare group connections. Using the combinatorial approach developed by Fock and Rosly, we give an explicit description of the phase space and its Poisson structure for the general case of a genus g oriented surface with punctures representing particles and a boundary playing the role of spatial infinity. We give a physical interpretation and explain how the degrees of freedom associated with each handle and each particle can be decoupled. The symmetry group of the theory combines an action of the mapping class group with asymptotic Poincare transformations in a nontrivial fashion. We derive the conserved quantities associated with the latter and show that the mapping class group of the surface acts on the phase space via Poisson isomorphisms

15. Determination of maximum negative Poisson's ratio for laminated fiber composites

Energy Technology Data Exchange (ETDEWEB)

Shokrieh, M.M.; Assadi, A. [Composites Research Laboratory, Mechanical Engineering Department, Center of Excellence in Experimental Solid Mechanics and Dynamics, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of)

2011-05-15

Contrary to isotropic materials, composites always show complicated mechanical behavior under external loadings. In this article, an efficient algorithm is employed to obtain the maximum negative Poisson's ratio for laminated composite plates. We try to simplify the problem based on normalization of parameters and some manufacturing constraints to overlook the additional constraint of the optimization procedure. A genetic algorithm is used to find the optimal thickness of each lamina with a specified fiber direction. It is observed that the laminated composite with the configuration of (15/60/15) has the maximum negative Poisson's ratio. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

16. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

Energy Technology Data Exchange (ETDEWEB)

Gad Elmowla, Khaled Mohamed M; Chai, Jong Seo, E-mail: jschai@skku.edu; Yeon, Yeong H; Kim, Sangbum; Ghergherehchi, Mitra

2016-10-01

In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

17. EL MODELO POISSON GENERALIZADO INFLADO DE CEROS: UNA APLICACIÓN EN EL ENTORNO EDUCATIVO UNIVERSITARIO

Directory of Open Access Journals (Sweden)

García-Artiles, María Dolores

2014-12-01

Full Text Available This paper presents the zero-inflated generalised Poisson distribution, which is useful when there is a large presence of zeros in the sample. After presenting the model, we develop a specific program based on Mathematica, overcoming some limitations of alternative approaches such as STATA or EViews, which do not include the zero-inflated Poisson distribution among its routines. The advantages of the model used and the proposed program are illustrated with a real example that is very appropriate to its features, namely an analysis of the factors influencing university students’ attendance at tutoring sessions. This example is particularly suitable to show the usefulness of the methodology presented because it includes a large number of zeros, reflecting the many occasions on which the students do not attend these sessions. The students’ place of residence, their attendance at lectures and the application of continual assessment are variables that seem to account for attendance at tutoring sessions.

18. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

Science.gov (United States)

Lin, I-Chun; Xing, Dajun; Shapley, Robert

2012-12-01

One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

19. Quaternionic and Poisson-Lie structures in three-dimensional gravity: The cosmological constant as deformation parameter

International Nuclear Information System (INIS)

Meusburger, C.; Schroers, B. J.

2008-01-01

Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description

20. Poisson cluster analysis of cardiac arrest incidence in Columbus, Ohio.

Science.gov (United States)

Warden, Craig; Cudnik, Michael T; Sasson, Comilla; Schwartz, Greg; Semple, Hugh

2012-01-01

Scarce resources in disease prevention and emergency medical services (EMS) need to be focused on high-risk areas of out-of-hospital cardiac arrest (OHCA). Cluster analysis using geographic information systems (GISs) was used to find these high-risk areas and test potential predictive variables. This was a retrospective cohort analysis of EMS-treated adults with OHCAs occurring in Columbus, Ohio, from April 1, 2004, through March 31, 2009. The OHCAs were aggregated to census tracts and incidence rates were calculated based on their adult populations. Poisson cluster analysis determined significant clusters of high-risk census tracts. Both census tract-level and case-level characteristics were tested for association with high-risk areas by multivariate logistic regression. A total of 2,037 eligible OHCAs occurred within the city limits during the study period. The mean incidence rate was 0.85 OHCAs/1,000 population/year. There were five significant geographic clusters with 76 high-risk census tracts out of the total of 245 census tracts. In the case-level analysis, being in a high-risk cluster was associated with a slightly younger age (-3 years, adjusted odds ratio [OR] 0.99, 95% confidence interval [CI] 0.99-1.00), not being white, non-Hispanic (OR 0.54, 95% CI 0.45-0.64), cardiac arrest occurring at home (OR 1.53, 95% CI 1.23-1.71), and not receiving bystander cardiopulmonary resuscitation (CPR) (OR 0.77, 95% CI 0.62-0.96), but with higher survival to hospital discharge (OR 1.78, 95% CI 1.30-2.46). In the census tract-level analysis, high-risk census tracts were also associated with a slightly lower average age (-0.1 years, OR 1.14, 95% CI 1.06-1.22) and a lower proportion of white, non-Hispanic patients (-0.298, OR 0.04, 95% CI 0.01-0.19), but also a lower proportion of high-school graduates (-0.184, OR 0.00, 95% CI 0.00-0.00). This analysis identified high-risk census tracts and associated census tract-level and case-level characteristics that can be used to

1. Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant

Science.gov (United States)

Meusburger, C.

2006-09-01

We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology mathbb{R} × S_g, where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.

2. Efficient maximal Poisson-disk sampling and remeshing on surfaces

KAUST Repository

Guo, Jianwei; Yan, Dongming; Jia, Xiaohong; Zhang, Xiaopeng

2015-01-01

Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.

3. Robust iterative observer for source localization for Poisson equation

KAUST Repository

2017-01-05

Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.

4. Gyrokinetic energy conservation and Poisson-bracket formulation

International Nuclear Information System (INIS)

Brizard, A.

