WorldWideScience

Sample records for point-wise cross section

  1. Converting point-wise nuclear cross sections to pole representation using regularized vector fitting

    Science.gov (United States)

    Peng, Xingjie; Ducru, Pablo; Liu, Shichang; Forget, Benoit; Liang, Jingang; Smith, Kord

    2018-03-01

    Direct Doppler broadening of nuclear cross sections in Monte Carlo codes has been widely sought for coupled reactor simulations. One recent approach proposed analytical broadening using a pole representation of the commonly used resonance models and the introduction of a local windowing scheme to improve performance (Hwang, 1987; Forget et al., 2014; Josey et al., 2015, 2016). This pole representation has been achieved in the past by converting resonance parameters in the evaluation nuclear data library into poles and residues. However, cross sections of some isotopes are only provided as point-wise data in ENDF/B-VII.1 library. To convert these isotopes to pole representation, a recent approach has been proposed using the relaxed vector fitting (RVF) algorithm (Gustavsen and Semlyen, 1999; Gustavsen, 2006; Liu et al., 2018). This approach however needs to specify ahead of time the number of poles. This article addresses this issue by adding a poles and residues filtering step to the RVF procedure. This regularized VF (ReV-Fit) algorithm is shown to efficiently converge the poles close to the physical ones, eliminating most of the superfluous poles, and thus enabling the conversion of point-wise nuclear cross sections.

  2. Criticality benchmark comparisons leading to cross-section upgrades

    International Nuclear Information System (INIS)

    Alesso, H.P.; Annese, C.E.; Heinrichs, D.P.; Lloyd, W.R.; Lent, E.M.

    1993-01-01

    For several years criticality benchmark calculations with COG. COG is a point-wise Monte Carlo code developed at Lawrence Livermore National Laboratory (LLNL). It solves the Boltzmann equation for the transport of neutrons and photons. The principle consideration in developing COG was that the resulting calculation would be as accurate as the point-wise cross-sectional data, since no physics computational approximations were used. The objective of this paper is to report on COG results for criticality benchmark experiments in concert with MCNP comparisons which are resulting in corrections an upgrades to the point-wise ENDL cross-section data libraries. Benchmarking discrepancies reported here indicated difficulties in the Evaluated Nuclear Data Livermore (ENDL) cross-sections for U-238 at thermal neutron energy levels. This led to a re-evaluation and selection of the appropriate cross-section values from several cross-section sets available (ENDL, ENDF/B-V). Further cross-section upgrades anticipated

  3. Continuous Extraction of Subway Tunnel Cross Sections Based on Terrestrial Point Clouds

    Directory of Open Access Journals (Sweden)

    Zhizhong Kang

    2014-01-01

    Full Text Available An efficient method for the continuous extraction of subway tunnel cross sections using terrestrial point clouds is proposed. First, the continuous central axis of the tunnel is extracted using a 2D projection of the point cloud and curve fitting using the RANSAC (RANdom SAmple Consensus algorithm, and the axis is optimized using a global extraction strategy based on segment-wise fitting. The cross-sectional planes, which are orthogonal to the central axis, are then determined for every interval. The cross-sectional points are extracted by intersecting straight lines that rotate orthogonally around the central axis within the cross-sectional plane with the tunnel point cloud. An interpolation algorithm based on quadric parametric surface fitting, using the BaySAC (Bayesian SAmpling Consensus algorithm, is proposed to compute the cross-sectional point when it cannot be acquired directly from the tunnel points along the extraction direction of interest. Because the standard shape of the tunnel cross section is a circle, circle fitting is implemented using RANSAC to reduce the noise. The proposed approach is tested on terrestrial point clouds that cover a 150-m-long segment of a Shanghai subway tunnel, which were acquired using a LMS VZ-400 laser scanner. The results indicate that the proposed quadric parametric surface fitting using the optimized BaySAC achieves a higher overall fitting accuracy (0.9 mm than the accuracy (1.6 mm obtained by the plain RANSAC. The results also show that the proposed cross section extraction algorithm can achieve high accuracy (millimeter level, which was assessed by comparing the fitted radii with the designed radius of the cross section and comparing corresponding chord lengths in different cross sections and high efficiency (less than 3 s/section on average.

  4. Technical notes. Rational approximations for cross-section space-shielding in doubly heterogeneous systems

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.

