WorldWideScience

Sample records for poisson boltzmann surface

  1. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    Science.gov (United States)

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  2. A modified Poisson-Boltzmann surface excess calculation with a field dependent dielectric constant

    International Nuclear Information System (INIS)

    Gordillo, G.J.; Molina, F.V.; Posadas, D.

    1990-01-01

    The Unequal Radius Modified Gouy-Chapman (URMGC) was applied to mixtures of electrolytes. It was considered that the two anions, (1) and (2), have different radius, r 1 and r 2 , being r 2 smaller than r 1 . The dielectric constant was taken as a function of the electric field, using the theoretical Booth equation, or as a linear dependence varying between 6 and 78 when r 2 1 . The results show that the surface excess of anion 2 is much greater than the one predicted by Gouy-Chapman theory when the proportion of 2 increases in the mixture, while both the other anion and the cation show negative deviation. This effect is more evident in mixtures than in the case of single electrolytes, and has a maximum for a composition that depends on the chosen parameters for the model. (Author) [es

  3. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  4. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    Science.gov (United States)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  6. Charge reversal and surface charge amplification in asymmetric valence restricted primitive model planar electric double layers in the modified Poisson-Boltzmann theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2017-12-01

    Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.

  7. Large Time Behavior of the Vlasov-Poisson-Boltzmann System

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.

  8. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  9. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    International Nuclear Information System (INIS)

    Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.

    2016-01-01

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes

  10. Beyond standard Poisson-Boltzmann theory: ion-specific interactions in aqueous solutions

    International Nuclear Information System (INIS)

    Ben-Yaakov, Dan; Andelman, David; Harries, Daniel; Podgornik, Rudi

    2009-01-01

    The Poisson-Boltzmann mean-field description of ionic solutions has been successfully used in predicting charge distributions and interactions between charged macromolecules. While the electrostatic model of charged fluids, on which the Poisson-Boltzmann description rests, and its statistical mechanical consequences have been scrutinized in great detail, much less is understood about its probable shortcomings when dealing with various aspects of real physical, chemical and biological systems. These shortcomings are not only a consequence of the limitations of the mean-field approximation per se, but perhaps are primarily due to the fact that the purely Coulombic model Hamiltonian does not take into account various additional interactions that are not electrostatic in their origin. We explore several possible non-electrostatic contributions to the free energy of ions in confined aqueous solutions and investigate their ramifications and consequences on ionic profiles and interactions between charged surfaces and macromolecules.

  11. Comparison of density functional and modified Poisson-Boltzmann structural properties for a spherical double layer

    Directory of Open Access Journals (Sweden)

    L.B.Bhuiyan

    2005-01-01

    Full Text Available The density functional and modified Poisson-Boltzmann descriptions of a spherical (electric double layer are compared and contrasted vis-a-vis existing Monte Carlo simulation data (for small ion diameter 4.25·10-10 m from the literature for a range of physical parameters such as macroion surface charge, macroion radius, valencies of the small ions, and electrolyte concentration. Overall, the theoretical predictions are seen to be remarkably consistent between themselves, being also in very good agreement with the simulations. Some modified Poisson-Boltzmann results for the zeta potential at small ion diameters of 3 and 2·10-10 m are also reported.

  12. Poisson-Boltzmann thermodynamics of counter-ions confined by curved hard walls

    OpenAIRE

    Samaj, Ladislav; Trizac, E.

    2015-01-01

    We consider a set of identical mobile point-like charges (counter-ions) confined to a domain with curved hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three domain geometries are considered: a pair of parallel plates, the cylinder and the sphere. The particle system in thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively 1D plates and the 2D cylinder have already been solved, t...

  13. An improved FMM Algorithm of the 3d-linearized Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Mehrez issa

    2015-06-01

    Full Text Available This paper presents a new FMM algorithm for the linearized Poisson-Boltzmann equation in three dimensions. The performance of the proposed algorithm is assessed on a example in three dimensions and compared with the direct method. The numerical results show the power of the new method, that allow to achieve the best schemes to reduce the time of the particle interactions, which are based on diagonal form of translation operators for linearized Poisson-Boltzmann equation.

  14. Poisson-Boltzmann thermodynamics of counterions confined by curved hard walls

    Science.gov (United States)

    Šamaj, Ladislav; Trizac, Emmanuel

    2016-01-01

    We consider a set of identical mobile pointlike charges (counterions) confined to a domain with curved hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three domain geometries are considered: a pair of parallel plates, the cylinder, and the sphere. The particle system in thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively one-dimensional plates and the two-dimensional cylinder have already been solved, the three-dimensional sphere problem is not integrable. It is shown that the contact density of particles at the charged surface is determined by a first-order Abel differential equation of the second kind which is a counterpart of Enig's equation in the critical theory of gravitation and combustion or explosion. This equation enables us to construct the exact series solutions of the contact density in the regions of small and large surface charge densities. The formalism provides, within the mean-field Poisson-Boltzmann framework, the complete thermodynamics of counterions inside a charged sphere (salt-free system).

  15. Multilevel Methods for the Poisson-Boltzmann Equation

    Science.gov (United States)

    Holst, Michael Jay

    We consider the numerical solution of the Poisson -Boltzmann equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation arising in biophysics. This problem has several interesting features impacting numerical algorithms, including discontinuous coefficients representing material interfaces, rapid nonlinearities, and three spatial dimensions. Similar equations occur in various applications, including nuclear physics, semiconductor physics, population genetics, astrophysics, and combustion. In this thesis, we study the PBE, discretizations, and develop multilevel-based methods for approximating the solutions of these types of equations. We first outline the physical model and derive the PBE, which describes the electrostatic potential of a large complex biomolecule lying in a solvent. We next study the theoretical properties of the linearized and nonlinear PBE using standard function space methods; since this equation has not been previously studied theoretically, we provide existence and uniqueness proofs in both the linearized and nonlinear cases. We also analyze box-method discretizations of the PBE, establishing several properties of the discrete equations which are produced. In particular, we show that the discrete nonlinear problem is well-posed. We study and develop linear multilevel methods for interface problems, based on algebraic enforcement of Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil calculus, we show that in certain simplified cases the two approaches are equivalent, with different averaging procedures corresponding to different prolongation operators. We also develop methods for nonlinear problems based on a nonlinear multilevel method, and on linear multilevel methods combined with a globally convergent damped-inexact-Newton method. We derive a necessary and sufficient descent condition for the inexact-Newton direction, enabling the development of extremely

  16. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.

    Science.gov (United States)

    Botello-Smith, Wesley M; Luo, Ray

    2015-10-26

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membranes into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multigrid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations.

  17. Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    Energy Technology Data Exchange (ETDEWEB)

    Bu, W.; Vaknin, D.; Travesset, A. (Iowa State)

    2010-07-13

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L{sub 3} Cs{sup +} resonance, we provide spatial counterion distributions (Cs{sup +}) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H{sub 3}O{sup +} at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  18. Monovalent counterion distributions at highly charged water interfaces: proton-transfer and Poisson-Boltzmann theory.

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2005-12-01

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion distributions (Cs+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3O+ at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  19. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver

    Energy Technology Data Exchange (ETDEWEB)

    Felberg, Lisa E. [Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley California 94720; Brookes, David H. [Department of Chemistry, University of California Berkeley, Berkeley California 94720; Yap, Eng-Hui [Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx New York 10461; Jurrus, Elizabeth [Division of Computational and Statistical Analytics, Pacific Northwest National Laboratory, Richland Washington 99352; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City Utah 84112; Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland Washington 99352; Division of Applied Mathematics, Brown University, Providence Rhode Island 02912; Head-Gordon, Teresa [Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley California 94720; Department of Chemistry, University of California Berkeley, Berkeley California 94720; Department of Bioengineering, University of California Berkeley, Berkeley California 94720; Chemical Sciences Division, Lawrence Berkeley National Labs, Berkeley California 94720

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.

  20. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Scrutinizing human MHC polymorphism: Supertype analysis using Poisson-Boltzmann electrostatics and clustering.

    Science.gov (United States)

    Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R

    2017-10-01

    Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    Science.gov (United States)

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  3. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model.

    Science.gov (United States)

    Sharma, P; Mišković, Z L

    2015-10-07

    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential.

  4. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  5. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    Science.gov (United States)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  6. The Poisson equation on Klein surfaces

    Directory of Open Access Journals (Sweden)

    Monica Rosiu

    2016-04-01

    Full Text Available We obtain a formula for the solution of the Poisson equation with Dirichlet boundary condition on a region of a Klein surface. This formula reveals the symmetric character of the solution.

  7. Ca/Na selectivity coefficients from the Poisson-Boltzmann theory

    International Nuclear Information System (INIS)

    Hedstroem, Magnus; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. A possible scenario in the post-glacial evolution of the bentonite buffer used in a KBS-3 repository for spent nuclear fuel is that parts of the buffer may erode due to sol formation caused by the extensive swelling of, in particular, Na-montmorillonite in water of low ionic strength. Presence of calcium in the interlayer has been shown to promote gel formation even in electrolytes with ionic strengths in the vicinity of those in glacial melt waters. In order to estimate the amount of calcium in the clay at the onset of glaciation one needs information of the selectivity coefficient for Ca/Na exchange. Hitherto, most experimental data for evaluating the Gaines-Thomas selectivity coefficient, K GT have been obtained in batch experiments, i.e. at high water-to-solid ratios. The conditions in highly compacted bentonite are, however, radically different in many respects, e.g. the interlayer space is on the nanometre scale and the concentration of counterions is in molar range. Therefore we would like to theoretically investigate the transferability of the selectivity coefficients, determined in batch experiments, to compacted conditions. We solve the Poisson-Boltzmann (PB) equation for two parallel charged surfaces in equilibrium with an external NaCl/CaCl 2 mixed solution. Integration of the ion concentration profiles obtained from the PB equation gives the occupancy of Na + and Ca 2+ in the clay. That information together with the composition of the external electrolyte is all that is needed for the calculation of K GT . With a surface layer-charge density of one charge per 145 A 2 , which is close to the value for Wyoming montmorillonite, we find a variation of the selectivity coefficient from about 4 M in batch to 8 M for compacted montmorillonite with dry density 1700 kg/m 3 . The significance as well as the physics behind these results will be presented in detail. The predictions, based on the PB theory, will

  8. Structure of cylindrical electric double layers: Comparison of density functional and modified Poisson-Boltzmann theories with Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    V.Dorvilien

    2013-01-01

    Full Text Available The structure of cylindrical double layers is studied using a modified Poisson Boltzmann theory and the density functional approach. In the model double layer the electrode is a cylindrical polyion that is infinitely long, impenetrable, and uniformly charged. The polyion is immersed in a sea of equi-sized rigid ions embedded in a dielectric continuum. An in-depth comparison of the theoretically predicted zeta potentials, the mean electrostatic potentials, and the electrode-ion singlet density distributions is made with the corresponding Monte Carlo simulation data. The theories are seen to be consistent in their predictions that include variations in ionic diameters, electrolyte concentrations, and electrode surface charge densities, and are also able to reproduce well some new and existing Monte Carlo results.

  9. Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory.

    Science.gov (United States)

    Chu, Vincent B; Bai, Yu; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2007-11-01

    Poisson-Boltzmann (PB) theory is among the most widely applied electrostatic theories in biological and chemical science. Despite its reasonable success in explaining a wide variety of phenomena, it fails to incorporate two basic physical effects, ion size and ion-ion correlations, into its theoretical treatment. Recent experimental work has shown significant deviations from PB theory in competitive monovalent and divalent ion binding to a DNA duplex. The experimental data for monovalent binding are consistent with a hypothesis that attributes these deviations to counterion size. To model the observed differences, we have generalized an existing size-modified Poisson-Boltzmann (SMPB) theory and developed a new numerical implementation that solves the generalized theory around complex, atomistic representations of biological molecules. The results of our analysis show that good agreement to data at monovalent ion concentrations up to approximately 150 mM can be attained by adjusting the ion-size parameters in the new size-modified theory. SMPB calculations employing calibrated ion-size parameters predict experimental observations for other nucleic acid structures and salt conditions, demonstrating that the theory is predictive. We are, however, unable to model the observed deviations in the divalent competition data with a theory that only accounts for size but neglects ion-ion correlations, highlighting the need for theoretical descriptions that further incorporate ion-ion correlations. The accompanying numerical solver has been released publicly, providing the general scientific community the ability to compute SMPB solutions around a variety of different biological structures with only modest computational resources.

  10. Binding of phosphorus-containing inhibitors to thermolysin studied by the Poisson-Boltzmann method.

    Science.gov (United States)

    Shen, J; Wendoloski, J

    1995-03-01

    Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications at X, Y, and R moieties using finite difference solution to the Poisson-Boltzmann equation. A method has been developed to include the solvation entropy changes due to binding different ligands to a macromolecule. We demonstrate that the electrostatic energy and empirically derived solvation entropy can account for most of the binding energy differences in this series. By analyzing the binding contribution from individual residues, we show that the energy of a hydrogen bond is not confined to the donor and acceptor. In particular, the positive charges on Zn and Arg 203, which are not the acceptors, contribute significantly to the hydrogen bonds between two amides of ZGpLL and the thermolysin.

  11. Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory.

    Science.gov (United States)

    Jadhao, Vikram; Solis, Francisco J; de la Cruz, Monica Olvera

    2013-08-01

    In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically intensive task of solving the PB equation at each step of the simulation can be bypassed using variational methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential. These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.

  12. pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements.

    Science.gov (United States)

    Sakalli, Ilkay; Knapp, Ernst-Walter

    2015-11-05

    Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values. © 2015 Wiley Periodicals, Inc.

  13. Exploring a coarse-grained distributive strategy for finite-difference Poisson-Boltzmann calculations.

    Science.gov (United States)

    Hsieh, Meng-Juei; Luo, Ray

    2011-08-01

    We have implemented and evaluated a coarse-grained distributive method for finite-difference Poisson-Boltzmann (FDPB) calculations of large biomolecular systems. This method is based on the electrostatic focusing principle of decomposing a large fine-grid FDPB calculation into multiple independent FDPB calculations, each of which focuses on only a small and a specific portion (block) of the large fine grid. We first analyzed the impact of the focusing approximation upon the accuracy of the numerical reaction field energies and found that a reasonable relative accuracy of 10(-3) can be achieved when the buffering space is set to be 16 grid points and the block dimension is set to be at least (1/6)(3) of the fine-grid dimension, as in the one-block focusing method. The impact upon efficiency of the use of buffering space to maintain enough accuracy was also studied. It was found that an "optimal" multi-block dimension exists for a given computer hardware setup, and this dimension is more or less independent of the solute geometries. A parallel version of the distributive focusing method was also implemented. Given the proper settings, the distributive method was able to achieve respectable parallel efficiency with tested biomolecular systems on a loosely connected computer cluster.

  14. An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for restricted primitive model electrolytes

    Directory of Open Access Journals (Sweden)

    E.O. Ulloa-Dávila

    2017-12-01

    Full Text Available An approximate analytical solution to the fluctuation potential problem in the modified Poisson-Boltzmann theory of electrolyte solutions in the restricted primitive model is presented. The solution is valid for all inter-ionic distances, including contact values. The fluctuation potential solution is implemented in the theory to describe the structure of the electrolyte in terms of the radial distribution functions, and to calculate some aspects of thermodynamics, viz., configurational reduced energies, and osmotic coefficients. The calculations have been made for symmetric valence 1:1 systems at the physical parameters of ionic diameter 4.25·10^{-10} m, relative permittivity 78.5, absolute temperature 298 K, and molar concentrations 0.1038, 0.425, 1.00, and 1.968. Radial distribution functions are compared with the corresponding results from the symmetric Poisson-Boltzmann, and the conventional and modified Poisson-Boltzmann theories. Comparisons have also been done for the contact values of the radial distributions, reduced configurational energies, and osmotic coefficients as functions of electrolyte concentration. Some Monte Carlo simulation data from the literature are also included in the assessment of the thermodynamic predictions. Results show a very good agreement with the Monte Carlo results and some improvement for osmotic coefficients and radial distribution functions contact values relative to these theories. The reduced energy curve shows excellent agreement with Monte Carlo data for molarities up to 1 mol/dm^3.

  15. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions

    International Nuclear Information System (INIS)

    Denton, A R

    2010-01-01

    Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid

  16. THE EFFECT OF CHEMICAL-STRUCTURE UPON THE THERMODYNAMICS OF MICELLIZATION OF MODEL ALKYLARENESULPHONATES - PREDICTION OF MICELLAR PROPERTIES WITH THE POISSON-BOLTZMANN MODEL

    NARCIS (Netherlands)

    Bijma, K; Engberts, J B F N

    This paper describes how the theory of the ''dressed micelle'', which is based on the nonlinear Poisson-Boltzmann equation, can be used to calculate a number of thermodynamic quantities for micellization of sodium p-alkylbenzenesulphonates. From the Gibbs energy of micellization, the enthalpy of

  17. Adaptive maximal poisson-disk sampling on surfaces

    KAUST Repository

    Yan, Dongming

    2012-01-01

    In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which is the key ingredient of the adaptive maximal Poisson-disk sampling framework. Moreover, we adapt the presented sampling framework for remeshing applications. Several novel and efficient operators are developed for improving the sampling/meshing quality over the state-of-theart. © 2012 ACM.

  18. Efficient maximal Poisson-disk sampling and remeshing on surfaces

    KAUST Repository

    Guo, Jianwei

    2015-02-01

    Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.

  19. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    Science.gov (United States)

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  1. Poisson sigma model with branes and hyperelliptic Riemann surfaces

    International Nuclear Information System (INIS)

    Ferrario, Andrea

    2008-01-01

    We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P n with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions

  2. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.

  3. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  4. Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems

    International Nuclear Information System (INIS)

    Roy, Fabrice

    2004-01-01

    We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr

  5. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  6. Aplicação da equação de Poisson-Boltzmann ao cálculo de propriedades dependentes do pH em proteínas Aplications of the Poisson-Boltzmann equation to the calculation of pH-dependent properties in proteins

    Directory of Open Access Journals (Sweden)

    Thereza A. Soares

    2004-08-01

    Full Text Available The ability of biomolecules to catalyze chemical reactions is due chiefly to their sensitivity to variations of the pH in the surrounding environment. The reason for this is that they are made up of chemical groups whose ionization states are modulated by pH changes that are of the order of 0.4 units. The determination of the protonation states of such chemical groups as a function of conformation of the biomolecule and the pH of the environment can be useful in the elucidation of important biological processes from enzymatic catalysis to protein folding and molecular recognition. In the past 15 years, the theory of Poisson-Boltzmann has been successfully used to estimate the pKa of ionizable sites in proteins yielding results, which may differ by 0.1 unit from the experimental values. In this study, we review the theory of Poisson-Boltzmann under the perspective of its application to the calculation of pKa in proteins.

  7. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh...

  8. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    International Nuclear Information System (INIS)

    Yan-Yan, Chen; Hua-Bing, Li; Hou-Hui, Yi

    2008-01-01

    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows

  9. Implicitly charge-conserving solver for Boltzmann electrons

    International Nuclear Information System (INIS)

    Carlsson, Johan; Manente, Marco; Pavarin, Daniele

    2009-01-01

    An implicitly charge-conserving algorithm has been developed for solving the nonlinear Poisson equation that results from the use of Boltzmann electrons. The new algorithm solves for the Boltzmann density parameter and, in the case of a Neumann boundary condition, the surface-charge density, simultaneously as it solves for the discretized electrostatic potential. Numerical stability is demonstrated for time steps exceeding the electron plasma period and spatial resolutions much coarser than the Debye length.

  10. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Science.gov (United States)

    Pravinraj, T.; Patrikar, Rajendra

    2017-07-01

    Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.

  11. Effective Wettability of Heterogenous Fracture Surfaces Using the Lattice-Boltzmann Method

    Science.gov (United States)

    E Santos, J.; Prodanovic, M.; Landry, C. J.

    2017-12-01

    Fracture walls in the subsurface are often structured by minerals of different composition (potentially further altered in contact with fluids during hydrocarbon extraction or CO2 sequestration), this yields in a heterogeneous wettability of the surface in contact with the fluids. The focus of our work is to study how surfaces presenting different mineralogy and roughness affect multiphase flow in fractures. Using the Shan-Chen model of the lattice-Boltzmann method (LBM) we define fluid interaction and surface attraction parameters to simulate a system of a wetting and a non-wetting fluid. In this work, we use synthetically created fractures presenting different arrangements of wetting and non-wetting patches, and with or without roughness; representative of different mineralogy, similar workflow can be applied to fractures extracted from X-ray microtomography images of fractures porous media. The results from the LBM simulations provide an insight on how the distribution of mineralogy and surface roughness are related with the observed macroscopic contact angle. We present a comparison between the published analytical models, and our results based on surface areas, spatial distribution and local fracture aperture. The understanding of the variables that affect the contact angle is useful for the comprehension of multiphase processes in naturally fractured reservoirs like primary oil production, enhanced oil recovery and CO2 sequestration. The macroscopic contact angle analytical equations for heterogeneous surfaces with variable roughness are no longer valid in highly heterogeneous systems; we quantify the difference thus offering an alternative to analytical models.

  12. Lattice Boltzmann model for free-surface flow and its application to filling process in casting

    CERN Document Server

    Ginzburg, I

    2003-01-01

    A generalized lattice Boltzmann model to simulate free-surface is constructed in both two and three dimensions. The proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp interfacial front, the method includes an anti-diffusion algorithm. The unknown distribution functions at the interfacial region are constructed according to the first-order Chapman-Enskog analysis. The interfacial boundary conditions are satisfied exactly by the coefficients in the Chapman-Enskog expansion. The distribution functions are naturally expressed in the local interfacial coordinates. The macroscopic quantities at the interface are extracted from the least-square solutions of a locally linearized system obtained from the known distribution functions. The proposed method does not require any geometric front construction and is robust for any interfacial ...

  13. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces

    Science.gov (United States)

    Li, Qing; Kang, Q. J.; Francois, M. M.; Hu, A. J.

    In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.

  14. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  15. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  16. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  17. A Lattice Boltzmann Approach to Multi-Phase Surface Reactions with Heat Effects

    NARCIS (Netherlands)

    Kamali, M.R.

    2013-01-01

    The aim of the present research was to explore the promises and shift the limits of the numerical framework of lattice Boltzmann (LB) for studying the physics behind multi-component two-phase heterogeneous non-isothermal reactive flows under industrial conditions. An example of such an industrially

  18. A modified SOR method for the Poisson equation in unsteady free-surface flow calculations.

    NARCIS (Netherlands)

    Botta, E.F.F.; Ellenbroek, Marcellinus Hermannus Maria

    1985-01-01

    Convergence difficulties that sometimes occur if the successive overrelaxation (SOR) method is applied to the Poisson equation on a region with irregular free boundaries are analyzed. It is shown that these difficulties are related to the treatment of the free boundaries and caused by the appearance

  19. A pore-scale approach to colloid-surface interaction in liquid using lattice Boltzmann models.

    Science.gov (United States)

    Larsen, J. D.; Schaap, M. G.

    2016-12-01

    Knowledge of colloid transport and collection efficiency is important for understanding the transport of some contaminants of emerging concern (CEC) and for developing environmental remediation systems such as geologic filters. The interaction forces between colloids and soil materials are central to colloid transport and retention or immobilization. In this study a physical modeling approach to represent colloidal transport through porous media has been developed, using the lattice Boltzmann methodology. Lattice Boltzmann models have the uncanny ability to represent pore scale fluid flow through complex structures such as geological material. A cellular approach to computing colloid forces is applied for computational efficiency, and colloids are tracked continuously through the model. Grid refinement effects are quantified to balance computational efficiency with discretization effects. Representation of physical forces including DLVO create a natural fluid solid boundary condition for colloid transport. Collector efficiencies of geologic materials and colloid distribution curves can be produced. The present work focuses on simple porous media with a single wetting fluid phase, but the approach can be extended to heterogeneous geologic materials and multiphase systems.

  20. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    Science.gov (United States)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  1. Simulation of dissolution in porous media in three dimensions with lattice Boltzmann, finite-volume, and surface-rescaling methods

    Science.gov (United States)

    Gray, F.; Cen, J.; Boek, E. S.