1989-01-01

An integral expression for the gyrokinetic total energy of a magnetized plasma, with general magnetic field configuration perturbed by fully electromagnetic fields, was recently derived through the use of a gyrocenter Lie transformation. It is shown that the gyrokinetic energy is conserved by the gyrokinetic Hamiltonian flow to all orders in perturbed fields. An explicit demonstration that a gyrokinetic Hamiltonian containing quadratic nonlinearities preserves the gyrokinetic energy up to third order is given. The Poisson-bracket formulation greatly facilitates this demonstration with the help of the Jacobi identity and other properties of the Poisson brackets

5. Dilaton gravity, Poisson sigma models and loop quantum gravity

International Nuclear Information System (INIS)

Bojowald, Martin; Reyes, Juan D

2009-01-01

Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

6. ? filtering for stochastic systems driven by Poisson processes

Science.gov (United States)

Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

2015-01-01

This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

7. Poisson's theorem and integrals of KdV equation

International Nuclear Information System (INIS)

Tasso, H.

1978-01-01

Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)

8. Robust iterative observer for source localization for Poisson equation

KAUST Repository

2017-01-01

Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.

9. Efficient maximal Poisson-disk sampling and remeshing on surfaces

KAUST Repository

Guo, Jianwei

2015-02-01

Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.

10. Adaptive maximal poisson-disk sampling on surfaces

KAUST Repository

Yan, Dongming

2012-01-01

In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which is the key ingredient of the adaptive maximal Poisson-disk sampling framework. Moreover, we adapt the presented sampling framework for remeshing applications. Several novel and efficient operators are developed for improving the sampling/meshing quality over the state-of-theart. © 2012 ACM.

11. Efficient triangulation of Poisson-disk sampled point sets

KAUST Repository

Guo, Jianwei

2014-05-06

In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches. © 2014 Springer-Verlag Berlin Heidelberg.

12. Modifications in the AUTOMESH and other POISSON Group Codes

International Nuclear Information System (INIS)

Gupta, R.C.

1986-01-01

Improvements in the POISSON Group Codes are discussed. These improvements allow one to compute magnetic field to an accuracy of a few parts in 100,000 in quite complicated geometries with a reduced requirement on computational time and computer memory. This can be accomplished mainly by making the mesh dense at some places and sparse at other places. AUTOMESH has been modified so that one can use variable mesh size conveniently and efficiently at a number of places. We will present an example to illustrate these techniques. Several other improvements in the codes AUTOMESH, LATTICE and POISSON will also be discussed

13. Two-part zero-inflated negative binomial regression model for quantitative trait loci mapping with count trait.

Science.gov (United States)

Moghimbeigi, Abbas

2015-05-07

Poisson regression models provide a standard framework for quantitative trait locus (QTL) mapping of count traits. In practice, however, count traits are often over-dispersed relative to the Poisson distribution. In these situations, the zero-inflated Poisson (ZIP), zero-inflated generalized Poisson (ZIGP) and zero-inflated negative binomial (ZINB) regression may be useful for QTL mapping of count traits. Added genetic variables to the negative binomial part equation, may also affect extra zero data. In this study, to overcome these challenges, I apply two-part ZINB model. The EM algorithm with Newton-Raphson method in the M-step uses for estimating parameters. An application of the two-part ZINB model for QTL mapping is considered to detect associations between the formation of gallstone and the genotype of markers. Copyright © 2015 Elsevier Ltd. All rights reserved.

14. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

Science.gov (United States)

2016-08-01

Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

15. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

Science.gov (United States)

Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

2016-08-01

The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

16. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

International Nuclear Information System (INIS)

Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

2016-01-01

The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

17. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

Energy Technology Data Exchange (ETDEWEB)

Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong; Jia, Wantao [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

2016-08-15

The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

18. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

International Nuclear Information System (INIS)

2016-01-01

Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

19. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

Science.gov (United States)

2016-01-01

Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

20. Nonparametric Mixture of Regression Models.

Science.gov (United States)

Huang, Mian; Li, Runze; Wang, Shaoli

2013-07-01

Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

1. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

Science.gov (United States)

Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

2018-03-13

The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

2. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

Science.gov (United States)

Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

2009-11-01

G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

3. Regression: The Apple Does Not Fall Far From the Tree.

Science.gov (United States)

Vetter, Thomas R; Schober, Patrick

2018-05-15

Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

4. Vector regression introduced

Directory of Open Access Journals (Sweden)

Mok Tik

2014-06-01

Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

5. This research is to study the factors which influence the business success of small business ‘processed rotan’. The data employed in the study are primary data within the period of July to August 2013, 30 research observations through census method. Method of analysis used in the study is multiple linear regressions. The results of analysis showed that the factors of labor, innovation and promotion have positive and significant influence on the business success of small business ‘processed rotan’ simultaneously. The analysis also showed that partially labor has positive and significant influence on the business success, yet innovation and promotion have insignificant and positive influence on the business success.

OpenAIRE

Nasution, Inggrita Gusti Sari; Muchtar, Yasmin Chairunnisa

2013-01-01

This research is to study the factors which influence the business success of small business ‘processed rotan’. The data employed in the study are primary data within the period of July to August 2013, 30 research observations through census method. Method of analysis used in the study is multiple linear regressions. The results of analysis showed that the factors of labor, innovation and promotion have positive and significant influence on the business success of small busine...

6. Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems

International Nuclear Information System (INIS)

Chang, Liu; Peng, Chang; Shi-Xing, Liu; Yong-Xin, Guo

2010-01-01

This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost-Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noncanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion

7. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers

International Nuclear Information System (INIS)

Yeh, M.-K.; Tai, N.-Ha; Chen, B.-Y.