    1976-01-01

    A simple yet accurate method of space-shielding cross sections in a doubly heterogeneous high-temperature gas-cooled reactor (HTGR) system using collision probabilities and rational approximations is presented. Unlike other more elaborate methods, this method does not require point-wise cross sections that are not explicitly generated in most popular cross-section codes. Consequently, this method makes double heterogeneity space-shielding possible for cross-section codes that do not proceed via point-wise cross sections and that usually allow only for single (fuel-rod) heterogeneity cross-section space-shielding. Results of calculations based on this method compare well with results of calculations based on more elaborate methods using point-wise cross sections. Moreover, the systematic trend of the difference between the results from this method and those from the more elaborate methods used for comparison supports the already existent opinion that the latter methods tend to overestimate the space-shielding cross-section correction in doubly heterogeneous HTGR systems

  5. Cross-section parameterization of the pebble bed modular reactor using the dimension-wise expansion model

    International Nuclear Information System (INIS)

    Zivanovic, Rastko; Bokov, Pavel M.

    2010-01-01

    This paper discusses the use of the dimension-wise expansion model for cross-section parameterization. The components of the model were approximated with tensor products of orthogonal polynomials. As we demonstrate, the model for a specific cross-section can be built in a systematic way directly from data without any a priori knowledge of its structure. The methodology is able to construct a finite basis of orthogonal polynomials that is required to approximate a cross-section with pre-specified accuracy. The methodology includes a global sensitivity analysis that indicates irrelevant state parameters which can be excluded from the model without compromising the accuracy of the approximation and without repetition of the fitting process. To fit the dimension-wise expansion model, Randomised Quasi-Monte-Carlo Integration and Sparse Grid Integration methods were used. To test the parameterization methods with different integrations embedded we have used the OECD PBMR 400 MW benchmark problem. It has been shown in this paper that the Sparse Grid Integration achieves pre-specified accuracy with a significantly (up to 1-2 orders of magnitude) smaller number of samples compared to Randomised Quasi-Monte-Carlo Integration.

  6. Public awareness and misunderstanding about DrinkWise Australia: a cross-sectional survey of Australian adults.

    Science.gov (United States)

    Brennan, Emily; Wakefield, Melanie A; Durkin, Sarah J; Jernigan, David H; Dixon, Helen G; Pettigrew, Simone

    2017-08-01

    DrinkWise Australia is an alcohol industry Social Aspects/Public Relations Organisation (SAPRO). We assessed the Australian public's awareness of DrinkWise, beliefs about its funding source, and associations between funding beliefs and perceptions of DrinkWise. A total of 467 adult weekly drinkers completed an online cross-sectional survey in February 2016. Half the sample had heard of DrinkWise (48.6%); of these, the proportion aware that DrinkWise is industry funded (37.0%) was much smaller than the proportion believing it receives government funding (84.1%). Respondents who incorrectly believed DrinkWise receives government funding were more likely to hold a favourable perception of the organisation's credibility, trustworthiness and respectability than those who did not believe it receives government funding (75.9% vs. 58.3%; p=0.032). The drinking population is vulnerable to believing that alcohol industry public relations organisations such as DrinkWise are government funded, which in turn is associated with more favourable perceptions of the organisation's credibility, trustworthiness, and respectability. Implications for public health: Favourable perceptions of DrinkWise may enhance the industry's ability to delay or dilute potentially effective alcohol control policies. Future research should investigate whether educating the public about DrinkWise's alcohol industry funding alters the public's perception of how credible, trustworthy and respectable the organisation is. © 2017 The Authors.

  7. RESEND, Infinitely Dilute Point Cross-Sections Calculation from ENDF/B Resonance Parameter. ADLER, ENDF/B Adler-Adler Resonance Parameter to Point Cross-Sections with Doppler Broadening

    International Nuclear Information System (INIS)

    Bhat, M.R.; Ozer, O.

    1982-01-01

    1 - Description of problem or function: RESEND generates infinitely- dilute, un-broadened, point cross sections in the ENDF format by combining ENDF File 3 background cross sections with points calculated from ENDF File 2 resonance parameter data. ADLER calculates total, capture, and fission cross sections from the corresponding Adler-Adler parameters in the ENDF/B File 2 Version II data and also Doppler-broadens cross sections. 2 - Method of solution: RESEND calculations are done in two steps by two separate sections of the program. The first section does the resonance calculation and stores the results on a scratch file. The second section combines the data from the scratch file with background cross sections and prints the results. ADLER uses the Adler-Adler formalism. 3 - Restrictions on the complexity of the problem: RESEND expects its input to be a standard mode BCD ENDF file (Version II/III). Since the output is also a standard mode BCD ENDF file, the program is limited by the six significant figure accuracy inherent in the ENDF formats. (If the cross section has been calculated at two points so close in energy that only their least significant figures differ, that interval is assumed to have converged, even if other convergence criteria may not be satisfied.) In the unresolved range the cross sections have been averaged over a Porter-Thomas distribution. In some regions the calculated resonance cross sections may be negative. In such cases the standard convergence criterion would cause an unnecessarily large number of points to be produced in the region where the cross section becomes zero. For this reason an additional input convergence criterion (AVERR) may be used. If the absolute value of the cross section at both ends of an interval is determined to be less than AVERR then the interval is assumed to have converged. There are no limitations on the total number of points generated. The present ENDF (Version II/III) formats restrict the total number of

  8. Criticality benchmarks for COG: A new point-wise Monte Carlo code

    International Nuclear Information System (INIS)

    Alesso, H.P.; Pearson, J.; Choi, J.S.