    2016-10-01

    We present a pore-scale dissolution model for the simulation of reactive transport in complex porous media such as those encountered in carbon-storage injection processes. We couple a lattice Boltzmann model for flow calculation with a finite-volume method for solving chemical transport equations, and allow the computational grid to change as mineral surfaces are dissolved according to first-order reaction kinetics. We appraise this scheme for use with high Péclet number flows in three-dimensional geometries and show how the popular first-order convection scheme is affected by severe numerical diffusion when grid Péclet numbers exceed unity, and confirm that this can be overcome relatively easily by using a second-order method in conjunction with a flux-limiter function. We then propose a surface rescaling method which uses parabolic elements to counteract errors in surface area exposed by the Cartesian grid and avoid the use of more complex embedded surface methods when surface reaction kinetics are incorporated. Finally, we compute dissolution in an image of a real porous limestone rock sample injected with HCl for different Péclet numbers and obtain dissolution patterns in concordance with theory and experimental observation. A low injection flow rate was shown to lead to erosion of the pore space concentrated at the face of the rock, whereas a high flow rate leads to wormhole formation.

  2. A modified Lattice Boltzmann model for pore-scale simulation of desorption process at surface water-groundwater interface

    Science.gov (United States)

    Zhang, Pei; Galindo Torres, Sergio; Tang, Hongwu; Scheuermann, Alexander; Jin, Guangqiu; Li, Ling

    2017-04-01

    A pore-scale numerical model is introduced to simulate the desorption process at surface water-groundwater interface. The Navier-Stokes equations for fluid and Advection-Diffusion equation for scalar transport are solved by Lattice Boltzmann Method (LBM). In previous studies, the macroscopic desorption kinetic equations are usually applied as a boundary condition. However, it may be problematic for pore-scale simulation since most desorption kinetic equations are fitted from macroscopic global variables. We avoid this problem by discretizing the particle surface into a large number of adsorption sites to mimic the microscopic desorption process. The state of each adsorption site follows the Langmuir's theory. Furthermore, benefiting from the mesoscopic inherent of the LBM, the total number of adsorbate which really contacted with the particle surface can be calculated rather than the local concentration. The predicted desorption Isotherm and concentration profile match well with theoretical solutions and experimental data. By using presented model, we find that the desorption process at surface water-groundwater interface shows a complex response to surface water flow.

  3. Modeling and analysis of surface potential of single gate fully depleted SOI MOSFET using 2D-Poisson's equation

    Science.gov (United States)

    Mani, Prashant; Tyagi, Chandra Shekhar; Srivastav, Nishant

    2016-03-01

    In this paper the analytical solution of the 2D Poisson's equation for single gate Fully Depleted SOI (FDSOI) MOSFET's is derived by using a Green's function solution technique. The surface potential is calculated and the threshold voltage of the device is minimized for the low power consumption. Due to minimization of threshold voltage the short channel effect of device is suppressed and after observation we obtain the device is kink free. The structure and characteristics of SingleGate FDSOI MOSFET were matched by using MathCAD and silvaco respectively.

  4. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag

    This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...... series is considered. Under geometric ergodicity the maximum likelihood estimators of the parameters are shown to be asymptotically Gaussian in the linear model. In addition we provide a consistent estimator of the asymptotic covariance, which is used in the simulations and the analysis of some...

  5. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag

    2009-01-01

    In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies to the condi......In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... ergodicity proceeds via Markov theory and irreducibility. Finding transparent conditions for proving ergodicity turns out to be a delicate problem in the original model formulation. This problem is circumvented by allowing a perturbation of the model. We show that as the perturbations can be chosen...

  6. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag

    This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... proceeds via Markov theory and irreducibility. Finding transparent conditions for proving ergodicity turns out to be a delicate problem in the original model formulation. This problem is circumvented by allowing a perturbation of the model. We show that as the perturbations can be chosen to be arbitrarily...

  7. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  8. Characterization of the Subsurface Using Vp, Vs, Vp/Vs, and Poisson's Ratio from Body and Surface Waves

    Science.gov (United States)

    Catchings, R.

    2017-12-01

    P- and S-wave propagation differ in varying materials in the Earth's crust. As a result, combined measurements of P- and S-wave data can be used to infer properties of the shallow crust, including bulk composition, fluid saturation, faulting and fracturing, seismic velocities, reflectivity, and general structures. Ratios of P- to S-wave velocities and Poisson's ratio, which can be derived from the P- and S-wave data, can be particularly diagnostic of subsurface materials and their physical state. In field studies, S-wave data can be obtained directly with S-wave sources or from surface waves associated with P-wave sources. P- and S-wave data can be processed using reflection, refraction, and surface-wave-analysis methods. With the combined data, unconsolidated sediments, consolidated sediments, and rocks can be differentiated on the basis of seismic velocities and their ratios, as can saturated versus unsaturated sediments. We summarize studies where we have used combined P- and S-wave measurements to reliably map the top of ground water, prospect for minerals, locate subsurface faults, locate basement interfaces, determine basin shapes, and measure shear-wave velocities (with calculated Vs30), and other features of the crust that are important for hazards, engineering, and exploration purposes. When compared directly, we find that body waves provide more accurate measures than surface waves.

  9. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer.

    Science.gov (United States)

    Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian

    2007-01-01

    A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.

  10. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids.

    Science.gov (United States)

    Ginzburg, Irina; Steiner, Konrad

    2002-03-15

    The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Boltzmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic fluids with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered to be a vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruction from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis.

  11. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  12. Exploring a charge-central strategy in the solution of Poisson's equation for biomolecular applications.

    Science.gov (United States)

    Liu, Xingping; Wang, Changhao; Wang, Jun; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-07

    Continuum solvent treatments based on the Poisson-Boltzmann equation have been widely accepted for energetic analysis of biomolecular systems. In these approaches, the molecular solute is treated as a low dielectric region and the solvent is treated as a high dielectric continuum. The existence of a sharp dielectric jump at the solute-solvent interface poses a challenge to model the solvation energetics accurately with such a simple mathematical model. In this study, we explored and evaluated a strategy based on the "induced surface charge" to eliminate the dielectric jump within the finite-difference discretization scheme. In addition to the use of the induced surface charges in solving the equation, the second-order accurate immersed interface method is also incorporated to discretize the equation. The resultant linear system is solved with the GMRES algorithm to explicitly impose the flux conservation condition across the solvent-solute interface. The new strategy was evaluated on both analytical and realistic biomolecular systems. The numerical tests demonstrate the feasibility of utilizing induced surface charge in the finite-difference solution of the Poisson-Boltzmann equation. The analysis data further show that the strategy is consistent with theory and the classical finite-difference method on the tested systems. Limitations of the current implementations and further improvements are also analyzed and discussed to fully bring out its potential of achieving higher numerical accuracy.

  13. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  14. Poisson integrators for Lie-Poisson structures on R3

    International Nuclear Information System (INIS)

    Song Lina

    2011-01-01

    This paper is concerned with the study of Poisson integrators. We are interested in Lie-Poisson systems on R 3 . First, we focus on Poisson integrators for constant Poisson systems and the transformations used for transforming Lie-Poisson structures to constant Poisson structures. Then, we construct local Poisson integrators for Lie-Poisson systems on R 3 . Finally, we present the results of numerical experiments for two Lie-Poisson systems and compare our Poisson integrators with other known methods.

  15. Dobly stochastic Poisson process in EMARG coupled with detection of β particles and internal conversion electrons emitted by a surface

    International Nuclear Information System (INIS)

    Rusov, V.D.; Zelentsova, T.N.; Grechan, V.I.; Semenov, M.Yu.; Kravchenko, S.N.

    1985-01-01

    The aim of this paper is the theoretical simulation of the probability two-cascade process of β-particle and interral conversion electron detection by photoemulsion, and its experimental testing using plane 3 H, 69 Ni, 14 C, β-sources and thin plane radioactive isotope 125 I conversion electron source. Indication counting-rate statistics during β-particle and internal conversion electron detection by nuclear photoemulsion is determined. For the first time it is experimentally shown that the photographic β-particle and internal conversion electron detection obeys the A-type Neyman distribution and not the Poisson one, as was believed earlier

  16. The Poisson aggregation process

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2016-01-01

    In this paper we introduce and analyze the Poisson Aggregation Process (PAP): a stochastic model in which a random collection of random balls is stacked over a general metric space. The scattering of the balls’ centers follows a general Poisson process over the metric space, and the balls’ radii are independent and identically distributed random variables governed by a general distribution. For each point of the metric space, the PAP counts the number of balls that are stacked over it. The PAP model is a highly versatile spatial counterpart of the temporal M/G/∞ model in queueing theory. The surface of the moon, scarred by circular meteor-impact craters, exemplifies the PAP model in two dimensions: the PAP counts the number of meteor-impacts that any given moon-surface point sustained. A comprehensive analysis of the PAP is presented, and the closed-form results established include: general statistics, stationary statistics, short-range and long-range dependencies, a Central Limit Theorem, an Extreme Limit Theorem, and fractality.

  17. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  18. Limitations of Boltzmann's principle

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    1995-01-01

    The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2

  19. Gli atomi di Boltzmann

    CERN Document Server

    Lindley, David

    2002-01-01

    Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.

  20. Homogeneous Poisson structures

    International Nuclear Information System (INIS)

    Shafei Deh Abad, A.; Malek, F.

    1993-09-01

    We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs

  1. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    Science.gov (United States)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  2. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    Science.gov (United States)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  3. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...

  4. Entropy a la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034. Author Affiliations.

  5. Entropy à la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034 ...

  6. A one-level FETI method for the drift–diffusion-Poisson system with discontinuities at an interface

    KAUST Repository

    Baumgartner, Stefan

    2013-06-01

    A 3d feti method for the drift-diffusion-Poisson system including discontinuities at a 2d interface is developed. The motivation for this work is to provide a parallel numerical algorithm for a system of PDEs that are the basic model equations for the simulation of semiconductor devices such as transistors and sensors. Moreover, discontinuities or jumps in the potential and its normal derivative at a 2d surface are included for the simulation of nanowire sensors based on a homogenized model. Using the feti method, these jump conditions can be included with the usual numerical properties and the original Farhat-Roux feti method is extended to the drift-diffusion-Poisson equations including discontinuities. We show two numerical examples. The first example verifies the correct implementation including the discontinuities on a 2d grid divided into eight subdomains. The second example is 3d and shows the application of the algorithm to the simulation of nanowire sensors with high aspect ratios. The Poisson-Boltzmann equation and the drift-diffusion-Poisson system with jump conditions are solved on a 3d grid with real-world boundary conditions. © 2013 Elsevier Inc..

  7. Modifications to POISSON

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed

  8. Scaling the Poisson Distribution

    Science.gov (United States)

    Farnsworth, David L.

    2014-01-01

    We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.

  9. On Poisson Nonlinear Transformations

    Directory of Open Access Journals (Sweden)

    Nasir Ganikhodjaev

    2014-01-01

    Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

  10. Extended Poisson Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Anum Fatima

    2015-09-01

    Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.

  11. Constructions and classifications of projective Poisson varieties

    Science.gov (United States)

    Pym, Brent

    2018-03-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  12. Poisson branching point processes

    International Nuclear Information System (INIS)

    Matsuo, K.; Teich, M.C.; Saleh, B.E.A.

    1984-01-01

    We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

  13. The Boltzmann project

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M. D.; de Podesta, M.; Underwood, R.; Sutton, G.; Machin, G.; Gavioso, R. M.; Madonna Ripa, D.; Steur, P. P. M.; Qu, J.; Feng, X. J.; Zhang, J.; Moldover, M. R.; Benz, S. P.; White, D. R.; Gianfrani, L.; Castrillo, A.; Moretti, L.; Darquié, B.; Moufarej, E.; Daussy, C.; Briaudeau, S.; Kozlova, O.; Risegari, L.; Segovia, J. J.; Martín, M. C.; del Campo, D.

    2018-04-01

    The International Committee for Weights and Measures (CIPM), at its meeting in October 2017, followed the recommendation of the Consultative Committee for Units (CCU) on the redefinition of the kilogram, ampere, kelvin and mole. For the redefinition of the kelvin, the Boltzmann constant will be fixed with the numerical value 1.380 649  ×  10-23 J K-1. The relative standard uncertainty to be transferred to the thermodynamic temperature value of the triple point of water will be 3.7  ×  10-7, corresponding to an uncertainty in temperature of 0.10 mK, sufficiently low for all practical purposes. With the redefinition of the kelvin, the broad research activities of the temperature community on the determination of the Boltzmann constant have been very successfully completed. In the following, a review of the determinations of the Boltzmann constant k, important for the new definition of the kelvin and performed in the last decade, is given.

  14. Interaction between heterogeneously charged surfaces: surface patches and charge modulation.

    Science.gov (United States)

    Ben-Yaakov, Dan; Andelman, David; Diamant, Haim

    2013-02-01

    When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is crucial in determining the intersurface interaction. In the present work we study the interaction between two charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with respect to each other. For quenched random charge distributions we find that due to the presence of the ionic solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial in the case of large charged domains.

  15. The fundamental and universal nature of Boltzmann`s constant

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C. [Univ. of Texas, Austin, TX (United States); Solem, J.C. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1996-07-01

    The nature of Boltzmann`s constant is very unclear in the physics literature. In the first part of this paper, on general considerations, the authors examine this situation in detail and demonstrate the conclusion that Boltzmann`s constant is indeed both fundamental and universal. As a consequence of their development they find there is an important implication of this work for the problem of the entropy of information. In the second part they discuss, Szilard`s famous construction showing in detail how his result is incompatible with the demonstrations in both parts 1 and 2.

  16. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  17. Particle methods for Boltzmann equation

    International Nuclear Information System (INIS)

    Hermeline, F.

    1985-05-01

    This work is aimed at showing how to discretize an equation such as Boltzmann equation in its most general form, by particle methods. Then method is applied to some equations of plasma physics which appear as peculiar cases of Boltzmann equation, such as Vlasov equation, Bhatnager-Gross-Krook equation, Fokker-Planck equation and neutron transport equation [fr

  18. Paretian Poisson Processes

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2008-05-01

    Many random populations can be modeled as a countable set of points scattered randomly on the positive half-line. The points may represent magnitudes of earthquakes and tornados, masses of stars, market values of public companies, etc. In this article we explore a specific class of random such populations we coin ` Paretian Poisson processes'. This class is elemental in statistical physics—connecting together, in a deep and fundamental way, diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to random perturbations.

  19. Fractional Poisson Fields and Martingales

    Science.gov (United States)

    Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely

    2018-01-01

    We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

  20. Fractional Poisson Fields and Martingales

    Science.gov (United States)

    Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely

    2018-02-01

    We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

  1. Ludwig Boltzmann, mechanics and vitalism

    International Nuclear Information System (INIS)

    Broda, E.

    1990-01-01

    During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought

  2. Poisson hierarchy of discrete strings

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  3. Poisson hierarchy of discrete strings

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  4. A new method for extracting near-surface mass-density anomalies from land-based gravity data, based on a special case of Poisson's PDE at the Earth's surface: A case study of salt diapirs in the south of Iran

    Science.gov (United States)

    AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.

    2015-12-01

    The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.

  5. Analysis on Poisson and Gamma spaces

    OpenAIRE

    Kondratiev, Yuri; Silva, Jose Luis; Streit, Ludwig; Us, Georgi

    1999-01-01

    We study the spaces of Poisson, compound Poisson and Gamma noises as special cases of a general approach to non-Gaussian white noise calculus, see \\cite{KSS96}. We use a known unitary isomorphism between Poisson and compound Poisson spaces in order to transport analytic structures from Poisson space to compound Poisson space. Finally we study a Fock type structure of chaos decomposition on Gamma space.

  6. Coordination of Conditional Poisson Samples

    Directory of Open Access Journals (Sweden)

    Grafström Anton

    2015-12-01

    Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.

  7. Lattice-Boltzmann Simulation of Tablet Disintegration

    Science.gov (United States)

    Jiang, Jiaolong; Sun, Ning; Gersappe, Dilip

    Using the lattice-Boltzmann method, we developed a 2D model to study the tablet disintegration involving the swelling and wicking mechanisms. The surface area and disintegration profile of each component were obtained by tracking the tablet structure in the simulation. Compared to pure wicking, the total surface area is larger for swelling and wicking, which indicates that the swelling force breaks the neighboring bonds. The disintegration profiles show that the tablet disintegrates faster than pure wicking, and there are more wetted active pharmaceutical ingredient particles distributed on smaller clusters. Our results indicate how the porosity would affect the disintegration process by changing the wetting area of the tablet as well as by changing the swelling force propagation.

  8. Lattices for the lattice Boltzmann method.

    Science.gov (United States)

    Chikatamarla, Shyam S; Karlin, Iliya V

    2009-04-01

    A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev. Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann models as an approximation to the Boltzmann equation is presented. New lattices are found in all three dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation). The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy of many new lattices are demonstrated via simulations in all three dimensions.

  9. Saltwater Intrusion Simulation in Heterogeneous Aquifer Using Lattice Boltzmann Method

    Science.gov (United States)

    Servan-Camas, B.; Tsai, F. T.

    2006-12-01

    This study develops a saltwater intrusion simulation model using a lattice Boltzmann method (LBM) in a two- dimensional coastal confined aquifer. The saltwater intrusion phenomenon is described by density-varied groundwater flow and mass transport equations, where a freshwater-saltwater mixing zone is considered. Although primarily developed using the mesoscopic approach to solve macroscopic fluid dynamic problems (e.g. Navier-Stoke equation), LBM is able to be adopted to solve physical-based diffusion-type governing equations as for the groundwater flow and mass transport equations. The challenge of using LBM in saltwater intrusion modeling is to recover hydraulic conductivity heterogeneity. In this study, the Darcy equation and the advection-dispersion equation (ADE) are recovered in the lattice Boltzmann modeling. Specifically, the hydraulic conductivity heterogeneity is represented by the speed of sound in LBM. Under the consideration on the steady-state groundwater flow due to low storativity, in each time step the flow problem is modified to be a Poisson equation and solved by LBM. Nevertheless, the groundwater flow is still a time-marching problem with spatial-temporal variation in salinity concentration as well as density. The Henry problem is used to compare the LBM results against the Henry analytic solution and SUTRA result. Also, we show that LBM is capable of handling the Dirichlet, Neumann, and Cauchy concentration boundary conditions at the sea side. Finally, we compare the saltwater intrusion results using LBM in the Henry problem when heterogeneous hydraulic conductivity is considered.

  10. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  11. Boltzmann factor and Hawking radiation

    International Nuclear Information System (INIS)

    Ryskin, Gregory

    2014-01-01

    Hawking radiation has thermal spectrum corresponding to the temperature T H =(8πM) −1 , where M is the mass (energy) of the black hole. Corrections to the Hawking radiation spectrum were discovered by Kraus and Wilczek (1995) and Parikh and Wilczek (2000). Here I show that these corrections follow directly from the basic principles of thermodynamics and statistical mechanics. In essence, it is the Boltzmann factor that ought to be corrected; corrections to the Hawking (or any other) radiation spectrum then follow necessarily

  12. Return of the Boltzmann brains

    Science.gov (United States)

    Page, Don N.

    2008-09-01

    Linde in J. Cosmol. Astropart. Phys.1475-7516 01 (2007) 02210.1088/1475-7516/2007/01/022 shows that some (though not all) versions of the global (volume-weighted) description avoid the “Boltzmann brain” problem raised by Page [Phys. Rev. D 78, 063535 (2008)] if the universe does not have a decay time less than 20 Gyr. Here I give an apparently natural version of the volume-weighted description in which the problem persists, highlighting the ambiguity of taking the ratios of infinite volumes that appear to arise from eternal inflation.

  13. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; Boghosian, B.; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  14. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  15. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  16. Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems

    Science.gov (United States)

    Sun, Ning

    Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface

  17. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  18. Binding of phosphorus-containing inhibitors to thermolysin studied by the Poisson-Boltzmann method.

    OpenAIRE

    Shen, J.; Wendoloski, J.

    1995-01-01

    Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications ...

  19. Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson-Boltzmann equation

    NARCIS (Netherlands)

    Duval, J.F.L.

    2005-01-01

    In a previous study (Langmuir 2004, 20, 10324), the electrokinetic properties of diffuse soft layers were theoretically investigated within the framework of the Debye-H¿ckel approximation valid in the limit of sufficiently low values for the Donnan potential. In the current paper, the

  20. Independent production and Poisson distribution

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1994-01-01

    The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained. 11 refs

  1. Ludwig Boltzmann - The Man and His Work

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    It is argued that Ludwig Boltzmann was, along with Newton and Maxwell, one of the three greatest theoretical physicists of classical times. It is less generally known that he was also a powerful realist-materialist philosopher and a keen opponent of Ernst Mach's positivism and of the philosophical idealism of Berkeley, Hegel and Schopenhauer. Boltzmann was also opposed to Kant. Moreover, he had a lively interest in biology and especially in Darwinian evolution, and he should be taken as one of the founders of biophysics. Boltzmann discussed the origin of life and of the mind. Finally, he also was a most vigorous, colourful and attractive person. (author)

  2. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  3. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  4. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  5. Essentially Entropic Lattice Boltzmann Model

    Science.gov (United States)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  6. Parasites et parasitoses des poissons

    OpenAIRE

    De Kinkelin, Pierre; Morand, Marc; Hedrick, Ronald; Michel, Christian

    2014-01-01

    Cet ouvrage, richement illustré, offre un panorama représentatif des agents parasitaires rencontrés chez les poissons. S'appuyant sur les nouvelles conceptions de la classification phylogénétique, il met l'accent sur les propriétés biologiques, l'épidémiologie et les conséquences cliniques des groupes d'organismes en cause, à la lumière des avancées cognitives permises par les nouveaux outils de la biologie. Il est destiné à un large public, allant du monde de l'aquaculture à ceux de la santé...

  7. Dualizing the Poisson summation formula.

    Science.gov (United States)

    Duffin, R J; Weinberger, H F

    1991-01-01

    If f(x) and g(x) are a Fourier cosine transform pair, then the Poisson summation formula can be written as 2sumfrominfinityn = 1g(n) + g(0) = 2sumfrominfinityn = 1f(n) + f(0). The concepts of linear transformation theory lead to the following dual of this classical relation. Let phi(x) and gamma(x) = phi(1/x)/x have absolutely convergent integrals over the positive real line. Let F(x) = sumfrominfinityn = 1phi(n/x)/x - integralinfinity0phi(t)dt and G(x) = sumfrominfinityn = 1gamma (n/x)/x - integralinfinity0 gamma(t)dt. Then F(x) and G(x) are a Fourier cosine transform pair. We term F(x) the "discrepancy" of phi because it is the error in estimating the integral phi of by its Riemann sum with the constant mesh spacing 1/x. PMID:11607208

  8. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  9. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  10. Analysis of a bubble coalescence in the multiphase lattice Boltzmann method

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Lee, Chung Chan; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. To study the effect of the mobility coefficient Γ and the width of the interface layer, two stationary bubbles without a collision are considered. The gap of the two bubbles is taken as 4, while the width of the interface (w) and the mobility coefficient Γ are varied. In the present work, the lattice Boltzmann model for multiphase flows proposed by Zheng et al. is used for simulating two stationary bubbles without a collision. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made smaller. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  11. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  12. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  13. The Acoustic Limit for the Boltzmann Equation

    Science.gov (United States)

    Bardos, Claude; Golse, François; Levermore, C. David

    The acoustic equations are the linearization of the compressible Euler equations about a spatially homogeneous fluid state. We first derive them directly from the Boltzmann equation as the formal limit of moment equations for an appropriately scaled family of Boltzmann solutions. We then establish this limit for the Boltzmann equation considered over a periodic spatial domain for bounded collision kernels. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations that converge entropically (and hence strongly in L1) to a unique limit governed by a solution of the acoustic equations for all time, provided that its initial fluctuations converge entropically to an appropriate limit associated to any given L2 initial data of the acoustic equations. The associated local conservation laws are recovered in the limit.

  14. Poisson traces, D-modules, and symplectic resolutions

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-03-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  15. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  16. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  17. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  18. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  19. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  20. Quantum Heat Engine and Negative Boltzmann Temperature

    Science.gov (United States)

    Xi, Jing-Yi; Quan, Hai-Tao

    2017-09-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. Support from the National Science Foundation of China under Grants Nos. 11375012, 11534002, and The Recruitment Program of Global Youth Experts of China

  1. Quantum Heat Engine and Negative Boltzmann Temperature

    International Nuclear Information System (INIS)

    Xi Jing-Yi; Quan Hai-Tao

    2017-01-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. (paper)

  2. Poisson point processes imaging, tracking, and sensing

    CERN Document Server

    Streit, Roy L

    2010-01-01

    This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.