2008-01-01

Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 deg. and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 μN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy

8. Pricing Zero-Coupon Catastrophe Bonds Using EVT with Doubly Stochastic Poisson Arrivals

Directory of Open Access Journals (Sweden)

Zonggang Ma

2017-01-01

Full Text Available The frequency and severity of climate abnormal change displays an irregular upward cycle as global warming intensifies. Therefore, this paper employs a doubly stochastic Poisson process with Black Derman Toy (BDT intensity to describe the catastrophic characteristics. By using the Property Claim Services (PCS loss index data from 2001 to 2010 provided by the US Insurance Services Office (ISO, the empirical result reveals that the BDT arrival rate process is superior to the nonhomogeneous Poisson and lognormal intensity process due to its smaller RMSE, MAE, MRPE, and U and larger E and d. Secondly, to depict extreme features of catastrophic risks, this paper adopts the Peak Over Threshold (POT in extreme value theory (EVT to characterize the tail characteristics of catastrophic loss distribution. And then the loss distribution is analyzed and assessed using a quantile-quantile (QQ plot to visually check whether the PCS index observations meet the generalized Pareto distribution (GPD assumption. Furthermore, this paper derives a pricing formula for zero-coupon catastrophe bonds with a stochastic interest rate environment and aggregate losses generated by a compound doubly stochastic Poisson process under the forward measure. Finally, simulation results verify pricing model predictions and show how catastrophic risks and interest rate risk affect the prices of zero-coupon catastrophe bonds.

9. Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation

Directory of Open Access Journals (Sweden)

Wantao Jia

2018-02-01

Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.

10. Non-chiral, molecular model of negative Poisson ratio in two dimensions

International Nuclear Information System (INIS)

Wojciechowski, K W

2003-01-01

A two-dimensional model of tri-atomic molecules (in which 'atoms' are distributed on vertices of equilateral triangles, and which are further referred to as cyclic trimers) is solved exactly in the static (zero-temperature) limit for the nearest-neighbour site-site interactions. It is shown that the cyclic trimers form a mechanically stable and elastically isotropic non-chiral phase of negative Poisson ratio. The properties of the system are illustrated by three examples of atom-atom interaction potentials: (i) the purely repulsive (n-inverse-power) potential, (ii) the purely attractive (n-power) potential and (iii) the Lennard-Jones potential which shows both the repulsive and the attractive part. The analytic form of the dependence of the Poisson ratio on the interatomic potential is obtained. It is shown that the Poisson ratio depends, in a universal way, only on the trimer anisotropy parameter both (1) in the limit of n → ∞ for cases (i) and (ii), as well as (2) at the zero external pressure for any potential with a doubly differentiable minimum, case (iii) is an example

11. Lyapunov stability and poisson structure of the thermal TDHF and RPA equations

International Nuclear Information System (INIS)

Balian, R.; Veneroni, M.

1989-01-01

The thermal TDHF equation is analyzed in the Liouville representation of quantum mechanics, where the matrix elements of the single-particle (s.p) density ρ behave as classical dynamical variables. By introducing the Lie--Poisson bracket associated with the unitary group of the s.p. Hilbert space, we show that TDHF has a Hamiltonian, but non-canonical, classical form. Within this Poisson structure, either the s.p. energy or the s.p. grand potential Ω(ρ) act as a Hamilton function. The Lyapunov stability of both the TDHF and RPA equations around a HF state then follows, since the HF approximation for thermal equilibrium is determined by minimizing Ω(ρ). The RPA matrix in the Liouville space is expressed as the product of the Poisson tensor with the HF stability matrix, interpreted as a metric tensor generated by the entropy. This factorization displays the roles of the energy and entropy terms arising from Ω(ρ) in the RPA dynamics, and it helps to construct the RPA modes. Several extensions are considered. copyright 1989 Academic Press, Inc

12. Lyapunov stability and Poisson structure of the thermal TDHF and RPA equations

International Nuclear Information System (INIS)

Veneroni, M.; Balian, R.

1989-01-01

The thermal TDHF equation is analyzed in the Liouville representation of quantum mechanics, where the matrix elements of the single-particle (s.p.) density ρ behave as classical dynamical variables. By introducing the Lie-Poisson bracket associated with the unitary group of the s.p. Hilbert space, we show that TDHF has a hamiltonian, but non-canonical, classical form. Within this Poisson structure, either the s.p. energy or the s.p. grand potential Ω(ρ) act as a Hamilton function. The Lyapunov stability of both the TDHF and RPA equations around a HF state then follows, since the HF approximation for thermal equilibrium is determined by minimizing Ω(ρ). The RPA matrix in the Liouville space is expressed as the product of the Poisson tensor with the HF stability matrix, interpreted as a metric tensor generated by the entropy. This factorization displays the roles of the energy and entropy terms arising from Ω(ρ) in the RPA dynamics, and it helps to construct the RPA modes. Several extensions are considered

13. Bayesian spatial modeling of HIV mortality via zero-inflated Poisson models.

Science.gov (United States)

Musal, Muzaffer; Aktekin, Tevfik

2013-01-30

In this paper, we investigate the effects of poverty and inequality on the number of HIV-related deaths in 62 New York counties via Bayesian zero-inflated Poisson models that exhibit spatial dependence. We quantify inequality via the Theil index and poverty via the ratios of two Census 2000 variables, the number of people under the poverty line and the number of people for whom poverty status is determined, in each Zip Code Tabulation Area. The purpose of this study was to investigate the effects of inequality and poverty in addition to spatial dependence between neighboring regions on HIV mortality rate, which can lead to improved health resource allocation decisions. In modeling county-specific HIV counts, we propose Bayesian zero-inflated Poisson models whose rates are functions of both covariate and spatial/random effects. To show how the proposed models work, we used three different publicly available data sets: TIGER Shapefiles, Census 2000, and mortality index files. In addition, we introduce parameter estimation issues of Bayesian zero-inflated Poisson models and discuss MCMC method implications. Copyright © 2012 John Wiley & Sons, Ltd.

14. Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates

International Nuclear Information System (INIS)

Laurence, T.; Chromy, B.

2010-01-01

deviates. However, since there is a simple, analytical formula for the appropriate MLE measure for Poisson deviates, it is inexcusable that least squares estimators are used almost exclusively when fitting event counting histograms. There have been ways found to use successive non-linear least squares fitting to obtain similarly unbiased results, but this procedure is justified by simulation, must be re-tested when conditions change significantly, and requires two successive fits. There is a great need for a fitting routine for the MLE estimator for Poisson deviates that has convergence domains and rates comparable to the non-linear least squares L-M fitting. We show in this report that a simple way to achieve that goal is to use the L-M fitting procedure not to minimize the least squares measure, but the MLE for Poisson deviates.

15. Accounting for Zero Inflation of Mussel Parasite Counts Using Discrete Regression Models

Directory of Open Access Journals (Sweden)

Emel Çankaya

2017-06-01

Full Text Available In many ecological applications, the absences of species are inevitable due to either detection faults in samples or uninhabitable conditions for their existence, resulting in high number of zero counts or abundance. Usual practice for modelling such data is regression modelling of log(abundance+1 and it is well know that resulting model is inadequate for prediction purposes. New discrete models accounting for zero abundances, namely zero-inflated regression (ZIP and ZINB, Hurdle-Poisson (HP and Hurdle-Negative Binomial (HNB amongst others are widely preferred to the classical regression models. Due to the fact that mussels are one of the economically most important aquatic products of Turkey, the purpose of this study is therefore to examine the performances of these four models in determination of the significant biotic and abiotic factors on the occurrences of Nematopsis legeri parasite harming the existence of Mediterranean mussels (Mytilus galloprovincialis L.. The data collected from the three coastal regions of Sinop city in Turkey showed more than 50% of parasite counts on the average are zero-valued and model comparisons were based on information criterion. The results showed that the probability of the occurrence of this parasite is here best formulated by ZINB or HNB models and influential factors of models were found to be correspondent with ecological differences of the regions.

16. Multi-parameter full waveform inversion using Poisson

KAUST Repository

Oh, Juwon

2016-07-21

In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.

17. Steady state solution of the Poisson-Nernst-Planck equations

International Nuclear Information System (INIS)

Golovnev, A.; Trimper, S.

2010-01-01

The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.

18. Coefficient Inverse Problem for Poisson's Equation in a Cylinder

NARCIS (Netherlands)

Solov'ev, V. V.

2011-01-01

The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the

19. Poisson equation in the Kohn-Sham Coulomb problem

OpenAIRE

Manby, F. R.; Knowles, Peter James

2001-01-01

We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.

20. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)

DEFF Research Database (Denmark)

Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis

We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...

1. A high order solver for the unbounded Poisson equation

DEFF Research Database (Denmark)

Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

2012-01-01

This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....

2. Particle-wave discrimination in Poisson spot experiments

International Nuclear Information System (INIS)

Reisinger, T; Bracco, G; Holst, B

2011-01-01

Matter-wave interferometry has been used extensively over the last few years to demonstrate the quantum-mechanical wave nature of increasingly larger and more massive particles. We have recently suggested the use of the historical Poisson spot setup to test the diffraction properties of larger objects. In this paper, we present the results of a classical particle van der Waals (vdW) force model for a Poisson spot experimental setup and compare these to Fresnel diffraction calculations with a vdW phase term. We include the effect of disc-edge roughness in both models. Calculations are performed with D 2 and with C 70 using realistic parameters. We find that the sensitivity of the on-axis interference/focus spot to disc-edge roughness is very different in the two cases. We conclude that by measuring the intensity on the optical axis as a function of disc-edge roughness, it can be determined whether the objects behave as de Broglie waves or classical particles. The scaling of the Poisson spot experiment to larger molecular masses is, however, not as favorable as in the case of near-field light-grating-based interferometers. Instead, we discuss the possibility of studying the Casimir-Polder potential using the Poisson spot setup.

3. Monitoring Poisson time series using multi-process models

DEFF Research Database (Denmark)

Engebjerg, Malene Dahl Skov; Lundbye-Christensen, Søren; Kjær, Birgitte B.

aspects of health resource management may also be addressed. In this paper we center on the detection of outbreaks of infectious diseases. This is achieved by a multi-process Poisson state space model taking autocorrelation and overdispersion into account, which has been applied to a data set concerning...

4. Ruin probabilities for a regenerative Poisson gap generated risk process

DEFF Research Database (Denmark)

Asmussen, Søren; Biard, Romain

A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is deﬁned for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F...

5. Optimality of Poisson Processes Intensity Learning with Gaussian Processes

NARCIS (Netherlands)

Kirichenko, A.; van Zanten, H.

2015-01-01

In this paper we provide theoretical support for the so-called "Sigmoidal Gaussian Cox Process" approach to learning the intensity of an inhomogeneous Poisson process on a d-dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational

6. Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes

NARCIS (Netherlands)

Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.

2013-01-01

We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is

7. Nonparametric Bayesian inference for multidimensional compound Poisson processes

NARCIS (Netherlands)

Gugushvili, S.; van der Meulen, F.; Spreij, P.

2015-01-01

Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,

8. Poisson processes on groups and Feynamn path integrals

International Nuclear Information System (INIS)

Combe, P.; Rodriguez, R.; Aix-Marseille-2 Univ., 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.

1980-01-01

We give an expression for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems. (orig.)