    1989-01-01

    COG is a new point-wise Monte Carlo code being developed and tested at LLNL for the Cray computer. It solves the Boltzmann equation for the transport of neutrons, photons, and (in future versions) charged particles. Techniques included in the code for modifying the random walk of particles make COG most suitable for solving deep-penetration (shielding) problems. However, its point-wise cross-sections also make it effective for a wide variety of criticality problems. COG has some similarities to a number of other computer codes used in the shielding and criticality community. These include the Lawrence Livermore National Laboratory (LLNL) codes TART and ALICE, the Los Alamos National Laboratory code MCNP, the Oak Ridge National Laboratory codes 05R, 06R, KENO, and MORSE, the SACLAY code TRIPOLI, and the MAGI code SAM. Each code is a little different in its geometry input and its random-walk modification options. Validating COG consists in part of running benchmark calculations against critical experiments as well as other codes. The objective of this paper is to present calculational results of a variety of critical benchmark experiments using COG, and to present the resulting code bias. Numerous benchmark calculations have been completed for a wide variety of critical experiments which generally involve both simple and complex physical problems. The COG results, which they report in this paper, have been excellent

  9. Reconstruction of point cross-section from ENDF data file for Monte Carlo applications

    International Nuclear Information System (INIS)

    Kumawat, H.; Saxena, A.; Carminati, F.; )

    2016-12-01

    Monte Carlo neutron transport codes are one of the best tools to simulate complex systems like fission and fusion reactors, Accelerator Driven Sub-critical systems, radio-activity management of spent fuel and waste, optimization and characterization of neutron detectors, optimization of Boron Neutron Capture Therapy, imaging etc. The neutron cross-section and secondary particle emission properties are the main input parameters of such codes. The fission, capture and elastic scattering cross-sections have complex resonating structures. Evaluated Nuclear Data File (ENDF) contains these cross-sections and secondary parameters. We report the development of reconstruction procedure to generate point cross-sections and probabilities from ENDF data file. The cross-sections are compared with the values obtained from PREPRO and in some cases NJOY codes. The results are in good agreement. (author)

  10. Spatial interpolation of point velocities in stream cross-section

    Directory of Open Access Journals (Sweden)

    Hasníková Eliška

    2015-03-01

    Full Text Available The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models.

  11. Review and calculation of Mott scattering cross section by unscreened point nuclei

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    1992-01-01

    A new tabulation of the ratio of the ''exact'' Mott cross section for unscreened point nuclei to the classical Rutherford cross section for electrons and positions has been made. Because of the infinite slowly converging series appearing in this ratio we have made two series transformations. With this evaluation the ratio reached convergence within six significant figures after less than a hundred terms and very low computing time. So the ratios evaluated have less relative error than those in the literature and covers a greater range of energy and atomic number. (orig.)

  12. POINT 2011: ENDF/B-VII.1 Beta2 Temperature Dependent Cross Section Library

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    2011-04-07

    This report is one in the series of 'POINT' reports that over the years have presented temperature dependent cross sections for the then current version of ENDF/B. In each case I have used my personal computer at home and publicly available data and codes. I have used these in combination to produce the temperature dependent cross sections used in applications and presented in this report. I should mention that today anyone with a personal computer can produce these results. The latest ENDF/B-VII.1 beta2 data library was recently and is now freely available through the National Nuclear Data Center (NNDC), Brookhaven National Laboratory. This release completely supersedes all preceding releases of ENDF/B. As distributed the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in our applications the ENDF/B-VII.1 library has been processed into cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature at 20 Celsius). It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy. All results are in the computer independent ENDF-6 character format [R2], which allows the data to be easily transported between computers. In its processed form the POINT 2011 library is approximately 16 gigabyte in size and is distributed on one compressed DVDs (see, below for the details of the contents of each DVD).

  13. A Point-Wise Quantification of Asymmetry Using Deformation Fields

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Lanche, Stephanie; Darvann, Tron Andre

    2007-01-01

    of the resulting displacement vectors on the left and right side of the symmetry plane, gives a point-wise measure of asymmetry. The asymmetry measure was applied to the study of Crouzon syndrome using Micro CT scans of genetically modified mice. Crouzon syndrome is characterised by the premature fusion of cranial...

  14. POINT 2012: ENDF/B-VII.1 Final Temperature Dependent Cross Section Library

    International Nuclear Information System (INIS)

    Cullen, D.E.