  3. Lattice Boltzmann modeling an introduction for geoscientists and engineers

    CERN Document Server

    Sukop, Michael C

    2005-01-01

    Lattice Boltzmann models have a remarkable ability to simulate single- and multi-phase fluids and transport processes within them. A rich variety of behaviors, including higher Reynolds numbers flows, phase separation, evaporation, condensation, cavitation, buoyancy, and interactions with surfaces can readily be simulated. This book provides a basic introduction that emphasizes intuition and simplistic conceptualization of processes. It avoids the more difficult mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those with more interest in model application than detailed mathematical foundations will find this a powerful "quick start" guide. Example simulations, exercises, and computer codes are included. Working code is provided on the Internet.

  4. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  5. Energy Dependent Streaming in Lattice Boltzmann Simulations

    Czech Academy of Sciences Publication Activity Database

    Pavlo, Pavol; Vahala, G.; Vahala, L.

    2001-01-01

    Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Lattice Boltzmann Approach to Resistive MHD

    Czech Academy of Sciences Publication Activity Database

    Macnab, A.; Vahala, G.; Vahala, L.; Pavlo, Pavol; Soe, M.

    2002-01-01

    Roč. 47, č. 9 (2002), s. 51 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/44th./. Orlando , Florida, 11.11.2001-15.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann, magnetic fields Subject RIV: BL - Plasma and Gas Discharge Physics

  7. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  8. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  9. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    International Nuclear Information System (INIS)

    Nakano, C. Masato; Ma, Heng; Wei, Tao

    2015-01-01

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption

  10. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, C. Masato [Flintridge Preparatory School, La Canada Flintridge, California 91011 (United States); Ma, Heng; Wei, Tao, E-mail: twei@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2015-04-13

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.

  11. Estimation of Poisson noise in spatial domain

    Science.gov (United States)

    Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana

    2017-09-01

    This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.

  12. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...

  13. Selective Contrast Adjustment by Poisson Equation

    Directory of Open Access Journals (Sweden)

    Ana-Belen Petro

    2013-09-01

    Full Text Available Poisson Image Editing is a new technique permitting to modify the gradient vector field of an image, and then to recover an image with a gradient approaching this modified gradient field. This amounts to solve a Poisson equation, an operation which can be efficiently performed by Fast Fourier Transform (FFT. This paper describes an algorithm applying this technique, with two different variants. The first variant enhances the contrast by increasing the gradient in the dark regions of the image. This method is well adapted to images with back light or strong shadows, and reveals details in the shadows. The second variant of the same Poisson technique enhances all small gradients in the image, thus also sometimes revealing details and texture.

  14. Poisson-Jacobi reduction of homogeneous tensors

    International Nuclear Information System (INIS)

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  15. Evaluating the double Poisson generalized linear model.

    Science.gov (United States)

    Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique

    2013-10-01

    The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Non linear Euler-Poisson system. Part 1: global existence of low entropy solutions

    International Nuclear Information System (INIS)

    Cordier, S.

    1995-05-01

    In this work a 1-D model of electrons and ions plasma is considered. Electrons are supposed to be in Maxwell-Boltzmann thermodynamic equilibrium while ions are described with an isothermal flow model of charged particles submitted to a self-consistent electric field. A collision term between neutral particles and ions simulates the presence of neutral particles. This work demonstrates the existence of low entropy solutions for this simple model with arbitrary initial conditions. Most of the paper is devoted to the demonstration of this theorem and follows the successive steps: construction of a numerical scheme, recall of the classical properties of Riemann problem solutions using Glimm method, uniform estimations for the whole variation norm, and finally, convergence of the constructed solutions towards a low entropy solution for the non-linear Euler/Poisson system. Domains of application for this type of model are listed in the conclusion. (J.S.). 18 refs

  17. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  18. Equilibrium stochastic dynamics of Poisson cluster ensembles

    Directory of Open Access Journals (Sweden)

    L.Bogachev

    2008-06-01

    Full Text Available The distribution μ of a Poisson cluster process in Χ=Rd (with n-point clusters is studied via the projection of an auxiliary Poisson measure in the space of configurations in Χn, with the intensity measure being the convolution of the background intensity (of cluster centres with the probability distribution of a generic cluster. We show that μ is quasi-invariant with respect to the group of compactly supported diffeomorphisms of Χ, and prove an integration by parts formula for μ. The corresponding equilibrium stochastic dynamics is then constructed using the method of Dirichlet forms.

  19. White Noise of Poisson Random Measures

    OpenAIRE

    Proske, Frank; Øksendal, Bernt

    2002-01-01

    We develop a white noise theory for Poisson random measures associated with a Lévy process. The starting point of this theory is a chaos expansion with kernels of polynomial type. We use this to construct the white noise of a Poisson random measure, which takes values in a certain distribution space. Then we show, how a Skorohod/Itô integral for point processes can be represented by a Bochner integral in terms of white noise of the random measure and a Wick product. Further, we apply these co...

  20. Bayesian regression of piecewise homogeneous Poisson processes

    Directory of Open Access Journals (Sweden)

    Diego Sevilla

    2015-12-01

    Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015

  1. Gap processing for adaptive maximal poisson-disk sampling

    KAUST Repository

    Yan, Dongming

    2013-10-17

    In this article, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or when their radii are changed.We build on the concepts of regular triangulations and the power diagram. Third, we show how our analysis contributes to the state-of-the-art in surface remeshing. © 2013 ACM.

  2. Spatial Nonhomogeneous Poisson Process in Corrosion Management

    NARCIS (Netherlands)

    López De La Cruz, J.; Kuniewski, S.P.; Van Noortwijk, J.M.; Guriérrez, M.A.

    2008-01-01

    A method to test the assumption of nonhomogeneous Poisson point processes is implemented to analyze corrosion pit patterns. The method is calibrated with three artificially generated patterns and manages to accurately assess whether a pattern distribution is random, regular, or clustered. The

  3. Efficient information transfer by Poisson neurons

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Shinomoto, S.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 509-520 ISSN 1547-1063 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : information capacity * Poisson neuron * metabolic cost * decoding error Subject RIV: BD - Theory of Information Impact factor: 1.035, year: 2016

  4. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-06-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering

  5. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)

  6. Poisson brackets for fluids and plasmas

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1982-01-01

    Noncanonical yet Hamiltonian descriptions are presented of many of the non-dissipative field equations that govern fluids and plasmas. The dynamical variables are the usually encountered physical variables. These descriptions have the advantage that gauge conditions are absent, but at the expense of introducing peculiar Poisson brackets. Clebsch-like potential descriptions that reverse this situations are also introduced

  7. Almost Poisson integration of rigid body systems

    International Nuclear Information System (INIS)

    Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang

    1993-01-01

    In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs

  8. Dimensional reduction for generalized Poisson brackets

    Science.gov (United States)

    Acatrinei, Ciprian Sorin

    2008-02-01

    We discuss dimensional reduction for Hamiltonian systems which possess nonconstant Poisson brackets between pairs of coordinates and between pairs of momenta. The associated Jacobi identities imply that the dimensionally reduced brackets are always constant. Some examples are given alongside the general theory.

  9. Affine Poisson Groups and WZW Model

    Directory of Open Access Journals (Sweden)

    Ctirad Klimcík

    2008-01-01

    Full Text Available We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.

  10. Identifying product order with restricted Boltzmann machines

    Science.gov (United States)

    Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin

    2018-03-01

    Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.

  11. Scattering theory of the linear Boltzmann operator

    International Nuclear Information System (INIS)

    Hejtmanek, J.

    1975-01-01

    In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.) [de

  12. Lattice Boltzmann method used to simulate particle motion in a conduit

    Czech Academy of Sciences Publication Activity Database

    Dolanský, Jindřich; Chára, Zdeněk; Vlasák, Pavel; Kysela, Bohuš

    2017-01-01

    Roč. 65, č. 2 (2017), s. 105-113 ISSN 0042-790X R&D Projects: GA ČR GA15-18870S Institutional support: RVO:67985874 Keywords : Lattice Boltzmann method * particle motion * particle–fluid interaction * PIV * particle tracking Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.654, year: 2016

  13. Boltzmann and Einstein: Statistics and dynamics –An unsolved ...

    Indian Academy of Sciences (India)

    The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method ...

  14. Boltzmann and Einstein: Statistics and dynamics–An unsolved ...

    Indian Academy of Sciences (India)

    The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method ...

  15. On some asymptotic relations in the Boltzmann-Enskog model

    International Nuclear Information System (INIS)

    Sadovnikov, B.I.; Inozemtseva, N.G.

    1977-04-01

    The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator

  16. Soluble Boltzmann equations for internal state and Maxwell models

    NARCIS (Netherlands)

    Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.

    We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for

  17. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    Abstract. An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice. Boltzmann equation through the ...

  18. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  19. Adaptive Non-Boltzmann Monte Carlo

    International Nuclear Information System (INIS)

    Fitzgerald, M.; Picard, R.R.; Silver, R.N.

    1998-01-01

    This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods

  20. Partial entropic stabilization of lattice Boltzmann magnetohydrodynamics

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-01-01

    The entropic lattice Boltzmann algorithm of Karlin et al. [Phys. Rev. E 90, 031302 (2014), 10.1103/PhysRevE.90.031302] is partially extended to magnetohydrodynamics, based on the Dellar model of introducing a vector distribution for the magnetic field. This entropic ansatz is now applied only to the scalar particle distribution function so as to permit the many problems entailing magnetic field reversal. A 9-bit lattice is employed for both particle and magnetic distributions for our two-dimensional simulations. The entropic ansatz is benchmarked against our earlier multiple relaxation lattice-Boltzmann model for the Kelvin-Helmholtz instability in a magnetized jet. Other two-dimensional simulations are performed and compared to results determined by more standard direct algorithms: in particular the switch over between the Kelvin-Helmholtz or tearing mode instability of Chen et al. [J. Geophys. Res.: Space Phys. 102, 151 (1997), 10.1029/96JA03144], and the generalized Orszag-Tang vortex model of Biskamp-Welter [Phys. Fluids B 1, 1964 (1989), 10.1063/1.859060]. Very good results are achieved.

  1. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  2. Exploring cluster Monte Carlo updates with Boltzmann machines.

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  3. Exploring cluster Monte Carlo updates with Boltzmann machines

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  4. A Lattice-Boltzmann model for simulating bedform-induced hyporheic exchange

    Science.gov (United States)

    Dapelo, D.; Bridgeman, J.; Krause, S.

    2016-12-01

    Bedform-induced hyporheic exchange plays a fundamental role in the ecohydrological and biogeochemical functioning of aquifer-river interfaces. The understanding of the complex interchange of hyporheic exchange fluxes, solute and energy transport between surface and groundwater is fundamental to design effective management, restoration and pollution mitigation strategies. For the first time, the Lattice-Boltzmann method was used to simulate 2D hyporheic exchange flow across a succession of dunes. The velocity field in both surface and groundwater was simulated directly; then, residence times were computed through post-processing. As a novelty to most previous applications of similar computational fluid dynamics models, a grid-independence test was performed for to analyse independence of the results from the mesh choice. The Lattice-Boltzmann simulation results are compared to previous fluid dynamic models of similar bedforms, and the impact of the bedform on hyporheic exchange flow dynamics is discussed. As an advantage, both the free-flow and the hyporheic exchange flow are simulated within the same model, thus removing the need of developing two distinct models as well as the coupling between them: the model dynamically reproduces turbulent Navier-Stokes (surface water) or generalized Darcian (groundwater) flow, depending only on the local value of the porosity field. Through this model, the critical advantages of the Lattice-Boltzmann method, consisting of unparalleled computational parsimony, meshing simplicity and attitude towards diffuse computing, are made available for a wide range of similar applications.

  5. Aplications of the Poisson-Boltzmann equation to the calculation of pH-dependent properties in proteins

    OpenAIRE

    Soares, Thereza A.; Ferreira, Ricardo

    2004-01-01

    The ability of biomolecules to catalyze chemical reactions is due chiefly to their sensitivity to variations of the pH in the surrounding environment. The reason for this is that they are made up of chemical groups whose ionization states are modulated by pH changes that are of the order of 0.4 units. The determination of the protonation states of such chemical groups as a function of conformation of the biomolecule and the pH of the environment can be useful in the elucidation of important b...

  6. Comparison of molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-three-dimensional reference interaction site model (MM-3D-RISM) method to calculate the binding free energy of protein-ligand complexes: Effect of metal ion and advance statistical test

    Science.gov (United States)

    Pandey, Preeti; Srivastava, Rakesh; Bandyopadhyay, Pradipta

    2018-03-01

    The relative performance of MM-PBSA and MM-3D-RISM methods to estimate the binding free energy of protein-ligand complexes is investigated by applying these to three proteins (Dihydrofolate Reductase, Catechol-O-methyltransferase, and Stromelysin-1) differing in the number of metal ions they contain. None of the computational methods could distinguish all the ligands based on their calculated binding free energies (as compared to experimental values). The difference between the two comes from both polar and non-polar part of solvation. For charged ligand case, MM-PBSA and MM-3D-RISM give a qualitatively different result for the polar part of solvation.

  7. Linear odd Poisson bracket on Grassmann variables

    International Nuclear Information System (INIS)

    Soroka, V.A.

    1999-01-01

    A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Degenerate odd Poisson bracket on Grassmann variables

    International Nuclear Information System (INIS)

    Soroka, V.A.

    2000-01-01

    A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra

  9. Poisson/Superfish codes for personal computers

    International Nuclear Information System (INIS)

    Humphries, S.

    1992-01-01

    The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs

  10. Elementary derivation of Poisson structures for fluid dynamics and electrodynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    The canonical Poisson structure of the microscopic Lagrangian is used to deduce the noncanonical Poisson structure for the macroscopic Hamiltonian dynamics of a compressible neutral fluid and of fluid electrodynamics

  11. Poisson Plus Quantification for Digital PCR Systems.

    Science.gov (United States)

    Majumdar, Nivedita; Banerjee, Swapnonil; Pallas, Michael; Wessel, Thomas; Hegerich, Patricia

    2017-08-29

    Digital PCR, a state-of-the-art nucleic acid quantification technique, works by spreading the target material across a large number of partitions. The average number of molecules per partition is estimated using Poisson statistics, and then converted into concentration by dividing by partition volume. In this standard approach, identical partition sizing is assumed. Violations of this assumption result in underestimation of target quantity, when using Poisson modeling, especially at higher concentrations. The Poisson-Plus Model accommodates for this underestimation, if statistics of the volume variation are well characterized. The volume variation was measured on the chip array based QuantStudio 3D Digital PCR System using the ROX fluorescence level as a proxy for effective load volume per through-hole. Monte Carlo simulations demonstrate the efficacy of the proposed correction. Empirical measurement of model parameters characterizing the effective load volume on QuantStudio 3D Digital PCR chips is presented. The model was used to analyze digital PCR experiments and showed improved accuracy in quantification. At the higher concentrations, the modeling must take effective fill volume variation into account to produce accurate estimates. The extent of the difference from the standard to the new modeling is positively correlated to the extent of fill volume variation in the effective load of your reactions.

  12. Reduction of Nambu-Poisson Manifolds by Regular Distributions

    Science.gov (United States)

    Das, Apurba

    2018-03-01

    The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.

  13. Boltzmann babies in the proper time measure

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  14. The Lattice Boltzmann method principles and practice

    CERN Document Server

    Krüger, Timm; Kuzmin, Alexandr; Shardt, Orest; Silva, Goncalo; Viggen, Erlend Magnus

    2017-01-01

    This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a va...

  15. Flux Limiter Lattice Boltzmann for Compressible Flows

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  17. Lattice-Boltzmann simulations in reconstructed parametrized porous media

    Science.gov (United States)

    Ahrenholz, Benjamin; Tölke, Jonas; Krafczyk, Manfred

    2006-07-01

    Computations of flows in explicitly resolved porous media reported in the literature so far are based on binarized porous media data mapped to uniform Cartesian grids. The voxel set is directly being used as the computational grid and thus the geometrical representation is usually only first-order accurate due to stair-case patterns. In this work, we pursue a more elaborate approach: starting from a highly resolved tomographic grey value data set we utilize a Marching Cube algorithm to reconstruct the surface of the porous medium as a set of planar triangles. The numerical resolution of the Cartesian grid for the simulation can then be chosen independently from the voxel set. As we take into account the subgrid distances between the nodes of the Cartesian grid and the planar triangle surfaces, one can utilize a second-order accurate lattice Boltzmann flow solver to efficiently compute, e.g. permeabilities. As these interpolation-based no-slip boundary conditions are not mass preserving, we also present a local modification of the no-slip boundary condition restoring mass conservation. Our numerical results demonstrate that for saturated flow simulations this coupled approach allows a substantial acceleration of saturated flow computations in porous media.

  18. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    Science.gov (United States)

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  19. Algebraic properties of compatible Poisson brackets

    Science.gov (United States)

    Zhang, Pumei

    2014-05-01

    We discuss algebraic properties of a pencil generated by two compatible Poisson tensors A( x) and B( x). From the algebraic viewpoint this amounts to studying the properties of a pair of skew-symmetric bilinear forms A and B defined on a finite-dimensional vector space. We describe the Lie group G P of linear automorphisms of the pencil P = { A + λB}. In particular, we obtain an explicit formula for the dimension of G P and discuss some other algebraic properties such as solvability and Levi-Malcev decomposition.

  20. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  1. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  2. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  3. Boltzmann, Gibbs and Darwin-Fowler approaches in parastatistics

    International Nuclear Information System (INIS)

    Ponczek, R.L.; Yan, C.C.

    1976-01-01

    Derivations of the equilibrium values of occupation numbers are made using three approaches, namely, the Boltzmann 'elementary' one, the ensemble method of Gibbs, and that of Darwin and Fowler as well [pt

  4. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  5. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

    Science.gov (United States)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  6. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...... equation for electrons in Wannier-Stark states. We find good quantitative agreement of the approximations (ii) and (iii) with (i) in their respective ranges of validity. (C) 1999 Elsevier Science B.V. All rights reserved....

  7. A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.

    Science.gov (United States)

    Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun

    2013-01-01

    A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.

  8. Binomial vs poisson statistics in radiation studies

    International Nuclear Information System (INIS)

    Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff

    1983-01-01

    The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.)

  9. Particular solutions of generalized Euler-Poisson-Darboux equation

    Directory of Open Access Journals (Sweden)

    Rakhila B. Seilkhanova

    2015-01-01

    Full Text Available In this article we consider the generalized Euler-Poisson-Darboux equation $$ {u}_{tt}+\\frac{2\\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\\frac{2\\alpha }{x}{{u}_{x}}+\\frac{2\\beta }{y}{{u}_y},\\quad x>0,\\;y>0,\\;t>0. $$ We construct particular solutions in an explicit form expressed by the Lauricella hypergeometric function of three variables. Properties of each constructed solutions have been investigated in sections of surfaces of the characteristic cone. Precisely, we prove that found solutions have singularity $1/r$ at $r\\to 0$, where ${{r}^2}={{( x-{{x}_0}}^2}+{{( y-{{y}_0}}^2}-{{( t-{{t}_0}}^2}$.

  10. Tetrahedral meshing via maximal Poisson-disk sampling

    KAUST Repository

    Guo, Jianwei

    2016-02-15

    In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.

  11. Lattice Boltzmann study of droplet motion inside a grooved channel

    Science.gov (United States)

    Huang, Jun Jie; Shu, Chang; Chew, Yong Tian

    2009-02-01

    A droplet moving inside a grooved channel is studied by using a new lattice Boltzmann model for multiphase flows with large density ratio. A constant body force is applied to drive the droplet. Flows under different surface tensions, driving forces, density ratios, wall wettabilities, and groove geometries are investigated. It is found that the drag on the droplet and the flow pattern are strongly affected by the wall wettability and topography when the system scale is small. The effects of the driving force on the droplet are investigated through comparison of two different ways of applying it. Besides, the density ratio is varied over a wide range to assess its effects in the present setup. Special attention is paid to grooved hydrophilic walls which tend to enhance the droplet-wall contact. For such walls, two distinctive types of shape of the interface inside the groove are found and series of numerical investigations are carried out to find the critical wall contact angle, groove width and depth that determine which kind of shape the droplet assumes. Some typical cases are chosen for detailed analyses and compared to some other work. This study is expected to improve our understanding on the lotus effect and the physics of small scale flows near rough walls.

  12. Ludwig Boltzmann, Albert Einstein and Franz Joseph

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    Under the Emperor Francis Joseph (1848-1916) the natural sciences were less weIl supported in Austria than in other countries of Europe. This is explained by the fact that the German speaking middle classes accepted the preeminence of the feudal forces with their antiscientific attitude. The reason for this readiness to subordination was that those middle classes feIt threatened in their relatively favourable situation by Slavs and Latins. Francis Joseph was the typical representative of the aristocracy. Personally, he did his duty conscientiously and was not corrupt, but progressive ideas and scientific thought were alien to him. From his desk he treated Boltzmann benevolently, but he had no wish to meet personally the greatest mind of the Empire or in any respect to ask his views. Another famous subject of the Emperor, Albert Einstein, was apparently ignored altogether. The structural weakness of Austria, due to the national problems, led to immobilism in her scientific life, but also, up to a point, to tolerance. The impression of Victor Adler on Einstein is considered in this historical context. (author) [de

  13. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  14. Income distribution: Boltzmann analysis and its extension

    Science.gov (United States)

    Yuqing, He

    2007-04-01

    The paper aims at describing income distribution in moderate income regions. Starting with dividing income behaviors into the two parts: random and deterministic, and by introducing “instantaneous model” for theoretical derivations and “cumulative model” for positive tests, this paper applies the equilibrium approach of statistical mechanics in the study of nonconserved individual income course. The random income follows a stationary distribution similar to the Maxwell-Boltzmann distribution in the instantaneous model. Combining this result with marginal analysis, the probability distribution of individual income process that is composed of the random and deterministic income courses approximately obeys a distribution law mixing exponential function with a logarithmic prefactor. Using the census or income survey data of USA, UK, Japan, and New Zealand, the distribution law has been tested. The results show that it agrees very well with most of the empirical data. The discussion suggests that there might be essentially different income processes to happen in moderate and high income regions.

  15. On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action

    Science.gov (United States)

    Chekhov, L. O.; Mazzocco, M.

    2017-12-01

    Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.

  16. PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON

    Directory of Open Access Journals (Sweden)

    PUTU SUSAN PRADAWATI

    2013-09-01

    Full Text Available Poisson regression was used to analyze the count data which Poisson distributed. Poisson regression analysis requires state equidispersion, in which the mean value of the response variable is equal to the value of the variance. However, there are deviations in which the value of the response variable variance is greater than the mean. This is called overdispersion. If overdispersion happens and Poisson Regression analysis is being used, then underestimated standard errors will be obtained. Negative Binomial Regression can handle overdispersion because it contains a dispersion parameter. From the simulation data which experienced overdispersion in the Poisson Regression model it was found that the Negative Binomial Regression was better than the Poisson Regression model.

  17. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified......, and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  18. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    2010-01-01

    In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points...... are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  19. Periodic Poisson Solver for Particle Tracking

    International Nuclear Information System (INIS)

    Dohlus, M.; Henning, C.

    2015-05-01

    A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.

  20. Compound Poisson Approximations for Sums of Random Variables

    OpenAIRE

    Serfozo, Richard F.

    1986-01-01

    We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...