9. Some applications of the fractional Poisson probability distribution

International Nuclear Information System (INIS)

2009-01-01

Physical and mathematical applications of the recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states has been introduced and studied. As mathematical applications, we have developed the fractional generalization of Bell polynomials, Bell numbers, and Stirling numbers of the second kind. The appearance of fractional Bell polynomials is natural if one evaluates the diagonal matrix element of the evolution operator in the basis of newly introduced quantum coherent states. Fractional Stirling numbers of the second kind have been introduced and applied to evaluate the skewness and kurtosis of the fractional Poisson probability distribution function. A representation of the Bernoulli numbers in terms of fractional Stirling numbers of the second kind has been found. In the limit case when the fractional Poisson probability distribution becomes the Poisson probability distribution, all of the above listed developments and implementations turn into the well-known results of the quantum optics and the theory of combinatorial numbers.

10. Poisson processes on groups and Feynman path integrals

International Nuclear Information System (INIS)

Combe, P.; Rodriguez, R.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.

1979-09-01

An expression is given for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems

11. Poisson's equation in de Sitter space-time

Energy Technology Data Exchange (ETDEWEB)

Pessa, E [Rome Univ. (Italy). Ist. di Matematica

1980-11-01

Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.

12. Is it safe to use Poisson statistics in nuclear spectrometry?

International Nuclear Information System (INIS)

Pomme, S.; Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.

2000-01-01

The boundary conditions in which Poisson statistics can be applied in nuclear spectrometry are investigated. Improved formulas for the uncertainty of nuclear counting with deadtime and pulse pileup are presented. A comparison is made between the expected statistical uncertainty for loss-free counting, fixed live-time and fixed real-time measurements. (author)

Science.gov (United States)

Michael S. Williams; Hans T. Schreuder; Gerardo H. Terrazas

1998-01-01

The prevailing assumption, that for Poisson sampling the adjusted estimator "Y-hat a" is always substantially more efficient than the unadjusted estimator "Y-hat u" , is shown to be incorrect. Some well known theoretical results are applicable since "Y-hat a" is a ratio-of-means estimator and "Y-hat u" a simple unbiased estimator...

14. Characterization and global analysis of a family of Poisson structures

International Nuclear Information System (INIS)

Hernandez-Bermejo, Benito

2006-01-01

A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given

15. Characterization and global analysis of a family of Poisson structures

Energy Technology Data Exchange (ETDEWEB)

Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es

2006-06-26

A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.

16. A Poisson type formula for Hardy classes on Heisenberg's group

Directory of Open Access Journals (Sweden)

Lopushansky O.V.

2010-06-01

Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.

17. Boundary singularity of Poisson and harmonic Bergman kernels

Czech Academy of Sciences Publication Activity Database

Engliš, Miroslav

2015-01-01

Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170

18. Adaptive maximal poisson-disk sampling on surfaces

KAUST Repository

Yan, Dongming; Wonka, Peter

2012-01-01

In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which

19. Quadratic Poisson brackets compatible with an algebra structure

OpenAIRE

Balinsky, A. A.; Burman, Yu.

1994-01-01

Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.

20. Poisson-generalized gamma empirical Bayes model for disease ...

African Journals Online (AJOL)

In spatial disease mapping, the use of Bayesian models of estimation technique is becoming popular for smoothing relative risks estimates for disease mapping. The most common Bayesian conjugate model for disease mapping is the Poisson-Gamma Model (PG). To explore further the activity of smoothing of relative risk ...

1. Hierarchy of Poisson brackets for elements of a scattering matrix

International Nuclear Information System (INIS)

Konopelchenko, B.G.; Dubrovsky, V.G.

1984-01-01

The infinite family of Poisson brackets [Ssub(i1k1) (lambda 1 ), Ssub(i2k2) (lambda 2 )]sub(n) (n=0, 1, 2, ...) between the elements of a scattering matrix is calculated for the linear matrix spectral problem. (orig.)

2. Nambu-Poisson reformulation of the finite dimensional dynamical systems

International Nuclear Information System (INIS)

Baleanu, D.; Makhaldiani, N.

1998-01-01

A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures

3. Poisson statistics application in modelling of neutron detection

International Nuclear Information System (INIS)

Avdic, S.; Marinkovic, P.

1996-01-01

The main purpose of this study is taking into account statistical analysis of the experimental data which were measured by 3 He neutron spectrometer. The unfolding method based on principle of maximum likelihood incorporates the Poisson approximation of counting statistics applied (aithor)

4. Electroneutral models for dynamic Poisson-Nernst-Planck systems

Science.gov (United States)

Song, Zilong; Cao, Xiulei; Huang, Huaxiong

2018-01-01

The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models. Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results (continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To validate the EN model, numerical computations are carried out for several examples. Our results show that solving the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model, the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the solution due to the fact that it allows for relatively large mesh and time-step sizes.

5. Multicollinearity and Regression Analysis

Science.gov (United States)

Daoud, Jamal I.

2017-12-01

In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

6. Minimax Regression Quantiles

DEFF Research Database (Denmark)

Bache, Stefan Holst

A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

7. riskRegression

DEFF Research Database (Denmark)

Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

2017-01-01

In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....