    2012-01-01

    This report is one in the series of 'POINT' reports that over the years have presented temperature dependent cross sections for the then current version of ENDF/B [R1]. In each case I have used my personal computer at home and publicly available data and codes: (1) publicly available nuclear data (the current ENDF/B data, available on-line at the National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/) and, (2) publicly available computer codes (the current PREPRO codes, available on-line at the Nuclear Data Section, IAEA, Vienna, Austria, http://www-nds.iaea.or.at/ndspub/endf/prepro/) and, (3) My own personal computer located in my home. I have used these in combination to produce the temperature dependent cross sections used in applications and described in this report. I should mention that today anyone with a personal computer can produce these results: by its very nature I consider this data to be born in the public domain.

  15. POINT 2012: ENDF/B-VII.1 Final Temperature Dependent Cross Section Library

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    2012-02-26

    This report is one in the series of 'POINT' reports that over the years have presented temperature dependent cross sections for the then current version of ENDF/B [R1]. In each case I have used my personal computer at home and publicly available data and codes: (1) publicly available nuclear data (the current ENDF/B data, available on-line at the National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/) and, (2) publicly available computer codes (the current PREPRO codes, available on-line at the Nuclear Data Section, IAEA, Vienna, Austria, http://www-nds.iaea.or.at/ndspub/endf/prepro/) and, (3) My own personal computer located in my home. I have used these in combination to produce the temperature dependent cross sections used in applications and described in this report. I should mention that today anyone with a personal computer can produce these results: by its very nature I consider this data to be born in the public domain.

  16. MICROX-2 cross section library based on ENDF/B-VII

    International Nuclear Information System (INIS)

    Hou, J.; Ivanov, K.; Choi, H.

    2012-01-01

    New cross section libraries of a neutron transport code MICROX-2 have been generated for advanced reactor design and fuel cycle analyses. A total of 386 nuclides were processed, including 10 thermal scattering nuclides, which are available in ENDF/B-VII release 0 nuclear data. The NJOY system and MICROR code were used to process nuclear data and convert them into MICROX-2 format. The energy group structure of the new library was optimized for both the thermal and fast neutron spectrum reactors based on Contributon and Point-wise Cross Section Driven (CPXSD) method, resulting in a total of 1173 energy groups. A series of lattice cell level benchmark calculations have been performed against both experimental measurements and Monte Carlo calculations for the effective/infinite multiplication factor and reaction rate ratios. The results of MICROX-2 calculation with the new library were consistent with those of 15 reference cases. The average errors of the infinite multiplication factor and reaction rate ratio were 0.31% δk and 1.9%, respectively. The maximum error of reaction rate ratio was 8% for 238 U-to- 235 U fission of ZEBRA lattice against the reference calculation done by MCNP5. (authors)

  17. Total neutron cross section of lead

    International Nuclear Information System (INIS)

    Kanda, K.; Aizawa, O.

    1976-01-01

    The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes

  18. BRIGITTE-KA, ENDF/B to KEDAK Data Conversion with Resonance Cross-Sections Tables Generator

    International Nuclear Information System (INIS)

    Stein, Eckhard; Schepers, J.C.; Vandeplas, P.

    1976-01-01

    1 - Nature of physical problem solved: The program translates evaluated nuclear data from the ENDF representation (3) into the KEDAK representation (5). Nearly all nuclear data desired by the user to be present on KEDAK will be produced. 2 - Method of solution: The retrieval and processing codes of ENDF (4) have been used, but some have been modified. Point-wise cross sections are calculated from resonance parameters. In the resolved resonance region all resonances are taken into account for each energy point. In order to guarantee linear interpolation with an error less than eps in the resolved resonance region, an energy mesh constructed by using the UNICORN code (6) is refined by adding points, if a cross section value calculated from the resonance parameters differs appreciably from the value calculated by interpolation. The various ENDF interpolation rules are reduced to the linear-linear rule used by KEDAK. Pointwise cross sections are calculated from the given parameters (e.g. the angular distributions). Some data of ENDF/B MF=5 (energy distributions of secondary neutrons) are also converted. 3 - Restrictions on the complexity of the problem: Because variable dimensioning is used for nearly all arrays, there are only few restrictions. These are the following: - One (natural) element may have up to 10 isotopes. - Five different L-states (L=0,1,2,3,4) are allowed in the resolved Breit-Wigner resonance parameter set. - Three different L-states and 5 different J-states for each L-state are allowed in the unresolved Breit-Wigner resonance parameter set. - One hundred points are allowed as primary energy grid for energy distributions of secondary neutrons

  19. Evaluation of body-wise and organ-wise registrations for abdominal organs

    Science.gov (United States)