  1. A geometric multigrid Poisson solver for domains containing solid inclusions

    Science.gov (United States)

    Botto, Lorenzo

    2013-03-01

    A Cartesian grid method for the fast solution of the Poisson equation in three-dimensional domains with embedded solid inclusions is presented and its performance analyzed. The efficiency of the method, which assume Neumann conditions at the immersed boundaries, is comparable to that of a multigrid method for regular domains. The method is light in terms of memory usage, and easily adaptable to parallel architectures. Tests with random and ordered arrays of solid inclusions, including spheres and ellipsoids, demonstrate smooth convergence of the residual for small separation between the inclusion surfaces. This feature is important, for instance, in simulations of nearly-touching finite-size particles. The implementation of the method, “MG-Inc”, is available online. Catalogue identifier: AEOE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19068 No. of bytes in distributed program, including test data, etc.: 215118 Distribution format: tar.gz Programming language: C++ (fully tested with GNU GCC compiler). Computer: Any machine supporting standard C++ compiler. Operating system: Any OS supporting standard C++ compiler. RAM: About 150MB for 1283 resolution Classification: 4.3. Nature of problem: Poisson equation in domains containing inclusions; Neumann boundary conditions at immersed boundaries. Solution method: Geometric multigrid with finite-volume discretization. Restrictions: Stair-case representation of the immersed boundaries. Running time: Typically a fraction of a minute for 1283 resolution.

  2. Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems

    International Nuclear Information System (INIS)

    Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo

    2009-01-01

    The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems

  3. The intellectual quadrangle: Mach-Boltzmann-Planck-Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    These four men were influential in the transition from classical to modern physics. They interacted as scientists, often antagonistically. Thus Boltzmann was the greatest champion of the atom, while Mach remained unconvinced all his life. As a aphysicist, Einstein was greatly influenced by both Mach and Boltzmann, although Mach in the end rejected relativity as well. Because of his work on statistical mechanics, fluctuations, and quantum theory, Einstein has been called the natural successor to Boltzmann. Planck also was influenced by Mach at first. Hence he and Boltzmann were adversaries antil Planck converted to atomistics in 1900 and used the statistical interpretation of entropy to establish his radiation law. Planck accepted relativity early, but in quantum theory he was for a long time partly opposed to Einstein, and vice versa - Einstein considered Planck's derivation of his radiation law as unsound, while Planck could not accept the light quantum. In the case of all four physicists, science was interwoven with philosophy. Boltzmann consistently fought Mach's positivism, while Planck and Einstein moved from positivism to realism. All were also, though in very different ways, actively interested in public affairs. (orig.)

  4. Lattice Boltzmann simulations of leukocyte rolling and deformation in a three-dimensional shear flow

    Science.gov (United States)

    Luo, Ye; Qi, Dewei; He, Guowei

    2013-11-01

    Lattice Boltzmann simulation is used to simulate the motion of a leukocyte in fluid. The cell membrane is built by lattice spring model. The interaction between the fluid flow and the solid surface is treated by immersed boundary method. Stochastic Monte Carlo method is used to deal with receptor/ligand interaction. It is shown that the model can correctly predict the characteristic ``stop-and-g'' motion of rolling leukocytes. Effects of cell deformation, shear rates, bonding force, microvilli distribution on rolling are studied and compared with experiments.

  5. Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets

    Science.gov (United States)

    Carlet, Guido; Casati, Matteo; Shadrin, Sergey

    2017-04-01

    We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial.

  6. Avoiding negative populations in explicit Poisson tau-leaping.

    Science.gov (United States)

    Cao, Yang; Gillespie, Daniel T; Petzold, Linda R

    2005-08-01

    The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure.

  7. Estimation of a Non-homogeneous Poisson Model: An Empirical ...

    African Journals Online (AJOL)

    This article aims at applying the Nonhomogeneous Poisson process to trends of economic development. For this purpose, a modified Nonhomogeneous Poisson process is derived when the intensity rate is considered as a solution of stochastic differential equation which satisfies the geometric Brownian motion. The mean ...

  8. Formulation of Hamiltonian mechanics with even and odd Poisson brackets

    International Nuclear Information System (INIS)

    Khudaverdyan, O.M.; Nersesyan, A.P.

    1987-01-01

    A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs

  9. Cluster X-varieties, amalgamation, and Poisson-Lie groups

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2006-01-01

    In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...

  10. Derivation of relativistic wave equation from the Poisson process

    Indian Academy of Sciences (India)

    Abstract. A Poisson process is one of the fundamental descriptions for relativistic particles: both fermions and bosons. A generalized linear photon wave equation in dispersive and homogeneous medium with dissipation is derived using the formulation of the Poisson process. This formulation provides a possible ...

  11. Tomography and generative training with quantum Boltzmann machines

    Science.gov (United States)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  12. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    Science.gov (United States)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  13. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  14. Lattice Boltzmann simulation of endothermal catalytic reaction in catalyst porous media

    International Nuclear Information System (INIS)

    Li Xunfeng; Cai Jun; Xin Fang; Huai Xiulan; Guo Jiangfeng

    2013-01-01

    Gas catalytic reaction in a fixed bed reactor is a general process in chemical industry. The chemical reaction process involves the complex multi-component flow, heat and mass transfer coupling chemical reaction in the catalyst porous structure. The lattice Boltzmann method is developed to simulate the complex process of the surface catalytic reaction in the catalyst porous media. The non-equilibrium extrapolation method is used to treat the boundaries. The porous media is structured by Sierpinski carpet fractal structure. The velocity correction is adopted on the reaction surface. The flow, temperature and concentration fields calculated by the lattice Boltzmann method are compared with those computed by the CFD software. The effects of the inlet velocity, porosity and inlet components ratio on the conversion are also studied. Highlights: ► LBM is developed to simulate the surface catalytic reaction. ► The Sierpinski carpet structure is used to construct the porous media. ► The LBM results are in agreement with the CFD predictions. ► Velocity, temperature and concentration fields are obtained. ► Effects of the velocity, porosity and concentration on conversion are analyzed.

  15. Unimodularity criteria for Poisson structures on foliated manifolds

    Science.gov (United States)

    Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury

    2018-03-01

    We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.

  16. Poisson-Box Sampling algorithms for three-dimensional Markov binary mixtures

    Science.gov (United States)

    Larmier, Coline; Zoia, Andrea; Malvagi, Fausto; Dumonteil, Eric; Mazzolo, Alain

    2018-02-01

    Particle transport in Markov mixtures can be addressed by the so-called Chord Length Sampling (CLS) methods, a family of Monte Carlo algorithms taking into account the effects of stochastic media on particle propagation by generating on-the-fly the material interfaces crossed by the random walkers during their trajectories. Such methods enable a significant reduction of computational resources as opposed to reference solutions obtained by solving the Boltzmann equation for a large number of realizations of random media. CLS solutions, which neglect correlations induced by the spatial disorder, are faster albeit approximate, and might thus show discrepancies with respect to reference solutions. In this work we propose a new family of algorithms (called 'Poisson Box Sampling', PBS) aimed at improving the accuracy of the CLS approach for transport in d-dimensional binary Markov mixtures. In order to probe the features of PBS methods, we will focus on three-dimensional Markov media and revisit the benchmark problem originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]: for these configurations we will compare reference solutions, standard CLS solutions and the new PBS solutions for scalar particle flux, transmission and reflection coefficients. PBS will be shown to perform better than CLS at the expense of a reasonable increase in computational time.

  17. Lattice Boltzmann method with the cell-population equilibrium

    International Nuclear Information System (INIS)

    Zhou Xiaoyang; Cheng Bing; Shi Baochang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions

  18. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified ...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery......The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  19. On a Boltzmann-type price formation model

    KAUST Repository

    Burger, Martin

    2013-06-26

    In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

  20. Non-isothermal Smoluchowski-Poisson equation as a singular limit of the Navier-Stokes-Fourier-Poisson system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Laurençot, P.

    2007-01-01

    Roč. 88, - (2007), s. 325-349 ISSN 0021-7824 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier- Poisson system * Smoluchowski- Poisson system * singular limit Subject RIV: BA - General Mathematics Impact factor: 1.118, year: 2007

  1. Ethic and Evolution in Boltzmann's and Einstein's Thought

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)

  2. Poisson structure and symmetry in the Chern-Simons formulation of (2 + 1)-dimensional gravity

    International Nuclear Information System (INIS)

    Meusburger, C; Schroers, B J

    2003-01-01

    In the formulation of (2 + 1)-dimensional gravity as a Chern-Simons gauge theory, the phase space is the moduli space of flat Poincare group connections. Using the combinatorial approach developed by Fock and Rosly, we give an explicit description of the phase space and its Poisson structure for the general case of a genus g oriented surface with punctures representing particles and a boundary playing the role of spatial infinity. We give a physical interpretation and explain how the degrees of freedom associated with each handle and each particle can be decoupled. The symmetry group of the theory combines an action of the mapping class group with asymptotic Poincare transformations in a nontrivial fashion. We derive the conserved quantities associated with the latter and show that the mapping class group of the surface acts on the phase space via Poisson isomorphisms

  3. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  4. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  5. A Parallel Lattice Boltzmann Model of a Carotid Artery

    Science.gov (United States)

    Boyd, J.; Ryan, S. J.; Buick, J. M.

    2008-11-01

    A parallel implementation of the lattice Boltzmann model is considered for a three dimensional model of the carotid artery. The computational method and its parallel implementation are described. The performance of the parallel implementation on a Beowulf cluster is presented, as are preliminary hemodynamic results.

  6. Boltzmann and Einstein: Statistics and dynamics – An unsolved ...

    Indian Academy of Sciences (India)

    ... of watching the ever-shifting battle!” (not to see its outcome). Acknowledgements. The author would like to express my deep appreciation to the IUPAP Commission on Statistical Physics for awarding me the Boltzmann medal 2004. The author is also indebted for financial assistance to the Organizers of STATPHYS 22, T V ...

  7. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  8. Classifying images using restricted Boltzmann machines and convolutional neural networks

    Science.gov (United States)

    Zhao, Zhijun; Xu, Tongde; Dai, Chenyu

    2017-07-01

    To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.

  9. Revisiting Boltzmann learning: parameter estimation in Markov random fields

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik

    1996-01-01

    and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...

  10. Some properties of the Boltzmann elastic collision operator

    International Nuclear Information System (INIS)

    Delcroix, J. L.; Salmon, J.

    1959-01-01

    The authors point out some properties (an important one is a variational property) of the Boltzmann elastic collision operator, valid in a more general framework than that of the Lorentz gas. Reprint of a paper published in 'Le journal de physique et le radium', tome 20, Jun 1959, p. 594-596 [fr

  11. Coupling Boltzmann and Navier-Stokes Equations by Friction

    OpenAIRE

    Bourgat, Jean-François; Le Tallec, Patrick; Tidriri, Moulay D.

    1995-01-01

    Projet MENUSIN; The aim of this paper is to introduce and validate a coupled Navier-Stokes Boltzmann approach for the calculation of hypersonic rarefied flows around manoeuvering vehicles. The proposed strategy uses locally a kinetic model in the boundary layer coupled through wall friction forces to a global Navier-Stokes solver. Different numerical experiments illustrate the potentialities of the method.

  12. Boundary Lax pairs from non-ultra-local Poisson algebras

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2009-01-01

    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  13. The electric double layer at high surface potentials: The influence of excess ion polarizability

    NARCIS (Netherlands)

    Hatlo, M. M.|info:eu-repo/dai/nl/412640678; van Roij, R.H.H.G.|info:eu-repo/dai/nl/152978984; Lue, L.

    2012-01-01

    By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability

  14. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  15. Viscous flow computations with the lattice-Boltzmann equation method

    Science.gov (United States)

    Yu, Dazhi

    2002-09-01

    The lattice Boltzmann equation (LBE) method is a kinetics-based approach for fluid flow computations, and it is amenable to parallel computing. Compared to the well-established Navier-Stokes (NS) approaches, critical issues remain with the LBE method, noticeably flexible spatial resolution, boundary treatments, and dispersion and relaxation time mode. Those issues are addressed in this dissertation with improved practice presented. At the formulation level, both the single-relaxation-time (SRT) and multiple-relaxation-time (MRT) models are analyzed. The SRT model involves no artificial parameters, with a constant relaxation time regulating the physical value of fluid viscosity. The MRT model allows different relaxation time scales for different variables. Computational assessment shows that the MRT model has advantages over the SRT model in maintaining stability, reducing the oscillation, and improving the convergence rate in the computation. A multi-block method is developed for both the SRT and MRT model to facilitate flexible spatial resolutions according to the flow structures. The formulae for information exchange at the interface between coarse and fine grids are derived to ensure the mass and momentum conservation while maintaining the second-order accuracy. A customized time matching between coarse and fine grids is also presented to ensure smooth exchange information. Results show that the multi-block method can greatly increase the computational efficiency of the LBE method without losing the accuracy. Two methods of force evaluation in LBE are examined: one based on stress integration on the solid boundary and the other momentum exchange between fluid and solid. The momentum exchange method is found to be simpler to implement while the integration of stress requires evaluation of the detailed surface geometry and extrapolation of stress-related variables to the same surface. The momentum exchange method performs better overall. Improved treatments for

  16. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  17. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field....... The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  18. On the poisson's ratio of the nucleus pulposus.

    Science.gov (United States)

    Farrell, M D; Riches, P E

    2013-10-01

    Existing experimental data on the Poisson's ratio of nucleus pulposus (NP) tissue is limited. This study aims to determine whether the Poisson's ratio of NP tissue is strain-dependent, strain-rate-dependent, or varies with axial location in the disk. Thirty-two cylindrical plugs of bovine tail NP tissue were subjected to ramp-hold unconfined compression to 20% axial strain in 5% increments, at either 30 μm/s or 0.3 μm/s ramp speeds and the radial displacement determined using biaxial video extensometry. Following radial recoil, the true Poisson's ratio of the solid phase of NP tissue increased linearly with increasing strain and demonstrated strain-rate dependency. The latter finding suggests that the solid matrix undergoes stress relaxation during the test. For small strains, we suggest a Poisson's ratio of 0.125 to be used in biphasic models of the intervertebral disk.

  19. Understanding colloidal charge renormalization from surface chemistry: Experiment and theory

    Science.gov (United States)

    Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurtenberger, P.; D'Aguanno, B.; Klein, R.

    1994-12-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stern capacitance) are determined from fits of a Stern layer model to the titration data. We find strong evidence that the dissociation of protons is the only specific adsorption process. Effective particle charges are determined by fits of integral equation calculations of the polydisperse static structure factor to the static light scattering data. A generalization of the Poisson-Boltzmann cell model including the dissociation of the acidic surface groups and the autodissociation of water is used to predict effective particle charges from the surface chemical parameters determined by the titration experiments. We find that the light scattering data are best described by a model where a small fraction of the ionizable surface sites are sulfate groups which are completely dissociated at moderate pH. These effective charges are comparable to the predictions by a basic cell model where charge regulation is absent.

  20. Organisation spatiale du peuplement de poissons dans le Bandama ...

    African Journals Online (AJOL)

    L'évolution des peuplements de poissons sur le Bandama a été étudiée en considérant quatre zones d'échantillonnage : en amont du lac de Kossou, dans les lacs de Kossou et de Taabo, entre les lacs de Kossou et de Taabo, et en aval du lac de Taabo. Au total, 74 espèces de poisson réparties en 49 genres, 28 familles ...

  1. Formality theory from Poisson structures to deformation quantization

    CERN Document Server

    Esposito, Chiara

    2015-01-01

    This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.

  2. Poisson structure of the equations of ideal multispecies fluid electrodynamics

    International Nuclear Information System (INIS)

    Spencer, R.G.

    1984-01-01

    The equations of the two- (or multi-) fluid model of plasma physics are recast in Hamiltonian form, following general methods of symplectic geometry. The dynamical variables are the fields of physical interest, but are noncanonical, so that the Poisson bracket in the theory is not the standard one. However, it is a skew-symmetric bilinear form which, from the method of derivation, automatically satisfies the Jacobi identity; therefore, this noncanonical structure has all the essential properties of a canonical Poisson bracket

  3. On the Fedosov deformation quantization beyond the regular Poisson manifolds

    International Nuclear Information System (INIS)

    Dolgushev, V.A.; Isaev, A.P.; Lyakhovich, S.L.; Sharapov, A.A.

    2002-01-01

    A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane

  4. A Note On the Estimation of the Poisson Parameter

    Directory of Open Access Journals (Sweden)

    S. S. Chitgopekar

    1985-01-01

    distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.

  5. Background stratified Poisson regression analysis of cohort data.

    Science.gov (United States)

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  6. Background stratified Poisson regression analysis of cohort data

    International Nuclear Information System (INIS)

    Richardson, David B.; Langholz, Bryan

    2012-01-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

  7. Background stratified Poisson regression analysis of cohort data

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, David B. [University of North Carolina at Chapel Hill, Department of Epidemiology, School of Public Health, Chapel Hill, NC (United States); Langholz, Bryan [Keck School of Medicine, University of Southern California, Division of Biostatistics, Department of Preventive Medicine, Los Angeles, CA (United States)

    2012-03-15

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

  8. Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Brull, S., E-mail: Stephane.Brull@math.u-bordeaux.fr; Charrier, P., E-mail: Pierre.Charrier@math.u-bordeaux.fr; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux.fr [University of Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence (France)

    2016-08-15

    It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implemented in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.

  9. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  10. Kinematics of semiclassical spin and spin fiber bundle associated with so(n) Lie-Poisson manifold

    International Nuclear Information System (INIS)

    Deriglazov, A A

    2013-01-01

    We describe geometric construction underlying the Lagrangian actions for non-Grassmann spinning particles proposed in our recent works. If we discard the spatial variables (the case of frozen spin), the problem reduces to formulation of a variational problem for Hamiltonian system on a manifold with so(n) Lie-Poisson bracket. To achieve this, we identify dynamical variables of the problem with coordinates of the base of a properly constructed fiber bundle. In turn, the fiber bundle is embedded as a surface into the phase space equipped with canonical Poisson bracket. This allows us to formulate the variational problem using the standard methods of Dirac theory for constrained systems.

  11. Comparison of Einstein-Boltzmann solvers for testing general relativity

    Science.gov (United States)

    Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.

    2018-01-01

    We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.

  12. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Riemann-Theta Boltzmann Machine arXiv

    CERN Document Server

    Krefl, Daniel; Haghighat, Babak; Kahlen, Jens

    A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.

  14. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    Science.gov (United States)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  15. How does Poisson kriging compare to the popular BYM model for mapping disease risks?

    Directory of Open Access Journals (Sweden)

    Gebreab Samson

    2008-02-01

    Full Text Available Abstract Background Geostatistical techniques are now available to account for spatially varying population sizes and spatial patterns in the mapping of disease rates. At first glance, Poisson kriging represents an attractive alternative to increasingly popular Bayesian spatial models in that: 1 it is easier to implement and less CPU intensive, and 2 it accounts for the size and shape of geographical units, avoiding the limitations of conditional auto-regressive (CAR models commonly used in Bayesian algorithms while allowing for the creation of isopleth risk maps. Both approaches, however, have never been compared in simulation studies, and there is a need to better understand their merits in terms of accuracy and precision of disease risk estimates. Results Besag, York and Mollie's (BYM model and Poisson kriging (point and area-to-area implementations were applied to age-adjusted lung and cervix cancer mortality rates recorded for white females in two contrasted county geographies: 1 state of Indiana that consists of 92 counties of fairly similar size and shape, and 2 four states in the Western US (Arizona, California, Nevada and Utah forming a set of 118 counties that are vastly different geographical units. The spatial support (i.e. point versus area has a much smaller impact on the results than the statistical methodology (i.e. geostatistical versus Bayesian models. Differences between methods are particularly pronounced in the Western US dataset: BYM model yields smoother risk surface and prediction variance that changes mainly as a function of the predicted risk, while the Poisson kriging variance increases in large sparsely populated counties. Simulation studies showed that the geostatistical approach yields smaller prediction errors, more precise and accurate probability intervals, and allows a better discrimination between counties with high and low mortality risks. The benefit of area-to-area Poisson kriging increases as the county

  16. Comment on ''Boltzmann equation and the conservation of particle number''

    International Nuclear Information System (INIS)

    Zanette, D.

    1990-09-01

    In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs

  17. Finite Element Based Formulation of Lattice Boltzmann Equation

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Kwon, Young W.; Kwon, Young W.

    2008-01-01

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Recently, the technique was also applied to fluid-structure interaction problems. Most of those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. There have been different kinds of approaches to address the problems. The most common technique was using the finite volume formulation of the lattice Boltzmann equation. Another approach was a point-wise interpolation technique for irregular grids. Other techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the isoparametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, there are variety of choices of finite elements such as triangular or quadrilateral shapes in 2-D, or tetrahedral, triangular prism, or general six-sided solids in 3-D. As a result, the present study presents a new finite element formulation for the lattice Boltzmann equation using the general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method or method of moments are used to develop the finite element based LBM

  18. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  19. Comparing Boltzmann and Gibbs definitions of entropy in small systems

    Science.gov (United States)

    Ferrari, Loris

    2017-11-01

    The long-standing contrast between Boltzmann's and Gibbs' approach to statistical thermodynamics has been recently rekindled by Dunkel and Hilbert, who criticize the notion of negative absolute temperature (NAT) as a misleading consequence of Boltzmann's definition of entropy. A different definition, due to Gibbs, has been proposed, which forbids NAT and makes the energy equipartition rigorous in arbitrarily sized systems. The two approaches, however, are shown to converge to the same results in the thermodynamical limit. A vigorous debate followed Dunkel and Hilbert's work, with arguments against and in favor of Gibbs' entropy. In an attempt to leave the speculative level and give the discussion some deal of concreteness, we analyze the practical consequences of Gibbs' definition in two finite-size systems: a non-interacting gas of N atoms with two-level internal spectrum, and an Ising model of N interacting spins. It is shown that, for certain measurable quantities, the difference resulting from Boltzmann's and Gibbs' approach vanishes as N -1/2 , much less rapidly than the 1/ N slope expected. As shown by numerical estimates, this makes the experimental solution of the controversy a feasible task.

  20. Low uncertainty Boltzmann constant determinations and the kelvin redefinition.

    Science.gov (United States)

    Fischer, J

    2016-03-28

    At its 25th meeting, the General Conference on Weights and Measures (CGPM) approved Resolution 1 'On the future revision of the International System of Units, the SI', which sets the path towards redefinition of four base units at the next CGPM in 2018. This constitutes a decisive advance towards the formal adoption of the new SI and its implementation. Kilogram, ampere, kelvin and mole will be defined in terms of fixed numerical values of the Planck constant, elementary charge, Boltzmann constant and Avogadro constant, respectively. The effect of the new definition of the kelvin referenced to the value of the Boltzmann constant k is that the kelvin is equal to the change of thermodynamic temperature T that results in a change of thermal energy kT by 1.380 65×10(-23) J. A value of the Boltzmann constant suitable for defining the kelvin is determined by fundamentally different primary thermometers such as acoustic gas thermometers, dielectric constant gas thermometers, noise thermometers and the Doppler broadening technique. Progress to date of the measurements and further perspectives are reported. Necessary conditions to be met before proceeding with changing the definition are given. The consequences of the new definition of the kelvin on temperature measurement are briefly outlined. © 2016 The Author(s).

  1. Entropic multirelaxation lattice Boltzmann models for turbulent flows.

    Science.gov (United States)

    Bösch, Fabian; Chikatamarla, Shyam S; Karlin, Ilya V

    2015-10-01

    We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.

  2. Lattice-Boltzmann Simulations of the Relationship Among Pressure, Saturation, and Interfacial Area in Porous Media

    Science.gov (United States)

    Schaap, M. G.; Porter, M. L.; Wildenschild, D.

    2008-12-01

    Capillary pressure plays an important role in multiphase flow through porous media. At the microscale, capillary pressure is defined by Laplace's law, which takes into account interfacial phenomena such as surface tension, interfacial curvature and the contact angle. However, at the macroscale, capillary pressure is taken to be a function of the wetting phase saturation alone and the pressures are measured separately in each phase, typically outside the porous medium. It has been hypothesized that in addition to saturation, capillary pressure should be a function of interfacial area per volume. In this study a comparison between interfacial areas obtained from microtomographic image data and lattice-Boltzmann simulations for drainage and imbibition processes is presented. It is shown that there is good agreement between the measured and simulated capillary pressure curves. In addition, there is agreement between the interfacial area estimates for drainage, however, interfacial area estimates for imbibition are higher in the simulations than in the experiments. Image analysis indicates that during imbibition there is substantially more flow via films in the lattice-Boltzmann simulations than in the experiments, which may explain the higher interfacial areas. Scanning curves for imbibition and drainage were also simulated and a surface was fit to the capillary pressure - saturation interfacial area data. The surface indicates that the additional dependence of capillary pressure on interfacial area may provide insights into the hysteretic nature of the capillary pressure- saturation relationship. Furthermore, this study suggests that interfacial area per volume is dependent upon the dominant flow mechanism (i.e. piston or finger) within the system, as well as, the connectedness of the wetting phase, thus providing valuable information that can not be obtained from the capillary pressure - saturation relationship alone.