8. Impacts of floods on dysentery in Xinxiang city, China, during 2004–2010: a time-series Poisson analysis

Science.gov (United States)

Ni, Wei; Ding, Guoyong; Li, Yifei; Li, Hongkai; Jiang, Baofa

2014-01-01

Background Xinxiang, a city in Henan Province, suffered from frequent floods due to persistent and heavy precipitation from 2004 to 2010. In the same period, dysentery was a common public health problem in Xinxiang, with the proportion of reported cases being the third highest among all the notified infectious diseases. Objectives We focused on dysentery disease consequences of different degrees of floods and examined the association between floods and the morbidity of dysentery on the basis of longitudinal data during the study period. Design A time-series Poisson regression model was conducted to examine the relationship between 10 times different degrees of floods and the monthly morbidity of dysentery from 2004 to 2010 in Xinxiang. Relative risks (RRs) of moderate and severe floods on the morbidity of dysentery were calculated in this paper. In addition, we estimated the attributable contributions of moderate and severe floods to the morbidity of dysentery. Results A total of 7591 cases of dysentery were notified in Xinxiang during the study period. The effect of floods on dysentery was shown with a 0-month lag. Regression analysis showed that the risk of moderate and severe floods on the morbidity of dysentery was 1.55 (95% CI: 1.42–1.670) and 1.74 (95% CI: 1.56–1.94), respectively. The attributable risk proportions (ARPs) of moderate and severe floods to the morbidity of dysentery were 35.53 and 42.48%, respectively. Conclusions This study confirms that floods have significantly increased the risk of dysentery in the study area. In addition, severe floods have a higher proportional contribution to the morbidity of dysentery than moderate floods. Public health action should be taken to avoid and control a potential risk of dysentery epidemics after floods. PMID:25098726

9. Impacts of floods on dysentery in Xinxiang city, China, during 2004-2010: a time-series Poisson analysis.

Science.gov (United States)

Ni, Wei; Ding, Guoyong; Li, Yifei; Li, Hongkai; Jiang, Baofa

2014-01-01

Xinxiang, a city in Henan Province, suffered from frequent floods due to persistent and heavy precipitation from 2004 to 2010. In the same period, dysentery was a common public health problem in Xinxiang, with the proportion of reported cases being the third highest among all the notified infectious diseases. We focused on dysentery disease consequences of different degrees of floods and examined the association between floods and the morbidity of dysentery on the basis of longitudinal data during the study period. A time-series Poisson regression model was conducted to examine the relationship between 10 times different degrees of floods and the monthly morbidity of dysentery from 2004 to 2010 in Xinxiang. Relative risks (RRs) of moderate and severe floods on the morbidity of dysentery were calculated in this paper. In addition, we estimated the attributable contributions of moderate and severe floods to the morbidity of dysentery. A total of 7591 cases of dysentery were notified in Xinxiang during the study period. The effect of floods on dysentery was shown with a 0-month lag. Regression analysis showed that the risk of moderate and severe floods on the morbidity of dysentery was 1.55 (95% CI: 1.42-1.670) and 1.74 (95% CI: 1.56-1.94), respectively. The attributable risk proportions (ARPs) of moderate and severe floods to the morbidity of dysentery were 35.53 and 42.48%, respectively. This study confirms that floods have significantly increased the risk of dysentery in the study area. In addition, severe floods have a higher proportional contribution to the morbidity of dysentery than moderate floods. Public health action should be taken to avoid and control a potential risk of dysentery epidemics after floods.

10. The Marginal Distributions of a Crossing Time and Renewal Numbers Related with Two Poisson Processes are as Ph-Distributions

Directory of Open Access Journals (Sweden)

Mir G. H. Talpur

2006-01-01

Full Text Available In this paper we consider, how to find the marginal distributions of crossing time and renewal numbers related with two poisson processes by using probability arguments. The obtained results show that the one-dimension marginal distributions are N+1 order PH-distributions.

11. Poisson structure of dynamical systems with three degrees of freedom

Science.gov (United States)

Gümral, Hasan; Nutku, Yavuz

1993-12-01

It is shown that the Poisson structure of dynamical systems with three degrees of freedom can be defined in terms of an integrable one-form in three dimensions. Advantage is taken of this fact and the theory of foliations is used in discussing the geometrical structure underlying complete and partial integrability. Techniques for finding Poisson structures are presented and applied to various examples such as the Halphen system which has been studied as the two-monopole problem by Atiyah and Hitchin. It is shown that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a nontrivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of three-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the SL(2,R) structure is a quadratic unfolding of an integrable one-form in 3+1 dimensions. It is shown that the existence of a vector field compatible with the flow is a powerful tool in the investigation of Poisson structure and some new techniques for incorporating arbitrary constants into the Poisson one-form are presented herein. This leads to some extensions, analogous to q extensions, of Poisson structure. The Kermack-McKendrick model and some of its generalizations describing the spread of epidemics, as well as the integrable cases of the Lorenz, Lotka-Volterra, May-Leonard, and Maxwell-Bloch systems admit globally integrable bi-Hamiltonian structure.

12. Multiple linear regression analysis

Science.gov (United States)

Edwards, T. R.

1980-01-01

Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

13. Bayesian logistic regression analysis

NARCIS (Netherlands)

Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

2012-01-01

In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

14. Linear Regression Analysis

CERN Document Server

Seber, George A F

2012-01-01

Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

15. Nonlinear Regression with R

CERN Document Server

Ritz, Christian; Parmigiani, Giovanni

2009-01-01

R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

16. Bounded Gaussian process regression

DEFF Research Database (Denmark)

Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

2013-01-01

We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

17. and Multinomial Logistic Regression

African Journals Online (AJOL)

This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).

18. Mechanisms of neuroblastoma regression

Science.gov (United States)

Brodeur, Garrett M.; Bagatell, Rochelle

2014-01-01

Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

19. Screened Poisson Equation for Image Contrast Enhancement

Directory of Open Access Journals (Sweden)

Jean-Michel Morel

2014-03-01

Full Text Available In this work we propose a discussion and detailed implementation of a very simple gradient domain method that tries to eliminate the effect of nonuniform illumination and at the same time preserves the images details. This model, which to the best of our knowledge has not been explored in spite of its simplicity, acts as a high pass filter. We show that with a single contrast parameter (which keeps the same value in most experiments, the model delivers state of the art results. They compare favorably to results obtained with more complex algorithms. Our algorithm is designed for all kinds of images, but with the special specification of making minimal image detail alteration thanks to a first order fidelity term, instead of the usual zero order term. Experiments on non-uniform medical images and on hazy images illustrate significant perception gain.