    Xu, Zhoubing; Panjwani, Sahil A.; Lee, Christopher P.; Burke, Ryan P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2016-03-01

    Identifying cross-sectional and longitudinal correspondence in the abdomen on computed tomography (CT) scans is necessary for quantitatively tracking change and understanding population characteristics, yet abdominal image registration is a challenging problem. The key difficulty in solving this problem is huge variations in organ dimensions and shapes across subjects. The current standard registration method uses the global or body-wise registration technique, which is based on the global topology for alignment. This method (although producing decent results) has substantial influence of outliers, thus leaving room for significant improvement. Here, we study a new image registration approach using local (organ-wise registration) by first creating organ-specific bounding boxes and then using these regions of interest (ROIs) for aligning references to target. Based on Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD) and Hausdorff Distance (HD), the organ-wise approach is demonstrated to have significantly better results by minimizing the distorting effects of organ variations. This paper compares exclusively the two registration methods by providing novel quantitative and qualitative comparison data and is a subset of the more comprehensive problem of improving the multi-atlas segmentation by using organ normalization.

  20. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alpan, F.A. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, the Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)

  1. Sensitivity study and functionalization of cross section to fuel and moderator temperature

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Song, Jae Seung; Cho, Young Chul

    1995-11-01

    A reactor core neutronics code MASTER is under development as a part of Korean Core Design System ADONIS. MASTER solves two-group three-dimensional; neutron diffusion equation which requires fuel assembly-wise group constants, to calculate the neutron flux distribution in the core. The group constants are obtained from the fuel assembly multi-group neutron transport calculation, and inputted as functions of the core operating condition. The functionalization of the group constant requires sensitivity analysis to various core operating conditions. In this report, the sensitivity of group constant to fuel and moderator temperature were analyzed. Lumped higher order macroscopic cross section derivative method was developed to reduce the computer memory and the number of floating point operations to treat group constants in MASTER. 1 fig., 6 tabs., 2 refs. (Author) .new

  2. Evaluation of cross-section uncertainties using physical constraints for 238U, 239Pu

    International Nuclear Information System (INIS)

    De Saint Jean, Cyrille; Privas, Edwin; Archier, Pascal; Noguere, Gilles; Litaize, Olivier; Leconte, Pierre; Bernard, David

    2014-01-01

    Neutron-induced reactions between 0 eV and 20 MeV are based on various physical properties such as nuclear reaction models, microscopic and integral measurements. Most of the time, the evaluation work is done independently between the resolved resonance range and the continuum, giving rise to mismatches for the cross-sections, larger uncertainties on boundary and no cross-correlation between high-energy domain and resonance range. In addition the use of integral experiment is sometimes only related to central values (evaluation is 'working fine' on a dedicated set of benchmarks) and reductions of uncertainties are not straightforward on cross-sections themselves: working fine could be mathematically reflected by a reduced uncertainty. As the CIELO initiative is to bring experts in each field to propose/discuss these matters, after having presented the status of 238 U and 239 Pu cross-sections covariances evaluation (for JEFF-3.2 as well as the WPEC SG34 subgroup), this paper will present several methodologies that may be used to avoid such effects on covariances. A first idea based on the use of experiments overlapping two energy domains appeared in the near past. It was reviewed and extended to the use of systematic uncertainties (normalisation for example) and for integral experiments as well. In addition, we propose a methodology taking into account physical constraints on an overlapping energy domain where both nuclear reaction models are used (continuity of both cross-sections and derivatives for example). The use of Lagrange multiplier (related to these constraints) in a classical generalised least square procedure will be exposed. Some academic examples will then be presented for both point-wise and multi-group cross-sections to present the methodologies. In addition, new results for 239 Pu will be presented on resonance range and higher energies to reduce capture and fission cross-section uncertainties by using integral experiments (JEZEBEL experiment as

  3. The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni

    CERN Multimedia

    Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...

  4. ROSFOND based heating-damage cross sections sub-library: Preliminary uncertainty assessment

    International Nuclear Information System (INIS)

    Sinitsa, V.V.

    2016-01-01

    The accuracy of radiation damage calculations for the most important LWR component, the reactor pressure vessel (RPV), directly linked with the RPV End-of-Life (EoL) prediction which is in its turn connected with fundamental nuclear safety aspects and relevant economic impacts. In this connection, for nearly ten years the ENEA-Bologna Nuclear Data Group conducts the nuclear data processing and validation activities addressed to update the specialized broad-group coupled neutron/photon working cross section libraries for shielding and radiation damage calculations through NJOY and Bologna revised version of SCAMPI data processing systems. A number of working group-wise data libraries has been prepared and transferred to the ENEA Data Bank for dissemination. Several years ago the NRC ”Kurchatov Institute” has reset the GRUCON project, originally designed to provide group constants for fast nuclear reactor calculations [12], with aim to expand its application area and to use in the WWER safety tasks, in particular, in the RPV radiation damage analyses. By means of updated GRUCON and NJOY-99 processing codes, and calculation procedure, developed in the NDG of ENEA Bologna, a sample of kerma&damage energy point-wise data sub-libraries from different evaluated data libraries has been generated. On the base of this sample, the quantitative assessment of kerma/dpa data precision in the RPV calculations is obtained