  3. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  4. Direct methods for Poisson problems in low-level computer vision

    Science.gov (United States)

    Chhabra, Atul K.; Grogan, Timothy A.

    1990-09-01

    Several problems in low-level computer vision can be mathematically formulated as linear elliptic partial differential equations of the second order. A subset of these problems can be expressed in the form of a Poisson equation, Lu(x, y) = f(x, y). In this paper, fast direct methods for solving the Poisson equations of computer vision are developed. Until recently, iterative methods were used to solve these equations. Recently, direct Fourier techniques were suggested to speed up the computation. We present the Fourier Analysis and Cyclic Reduction (FACR) method which is faster than the Fourier method or the Cyclic Reduction method alone. For computation on an n x n grid, the operation count for the Fourier method is O(n2log2n), and that for the FACR method is O(n2log2log2n). The FACR method first reduces the system of equations into a smaller set using Cyclic Reduction. Next, the reduced system is solved by the Fourier method. The final solution is obtained by back-substituting the solution of the reduced system. With Neumann boundary conditions, a Poisson equation does not have a unique solution. We show how a physically meaningful solution can be obtained under such circumstances. Application of the FACR and other methods is discussed for two problems of low-level computer vision - lightness, or reflectance from brightness, and recovering height from surface gradient.

  5. Non-Boltzmann Ensembles and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Murthy, K. P. N.

    2016-01-01

    Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc . This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g ( E , M ), as a function of both energy E , and order parameter M . This is carried out in two stages. We estimate g ( E ) in the first stage

  6. Simulating density-dependent flows using the lattice Boltzmann method

    Science.gov (United States)

    Bardsley, K. J.; Sukop, M. C.

    2008-12-01

    Seawater intrusion is a classic density-dependent problem in hydrogeology. It must be fully understood in order to be able to predict and prevent groundwater deterioration in coastal areas. All of the current programs used to study this issue are either finite difference or finite element methods. Density-dependent flow problems are exceptionally challenging for conventional numerical methods due to inherent non-linearity; definitive solutions are often elusive and a completely different modeling approach may be advantageous. The lattice Boltzmann method (LBM) represents such a numerical tool because it is not based on discretization of a series of differential equations. Instead, its foundation lies in the kinetic theory of gasses as proposed by Boltzmann. A key advantage of lattice Boltzmann method is that it has the ability to solve the Navier-Stokes equations in larger conduits and pores. Recent advances in lattice Boltzmann modeling permit simulation of large-scale density-dependent ground water flow and heat/solute transport. These simulations can be accomplished while retaining the advantages of 'regular' lattice Boltzmann methods, such as solute/heat transport at high Reynolds numbers. Hence it allows for eddy diffusion brought on by inertial components of flow at higher Reynolds numbers, which may occur in some coastal aquifers. This may prove to be an advantage for freshwater/seawater interface simulations especially given the highly macroporous nature of the aquifers underlying south Florida. Simulation of these phenomena is not possible with traditional Darcy's law-based groundwater models. Some geologists and engineers have been able to successfully apply LBM to fluid flow and contaminant transport problems. There are only a handful of scientists attempting to apply LBM to density-dependent flows in general; even fewer have considered seawater intrusion. We show how this method can be applied to density-dependent flows. We present two sets of results

  7. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Tai, N.-Ha; Chen, B.-Y.

    2008-01-01

    Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 deg. and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 μN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy

  8. The Interaction of Boltzmann with Mach, Ostwald and Planck, and his influence on Nernst and Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    Boltzmann esteemed both Mach and Ostwald personally and as experimentalists, but consistently fought them in epistemology. He represented atomism and realism against energism and positivism. In the early period Boltzmann also had to struggle against Planck as a phenomenologist, but he welcomed his quantum hypothesis. As a scientist Nernst was also under Boltzmann's influence. Einstein learned atomism from (Maxwell and) Boltzmann. After Einstein had overcome Mach's positivist influence, he unknowingly approached Boltzmann's philosophical views. Some sociopolitlcal aspects of the lives of the great physicists will be discussed. It will be shown how they all, and many of Boltzmann's most eminent students, in one way or other conflicted with evil tendencies and developments in existing society. (author)

  9. A spectral Poisson solver for kinetic plasma simulation

    Science.gov (United States)

    Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf

    2011-10-01

    Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.

  10. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...

  11. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  12. The coupling of Poisson sigma models to topological backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)

    2016-12-13

    We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.

  13. Effect of Poisson noise on adiabatic quantum control

    Science.gov (United States)

    Kiely, A.; Muga, J. G.; Ruschhaupt, A.

    2017-01-01

    We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.

  14. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part III extensions and applications to kinetic theory and transport

    Science.gov (United States)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.

  15. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    Science.gov (United States)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  16. Simulating gas-liquid flow in a micro-channel with the lattice Boltzmann method

    Science.gov (United States)

    Shi, Grace; Lazouskaya, Volha; Jin, Yan; Wang, Lian-Ping

    2007-11-01

    The flows of water in natural soil porous media with air-water interface are important to colloid-facilitated transport of contaminants and other phenomena with groundwater as the carrier. These flows are complex in terms of the geometrical feature and physical and chemical forces involved. As first step, we here demonstrate that a gas-liquid interfacial viscous flow in a 3D micro-channel with a square cross-section can be simulated using the lattice Boltzmann method. The talk will cover the detailed ingredients of the two-phase LBE model including the proper equation of state, surface tension, and the triple-phase boundary conditions. Methods to improve the stability of the code such as using multiple relaxation times will be tested. Preliminary results will be presented and compared to parallel experimental observations using confocal laser scanning microscopy.

  17. Double generalized linear compound poisson models to insurance claims data

    DEFF Research Database (Denmark)

    Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo

    2017-01-01

    This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... in a finite sample framework. The simulation studies are also used to validate the fitting algorithms and check the computational implementation. Furthermore, we investigate the impact of an unsuitable choice for the response variable distribution on both mean and dispersion parameter estimates. We provide R...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....

  18. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  19. Efficient triangulation of Poisson-disk sampled point sets

    KAUST Repository

    Guo, Jianwei

    2014-05-06

    In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches. © 2014 Springer-Verlag Berlin Heidelberg.

  20. Gyrokinetic energy conservation and Poisson-bracket formulation

    International Nuclear Information System (INIS)

    Brizard, A.

    1988-11-01

    An integral expression for the gyrokinetic total energy of a magnetized plasma with general magnetic field configuration perturbed by fully electromagnetic fields was recently derived through the use of a gyro-center Lie transformation. We show that the gyrokinetic energy is conserved by the gyrokinetic Hamiltonian flow to all orders in perturbed fields. This paper is concerned with the explicit demonstration that a gyrokinetic Hamiltonian containing quadratic nonlinearities preserves the gyrokinetic energy up to third order. The Poisson-bracket formulation greatly facilitates this demonstration with the help of the Jacobi identity and other properties of the Poisson brackets. 18 refs

  1. Robust iterative observer for source localization for Poisson equation

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-05

    Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.

  2. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  3. Multi-parameter full waveform inversion using Poisson

    KAUST Repository

    Oh, Juwon

    2016-07-21

    In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.

  4. On covariant Poisson brackets in classical field theory

    International Nuclear Information System (INIS)

    Forger, Michael; Salles, Mário O.

    2015-01-01

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra

  5. Poisson processes on groups and Feynman path integrals

    International Nuclear Information System (INIS)

    Combe, P.; Rodriguez, R.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.

    1979-09-01

    An expression is given for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems

  6. An application of the Autoregressive Conditional Poisson (ACP) model

    CSIR Research Space (South Africa)

    Holloway, Jennifer P

    2010-11-01

    Full Text Available When modelling count data that comes in the form of a time series, the static Poisson regression and standard time series models are often not appropriate. A current study therefore involves the evaluation of several observation-driven and parameter...

  7. The Quantum Poisson Bracket and Transformation Theory in ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 8. The Quantum Poisson Bracket and Transformation Theory in Quantum Mechanics: Dirac's Early Work in Quantum Theory. Kamal Datta. General Article Volume 8 Issue 8 August 2003 pp 75-85 ...

  8. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2012-01-01

    This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....

  9. Coefficient Inverse Problem for Poisson's Equation in a Cylinder

    NARCIS (Netherlands)

    Solov'ev, V. V.

    2011-01-01

    The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the

  10. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)

    DEFF Research Database (Denmark)

    Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis

    We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...

  11. Is it safe to use Poisson statistics in nuclear spectrometry?

    International Nuclear Information System (INIS)

    Pomme, S.; Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.

    2000-01-01

    The boundary conditions in which Poisson statistics can be applied in nuclear spectrometry are investigated. Improved formulas for the uncertainty of nuclear counting with deadtime and pulse pileup are presented. A comparison is made between the expected statistical uncertainty for loss-free counting, fixed live-time and fixed real-time measurements. (author)

  12. Nambu-Poisson reformulation of the finite dimensional dynamical systems

    International Nuclear Information System (INIS)

    Baleanu, D.; Makhaldiani, N.

    1998-01-01

    A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures

  13. A Poisson type formula for Hardy classes on Heisenberg's group

    Directory of Open Access Journals (Sweden)

    Lopushansky O.V.

    2010-06-01

    Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.

  14. Subsonic Flow for the Multidimensional Euler-Poisson System

    Science.gov (United States)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  15. Poisson-generalized gamma empirical Bayes model for disease ...

    African Journals Online (AJOL)

    In spatial disease mapping, the use of Bayesian models of estimation technique is becoming popular for smoothing relative risks estimates for disease mapping. The most common Bayesian conjugate model for disease mapping is the Poisson-Gamma Model (PG). To explore further the activity of smoothing of relative risk ...

  16. Inhibition in speed and concentration tests: The Poisson inhibition model

    NARCIS (Netherlands)

    Smit, J.C.; Ven, A.H.G.S. van der

    1995-01-01

    A new model is presented to account for the reaction time fluctuations in concentration tests. The model is a natural generalization of an earlier model, the so-called Poisson-Erlang model, published by Pieters & van der Ven (1982). First, a description is given of the type of tasks for which the

  17. Boundary singularity of Poisson and harmonic Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2015-01-01

    Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170

  18. Characterization and global analysis of a family of Poisson structures

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es

    2006-06-26

    A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.

  19. Wide-area traffic: The failure of Poisson modeling

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, V.; Floyd, S.

    1994-08-01

    Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. The authors evaluate 21 wide-area traces, investigating a number of wide-area TCP arrival processes (session and connection arrivals, FTPDATA connection arrivals within FTP sessions, and TELNET packet arrivals) to determine the error introduced by modeling them using Poisson processes. The authors find that user-initiated TCP session arrivals, such as remote-login and file-transfer, are well-modeled as Poisson processes with fixed hourly rates, but that other connection arrivals deviate considerably from Poisson; that modeling TELNET packet interarrivals as exponential grievously underestimates the burstiness of TELNET traffic, but using the empirical Tcplib[DJCME92] interarrivals preserves burstiness over many time scales; and that FTPDATA connection arrivals within FTP sessions come bunched into ``connection bursts``, the largest of which are so large that they completely dominate FTPDATA traffic. Finally, they offer some preliminary results regarding how the findings relate to the possible self-similarity of wide-area traffic.

  20. Comparison between two bivariate Poisson distributions through the ...

    African Journals Online (AJOL)

    To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive. In this paper, we show that these models are nearly everywhere asymptotically equal. From this survey that the ø-divergence converges toward zero, both models are ...

  1. On covariant Poisson brackets in classical field theory

    Energy Technology Data Exchange (ETDEWEB)

    Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)

    2015-10-15

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.

  2. Poisson sampling - The adjusted and unadjusted estimator revisited

    Science.gov (United States)

    Michael S. Williams; Hans T. Schreuder; Gerardo H. Terrazas

    1998-01-01

    The prevailing assumption, that for Poisson sampling the adjusted estimator "Y-hat a" is always substantially more efficient than the unadjusted estimator "Y-hat u" , is shown to be incorrect. Some well known theoretical results are applicable since "Y-hat a" is a ratio-of-means estimator and "Y-hat u" a simple unbiased estimator...

  3. Poisson Regression Analysis of Illness and Injury Surveillance Data

    Energy Technology Data Exchange (ETDEWEB)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson

  4. Lattice Boltzmann modeling and simulation of liquid jet breakup

    Science.gov (United States)

    Saito, Shimpei; Abe, Yutaka; Koyama, Kazuya

    2017-07-01

    A three-dimensional color-fluid lattice Boltzmann model for immiscible two-phase flows is developed in the framework of a three-dimensional 27-velocity (D3Q27) lattice. The collision operator comprises the D3Q27 versions of three suboperators: a multiple-relaxation-time (MRT) collision operator, a generalized Liu-Valocchi-Kang perturbation operator, and a Latva-Kokko-Rothman recoloring operator. A D3Q27 version of an enhanced equilibrium distribution function is also incorporated into this model to improve the Galilean invariance. Three types of numerical tests, namely, a static droplet, an oscillating droplet, and the Rayleigh-Taylor instability, show a good agreement with analytical solutions and numerical simulations. Following these numerical tests, this model is applied to liquid-jet-breakup simulations. The simulation conditions are matched to the conditions of the previous experiments. In this case, numerical stability is maintained throughout the simulation, although the kinematic viscosity for the continuous phase is set as low as 1.8 ×10-4 , in which case the corresponding Reynolds number is 3.4 ×103 ; the developed lattice Boltzmann model based on the D3Q27 lattice enables us to perform the simulation with parameters directly matched to the experiments. The jet's liquid column transitions from an asymmetrical to an axisymmetrical shape, and entrainment occurs from the side of the jet. The measured time history of the jet's leading-edge position shows a good agreement with the experiments. Finally, the reproducibility of the regime map for liquid-liquid systems is assessed. The present lattice Boltzmann simulations well reproduce the characteristics of predicted regimes, including varicose breakup, sinuous breakup, and atomization.

  5. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  6. Phase transitions in restricted Boltzmann machines with generic priors

    Science.gov (United States)

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2017-10-01

    We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.

  7. Lattice Boltzmann model for thermal binary-mixture gas flows.

    Science.gov (United States)

    Kang, Jinfen; Prasianakis, Nikolaos I; Mantzaras, John

    2013-05-01

    A lattice Boltzmann model for thermal gas mixtures is derived. The kinetic model is designed in a way that combines properties of two previous literature models, namely, (a) a single-component thermal model and (b) a multicomponent isothermal model. A comprehensive platform for the study of various practical systems involving multicomponent mixture flows with large temperature differences is constructed. The governing thermohydrodynamic equations include the mass, momentum, energy conservation equations, and the multicomponent diffusion equation. The present model is able to simulate mixtures with adjustable Prandtl and Schmidt numbers. Validation in several flow configurations with temperature and species concentration ratios up to nine is presented.

  8. Operational derivation of Boltzmann distribution with Maxwell's demon model.

    Science.gov (United States)

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-11-24

    The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction.

  9. Boltzmann equation and hydrodynamics beyond Navier-Stokes.

    Science.gov (United States)

    Bobylev, A V

    2018-04-28

    We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  10. A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-02-01

    Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.

  11. Jet propagation within a Linearized Boltzmann Transport model

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.

  12. Seasonally adjusted birth frequencies follow the Poisson distribution.

    Science.gov (United States)

    Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A

    2015-12-15

    Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p variables is significantly improved (p variable. Altogether 7.5% more children are born on Tuesdays than on Sundays. The digit sum of the date is non-significant as an explanatory variable (p = 0.23), nor does it increase the explained variance. INERPRETATION: Spontaneous births are well modelled by a time-dependent Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.

  13. Poisson structure of dynamical systems with three degrees of freedom

    Science.gov (United States)

    Gümral, Hasan; Nutku, Yavuz

    1993-12-01

    It is shown that the Poisson structure of dynamical systems with three degrees of freedom can be defined in terms of an integrable one-form in three dimensions. Advantage is taken of this fact and the theory of foliations is used in discussing the geometrical structure underlying complete and partial integrability. Techniques for finding Poisson structures are presented and applied to various examples such as the Halphen system which has been studied as the two-monopole problem by Atiyah and Hitchin. It is shown that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a nontrivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of three-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the SL(2,R) structure is a quadratic unfolding of an integrable one-form in 3+1 dimensions. It is shown that the existence of a vector field compatible with the flow is a powerful tool in the investigation of Poisson structure and some new techniques for incorporating arbitrary constants into the Poisson one-form are presented herein. This leads to some extensions, analogous to q extensions, of Poisson structure. The Kermack-McKendrick model and some of its generalizations describing the spread of epidemics, as well as the integrable cases of the Lorenz, Lotka-Volterra, May-Leonard, and Maxwell-Bloch systems admit globally integrable bi-Hamiltonian structure.

  14. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  15. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion of so...

  16. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-01-01

    We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  17. Lattice Boltzmann model capable of mesoscopic vorticity computation.

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  18. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  19. The Fluid Dynamical Limits of the Linearized Boltzmann Equation.

    Science.gov (United States)

    Campini, Marco

    The old question concerning the mathematical formulation of the fluid dynamic limits of kinetic theory is examined by studying the solution of the Cauchy problem for two differently scaled linearized Boltzmann equations on periodic domain as the mean free path of the particles becomes small. Under minimal assumptions on the initial data, by using an a priori estimate, it is possible, in a Hilbert space functional frame, to prove the weak convergence of solutions toward a function that has the form of an infinitesimal maxwellian in the velocity variable. The velocity moments of this function are then proved to satisfy either the linearized Euler or the Stokes system of equations (depending on the chosen scaling), by passing to the limit in the conservation relations derived from the Boltzmann equation. A theorem injecting continuously the intersection of certain weak spaces into a normed one is proved. Together with properties of the Euler semigroup, this allows to show strong convergence of the first three moments of the distribution function toward the macroscopic quantities density, bulk velocity and temperature, solutions of the linearized Euler system. The Stokes case is treated somewhat differently, through the introduction of a result, proved by using the adjoint formulation for linear kinetic equations, that extends the averaging theory of Golse-Lions-Perthame-Sentis. The desired convergence for the divergence-free component of the second moment toward the macroscopic velocity is then shown.

  20. A Boltzmann Transport Simulation Using Open Source Physics

    Science.gov (United States)

    Hasbun, Javier

    2004-03-01

    The speed of a charged particle, under an applied electric field, in a conducting media, is, usually, simply modelled by writing Newton's 2nd law in the form mfrac ddtv=qE-mfrac vτ ; (1), where v is the speed, E is the applied electric field, q is the charge, m is the mass, and τ is the scattering time between collisions. Here, we simulate a numerical solution of the Boltzmann transport equation,frac partial partial tf+ vot nabla _rf+Fot nabla _pf=frac partial partial tf|_coll (2), where in general the Boltzmann distribution function f=f(r,p,t) depends on position, momentum, and time. Our numerical solution is made possible by neglecting the 2nd term on the LHS, and by modelling the RHS collision term as fracpartial partial tf|_coll=-frac 1τ . With these approximations, in addition to considering only one dimension, we find, our numerical solution of (2). The average velocity numerically obtained through the resulting distribution is compared to that obtained by the analytic solution of (1). An efficient method of carrying out the numerical solution of (2) due to P. Drallos and M. Wadehra [Journal of Applied Physics 63, 5601(1988)] is incorporated here. A final version of an applet that performs the full Java simulation will be located at http://www.westga.edu/ jhasbun/osp/osp.htm.

  1. Well-Posedness of the Iterative Boltzmann Inversion

    Science.gov (United States)

    Hanke, Martin

    2018-02-01

    The iterative Boltzmann inversion is a fixed point iteration to determine an effective pair potential for an ensemble of identical particles in thermal equilibrium from the corresponding radial distribution function. Although the method is reported to work reasonably well in practice, it still lacks a rigorous convergence analysis. In this paper we provide some first steps towards such an analysis, and we show under quite general assumptions that the associated fixed point operator is Lipschitz continuous (in fact, differentiable) in a suitable neighborhood of the true pair potential, assuming that such a potential exists. In other words, the iterative Boltzmann inversion is well-defined in the sense that if the kth iterate of the scheme is sufficiently close to the true pair potential then the k+1st iterate is an admissible pair potential, which again belongs to the domain of the fixed point operator. On our way we establish important properties of the cavity distribution function and provide a proof of a statement formulated by Groeneveld concerning the rate of decay at infinity of the Ursell function associated with a Lennard-Jones type potential.

  2. An interpolation boundary treatment for the Lattice Boltzmann method

    Science.gov (United States)

    Deladisma, Marnico D.; Smith, Marc K.

    2003-11-01

    A new boundary condition for the Lattice Boltzmann method based on bounce-back and spatial interpolations is presented. The boundary condition allows for the placement of a boundary at any position between nodes and tracks the exact position of that boundary. Multi-dimensional interpolation of streaming and bounce-back particle distribution functions from surrounding boundary nodes is used to solve for new distribution values. This allows more information from surrounding nodes to be incorporated into the boundary treatment calculation. Calculations of flow within a 2D rotating annulus (with and without an obstacle placed in the flow) using the present boundary condition are compared with calculations done with the commercial CFD solver Fluent. Results show that the boundary condition is accurate and robust for these cases. The boundary condition also allows for moving boundaries and is easily extended to 3D, which facilitates the simulation of moving 3D particles. The new boundary condition will allow a Lattice Boltzmann simulation of a rotating wall vessel bioreactor with freely suspended tissue constructs whose length scale is about 1 cm.

  3. Element Free Lattice Boltzmann Method for Fluid-Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)

    2007-10-15

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.

  4. A Study of the Boltzmann Sequence-Structure Channel.

    Science.gov (United States)

    Magner, Abram; Kihara, Daisuke; Szpankowski, Wojciech

    2017-02-01

    We rigorously study a channel that maps sequences from a finite alphabet to self-avoiding walks in the two-dimensional grid, inspired by a model of protein folding from statistical physics and studied empirically by biophysicists. This channel, which we call the Boltzmann sequence-structure channel, is characterized by a Boltzmann/Gibbs distribution with a free parameter corresponding to temperature. In our previous work, we verified empirically that the channel capacity appears to have a phase transition for small temperature and decays to zero for high temperature. In this paper, we make some progress toward theoretically explaining these phenomena. We first estimate the conditional entropy between the input sequence and the output fold, giving an upper bound which exhibits a phase transition with respect to temperature. Next, we formulate a class of parameter settings under which the dependence between walk energies is governed by their number of shared contacts. In this setting, we derive a lower bound on the conditional entropy. This lower bound allows us to conclude that the mutual information tends to zero in a nontrivial regime of high temperature, giving some support to the empirical fact regarding capacity. Finally, we construct an example setting of the parameters of the model for which the conditional entropy is exactly calculable and which does not exhibit a phase transition.

  5. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  6. Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines

    Science.gov (United States)

    Triwijoyo, B. K.; Pradipto, Y. D.

    2017-01-01

    hypertensive retinopathy (HR) in the retina of the eye is disturbance caused by high blood pressure disease, where there is a systemic change of arterial in the blood vessels of the retina. Most heart attacks occur in patients caused by high blood pressure symptoms of undiagnosed. Hypertensive retinopathy Symptoms such as arteriolar narrowing, retinal haemorrhage and cotton wool spots. Based on this reasons, the early diagnosis of the symptoms of hypertensive retinopathy is very urgent to aim the prevention and treatment more accurate. This research aims to develop a system for early detection of hypertension retinopathy stage. The proposed method is to determine the combined features artery and vein diameter ratio (AVR) as well as changes position with Optic Disk (OD) in retinal images to review the classification of hypertensive retinopathy using Deep Neural Networks (DNN) and Boltzmann Machines approach. We choose this approach of because based on previous research DNN models were more accurate in the image pattern recognition, whereas Boltzmann machines selected because It requires speedy iteration in the process of learning neural network. The expected results from this research are designed a prototype system early detection of hypertensive retinopathy stage and analysed the effectiveness and accuracy of the proposed methods.

  7. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  8. Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.

    Science.gov (United States)

    Keating, Brian; Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda

    2007-03-01

    There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.