20. Regression with Sparse Approximations of Data

DEFF Research Database (Denmark)

2012-01-01

We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \$$k\$$-nearest neighbors regression (\$$k\$$-NNR), and more generally, local polynomial kernel regression. Unlike \$$k\$$-NNR, however, SPARROW can adapt the number of regressors to use based...

1. Spontaneous regression of a congenital melanocytic nevus

Directory of Open Access Journals (Sweden)

Amiya Kumar Nath

2011-01-01

Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.

2. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

Science.gov (United States)

Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

2016-10-01

In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

3. Ridge Regression Signal Processing

Science.gov (United States)

Kuhl, Mark R.

1990-01-01

The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

4. Subset selection in regression

CERN Document Server

Miller, Alan

2002-01-01

Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

5. Zero-Inflated Poisson Modeling of Fall Risk Factors in Community-Dwelling Older Adults.

Science.gov (United States)

Jung, Dukyoo; Kang, Younhee; Kim, Mi Young; Ma, Rye-Won; Bhandari, Pratibha

2016-02-01

The aim of this study was to identify risk factors for falls among community-dwelling older adults. The study used a cross-sectional descriptive design. Self-report questionnaires were used to collect data from 658 community-dwelling older adults and were analyzed using logistic and zero-inflated Poisson (ZIP) regression. Perceived health status was a significant factor in the count model, and fall efficacy emerged as a significant predictor in the logistic models. The findings suggest that fall efficacy is important for predicting not only faller and nonfaller status but also fall counts in older adults who may or may not have experienced a previous fall. The fall predictors identified in this study--perceived health status and fall efficacy--indicate the need for fall-prevention programs tailored to address both the physical and psychological issues unique to older adults. © The Author(s) 2014.

Science.gov (United States)

Kernberg, O F

1979-02-01

The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.

7. Classification and regression trees

CERN Document Server

Breiman, Leo; Olshen, Richard A; Stone, Charles J

1984-01-01

The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

8. Logistic regression models

CERN Document Server

Hilbe, Joseph M

2009-01-01

This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

9. Poisson-type inequalities for growth properties of positive superharmonic functions.

Science.gov (United States)

Luan, Kuan; Vieira, John

2017-01-01

In this paper, we present new Poisson-type inequalities for Poisson integrals with continuous data on the boundary. The obtained inequalities are used to obtain growth properties at infinity of positive superharmonic functions in a smooth cone.

10. A one-level FETI method for the drift–diffusion-Poisson system with discontinuities at an interface

KAUST Repository

Baumgartner, Stefan

2013-06-01

A 3d feti method for the drift-diffusion-Poisson system including discontinuities at a 2d interface is developed. The motivation for this work is to provide a parallel numerical algorithm for a system of PDEs that are the basic model equations for the simulation of semiconductor devices such as transistors and sensors. Moreover, discontinuities or jumps in the potential and its normal derivative at a 2d surface are included for the simulation of nanowire sensors based on a homogenized model. Using the feti method, these jump conditions can be included with the usual numerical properties and the original Farhat-Roux feti method is extended to the drift-diffusion-Poisson equations including discontinuities. We show two numerical examples. The first example verifies the correct implementation including the discontinuities on a 2d grid divided into eight subdomains. The second example is 3d and shows the application of the algorithm to the simulation of nanowire sensors with high aspect ratios. The Poisson-Boltzmann equation and the drift-diffusion-Poisson system with jump conditions are solved on a 3d grid with real-world boundary conditions. © 2013 Elsevier Inc..

11. Improved mesh generator for the POISSON Group Codes

International Nuclear Information System (INIS)

Gupta, R.C.

1987-01-01

This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

12. Histogram bin width selection for time-dependent Poisson processes

International Nuclear Information System (INIS)

Koyama, Shinsuke; Shinomoto, Shigeru

2004-01-01

In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method

13. Histogram bin width selection for time-dependent Poisson processes

Energy Technology Data Exchange (ETDEWEB)

Koyama, Shinsuke; Shinomoto, Shigeru [Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

2004-07-23

In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method.

14. Nonlocal surface plasmons by Poisson Green's function matching

International Nuclear Information System (INIS)

Morgenstern Horing, Norman J

2006-01-01

The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field

15. Reference manual for the POISSON/SUPERFISH Group of Codes

Energy Technology Data Exchange (ETDEWEB)

1987-01-01

The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finite number of points on a mesh in the plane.

16. Invariants and labels for Lie-Poisson Systems

International Nuclear Information System (INIS)

Thiffeault, J.L.; Morrison, P.J.

1998-04-01

Reduction is a process that uses symmetry to lower the order of a Hamiltonian system. The new variables in the reduced picture are often not canonical: there are no clear variables representing positions and momenta, and the Poisson bracket obtained is not of the canonical type. Specifically, we give two examples that give rise to brackets of the noncanonical Lie-Poisson form: the rigid body and the two-dimensional ideal fluid. From these simple cases, we then use the semidirect product extension of algebras to describe more complex physical systems. The Casimir invariants in these systems are examined, and some are shown to be linked to the recovery of information about the configuration of the system. We discuss a case in which the extension is not a semidirect product, namely compressible reduced MHD, and find for this case that the Casimir invariants lend partial information about the configuration of the system

17. 2D sigma models and differential Poisson algebras

International Nuclear Information System (INIS)

Arias, Cesar; Boulanger, Nicolas; Sundell, Per; Torres-Gomez, Alexander

2015-01-01

We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to a worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.