  5. The development of a collapsing method for the mixed group and point cross sections and its application on multi-dimensional deep penetration calculations

    International Nuclear Information System (INIS)

    Bor-Jing Chang; Yen-Wan H. Liu

    1992-01-01

    The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations

  6. New method for evaluation of bendability based on three-point-bending and the evolution of the cross-section moment

    Science.gov (United States)

    Troive, L.

    2017-09-01

    Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.

  7. Development and benchmark of high energy continuous-energy neutron cross Section library HENDL-ADS/MC

    International Nuclear Information System (INIS)

    Chen Chong; Wang Minghuang; Zou Jun; Xu Dezheng; Zeng Qin

    2012-01-01

    The ADS (accelerator driven sub-critical system) has great energy spans, complex energy spectrum structures and strong physical effects. Hence, the existing nuclear data libraries can't fully meet the needs of nuclear analysis in ADS. In order to do nuclear analysis for ADS system, a point-wise data library HENDL-ADS/MC (hybrid evaluated nuclear data library) was produced by FDS team. Meanwhile, to test the availability and reliability of the HENDL-ADS/MC data library, a series of shielding and critical safety benchmarks were performed. To validate and qualify the reliability of the high-energy cross section for HENDL-ADS/MC library further, a series of high neutronics integral experiments have been performed. The testing results confirm the accuracy and reliability of HENDL-ADS/MC. (authors)

  8. SIGMA1-2007, Doppler Broadening ENDF Format Linear-Linear. Interpolated Point Cross Section

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of problem or function: SIGMA-1 Doppler broadens evaluated Cross sections given in the linear-linear interpolation form of the ENDF/B Format to one final temperature. The data is Doppler broadened, thinned, and output in the ENDF/B Format. IAEA0854/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. 2 - Modifications from previous versions: Sigma-1 VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 360,000 energy points 3 - Method of solution: The energy grid is selected to ensure that the broadened data is linear-linear interpolable. SIGMA-1 starts from the free-atom Doppler broadening equations and adds the assumptions of linear data within the table and constant data outside the range of the table. If the Original data is not at zero Kelvin, the data is broadened by the effective temperature difference to the final temperature. If the data is already at a temperature higher than the final temperature, Doppler broadening is not performed. 4 - Restrictions on the complexity of the problem: The input to SIGMA-1 must be data which vary linearly in energy and cross section between tabulated points. The LINEAR program provides such data. LINEAR uses only the ENDF/B BCD Format tape and copies all sections except File 3 as read. Since File 3 data are in identical Format for ENDF/B Versions I through VI, the program can be used with all these versions. - The present version Doppler broadens only to one final temperature

  9. UABUC - Single energy point model burnup computer code for water reactors

    International Nuclear Information System (INIS)

    El-Meshad, Y.; Morsy, S.; El-Osery, I.A.

    1981-01-01

    UABUC is a single energy point reactor burnup computer program in FORTRAN language. The program calculates the change in the isotopic composition of the uranium fuel as a function of irradiation time with all its associated quantities such as the average point flux, the conversion ratio, macroscopic fuel cross sections, and the point reactivity profile. A step-wise time analytical solution was developed for the nonlinear first order burnup differential equations. The ''Westcott'' convention of the effective cross sections was used except for plutonium-240 and uranium-238. For plutonium-240, an effective microscopic cross section was derived from the direct physical arguments taking into account the selfshielding effect of plutonium-240 as well as the 1 ev. resonance absorption. For uranium-238, an effective cross section, reflecting the effect of fast fission and resonance absorption was used. The fission products were treated in the three groups with 50, 300, and 800 barns. The yields in the groups were treated as functions of the type of fissionable nuclides, the effective neutron temperature, and the epithermal index. Xenon-135 and Samarium-149 were treated separately as functions of irradiation time. (author)

  10. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham; Guthrey, Harvey; Fetzer, C. M.; King, Richard

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  11. Identification of 1.4 Million Active Galactic Nuclei In the Mid-Infrared Using WISE Data

    Science.gov (United States)

    2015-11-01

    Astrometric calibration of sources in the WISE catalog was done by correlation with bright stars from the 2MASS point source catalog, and the...900 million sources with optical photometric and astrometric information from USNO-B1.0 and 2MASS , which is complete down to approximately V ≈ 20...selected quasars from 2MASS , and thus represents a robust sample of quasars over a wide range of wavelengths. After cross-matching with AllWISE, we find

  12. Cross-section requirements for reactor neutron flux measurements from the user's point of view

    International Nuclear Information System (INIS)

    Mas, P.; Lloret, R.