  9. Accuracy analysis of a 2D Poisson-Vlasov PIC solver and estimates of the collisional effects in space charge dynamics

    CERN Document Server

    Bazzani, A; Franchi, A; Rambaldi, S; Turchetti, G

    2005-01-01

    We analyze the accuracy of a 2D Poisson-Vlasov PIC integrator, taking the KV as a reference solution for a FODO cell. The particle evolution is symplectic and the Poisson solver is based on FFT. The numerical error, evaluated by comparing the moments of the distribution and the electric field with the exact solution, shows a linear growth. This effect can be modeled by a white noise in the envelope equations for the KV beam. In order to investigate the collisional effects we have integrated the Hamilton's equations for N charged macro-particles with a hard-core r/sub H/ reducing the computational complexity to N/sup 3/2/. In the constant focusing case we observed that a KV beam, matched or mismatched relaxes to the Maxwell-Boltzmann self consistent distribution on a time interval, which depends on r/sub H/ and has a finite limit, for r/sub H/ to 0. A fully 3D PIC code for short bunches was developed for the ADS linac design at LNL (Italy). A 3D particle-core model, based on Langevin's equations with the drift...

  10. Salt-Mediated Electrostatics in the Association of TATA Binding Proteins to DNA: A Combined Molecular Mechanics/Poisson-Boltzmann Study

    OpenAIRE

    Bredenberg, Johan H.; Russo, Cristina; Fenley, Marcia O.

    2008-01-01

    The TATA-binding protein (TBP) is a key component of the archaea ternary preinitiation transcription assembly. The archaeon TBP, from the halophile/hyperthermophile organism Pyrococcus woesei, is adapted to high concentrations of salt and high-temperature environments. Although most eukaryotic TBPs are mesophilic and adapted to physiological conditions of temperature and salt, they are very similar to their halophilic counterparts in sequence and fold. However, whereas the binding affinity to...

  11. Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Pattison, Martin J; Premnath, Kannan N; Banerjee, Sanjoy; Dwivedi, Vinay

    2007-02-26

    Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid metals as coolants in components such as heat exchangers, which are generally subjected to strong magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic (MHD) forces which have important effects on the flow. The objective of this SBIR project was to develop computational techniques based on recently developed lattice Boltzmann techniques for the simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for the study of fluid flow systems encountered in fusion engineering. The code developed during this project, solves the lattice Boltzmann equation, which is a kinetic equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively new approach which has a number of advantages compared with more conventional methods such as the SIMPLE or projection method algorithms that involve direct solution of the Navier-Stokes equations. These are that the LBM is very well suited to parallel processing, with almost linear scaling even for very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson pressure equation leading to a relatively fast execution time. A particularly attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids throughout the computational domain -- generation of a body-fitted grid is not required. A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model; the implementation of this model greatly enhanced the numerical stability when used in lieu of the single relaxation time model, with only a small increase in computer time. Parallel processing was implemented using MPI and demonstrated the

  12. 2D sigma models and differential Poisson algebras

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Cesar [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Boulanger, Nicolas [Service de Mécanique et Gravitation, Université de Mons - UMONS,20 Place du Parc, 7000 Mons (Belgium); Laboratoire de Mathématiques et Physique Théorique,Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson,Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)

    2015-08-18

    We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to a worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.

  13. A dictionary learning approach for Poisson image deblurring.

    Science.gov (United States)

    Ma, Liyan; Moisan, Lionel; Yu, Jian; Zeng, Tieyong

    2013-07-01

    The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods.

  14. Invariants and labels for Lie-Poisson Systems

    International Nuclear Information System (INIS)

    Thiffeault, J.L.; Morrison, P.J.

    1998-04-01

    Reduction is a process that uses symmetry to lower the order of a Hamiltonian system. The new variables in the reduced picture are often not canonical: there are no clear variables representing positions and momenta, and the Poisson bracket obtained is not of the canonical type. Specifically, we give two examples that give rise to brackets of the noncanonical Lie-Poisson form: the rigid body and the two-dimensional ideal fluid. From these simple cases, we then use the semidirect product extension of algebras to describe more complex physical systems. The Casimir invariants in these systems are examined, and some are shown to be linked to the recovery of information about the configuration of the system. We discuss a case in which the extension is not a semidirect product, namely compressible reduced MHD, and find for this case that the Casimir invariants lend partial information about the configuration of the system

  15. Reference manual for the POISSON/SUPERFISH Group of Codes

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finite number of points on a mesh in the plane.

  16. Bering's proposal for boundary contribution to the Poisson bracket

    International Nuclear Information System (INIS)

    Soloviev, V.O.

    1998-11-01

    It is shown that the Poisson bracket with boundary terms recently proposed by Bering can be deduced from the Poisson bracket proposed by the present author if one omits terms free of Euler-Lagrange derivatives (''annihilation principle''). This corresponds to another definition of the formal product of distributions (or, saying it in other words, to another definition of the pairing between 1-forms and 1-vectors in the formal variational calculus). We extend the formula initially suggested by Bering only for the ultralocal case with constant coefficients onto the general non-ultralocal brackets with coefficients depending on fields and their spatial derivatives. The lack of invariance under changes of dependent variables (field redefinitions) seems a drawback of this proposal. (author)

  17. Exponential Stability of Stochastic Systems with Delay and Poisson Jumps

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2014-01-01

    Full Text Available This paper focuses on the model of a class of nonlinear stochastic delay systems with Poisson jumps based on Lyapunov stability theory, stochastic analysis, and inequality technique. The existence and uniqueness of the adapted solution to such systems are proved by applying the fixed point theorem. By constructing a Lyapunov function and using Doob’s martingale inequality and Borel-Cantelli lemma, sufficient conditions are given to establish the exponential stability in the mean square of such systems, and we prove that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. The obtained results show that if stochastic systems is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic delay systems with Poisson jumps will remain exponentially stable, and time delay upper limit is solved by using the obtained results when the system is exponentially stable, and they are more easily verified and applied in practice.

  18. Improved mesh generator for the POISSON Group Codes

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1987-01-01

    This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

  19. An adaptive fast multipole accelerated Poisson solver for complex geometries

    Science.gov (United States)

    Askham, T.; Cerfon, A. J.

    2017-09-01

    We present a fast, direct and adaptive Poisson solver for complex two-dimensional geometries based on potential theory and fast multipole acceleration. More precisely, the solver relies on the standard decomposition of the solution as the sum of a volume integral to account for the source distribution and a layer potential to enforce the desired boundary condition. The volume integral is computed by applying the FMM on a square box that encloses the domain of interest. For the sake of efficiency and convergence acceleration, we first extend the source distribution (the right-hand side in the Poisson equation) to the enclosing box as a C0 function using a fast, boundary integral-based method. We demonstrate on multiply connected domains with irregular boundaries that this continuous extension leads to high accuracy without excessive adaptive refinement near the boundary and, as a result, to an extremely efficient "black box" fast solver.

  20. Investigation of Random Switching Driven by a Poisson Point Process

    DEFF Research Database (Denmark)

    Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef

    2015-01-01

    This paper investigates the switching mechanism of a two-dimensional switched system, when the switching events are generated by a Poisson point process. A model, in the shape of a stochastic process, for such a system is derived and the distribution of the trajectory's position is developed...... together with marginal density functions for the coordinate functions. Furthermore, the joint probability distribution is given explicitly....

  1. Estimating small signals by using maximum likelihood and Poisson statistics

    CERN Document Server

    Hannam, M D

    1999-01-01

    Estimation of small signals from counting experiments with backgrounds larger than signals is solved using maximum likelihood estimation for situations in which both signal and background statistics are Poissonian. Confidence levels are discussed, and Poisson, Gauss and least-squares fitting methods are compared. Efficient algorithms that estimate signal strengths and confidence levels are devised for computer implementation. Examples from simulated data and a low count rate experiment in nuclear physics are given. (author)

  2. Events in time: Basic analysis of Poisson data

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.

  3. A hybrid sampler for Poisson-Kingman mixture models

    OpenAIRE

    Lomeli, M.; Favaro, S.; Teh, Y. W.

    2015-01-01

    This paper concerns the introduction of a new Markov Chain Monte Carlo scheme for posterior sampling in Bayesian nonparametric mixture models with priors that belong to the general Poisson-Kingman class. We present a novel compact way of representing the infinite dimensional component of the model such that while explicitly representing this infinite component it has less memory and storage requirements than previous MCMC schemes. We describe comparative simulation results demonstrating the e...

  4. A generalized Poisson solver for first-principles device simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Nanoscale Simulations, ETH Zürich, 8093 Zürich (Switzerland); Brück, Sascha; Luisier, Mathieu [Integrated Systems Laboratory, ETH Zürich, 8092 Zürich (Switzerland)

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.

  5. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  6. Brain, music, and non-Poisson renewal processes

    Science.gov (United States)

    Bianco, Simone; Ignaccolo, Massimiliano; Rider, Mark S.; Ross, Mary J.; Winsor, Phil; Grigolini, Paolo

    2007-06-01

    In this paper we show that both music composition and brain function, as revealed by the electroencephalogram (EEG) analysis, are renewal non-Poisson processes living in the nonergodic dominion. To reach this important conclusion we process the data with the minimum spanning tree method, so as to detect significant events, thereby building a sequence of times, which is the time series to analyze. Then we show that in both cases, EEG and music composition, these significant events are the signature of a non-Poisson renewal process. This conclusion is reached using a technique of statistical analysis recently developed by our group, the aging experiment (AE). First, we find that in both cases the distances between two consecutive events are described by nonexponential histograms, thereby proving the non-Poisson nature of these processes. The corresponding survival probabilities Ψ(t) are well fitted by stretched exponentials [ Ψ(t)∝exp (-(γt)α) , with 0.5music composition yield μmusic on the human brain.

  7. Optimal smoothing of poisson degraded nuclear medicine image data

    International Nuclear Information System (INIS)

    Hull, D.M.

    1985-01-01

    The development of a method that removes Poisson noise from nuclear medicine studies will have significant impact on the quantitative analysis and clinical reliability of these data. The primary objective of the work described in this thesis was to develop a linear, non-stationary optimal filter to reduce Poisson noise. The derived filter is automatically calculated from a large group (library) of similar patient studies representing all similarly acquired studies (the ensemble). The filter design was evaluated under controlled conditions using two computer simulated ensembles, devised to represent selected properties of real patient gated blood pool studies. Fortran programs were developed to generate libraries of Poisson degraded simulated studies for each ensemble. These libraries then were used to estimate optimal filters specific to the ensemble. Libraries of previously acquired patient gated blood pool studies then were used to estimate the optimal filters for an ensemble of similarly acquired gated blood pool studies. These filters were applied to studies of 13 patients who received multiple repeat studies at one time. Comparisons of both the filtered and raw data to averages of the repeat studies demonstrated that the optimal filters, calculated from a library of 800 studies, reduce the mean square error in the patient data by 60%. It is expected that optimally filtered gated blood pool studies will improve quantitative analysis of the data

  8. Blind beam-hardening correction from Poisson measurements

    Science.gov (United States)

    Gu, Renliang; Dogandžić, Aleksandar

    2016-02-01

    We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.

  9. Effect of surface bilayer charges on the magnetic field around ionic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Soares, Marília Amável [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Cortez, Celia Martins, E-mail: ccortezs@ime.uerj.br [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil); Oliveira Cruz, Frederico Alan de [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Physics, Rural Federal University of Rio de Janeiro (Brazil); Silva, Dilson [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil)

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na{sup +} and K{sup +}-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na{sup +} and K{sup +} permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K{sup +}-channel is very less sensible to temperature changes than the current density through a Na{sup +}- channel, active Na{sup +}-channels do not directly interfere with the K{sup +}-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  10. Action-angle variables and a KAM theorem for b-Poisson manifolds

    OpenAIRE

    Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey

    2015-01-01

    In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.

  11. A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture

    OpenAIRE

    Van Nguyen, Thu

    2011-01-01

    In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."

  12. A comparison of Poisson-one-inflated power series distributions for ...

    African Journals Online (AJOL)

    A class of Poisson-one-inflated power series distributions (the binomial, the Poisson, the negative binomial, the geometric, the log-series and the misrecorded Poisson) are proposed for modeling rural out-migration at the household level. The probability mass functions of the mixture distributions are derived and fitted to the ...

  13. A viscosity adaption method for Lattice Boltzmann simulations

    Science.gov (United States)

    Conrad, Daniel; Schneider, Andreas; Böhle, Martin

    2014-11-01

    In this work, we consider the limited fitness for practical use of the Lattice Boltzmann Method for non-Newtonian fluid flows. Several authors have shown that the LBM is capable of correctly simulating those fluids. However, due to stability reasons the modeled viscosity range has to be truncated. The resulting viscosity boundaries are chosen arbitrarily, because the correct simulation Mach number for the physical problem is unknown a priori. This easily leads to corrupt simulation results. A viscosity adaption method (VAM) is derived which drastically improves the applicability of LBM for non-Newtonian fluid flows by adaption of the modeled viscosity range to the actual physical problem. This is done through tuning of the global Mach number to the solution-dependent shear rate. We demonstrate that the VAM can be used to accelerate LBM simulations and improve their accuracy, for both steady state and transient cases.

  14. Velocity-Field Theory, Boltzmann's Transport Equation and Geometry

    Science.gov (United States)

    Ichinose, Shoichi

    Boltzmann equation describes the time development of the velocity distribution in the continuum fluid matter. We formulate the equation using the field theory where the velocity-field plays the central role. The matter (constituent particles) fields appear as the density and the viscosity. Fluctuation is examined, and is clearly discriminated from the quantum effect. The time variable is emergently introduced through the computational process step. The collision term, for the (velocity)**4 potential (4-body interaction), is explicitly obtained and the (statistical) fluctuation is closely explained. The present field theory model does not conserve energy and is an open-system model. (One dimensional) Navier-Stokes equation or Burger's equation, appears. In the latter part, we present a way to directly define the distribution function by use of the geometry, appearing in the mechanical dynamics, and Feynman's path-integral.

  15. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum...... of an objective function for which the gradient is not available. The algorithm samples function values from a search distribution and adapts the parameters of the distribution during the optimization process. In the thesis, new update schemes for the covariance matrix used by the CMA-ES are investigated....... An update rule using a triangular Cholesky factor is introduced and the additive covariance matrix update is replaced by a multiplicative rule. Experiments show that the proposed methods improve performance of the CMA-ES either computationally or by allowing simpler handling of constraints. The second part...

  16. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  17. Spreading Dynamics of Nanodrops: a Lattice Boltzmann Study

    Science.gov (United States)

    Gross, Markus; Varnik, Fathollah

    2014-01-01

    Spreading of nano-droplets is an interesting and technologically relevant phenomenon, where thermal fluctuations lead to unexpected deviations from well-known deterministic laws. Here, we apply the newly developed fluctuating nonideal lattice Boltzmann (LB) method [M. Gross, M. E. Cates, F. Varnik and R. Adhikari, J. Stat. Mech.2011, P03030 (2011)] for the study of this issue. Confirming the predictions of Davidovich and coworkers [Phys. Rev. Lett.95, 244905 (2005)], we provide the first independent evidence for the existence of an asymptotic, self-similar noise-driven spreading regime in both two- (2D) and three-dimensional (3D) geometry. The cross over from the deterministic Tanner's law, where the drop's base radius b grows (in 3D) with time as b t1/10 and the noise dominated regime, where b t1/6 is also observed by tuning the strength of thermal noise.

  18. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  19. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  20. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  1. Multimesh anisotropic adaptivity for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Farrell, P.E.; Eaton, M.D.; Warner, P.

    2013-01-01

    Highlights: ► We solve the Boltzmann transport equation using anisotropically adaptive finite element meshes. ► The finite element mesh is resolved with minimal user input. ► Anisotropic adaptivity uses less elements than adaptive mesh refinement for the same finite element error. ► This paper also demonstrates the use of separate meshes for each energy group within the multigroup discretisation. ► The methods are applied to a range of fixed source and eigenvalue problems. - Abstract: This article presents a new adaptive finite element based method for the solution of the spatial dimensions of the Boltzmann transport equation. The method applies a curvature based error metric to locate the under and over resolved regions of a solution and this, in turn, is used to guide the refinement and coarsening of the spatial mesh. The error metrics and re-meshing procedures are designed such that they enable anisotropic resolution to form in the mesh should it be appropriate to do so. The adaptive mesh enables the appropriate resolution to be applied throughout the whole domain of a problem and so increase the efficiency of the solution procedure. Another new approach is also described that allows independent adaptive meshes to form for each of the energy group fluxes. The use of independent meshes can significantly improve computational efficiency when solving problems where the different group fluxes require high resolution over different regions. The mesh to mesh interpolation is made possible through the use of a ‘supermeshing’ procedure that ensures the conservation of particles when calculating the group to group scattering sources. Finally it is shown how these methods can be incorporated within a solver to resolve both fixed source and eigenvalue problems. A selection of both fixed source and eigenvalue problems are solved in order to demonstrate the capabilities of these methods

  2. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  3. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  4. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.

    Science.gov (United States)

    Karani, Hamid; Huber, Christian

    2015-02-01

    In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics

  5. Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces.

    Science.gov (United States)

    Mazloomi M, Ali; Chikatamarla, Shyam S; Karlin, Iliya V

    2015-08-01

    The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015)] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.

  6. Geometric discretization of the multidimensional Dirac delta distribution - Application to the Poisson equation with singular source terms

    Science.gov (United States)

    Egan, Raphael; Gibou, Frédéric

    2017-10-01

    We present a discretization method for the multidimensional Dirac distribution. We show its applicability in the context of integration problems, and for discretizing Dirac-distributed source terms in Poisson equations with constant or variable diffusion coefficients. The discretization is cell-based and can thus be applied in a straightforward fashion to Quadtree/Octree grids. The method produces second-order accurate results for integration. Superlinear convergence is observed when it is used to model Dirac-distributed source terms in Poisson equations: the observed order of convergence is 2 or slightly smaller. The method is consistent with the discretization of Dirac delta distribution for codimension one surfaces presented in [1,2]. We present Quadtree/Octree construction procedures to preserve convergence and present various numerical examples, including multi-scale problems that are intractable with uniform grids.

  7. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  8. Bases chimiosensorielles du comportement alimentaire chez les poissons

    Directory of Open Access Journals (Sweden)

    SAGLIO Ph.

    1981-07-01

    Full Text Available Le comportement alimentaire, indispensable à la survie de l'individu et donc de l'espèce, occupe à ce titre une position de première importance dans la hiérarchie des comportements fondamentaux qui tous en dépendent très étroitement. Chez les poissons, cette prééminence se trouve illustrée par l'extrême diversité des supports sensoriels impliqués et des expressions comportementales qui leur sont liées. A la suite d'un certain nombre de mises en évidence neurophysiologiques et éthologiques de l'importance du sens chimique (olfaction, gustation dans le comportement alimentaire des poissons, de très importants secteurs d'études électrophysiologiques et d'analyses physico-chimiques visant à en déterminer la nature exacte (en termes de substances actives se sont développés ces vingt dernières années. De tous ces travaux dont les plus avancés sont présentés ici, il ressort que les acides aminés de série L plus ou moins associés à d'autres composés de poids moléculaires < 1000 constituent des composés chimiques jouant un rôle déterminant dans le comportement alimentaire de nombreuses espèces de poissons carnivores.

  9. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'

    DEFF Research Database (Denmark)

    de Nijs, Robin

    2015-01-01

    by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all...... methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics...... for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties...

  10. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  11. Comparison of three-dimensional Poisson solution methods for particle-based simulation and inhomogeneous dielectrics

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P.; Eisenberg, Robert S.; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda [J. Chem. Phys.JCPSA60021-960610.1063/1.2212423 125, 034901 (2006)]. The qualocation method is described by J. Tausch [IEEE Transactions on Computer-Aided Design of Integrated Circuits and SystemsITCSDI0278-007010.1109/43.969433 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary

  12. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the

  13. On population size estimators in the Poisson mixture model.

    Science.gov (United States)

    Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua

    2013-09-01

    Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.

  14. Team behaviour analysis in sports using the poisson equation

    OpenAIRE

    Direkoglu, Cem; O'Connor, Noel E.

    2012-01-01

    We propose a novel physics-based model for analysing team play- ers’ positions and movements on a sports playing field. The goal is to detect for each frame the region with the highest population of a given team’s players and the region towards which the team is moving as they press for territorial advancement, termed the region of intent. Given the positions of team players from a plan view of the playing field at any given time, we solve a particular Poisson equation to generate a smooth di...

  15. An approach to numerically solving the Poisson equation

    Science.gov (United States)

    Feng, Zhichen; Sheng, Zheng-Mao

    2015-06-01

    We introduce an approach for numerically solving the Poisson equation by using a physical model, which is a way to solve a partial differential equation without the finite difference method. This method is especially useful for obtaining the solutions in very many free-charge neutral systems with open boundary conditions. It can be used for arbitrary geometry and mesh style and is more efficient comparing with the widely-used iterative algorithm with multigrid methods. It is especially suitable for parallel computing. This method can also be applied to numerically solving other partial differential equations whose Green functions exist in analytic expression.

  16. Localization of Point Sources for Poisson Equation using State Observers

    KAUST Repository

    Majeed, Muhammad Usman

    2016-08-09

    A method based On iterative observer design is presented to solve point source localization problem for Poisson equation with riven boundary data. The procedure involves solution of multiple boundary estimation sub problems using the available Dirichlet and Neumann data from different parts of the boundary. A weighted sum of these solution profiles of sub-problems localizes point sources inside the domain. Method to compute these weights is also provided. Numerical results are presented using finite differences in a rectangular domain. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  17. Supersymmetric quantum corrections and Poisson-Lie T-duality

    International Nuclear Information System (INIS)

    Assaoui, F.; Lhallabi, T.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-07-01

    The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric nonlinear sigma model in the sense of Poisson-Lie T-duality. (author)

  18. Ruin probabilities for a regenerative Poisson gap generated risk process

    DEFF Research Database (Denmark)

    Asmussen, Søren; Biard, Romain

    . Asymptotic expressions for the infinite horizon ruin probabilities are given both for the light- and the heavy-tailed case. A basic observation is that the process regenerates at each G-claim. Also an approach via Markov additive processes is outlined, and heuristics are given for the distribution of the time......A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is defined for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F...

  19. Improving EWMA Plans for Detecting Unusual Increases in Poisson Counts

    Directory of Open Access Journals (Sweden)

    R. S. Sparks

    2009-01-01

    adaptive exponentially weighted moving average (EWMA plan is developed for signalling unusually high incidence when monitoring a time series of nonhomogeneous daily disease counts. A Poisson transitional regression model is used to fit background/expected trend in counts and provides “one-day-ahead” forecasts of the next day's count. Departures of counts from their forecasts are monitored. The paper outlines an approach for improving early outbreak data signals by dynamically adjusting the exponential weights to be efficient at signalling local persistent high side changes. We emphasise outbreak signals in steady-state situations; that is, changes that occur after the EWMA statistic had run through several in-control counts.

  20. Standard Test Method for Determining Poisson's Ratio of Honeycomb Cores

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the honeycomb Poisson's ratio from the anticlastic curvature radii, see . 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Maslov indices, Poisson brackets, and singular differential forms

    Science.gov (United States)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  2. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  3. On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems

    Science.gov (United States)

    Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino

    2018-03-01

    The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.

  4. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  5. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  6. Evaluation of Tensile Young's Modulus and Poisson's Ratio of a Bi-modular Rock from the Displacement Measurements in a Brazilian Test

    Science.gov (United States)

    Patel, Shantanu; Martin, C. Derek

    2018-02-01

    Unlike metals, rocks show bi-modularity (different Young's moduli and Poisson's ratios in compression and tension). Displacements monitored during the Brazilian test are used in this study to obtain the Young's modulus and Poisson's ratio in tension. New equations for the displacements in a Brazilian test are derived considering the bi-modularity in the stress-strain relations. The digital image correlation technique was used to monitor the displacements of the Brazilian disk flat surface. To validate the Young's modulus and Poisson's ratio obtained from the Brazilian test, the results were compared with the values from the direct tension tests. The results obtained from the Brazilian test were repetitive and within 3.5% of the value obtained from the direct tension test for the rock tested.

  7. Inexact Bregman iteration with an application to Poisson data reconstruction

    Science.gov (United States)

    Benfenati, A.; Ruggiero, V.