18. Critical elements on fitting the Bayesian multivariate Poisson Lognormal model

Science.gov (United States)

Zamzuri, Zamira Hasanah binti

2015-10-01

Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.

19. A physiologically based nonhomogeneous Poisson counter model of visual identification

DEFF Research Database (Denmark)

Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus

2018-01-01

A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are ......A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects...... that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model...

20. Investigation of Random Switching Driven by a Poisson Point Process

DEFF Research Database (Denmark)

Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef

2015-01-01

This paper investigates the switching mechanism of a two-dimensional switched system, when the switching events are generated by a Poisson point process. A model, in the shape of a stochastic process, for such a system is derived and the distribution of the trajectory's position is developed...... together with marginal density functions for the coordinate functions. Furthermore, the joint probability distribution is given explicitly....

1. On terminating Poisson processes in some shock models

Energy Technology Data Exchange (ETDEWEB)

Finkelstein, Maxim, E-mail: FinkelMI@ufs.ac.z [Department of Mathematical Statistics, University of the Free State, Bloemfontein (South Africa); Max Planck Institute for Demographic Research, Rostock (Germany); Marais, Francois, E-mail: fmarais@csc.co [CSC, Cape Town (South Africa)

2010-08-15

A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

2. On terminating Poisson processes in some shock models

International Nuclear Information System (INIS)

Finkelstein, Maxim; Marais, Francois

2010-01-01

A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

3. Density of states, Poisson's formula of summation and Walfisz's formula

International Nuclear Information System (INIS)

Fucho, P.

1980-06-01

Using Poisson's formula for summation, we obtain an expression for density of states of d-dimensional scalar Helmoholtz's equation under various boundary conditions. Likewise, we also obtain formulas of Walfisz's type. It becomes evident that the formulas obtained by Pathria et al. in connection with ideal bosons in a finite system are exactly the same as those obtained by utilizing the formulas for density of states. (author)

4. Generalized Poisson processes in quantum mechanics and field theory

International Nuclear Information System (INIS)

Combe, P.; Rodriguez, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille

1981-01-01

In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models. (orig.)

5. Group-buying inventory policy with demand under Poisson process

Directory of Open Access Journals (Sweden)

Tammarat Kleebmek

2016-02-01

Full Text Available The group-buying is the modern business of selling in the uncertain market. With an objective to minimize costs for sellers arising from ordering and reordering, we present in this paper the group buying inventory model, with the demand governed by a Poisson process and the product sale distributed as Binomial distribution. The inventory level is under continuous review, while the lead time is fixed. A numerical example is illustrated.

6. Poisson noise removal with pyramidal multi-scale transforms

Science.gov (United States)

Woiselle, Arnaud; Starck, Jean-Luc; Fadili, Jalal M.

2013-09-01

In this paper, we introduce a method to stabilize the variance of decimated transforms using one or two variance stabilizing transforms (VST). These VSTs are applied to the 3-D Meyer wavelet pyramidal transform which is the core of the first generation 3D curvelets. This allows us to extend these 3-D curvelets to handle Poisson noise, that we apply to the denoising of a simulated cosmological volume.

7. Experimental dead-time distortions of Poisson processes

International Nuclear Information System (INIS)

Faraci, G.; Pennisi, A.R.; Consiglio Nazionale delle Ricerche, Catania

1983-01-01

In order to check the distortions, introduced by a non-extended dead time on the Poisson statistics, accurate experiments have been made in single channel counting. At a given measuring time, the dependence on the choice of the time origin and on the width of the dead time has been verified. An excellent agreement has been found between the theoretical expressions and the experimental curves. (orig.)

8. Analysis of dental caries using generalized linear and count regression models

Directory of Open Access Journals (Sweden)

Javali M. Phil

2013-11-01

Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

9. A physiologically based nonhomogeneous Poisson counter model of visual identification.

Science.gov (United States)

Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren

2018-04-30

A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

10. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

Science.gov (United States)

Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

2014-10-01

In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

11. Blind beam-hardening correction from Poisson measurements

Science.gov (United States)

Gu, Renliang; Dogandžić, Aleksandar

2016-02-01

We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.

12. A generalized Poisson solver for first-principles device simulations

Energy Technology Data Exchange (ETDEWEB)

Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Nanoscale Simulations, ETH Zürich, 8093 Zürich (Switzerland); Brück, Sascha; Luisier, Mathieu [Integrated Systems Laboratory, ETH Zürich, 8092 Zürich (Switzerland)

2016-01-28

Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.

13. Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes

Science.gov (United States)

2012-06-10

ESTIMATING BIRD/AIRCRAFT COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE...AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES Brady J. Vaira, BS, MS Major, USAF Approved

14. A comparison of Poisson-one-inflated power series distributions for ...

African Journals Online (AJOL)

A class of Poisson-one-inflated power series distributions (the binomial, the Poisson, the negative binomial, the geometric, the log-series and the misrecorded Poisson) are proposed for modeling rural out-migration at the household level. The probability mass functions of the mixture distributions are derived and fitted to the ...

15. Action-angle variables and a KAM theorem for b-Poisson manifolds

OpenAIRE

Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey

2015-01-01

In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.

16. A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture

OpenAIRE

Van Nguyen, Thu

2011-01-01

In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."

17. SEPARATION PHENOMENA LOGISTIC REGRESSION

Directory of Open Access Journals (Sweden)

Ikaro Daniel de Carvalho Barreto

2014-03-01

Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

18. riskRegression

DEFF Research Database (Denmark)

Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

2017-01-01

In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...

DEFF Research Database (Denmark)

Goutte, Cyril; Larsen, Jan

2000-01-01

Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...