    1978-01-01

    The dosimetry of testing materials irradiations involves in practice a lot of problems: fluences measurements, knowledge of spectrum, choice of a convenient set of cross section, damage rate determination, transposition from testing reactor to power reactor. From those problems, we consider that a temporary recommandation concerning the differential cross section of some fluence detectors is to be done, and that it is necessary to dispose of more accessible benchmarks in order to correlate cross section and computer codes. (author)

  13. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  14. Performance assessment of new neutron cross section libraries using MCNP code and some critical benchmarks

    International Nuclear Information System (INIS)

    Bakkari, B El; Bardouni, T El.; Erradi, L.; Chakir, E.; Meroun, O.; Azahra, M.; Boukhal, H.; Khoukhi, T El.; Htet, A.

    2007-01-01

    Full text: New releases of nuclear data files made available during the few recent years. The reference MCNP5 code (1) for Monte Carlo calculations is usually distributed with only one standard nuclear data library for neutron interactions based on ENDF/B-VI. The main goal of this work is to process new neutron cross sections libraries in ACE continuous format for MCNP code based on the most recent data files recently made available for the scientific community : ENDF/B-VII.b2, ENDF/B-VI (release 8), JEFF3.0, JEFF-3.1, JENDL-3.3 and JEF2.2. In our data treatment, we used the modular NJOY system (release 99.9) (2) in conjunction with its most recent upadates. Assessment of the processed point wise cross sections libraries performances was made by means of some criticality prediction and analysis of other integral parameters for a set of reactor benchmarks. Almost all the analyzed benchmarks were taken from the international handbook of Evaluated criticality safety benchmarks experiments from OECD (3). Some revised benchmarks were taken from references (4,5). These benchmarks use Pu-239 or U-235 as the main fissionable materiel in different forms, different enrichments and cover various geometries. Monte Carlo calculations were performed in 3D with maximum details of benchmark description and the S(α,β) cross section treatment was adopted in all thermal cases. The resulting one standard deviation confidence interval for the eigenvalue is typically +/-13% to +/-20 pcm [fr

  15. Pion photoproduction cross section at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, Johan [Univ. of Glasgow, Scotland, United Kingdom

    2015-02-27

    The Real Compton Scattering experiment was performed in Hall A at the Thomas Jefferson National Accelerator Facility. It was designed to measure, for Compton scattering and π0-photoproduction, the differential cross section over a range of kinematic points and the polarisation transfer to the proton at a single kinematic point. The full range of the experiment in Mandelstam variables t and s was 1.6-6.46 GeV2 and 4.82-10.92 GeV2 respectively with beam energies of 2-6 GeV. The motivation for the experiment is to test the cross section and polarisation transfer predictions of perturbative QCD versus that of predictions from Generalised Parton Distribution models. This thesis will give an overview of the pertinent theory, experimental setup in Hall A and the extracting of the π0-photoproduction cross section.

  16. Computation of Resonance-Screened Cross Section by the Dorix-Speng System

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1968-09-15

    The report describes a scheme for computation of group cross sections for fast reactors in energy regions where the resonance structure of the cross sections may be dense. A combination of the programmes Dorix and Speng is then used. Dorix calculates group cross sections for each resonance absorber separately. The interaction between resolved resonances in the same isotope is treated using a method described in a separate report. The interaction between correlated and non-correlated resonances in the unresolved region is also considered. By a Dorix calculation we obtain effective microscopic cross sections which are then read in on a library tape. This library contains both point-by-point data and group cross sections and is used in the Speng programme for computation of spectrum and/or macroscopic cross sections. The resonance interaction between different isotopes is computed in Speng by the same method as was used in the Dorix programme for non-correlated unresolved resonances. Consideration is also given to the width of the resonances compared to the energy loss by a neutron colliding with some of the scattering elements.

  17. Computation of Resonance-Screened Cross Section by the Dorix-Speng System

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1968-09-01

    The report describes a scheme for computation of group cross sections for fast reactors in energy regions where the resonance structure of the cross sections may be dense. A combination of the programmes Dorix and Speng is then used. Dorix calculates group cross sections for each resonance absorber separately. The interaction between resolved resonances in the same isotope is treated using a method described in a separate report. The interaction between correlated and non-correlated resonances in the unresolved region is also considered. By a Dorix calculation we obtain effective microscopic cross sections which are then read in on a library tape. This library contains both point-by-point data and group cross sections and is used in the Speng programme for computation of spectrum and/or macroscopic cross sections. The resonance interaction between different isotopes is computed in Speng by the same method as was used in the Dorix programme for non-correlated unresolved resonances. Consideration is also given to the width of the resonances compared to the energy loss by a neutron colliding with some of the scattering elements

  18. Development of a cross-section based stream package for MODFLOW

    Science.gov (United States)

    Ou, G.; Chen, X.; Irmak, A.