    2013-06-01

    This work deals with the solution of image restoration problems by an iterative regularization method based on the Bregman iteration. Any iteration of this scheme requires the exact computation of the minimizer of a function. However, in some image reconstruction applications, it is either impossible or extremely expensive to obtain exact solutions of these subproblems. In this paper, we propose an inexact version of the iterative procedure, where the inexactness in the inner subproblem solution is controlled by a criterion that preserves the convergence of the Bregman iteration and its features in image restoration problems. In particular, the method allows us to obtain accurate reconstructions also when only an overestimation of the regularization parameter is known. The introduction of the inexactness in the iterative scheme allows us to address image reconstruction problems from data corrupted by Poisson noise, exploiting the recent advances about specialized algorithms for the numerical minimization of the generalized Kullback-Leibler divergence combined with a regularization term. The results of several numerical experiments enable us to evaluate the proposed scheme for image deblurring or denoising in the presence of Poisson noise.

  8. Sparsity-based Poisson denoising with dictionary learning.

    Science.gov (United States)

    Giryes, Raja; Elad, Michael

    2014-12-01

    The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging, and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive-independent identically distributed. Gaussian noise, for which many effective algorithms are available. However, in a low-SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. Salmon et al took this route, proposing a patch-based exponential image representation model based on Gaussian mixture model, leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping-based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR and achieving state-of-the-art results in cases of low SNR.

  9. A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio.

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    Full Text Available Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR. NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts.

  10. Prescription-induced jump distributions in multiplicative Poisson processes

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  11. Development and Application of a Coarse-Grained Model for PNIPAM by Iterative Boltzmann Inversion and Its Combination with Lattice Boltzmann Hydrodynamics.

    Science.gov (United States)

    Boţan, Vitalie; Ustach, Vincent D; Leonhard, Kai; Faller, Roland

    2017-11-16

    The polymer poly(N-isopropylacrylamide) (PNIPAM) is studied using a novel combination of multiscale modeling methodologies. We develop an iterative Boltzmann inversion potential of concentrated PNIPAM solutions and combine it with lattice Boltzmann as a Navier-Stokes equation solver for the solvent. We study in detail the influence of the methodology on statics and dynamics of the system. The combination is successful and significantly simpler and faster than other mapping techniques for polymer solution while keeping the correct hydrodynamics. The model can semiquantitatively describe the correct phase behavior and polymer dynamics.

  12. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.

    2014-01-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit to the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation

  13. Mechanistic slumber vs. statistical insomnia: the early history of Boltzmann's H-theorem (1868-1877)

    Science.gov (United States)

    Badino, M.

    2011-11-01

    An intricate, long, and occasionally heated debate surrounds Boltzmann's H-theorem (1872) and his combinatorial interpretation of the second law (1877). After almost a century of devoted and knowledgeable scholarship, there is still no agreement as to whether Boltzmann changed his view of the second law after Loschmidt's 1876 reversibility argument or whether he had already been holding a probabilistic conception for some years at that point. In this paper, I argue that there was no abrupt statistical turn. In the first part, I discuss the development of Boltzmann's research from 1868 to the formulation of the H-theorem. This reconstruction shows that Boltzmann adopted a pluralistic strategy based on the interplay between a kinetic and a combinatorial approach. Moreover, it shows that the extensive use of asymptotic conditions allowed Boltzmann to bracket the problem of exceptions. In the second part I suggest that both Loschmidt's challenge and Boltzmann's response to it did not concern the H-theorem. The close relation between the theorem and the reversibility argument is a consequence of later investigations on the subject.

  14. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  15. Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method

    Science.gov (United States)

    Januszewski, M.; Kostur, M.

    2014-09-01

    We present Sailfish, an open source fluid simulation package implementing the lattice Boltzmann method (LBM) on modern Graphics Processing Units (GPUs) using CUDA/OpenCL. We take a novel approach to GPU code implementation and use run-time code generation techniques and a high level programming language (Python) to achieve state of the art performance, while allowing easy experimentation with different LBM models and tuning for various types of hardware. We discuss the general design principles of the code, scaling to multiple GPUs in a distributed environment, as well as the GPU implementation and optimization of many different LBM models, both single component (BGK, MRT, ELBM) and multicomponent (Shan-Chen, free energy). The paper also presents results of performance benchmarks spanning the last three NVIDIA GPU generations (Tesla, Fermi, Kepler), which we hope will be useful for researchers working with this type of hardware and similar codes. Catalogue identifier: AETA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 225864 No. of bytes in distributed program, including test data, etc.: 46861049 Distribution format: tar.gz Programming language: Python, CUDA C, OpenCL. Computer: Any with an OpenCL or CUDA-compliant GPU. Operating system: No limits (tested on Linux and Mac OS X). RAM: Hundreds of megabytes to tens of gigabytes for typical cases. Classification: 12, 6.5. External routines: PyCUDA/PyOpenCL, Numpy, Mako, ZeroMQ (for multi-GPU simulations), scipy, sympy Nature of problem: GPU-accelerated simulation of single- and multi-component fluid flows. Solution method: A wide range of relaxation models (LBGK, MRT, regularized LB, ELBM, Shan-Chen, free energy, free surface) and boundary conditions within the lattice

  16. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows

    Science.gov (United States)

    Gupta, A.; Sbragaglia, M.; Belardinelli, D.; Sugiyama, K.

    2016-12-01

    Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the breakup properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic breakup of droplets due to the cross-flowing. Temperature effects are investigated by switching on-off both positive-negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated-delayed breakup. Numerical simulations are performed at changing the flow rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces, and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of breakup in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behavior, and to provide quantitative guidelines on how to predict the droplet size after breakup.

  17. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia

    International Nuclear Information System (INIS)

    Yousfi, M.; Benabdessadok, M.D.

    1996-01-01

    Sets of electron-molecule collision cross sections for H 2 O and NH 3 have been determined from a classical technique of electron swarm parameter unfolding. This deconvolution method is based on a simplex algorithm using a powerful multiterm Boltzmann equation analysis established in the framework of the classical hydrodynamic approximation. It is well adapted for the simulation of the different classes of swarm experiments (i.e., time resolved, time of flight, and steady state experiments). The sets of collision cross sections that exist in the literature are reviewed and analyzed. Fitted sets of cross sections are determined for H 2 O and NH 3 which exhibit features characteristic of polar molecules such as high rotational excitation collision cross sections. The hydrodynamic swarm parameters (i.e., drift velocity, longitudinal and transverse diffusion coefficients, ionization and attachment coefficients) calculated from the fitted sets are in excellent agreement with the measured ones. These sets are finally used to calculate the transport and reaction coefficients needed for discharge modeling in two cases of typical gas mixtures for which experimental swarm data are very sparse or nonexistent (i.e., flue gas mixtures and gas mixtures for rf plasma surface treatment). copyright 1996 American Institute of Physics

  18. Capillary Pressure-Saturation Curves of Glass Bead Systems: Experimental Data and Lattice Boltzmann Simulations

    Science.gov (United States)

    Schaap, M. G.; Porter, M. L.; Christensen, B. S.; Wildenschild, D.

    2006-12-01

    Recent progress in observational and computational techniques has invigorated studies of of fluid dynamics and interfacial geometry in porous media. Computational advances largely concern Lattice Boltzmann (LB) method that has been shown to be useful in simulating microscale flow in porous media. With some phenomenological or thermodynamic extensions, the LB method is also able to deal with microscale interfacial phenomena in single or multiphase systems. The goal of this presentation is to provide insight into what is needed to make a link between 3D experimental observations of interfacial geometry and LB simulations. The experimental data consist of computed tomography observations of several air-water displacements inside a glass bead system with a resolution of 17 microns. Also available are capillary pressure-saturation curves between 0 and 1kPa. The LB model is that of Shan-Chen as modified by Martys and Chen (1996). We present a comprehensive approach for calibrating surface tension and contact angle and to define space, pressure and time scaling. The analyses are partly performed on idealized systems and finally applied to large scale (107 voxels) simulations of the real physical systems. We demonstrate that there is a close agreement between that observed and measured pressure-saturation curves.

  19. Study of heat transfer in an enclosure with a square cylinder using Lattice Boltzmann method

    Science.gov (United States)

    Moussaoui, Mohammed Amine; Mezrhab, Ahmed; Fontaine, Jean Pierre; Bouzidi, M.'hamed

    2017-06-01

    The purpose of this paper is to numerically examine the conjugate surface radiation-natural convection heat transfer in a 2D differentially heated enclosure with an inner square body, which generates heat. The numerical model is based on the coupling of the MRT-lattice Boltzmann model with finite difference method (FDM). The first one is used to compute the velocity field, while the second is adopted to obtain the temperature field. Various key parameters are studied, such as Rayleigh number (103 ≤ Ra ≤ 106), temperature-difference ratio ΔT*(0 ≤ ΔT* ≤ 50), body's thermal conductivity (0 < Ks < ∞) and locations. In this study, the air is considered as perfectly transparent to radiation. Among the salient findings, we can state that (i) the inner body location has a meaningful effect on isotherms, streamlines and total heat transfer through the enclosure, (ii) the heat transfer is affected considerably by increasing the body size and radiation exchange, specially at high Ra. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  20. Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature

    Science.gov (United States)

    Zheng, Youqu; Li, Guoneng; Guo, Wenwen; Dong, Cong

    2017-09-01

    In order to investigate the heat transfer characteristics of pulsating flows past a circular cylinder, a Lattice Boltzmann (LB) numerical code based on a 2-dimension-9-velocity frame is developed. The local Nusselt number and the dimensionless viscous force around the cylinder surface are explored in detail. Double Particle Distribution Function model and the second order extrapolation method for the curve boundary of the cylinder are employed in the LB numerical code. Numerical results found that the spatial averaged Nusselt number of the cylinder is oscillating with the same pulsating frequency of the incoming air flows. The heat transfer enhancement is mainly located in the windward side of the cylinder, and the heat transfer enhancement only happens in one half cycle of the pulsation. Whereas the heat transfer in the leeward side of the cylinder is found to be unaffected, and the heat transfer is slightly deteriorated in the other half cycle of the pulsation. Further analysis showed that the heat transfer enhancement is proportional to the magnitude of dimensionless viscous force.

  1. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method.

    Directory of Open Access Journals (Sweden)

    Aizat Abas

    Full Text Available This paper studies the three dimensional (3D simulation of fluid flows through the ball grid array (BGA to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced.

  2. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  3. Entropic Lattice Boltzmann: an implicit Large-Eddy Simulation?

    Science.gov (United States)

    Tauzin, Guillaume; Biferale, Luca; Sbragaglia, Mauro; Gupta, Abhineet; Toschi, Federico; Ehrhardt, Matthias; Bartel, Andreas

    2017-11-01

    We study the modeling of turbulence implied by the unconditionally stable Entropic Lattice Boltzmann Method (ELBM). We first focus on 2D homogeneous turbulence, for which we conduct numerical simulations for a wide range of relaxation times τ. For these simulations, we analyze the effective viscosity obtained by numerically differentiating the kinetic energy and enstrophy balance equations averaged over sub-domains of the computational grid. We aim at understanding the behavior of the implied sub-grid scale model and verify a formulation previously derived using Chapman-Enskog expansion. These ELBM benchmark simulations are thus useful to understand the range of validity of ELBM as a turbulence model. Finally, we will discuss an extension of the previously obtained results to the 3D case. Supported by the European Unions Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 642069 and by the European Research Council under the ERC Grant Agreement No. 339032.

  4. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    Science.gov (United States)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  5. A dynamically adaptive lattice Boltzmann method for thermal convection problems

    Directory of Open Access Journals (Sweden)

    Feldhusen Kai

    2016-12-01

    Full Text Available Utilizing the Boussinesq approximation, a double-population incompressible thermal lattice Boltzmann method (LBM for forced and natural convection in two and three space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement (AMR procedure tailored for the LBM is applied to enable computationally efficient simulations of moderate to high Rayleigh number flows which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The objective of the latter is to advance the boundary conditions for an accurate treatment of curved boundaries and to demonstrate the effect on the solution. The effectiveness of the overall approach is demonstrated for the natural convection benchmark of a 2D cavity with differentially heated walls at Rayleigh numbers from 103 up to 108. To demonstrate the benefit of the employed AMR procedure for three-dimensional (3D problems, results from the natural convection in a cubic cavity at Rayleigh numbers from 103 up to 105 are compared with benchmark results.

  6. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  7. New Monte Carlo approach to the adjoint Boltzmann equation

    International Nuclear Information System (INIS)

    De Matteis, A.; Simonini, R.

    1978-01-01

    A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections

  8. Equivalence of restricted Boltzmann machines and tensor network states

    Science.gov (United States)

    Chen, Jing; Cheng, Song; Xie, Haidong; Wang, Lei; Xiang, Tao

    2018-02-01

    The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.

  9. Stable lattice Boltzmann model for Maxwell equations in media

    Science.gov (United States)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  10. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  11. Lattice-Boltzmann Modeling of Interfacial Dynamics in Porous Media

    Science.gov (United States)

    Porter, M. L.; Coon, E. T.; Kang, Q.; Carey, J. W.

    2012-12-01

    Traditional continuum scale multiphase flow models rely heavily on average properties and constitutive relationships that do not always accurately represent the underlying physics affecting flow and transport at the pore scale. These models are typically based on heuristic extensions of Darcy's law, rather than formally upscaling conservation principles that account for the microscale physics. As a result, constitutive relationships, such as capillary pressure and relative permeability, are highly simplified. It has been recognized that continuum scale multiphase flow models must include gradients of saturation and specific fluid-fluid interfacial area, in addition to the Darcy pressure gradient, as driving forces for the flow of multiple fluids in porous media. In this work, we investigate interfacial dynamics in porous media using a multicomponent lattice-Boltzmann simulator. We present simulations of drainage and imbibition in 2D and 3D heterogeneous porous media. We validate the simulations by comparing specific interfacial area estimates with those obtained from experiments. In addition, we present estimates of continuum scale interfacial velocity and the production/destruction of specific interfacial area.

  12. Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine

    2008-02-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 14x improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  13. Lattice Boltzmann simulation optimization on leading multicore platforms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Carter, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yelick, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2008-01-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of searchbased performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our autotuned LBMHD application achieves up to a 14 improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  14. A Boltzmann constant determination based on Johnson noise thermometry

    Science.gov (United States)

    Flowers-Jacobs, N. E.; Pollarolo, A.; Coakley, K. J.; Fox, A. E.; Rogalla, H.; Tew, W. L.; Benz, S. P.

    2017-10-01

    A value for the Boltzmann constant was measured electronically using an improved version of the Johnson Noise Thermometry (JNT) system at the National Institute of Standards and Technology (NIST), USA. This system is different from prior ones, including those from the 2011 determination at NIST and both 2015 and 2017 determinations at the National Institute of Metrology (NIM), China. As in all three previous determinations, the main contribution to the combined uncertainty is the statistical uncertainty in the noise measurement, which is mitigated by accumulating and integrating many weeks of cross-correlated measured data. The second major uncertainty contribution also still results from variations in the frequency response of the ratio of the measured spectral noise of the two noise sources, the sense resistor at the triple-point of water and the superconducting quantum voltage noise source. In this paper, we briefly describe the major differences between our JNT system and previous systems, in particular the input circuit and approach we used to match the frequency responses of the two noise sources. After analyzing and integrating 50 d of accumulated data, we determined a value: k~=1.380 642 9(69)× {{10}-23} J K-1 with a relative standard uncertainty of 5.0× {{10}-6} and relative offset -4.05× {{10}-6} from the CODATA 2014 recommended value.

  15. Massively parallel simulations of multiphase flows using Lattice Boltzmann methods

    Science.gov (United States)

    Ahrenholz, Benjamin

    2010-03-01

    In the last two decades the lattice Boltzmann method (LBM) has matured as an alternative and efficient numerical scheme for the simulation of fluid flows and transport problems. Unlike conventional numerical schemes based on discretizations of macroscopic continuum equations, the LBM is based on microscopic models and mesoscopic kinetic equations. The fundamental idea of the LBM is to construct simplified kinetic models that incorporate the essential physics of microscopic or mesoscopic processes so that the macroscopic averaged properties obey the desired macroscopic equations. Especially applications involving interfacial dynamics, complex and/or changing boundaries and complicated constitutive relationships which can be derived from a microscopic picture are suitable for the LBM. In this talk a modified and optimized version of a Gunstensen color model is presented to describe the dynamics of the fluid/fluid interface where the flow field is based on a multi-relaxation-time model. Based on that modeling approach validation studies of contact line motion are shown. Due to the fact that the LB method generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallelization. Hence, it is possible to perform efficient simulations in complex geometries at a large scale by massively parallel computations. Here, the results of drainage and imbibition (Degree of Freedom > 2E11) in natural porous media gained from microtomography methods are presented. Those fully resolved pore scale simulations are essential for a better understanding of the physical processes in porous media and therefore important for the determination of constitutive relationships.

  16. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    Science.gov (United States)

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues.

  17. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method

    Science.gov (United States)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chew, Jia Wei

    2018-02-01

    In this study, an alternative second-order boundary scheme is proposed under the framework of the convection-diffusion lattice Boltzmann (LB) method for both straight and curved geometries. With the proposed scheme, boundary implementations are developed for the Dirichlet, Neumann and linear Robin conditions in a consistent way. The Chapman-Enskog analysis and the Hermite polynomial expansion technique are first applied to derive the explicit expression for the general distribution function with second-order accuracy. Then, the macroscopic variables involved in the expression for the distribution function is determined by the prescribed macroscopic constraints and the known distribution functions after streaming [see the paragraph after Eq. (29) for the discussions of the "streaming step" in LB method]. After that, the unknown distribution functions are obtained from the derived macroscopic information at the boundary nodes. For straight boundaries, boundary nodes are directly placed at the physical boundary surface, and the present scheme is applied directly. When extending the present scheme to curved geometries, a local curvilinear coordinate system and first-order Taylor expansion are introduced to relate the macroscopic variables at the boundary nodes to the physical constraints at the curved boundary surface. In essence, the unknown distribution functions at the boundary node are derived from the known distribution functions at the same node in accordance with the macroscopic boundary conditions at the surface. Therefore, the advantages of the present boundary implementations are (i) the locality, i.e., no information from neighboring fluid nodes is required; (ii) the consistency, i.e., the physical boundary constraints are directly applied when determining the macroscopic variables at the boundary nodes, thus the three kinds of conditions are realized in a consistent way. It should be noted that the present focus is on two-dimensional cases, and theoretical

  18. Monte Carlo method for random surfaces

    International Nuclear Information System (INIS)

    Berg, B.

    1985-01-01

    Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)

  19. An alternating minimization method for blind deconvolution from Poisson data

    International Nuclear Information System (INIS)

    Prato, Marco; La Camera, Andrea; Bonettini, Silvia

    2014-01-01

    Blind deconvolution is a particularly challenging inverse problem since information on both the desired target and the acquisition system have to be inferred from the measured data. When the collected data are affected by Poisson noise, this problem is typically addressed by the minimization of the Kullback-Leibler divergence, in which the unknowns are sought in particular feasible sets depending on the a priori information provided by the specific application. If these sets are separated, then the resulting constrained minimization problem can be addressed with an inexact alternating strategy. In this paper we apply this optimization tool to the problem of reconstructing astronomical images from adaptive optics systems, and we show that the proposed approach succeeds in providing very good results in the blind deconvolution of nondense stellar clusters

  20. Beatification: Flattening Poisson brackets for plasma theory and computation

    Science.gov (United States)

    Morrison, P. J.; Viscondi, T. F.; Caldas, I.

    2017-10-01

    A perturbative method called beatification is presented for producing nonlinear Hamiltonian fluid and plasma theories. Plasma Hamiltonian theories, fluid and kinetic, are naturally described in terms of noncanonical variables. The beatification procedure amounts to finding a transformation that removes the explicit variable dependence from a noncanonical Poisson bracket and replaces it with a fixed dependence on a chosen state in the phase space. As such, beatification is a major step toward casting the Hamiltonian system in its canonical form, thus enabling or facilitating the use of analytical and numerical techniques that require or favor a representation in terms of canonical, or beatified, Hamiltonian variables. Examples will be given. U.S. D.O.E No. #DE-FG02-04ER-54742.

  1. Random walk in dynamically disordered chains: Poisson white noise disorder

    International Nuclear Information System (INIS)

    Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.

    1989-01-01

    Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute

  2. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations...... of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations by standard techniques. For parametric restrictions, analytical solutions to the stochastic growth model and a novel...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  3. Modeling the number of car theft using Poisson regression

    Science.gov (United States)

    Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura

    2016-10-01

    Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.

  4. On the FACR( l) algorithm for the discrete Poisson equation

    Science.gov (United States)

    Temperton, Clive

    1980-03-01

    Direct methods for the solution of the discrete Poisson equation over a rectangle are commonly based either on Fourier transforms or on block-cyclic reduction. The relationship between these two approaches is demonstrated explicitly, and used to derive the FACR( l) algorithm in which the Fourier transform approach is combined with l preliminary steps of cyclic reduction. It is shown that the optimum choice of l leads to an algorithm for which the operation count per mesh point is almost independent of the mesh size. Numerical results concerning timing and round-off error are presented for the N × N Dirichlet problem for various values of N and l. Extensions to more general problems, and to implementation on parallel or vector computers are briefly discussed.

  5. Recent advances in the Poisson/superfish codes

    International Nuclear Information System (INIS)

    Ryne, R.; Barts, T.; Chan, K.C.D.; Cooper, R.; Deaven, H.; Merson, J.; Rodenz, G.

    1992-01-01

    We report on advances in the POISSON/SUPERFISH family of codes used in the design and analysis of magnets and rf cavities. The codes include preprocessors for mesh generation and postprocessors for graphical display of output and calculation of auxiliary quantities. Release 3 became available in January 1992; it contains many code corrections and physics enhancements, and it also includes support for PostScript, DISSPLA, GKS and PLOT10 graphical output. Release 4 will be available in September 1992; it is free of all bit packing, making the codes more portable and able to treat very large numbers of mesh points. Release 4 includes the preprocessor FRONT and a new menu-driven graphical postprocessor that runs on workstations under X-Windows and that is capable of producing arrow plots. We will present examples that illustrate the new capabilities of the codes. (author). 6 refs., 3 figs

  6. On the Magnetic Shield for a Vlasov-Poisson Plasma

    Science.gov (United States)

    Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo

    2017-12-01

    We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.

  7. Statistical modelling of Poisson/log-normal data

    International Nuclear Information System (INIS)

    Miller, G.

    2007-01-01

    In statistical data fitting, self consistency is checked by examining the closeness of the quantity Χ 2 /NDF to 1, where Χ 2 is the sum of squares of data minus fit divided by standard deviation, and NDF is the number of data minus the number of fit parameters. In order to calculate Χ 2 one needs an expression for the standard deviation. In this note several alternative expressions for the standard deviation of data distributed according to a Poisson/log-normal distribution are proposed and evaluated by Monte Carlo simulation. Two preferred alternatives are identified. The use of replicate data to obtain uncertainty is problematic for a small number of replicates. A method to correct this problem is proposed. The log-normal approximation is good for sufficiently positive data. A modification of the log-normal approximation is proposed, which allows it to be used to test the hypothesis that the true value is zero. (authors)

  8. Cryoconservation du sperme et des embryons de poissons

    OpenAIRE

    Maisse, Gérard; Labbé, Catherine; Ogier de Baulny, Bénédicte; Leveroni Calvi, Sylvia; Haffray, Pierrick

    1998-01-01

    Le développement des programmes de sélection génétique en pisciculture et la protection de la biodiversité de l’ichtyofaune sauvage justifient la création de cryo-banques de sperme et d’embryons de poissons. Les travaux sur la formulation des dilueurs de congélation montrent que l’on doit tenir compte à la fois de l’espèce cible, du type cellulaire concerné et des interactions entre les différents composants du dilueur. L’aptitude à la cryoconservation du sperme est très variable suivant les ...

  9. Bases chimiosensorielles du comportement alimentaire chez les poissons

    OpenAIRE

    Saglio, P.

    1981-01-01

    Le comportement alimentaire, indispensable à la survie de l'individu et donc de l'espèce, occupe à ce titre une position de première importance dans la hiérarchie des comportements fondamentaux qui tous en dépendent très étroitement. Chez les poissons, cette prééminence se trouve illustrée par l'extrême diversité des supports sensoriels impliqués et des expressions comportementales qui leur sont liées. A la suite d'un certain nombre de mises en évidence neurophysiologiques et éthologiques de ...

  10. Radio pulsar glitches as a state-dependent Poisson process

    Science.gov (United States)

    Fulgenzi, W.; Melatos, A.; Hughes, B. D.

    2017-10-01

    Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.

  11. On the Fractional Poisson Process and the Discretized Stable Subordinator

    Directory of Open Access Journals (Sweden)

    Rudolf Gorenflo

    2015-08-01

    Full Text Available We consider the renewal counting number process N = N(t as a forward march over the non-negative integers with independent identically distributed waiting times. We embed the values of the counting numbers N in a “pseudo-spatial” non-negative half-line x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both variables x and t. Applying then a modification of the Montroll-Weiss-Cox formalism of continuous time random walk we obtain the essential characteristics of a renewal process in the transform domain and, if we are lucky, also in the physical domain. The process t = t(N of accumulation of waiting times is inverse to the counting number process, in honour of the Danish mathematician and telecommunication engineer A.K. Erlang we call it the Erlang process. It yields the probability of exactly n renewal events in the interval (0; t]. We apply our Laplace-Laplace formalism to the fractional Poisson process whose waiting times are of Mittag-Leffler type and to a renewal process whose waiting times are of Wright type. The process of Mittag-Leffler type includes as a limiting case the classical Poisson process, the process of Wright type represents the discretized stable subordinator and a re-scaled version of it was used in our method of parametric subordination of time-space fractional diffusion processes. Properly rescaling the counting number process N(t and the Erlang process t(N yields as diffusion limits the inverse stable and the stable subordinator, respectively.

  12. A multiresolution method for solving the Poisson equation using high order regularization

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Walther, Jens Honore

    2016-01-01

    and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...

  13. Simulation of capillary infiltration into packing structures for the optimization of ceramic materials using the lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Danilo Sergi

    2016-01-01

    Full Text Available This study uses the lattice Boltzmann method (LBM to simulate in 2D the capillary infiltration into porous structures obtained from the packing of particles. The experimental problem motivating the work is the densification of carbon preforms by reactive melt infiltration. The aim is to determine the optimization principles for the manufacturing of high-performance ceramics. Simulations are performed for packings with varying structural properties. The results suggest that the observed slow infiltrations can be ascribed to interface dynamics. Pinning represents the primary factor retarding fluid penetration. The mechanism responsible for this phenomenon is analyzed in detail. When surface growth is allowed, it is found that the phenomenon of pinning becomes stronger. Systems trying to reproduce typical experimental conditions are also investigated. It turns out that the standard for accurate simulations is challenging. The primary obstacle to overcome for enhanced accuracy seems to be the over-occurrence of pinning.

  14. Dynamic permeability of porous media by the lattice Boltzmann method

    Science.gov (United States)

    Adler, P.; Pazdniakou, A.

    2012-04-01

    The main objective of our work is to determine the dynamic permeability of three dimensional porous media by means of the Lattice Boltzmann method (LBM). The Navier-Stokes equation can be numerically solved by LBM which is widely used to address various fluid dynamics problems. Space is discretized by a three-dimensional cubic lattice and time is discretized as well. The generally accepted notation for lattice Boltzmann models is DdQq where D stands for space dimension and Q for the number of discrete velocities. The present model is denoted by D3Q19. Moreover, the Two Relaxation Times variant of the Multi Relaxation Times model is implemented. Bounce back boundary conditions are used on the solid-fluid interfaces. The porous medium is spatially periodic. Reconstructed media were used; they are obtained by imposing a porosity and a correlation function characterized by a correlation length. Real samples can be obtained by MicroCT. In contrast with other previous contributions, the dynamic permeability K(omega) which is a complex number, is derived by imposing an oscillating body force of pulsation omega on the unit cell and by deriving the amplitude and the phase shift of the resulting time dependent seepage velocity. The influence of two limiting parameters, namely the Knudsen number Kn and the discretization for high frequencies, on K(omega) is carefully studied for the first time. Kn is proportional to nu/(cs H) where nu is the kinematic viscosity, cs the speed of sound in the fluid and H a characteristic length scale of the porous medium. Several porous media such as the classical plane Poiseuille flow and the reconstructed media are used to show that it is only for small enough values of Kn that reliable results are obtained. Otherwise, the data depend on Kn and may even be totally unphysical. However, it should be noticed that the limiting value of Kn could not be derived in general since it depends very much on the structure of the medium. Problems occur at

  15. Multicomponent gas mixture air bearing modeling via lattice Boltzmann method

    Science.gov (United States)

    Tae Kim, Woo; Kim, Dehee; Hari Vemuri, Sesha; Kang, Soo-Choon; Seung Chung, Pil; Jhon, Myung S.

    2011-04-01

    As the demand for ultrahigh recording density increases, development of an integrated head disk interface (HDI) modeling tool, which considers the air bearing and lubricant film morphology simultaneously is of paramount importance. To overcome the shortcomings of the existing models based on the modified Reynolds equation (MRE), the lattice Boltzmann method (LBM) is a natural choice in modeling high Knudsen number (Kn) flows owing to its advantages over conventional methods. The transient and parallel nature makes this LBM an attractive tool for the next generation air bearing design. Although LBM has been successfully applied to single component systems, a multicomponent system analysis has been thwarted because of the complexity in coupling the terms for each component. Previous studies have shown good results in modeling immiscible component mixtures by use of an interparticle potential. In this paper, we extend our LBM model to predict the flow rate of high Kn pressure-driven flows in multicomponent gas mixture air bearings, such as the air-helium system. For accurate modeling of slip conditions near the wall, we adopt our LBM scheme with spatially dependent relaxation times for air bearings in HDIs. To verify the accuracy of our code, we tested our scheme via simple two-dimensional benchmark flows. In the pressure-driven flow of an air-helium mixture, we found that the simple linear combination of pure helium and pure air flow rates, based on helium and air mole fraction, gives considerable error when compared to our LBM calculation. Hybridization with the existing MRE database can be adopted with the procedure reported here to develop the state-of-the-art slider design software.

  16. Peristaltic particle transport using the Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  17. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  18. Implementing the lattice Boltzmann model on commodity graphics hardware

    International Nuclear Information System (INIS)

    Kaufman, Arie; Fan, Zhe; Petkov, Kaloian

    2009-01-01

    Modern graphics processing units (GPUs) can perform general-purpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore's law, and its peak floating point performance exceeds that of the CPU by an order of magnitude. Therefore, it is a viable platform for time-sensitive and computationally intensive applications. The lattice Boltzmann model (LBM) computations are carried out via linear operations at discrete lattice sites, which can be implemented efficiently using a GPU-based architecture. Our simulations produce results comparable to the CPU version while improving performance by an order of magnitude. We have demonstrated that the GPU is well suited for interactive simulations in many applications, including simulating fire, smoke, lightweight objects in wind, jellyfish swimming in water, and heat shimmering and mirage (using the hybrid thermal LBM). We further advocate the use of a GPU cluster for large scale LBM simulations and for high performance computing. The Stony Brook Visual Computing Cluster has been the platform for several applications, including simulations of real-time plume dispersion in complex urban environments and thermal fluid dynamics in a pressurized water reactor. Major GPU vendors have been targeting the high performance computing market with GPU hardware implementations. Software toolkits such as NVIDIA CUDA provide a convenient development platform that abstracts the GPU and allows access to its underlying stream computing architecture. However, software programming for a GPU cluster remains a challenging task. We have therefore developed the Zippy framework to simplify GPU cluster programming. Zippy is based on global arrays combined with the stream programming model and it hides the low-level details of the

  19. Poisson Regresyon Uygulaması: Türkiye'deki Grevlerin Belirleyicileri 1964-1998 = An Application of Poisson Regression to the Strikes in Turkey: 1964-1998

    Directory of Open Access Journals (Sweden)

    Hasan ŞAHİN

    2002-01-01

    Full Text Available This study applies a Poisson regression model to annual Turkish strikes data of the period of 1964-1998. The Poisson regression model is preferable when the dependent variable is count data. Economical and social variables are used as determinants of the number of strikes. Empirical results show that the unemployment rate and a dummy variable that takes 0 before 1980 1 otherwise are significantly affects the number of strikes.

  20. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  1. The Rasch Poisson counts model for incomplete data : An application of the EM algorithm

    NARCIS (Netherlands)

    Jansen, G.G.H.

    Rasch's Poisson counts model is a latent trait model for the situation in which K tests are administered to N examinees and the test score is a count [e.g., the repeated occurrence of some event, such as the number of items completed or the number of items answered (in)correctly]. The Rasch Poisson

  2. Modeling Repeated Count Data : Some Extensions of the Rasch Poisson Counts Model

    NARCIS (Netherlands)

    van Duijn, M.A.J.; Jansen, Margo

    1995-01-01

    We consider data that can be summarized as an N X K table of counts-for example, test data obtained by administering K tests to N subjects. The cell entries y(ij) are assumed to be conditionally independent Poisson-distributed random variables, given the NK Poisson intensity parameters mu(ij). The

  3. Extension of the application of conway-maxwell-poisson models: analyzing traffic crash data exhibiting underdispersion.

    Science.gov (United States)

    Lord, Dominique; Geedipally, Srinivas Reddy; Guikema, Seth D

    2010-08-01

    The objective of this article is to evaluate the performance of the COM-Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM-Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over- or underdispersion. Over the last year, the COM-Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson-gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM-Poisson models were estimated using crash data collected at 162 railway-highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM-Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set.

  4. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    A single-degree-of-freedom inelastic system subject to a stochastic excitation in form of a Poisson-distributed train of impulses is considered. The state variables of the system form a non-diffusive, Poisson-driven Markov process. Two approximate analytical techniques are developed: modification...

  5. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.

    Science.gov (United States)

    Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah

    2012-01-01

    Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis.

  6. A relation between Liapunov stability, non-wanderingness and Poisson stability

    International Nuclear Information System (INIS)

    Ahmad, K.H.

    1985-07-01

    In this work, some of the relations among Liapunov stability, non-wanderingness and Poisson stability are considered. In particular it is shown that for a non-wandering point in a set, positive (resp. negative) Liapunov stability in that set implies positive (resp. negative) Poisson stability in the same set. (author)

  7. Approximation by some combinations of Poisson integrals for Hermite and Laguerre expansions

    Directory of Open Access Journals (Sweden)

    Grażyna Krech

    2013-02-01

    Full Text Available The aim of this paper is the study of a rate of convergence of some combinations of Poisson integrals for Hermite and Laguerre expansions. We are able to achieve faster convergence for our modified operators over the Poisson integrals. We prove also the Voronovskaya type theorem for these new operators.

  8. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1987-01-01

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  9. Atoms, mechanics, and probability Ludwig Boltzmann's statistico-mechanical writings : an exegesis

    CERN Document Server

    Darrigol, Olivier

    2018-01-01

    One of the pillars of modern science, statistical mechanics, owes much to one man, the Austrian physicist Ludwig Boltzmann (1844-1906). As a result of his unusual working and writing styles, his enormous contribution remains little read and poorly understood. The purpose of this book is to make the Boltzmann corpus more accessible to physicists, philosophers, and historians, and so give it new life. The means are introductory biographical and historical materials, detailed and lucid summaries of every relevant publication, and a final chapter of critical synthesis. Special attention is given to Boltzmann's theoretical tool-box and to his patient construction of lofty formal systems even before their full conceptual import could be known. This constructive tendency largely accounts for his lengthy style, for the abundance of new constructions, for the relative vagueness of their object--and for the puzzlement of commentators. This book will help the reader cross the stylistic barrier and see how ingeniously B...

  10. Poisson's ratio and Young's modulus of lipid bilayers in different phases

    Directory of Open Access Journals (Sweden)

    Tayebeh eJadidi

    2014-04-01

    Full Text Available A general computational method is introduced to estimate the Poisson's ratio for membranes with small thickness.In this method, the Poisson's ratio is calculated by utilizing a rescaling of inter-particle distancesin one lateral direction under periodic boundary conditions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we calculate the Poisson's ratio in the gel, fluid, and interdigitated phases. Having the Poisson's ratio, enable us to obtain the Young's modulus for the membranes in different phases. The approach may be applied to other membranes such as graphene and tethered membranes in orderto predict the temperature dependence of its Poisson's ratio and Young's modulus.

  11. The Lie-Poisson structure of integrable classical non-linear sigma models

    International Nuclear Information System (INIS)

    Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.

    1993-01-01

    The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)

  12. Cooperative HARQ with Poisson Interference and Opportunistic Routing

    KAUST Repository

    Kaveh, Mostafa

    2014-01-06

    This presentation considers reliable transmission of data from a source to a destination, aided cooperatively by wireless relays selected opportunistically and utilizing hybrid forward error correction/detection, and automatic repeat request (Hybrid ARQ, or HARQ). Specifically, we present a performance analysis of the cooperative HARQ protocol in a wireless adhoc multihop network employing spatial ALOHA. We model the nodes in such a network by a homogeneous 2-D Poisson point process. We study the tradeoff between the per-hop rate, spatial density and range of transmissions inherent in the network by optimizing the transport capacity with respect to the network design parameters, HARQ coding rate and medium access probability. We obtain an approximate analytic expression for the expected progress of opportunistic routing and optimize the capacity approximation by convex optimization. By way of numerical results, we show that the network design parameters obtained by optimizing the analytic approximation of transport capacity closely follows that of Monte Carlo based exact transport capacity optimization. As a result of the analysis, we argue that the optimal HARQ coding rate and medium access probability are independent of the node density in the network.

  13. Confidence limits for parameters of Poisson and binomial distributions

    International Nuclear Information System (INIS)

    Arnett, L.M.

    1976-04-01

    The confidence limits for the frequency in a Poisson process and for the proportion of successes in a binomial process were calculated and tabulated for the situations in which the observed values of the frequency or proportion and an a priori distribution of these parameters are available. Methods are used that produce limits with exactly the stated confidence levels. The confidence interval [a,b] is calculated so that Pr [a less than or equal to lambda less than or equal to b c,μ], where c is the observed value of the parameter, and μ is the a priori hypothesis of the distribution of this parameter. A Bayesian type analysis is used. The intervals calculated are narrower and appreciably different from results, known to be conservative, that are often used in problems of this type. Pearson and Hartley recognized the characteristics of their methods and contemplated that exact methods could someday be used. The calculation of the exact intervals requires involved numerical analyses readily implemented only on digital computers not available to Pearson and Hartley. A Monte Carlo experiment was conducted to verify a selected interval from those calculated. This numerical experiment confirmed the results of the analytical methods and the prediction of Pearson and Hartley that their published tables give conservative results

  14. Poisson process approximation for sequence repeats, and sequencing by hybridization.

    Science.gov (United States)

    Arratia, R; Martin, D; Reinert, G; Waterman, M S

    1996-01-01

    Sequencing by hybridization is a tool to determine a DNA sequence from the unordered list of all l-tuples contained in this sequence; typical numbers for l are l = 8, 10, 12. For theoretical purposes we assume that the multiset of all l-tuples is known. This multiset determines the DNA sequence uniquely if none of the so-called Ukkonen transformations are possible. These transformations require repeats of (l-1)-tuples in the sequence, with these repeats occurring in certain spatial patterns. We model DNA as an i.i.d. sequence. We first prove Poisson process approximations for the process of indicators of all leftmost long repeats allowing self-overlap and for the process of indicators of all left-most long repeats without self-overlap. Using the Chen-Stein method, we get bounds on the error of these approximations. As a corollary, we approximate the distribution of longest repeats. In the second step we analyze the spatial patterns of the repeats. Finally we combine these two steps to prove an approximation for the probability that a random sequence is uniquely recoverable from its list of l-tuples. For all our results we give some numerical examples including error bounds.

  15. Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks

    KAUST Repository

    Ali, Konpal S.

    2018-03-21

    A network model is considered where Poisson distributed base stations transmit to $N$ power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate $\\\\mathcal{R}_{\\ m tot}$, for general $N$, constrained to: 1) a minimum rate $\\\\mathcal{T}$ for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum $N$ that maximizes the constrained $\\\\mathcal{R}_{\\ m tot}$ given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters $N$, the constraints, and the ordering technique to balance the $\\\\mathcal{R}_{\\ m tot}$ and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance.

  16. METHOD OF FOREST FIRES PROBABILITY ASSESSMENT WITH POISSON LAW

    Directory of Open Access Journals (Sweden)

    A. S. Plotnikova

    2016-01-01

    Full Text Available The article describes the method for the forest fire burn probability estimation on a base of Poisson distribution. The λ parameter is assumed to be a mean daily number of fires detected for each Forest Fire Danger Index class within specific period of time. Thus, λ was calculated for spring, summer and autumn seasons separately. Multi-annual daily Forest Fire Danger Index values together with EO-derived hot spot map were input data for the statistical analysis. The major result of the study is generation of the database on forest fire burn probability. Results were validated against EO daily data on forest fires detected over Irkutsk oblast in 2013. Daily weighted average probability was shown to be linked with the daily number of detected forest fires. Meanwhile, there was found a number of fires which were developed when estimated probability was low. The possible explanation of this phenomenon was provided.

  17. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  18. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

    Directory of Open Access Journals (Sweden)

    El Ganaoui Mohammed

    2009-01-01

    Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

  19. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)

    2011-04-08

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  20. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2011-01-01

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  1. Two experiments to approach the Boltzmann factor: chemical reaction and viscous flow

    International Nuclear Information System (INIS)

    Fazio, Claudio; Battaglia, Onofrio R; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms of macroscopic variables whose temperature dependence is proportional to the Boltzmann factor. A description of a workshop implementing the approach in the framework of an undergraduate course for engineering education and some preliminary results about its pedagogical relevance are then reported. (paper)

  2. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  3. A maximum principle for the first-order Boltzmann equation, incorporating a potential treatment of voids

    International Nuclear Information System (INIS)

    Schofield, S.L.

    1988-01-01

    Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)

  4. Contributions to the spectral theory of the linear Boltzmann operator for various geometries

    International Nuclear Information System (INIS)

    Protopopescu, V.

    1975-01-01

    The linear monoenergetic Boltzmann operator with isotropic scattering is studied for various geometries and boundary conditions as the infinitesimal generator of a positivity preserving contractive semigroup in an appropriate Hilbert space. General results about the existence and the uniqueness of the solutions of the corresponding evolution problems are reviewed. The spectrum of the Boltzmann operator is analyzed for semi-infinite, slab and parallelepipedic geometries with vacuum, periodic, perfectly reflecting, generalized and diffusely reflecting boundary condition respectively. The main features of these spectra, their importance for determining the asymptotic evolution and possible generalizations to more realistic models are put together in a final section. (author)

  5. On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions

    Science.gov (United States)

    Punshon-Smith, Samuel; Smith, Scott

    2018-02-01

    This article studies the Cauchy problem for the Boltzmann equation with stochastic kinetic transport. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (in the sense of DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. This study includes a criterion for renormalization, the weak closedness of the solution set, and tightness of velocity averages in {{L}1}.

  6. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    Science.gov (United States)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  7. Unsupervised 3D Local Feature Learning by Circle Convolutional Restricted Boltzmann Machine.

    Science.gov (United States)

    Han, Zhizhong; Liu, Zhenbao; Han, Junwei; Vong, Chi-Man; Bu, Shuhui; Li, Xuelong

    2016-09-02

    Extracting local features from 3D shapes is an important and challenging task that usually requires carefully designed 3D shape descriptors. However, these descriptors are hand-crafted and require intensive human intervention with prior knowledge. To tackle this issue, we propose a novel deep learning model, namely Circle Convolutional Restricted Boltzmann Machine (CCRBM), for unsupervised 3D local feature learning. CCRBM is specially designed to learn from raw 3D representations. It effectively overcomes obstacles such as irregular vertex topology, orientation ambiguity on the 3D surface, and rigid or slightly non-rigid transformation invariance in the hierarchical learning of 3D data that cannot be resolved by the existing deep learning models. Specifically, by introducing the novel circle convolution, CCRBM holds a novel ring-like multilayer structure to learn 3D local features in a structure preserving manner. Circle convolution convolves across 3D local regions via rotating a novel circular sector convolution window in a consistent circular direction. In the process of circle convolution, extra points are sampled in each 3D local region and projected onto the tangent plane of the center of the region. In this way, the projection distances in each sector window are employed to constitute a novel local raw 3D representation called Projection Distance Distribution (PDD). In addition, to eliminate the initial location ambiguity of a sector window, the Fourier Transform Modulus (FTM) is used to transform the PDD into the Fourier domain which is then conveyed to CCRBM. Experiments using the learned local features are conducted on three aspects: global shape retrieval, partial shape retrieval, and shape correspondence. The experimental results show that the learned local features outperform other state-of-the-art 3D shape descriptors.

  8. A comparison between Poisson and zero-inflated Poisson regression models with an application to number of black spots in Corriedale sheep

    Directory of Open Access Journals (Sweden)

    Rodrigues-Motta Mariana

    2008-07-01

    Full Text Available Abstract Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep.

  9. Electroneutral models for dynamic Poisson-Nernst-Planck systems

    Science.gov (United States)

    Song, Zilong; Cao, Xiulei; Huang, Huaxiong

    2018-01-01

    The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models. Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results (continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To validate the EN model, numerical computations are carried out for several examples. Our results show that solving the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model, the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the solution due to the fact that it allows for relatively large mesh and time-step sizes.

  10. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Science.gov (United States)

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  11. Soft network materials with isotropic negative Poisson's ratios over large strains.

    Science.gov (United States)

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  12. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    Science.gov (United States)

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  13. Modeling coupled transport and electrochemical reaction phenomena in polymer electrolyte fuel cell electrode by Lattice Boltzmann method

    Science.gov (United States)

    Tarokh, Atefeh; Tarokh, Ali; Hejazi, Hossein; Karan, Kunal

    2015-11-01

    Fuel cells convert chemical energy of a fuel directly into electricity. The overall process is a result of coupled reaction-transport processes. The electrochemical reactions occur in porous composite catalysts layers with intermingled material phases, often made up of nano-sized particles and nano/micrometers pores. In a polymer electrolye fuel cell (PEFC) catalyst layer, the focus of this work, transport of electrons through carbon, transport of protons through ion-conducting polymer (ionomer), diffusion of gases through pores must be considered. The three different reacting species, viz. protons, electrons and reactive molecule (H2 or O2) must co-exist at the reactive interface formed by Pt catalyst surface covered by an ionomer film. We use Lattice Boltzmann Method to capture the interactions between chemistry, transport and porous medium geometries in a PEFC catalyst layer. We report the simulation results for a model but novel catalyst architecture made of a continuous carbon phase with organized pore structure. The Pt catalyst is dispersed on the internal surface of the carbon. This Pt-catalyst decorated surface is covered by a thin ionomer film. In particular, we are interested in explicitly capturing the complexity of the pore geometry and Knudsen diffusion effects.

  14. Multifragmentation: Surface instabilities or statistical decay

    International Nuclear Information System (INIS)

    Moretto, L.G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G.J.

    1992-11-01

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space

  15. Multifragmentation: surface instabilities or statistical decay?

    International Nuclear Information System (INIS)

    Moretto, L.G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G.J.

    1993-01-01

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space. (author)

  16. Multifragmentation: surface instabilities or statistical decay

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G.J. (Lawrence Berkeley Lab., Berkeley, CA (United States). Nuclear Science Div.)

    1993-01-01

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space. (author).

  17. Multifragmentation: Surface instabilities or statistical decay?

    Science.gov (United States)

    Moretto, L. G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G. J.

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space.

  18. Multifragmentation: Surface instabilities or statistical decay

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Tso, K.; Delis, D.; Colonna, N.; Wozniak, G.J.

    1992-11-01

    Boltzmann-Nordheim-Vlasov calculations show multifragmentation that seems to originate from surface instabilities. These instabilities are traced to a sheet instability caused by the proximity interaction. Experimental data, on the other hand, suggest that multifragmentation may be dominated by phase space.

  19. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    Science.gov (United States)

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine

  20. [Application of detecting and taking overdispersion into account in Poisson regression model].

    Science.gov (United States)

    Bouche, G; Lepage, B; Migeot, V; Ingrand, P

    2009-08-01

    Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.