    2012-12-01

    Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each

  19. Tables of RCN-2 fission-product cross section evaluation

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1979-05-01

    This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections

  20. Critical heat flux phenomena in flow boiling during step wise and ramp wise power transients

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.; Abou Said, S.

    1987-01-01

    The present paper deals with the results of an experimental investigation of the forced flow critical heat flux during power transients in a vertically heated channel. Experiments were carried out with a Refrigerant-12 1oop employing a circular test section which was electrically and uniformly heated. The power transients were performed with the step-wise and ramp-wise increase of the power to the test section. The test parameters included several values of the initial power (before the transient) and the final power (at the end of the transient) in the case of step-wise transients and the slope of the ramp in the case of ramp-wise transients. The pressure and specific mass flow rate, which were kept constant during the power transient,were varied from 1.2 to 2.7 MPa and 850 to 1500 Kg/sm 2 , respectively. Correlations of the experimental data for the time-to-crisis in terms of the independent parameters of the system are also proposed and verified for different values of pressure,mass flow rate, and inlet subcooling

  1. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    Science.gov (United States)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  2. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  3. Point 2004 A Temperature Dependent ENDF/B-VI, Release 8 Cross Section Library

    International Nuclear Information System (INIS)

    Cullen, D E

    2004-01-01

    The ENDF/B data library has recently been updated and is now freely available through the National Nuclear Data Center (NNDC), Brookhaven National Laboratory. This most recent library is identified as ENDF/B-VI, Release 8. Release 8 completely supersedes all preceding releases. Release 8 will be the last release of ENDF/B-VI; the next release of ENDF/B data will be for the new ENDF/B-VII library. As distributed the ENDF/B-VI, Release 8 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications this library has been processed into the form of temperature dependent cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin. It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy. All results are in the computer independent ENDF/B-VI character format [1], which allows the data to be easily transported between computers. In its processed form this library is approximately 4.3 gigabyte in size and is distributed on a single DVD

  4. Recent developments pertinent to processing of ENDF/B-6 type resonance cross section data

    International Nuclear Information System (INIS)

    Hwang, R. N.

    1998-01-01

    In view of our increasing dependence on computations rather than construction and operation of more costly experimental facilities, the rigor and accuracy achievable by calculational methods certainly deserve more attention. This is particularly so for the Monte Carlo methods which are generally regarded as the ultimate computational standard for the entire nuclear community around the globe. One obvious question that one may raise is whether the numerical algorithms deployed to process cross sections accurately reflect the rigor of the state-of-the-art nuclear data. The case in point is particularly essential in the resolved and the unresolved resonance regions, which constitute the most demanding task in all processing codes for reactor applications. For the resolved energy region, the point-wise cross sections are highly fluctuating functions of energy and temperature. In light of the availability of a large body of resonance data spanning over the much expanded energy ranges for most of major nuclides, critical examinations and improvement where appropriate, of the existing methods are apparently in order. For the unresolved energy region, improvement of traditional methods based on statistical approaches for treating the self-shielding effects is also desirable. From the perspective of the Monte Carlo approach, an alternative means for generating the probability tables without the inevitable difficulties associated with statistical uncertainties and/or those with concerns of uniqueness is needed. The accuracy considerations provide the motivation for the recent efforts at ANL to upgrade the existing VIMB processing code developed in early 70's in order to deal processing codes with these issues. Various tasks of upgrading are still at various stages of development. The purpose of this paper is to present an up-to-date account of the work in progress

  5. Measurement of 76Se and 78Se (γ, n) cross sections

    International Nuclear Information System (INIS)

    Kitatani, Fumito; Harada, Hideo; Goko, Shinji; Utsunomiya, Hiroaki; Akimune, Hidetoshi; Toyokawa, Hiroyuki; Yamada, Kawakatsu

    2011-01-01

    The (γ, n) cross sections of Se isotopes ( 76 Se, 78 Se) were measured to supply fundamental data for estimating the inverse reaction cross section, i.e., the 79 Se(n, γ) 80 Se cross section. The enriched samples and a reference 197 Au sample were irradiated with laser-Compton scattering (LCS) γ-rays. The excitation function of each (γ, n) cross section was determined for the energy range from each near neutron separation energy to the threshold energy of (γ, 2n) reaction. The energy point corresponding to each cross section was deduced using the accurately determined energy distribution of LCS γ-rays. Systematic (γ, n) cross sections for Se isotopes including 80 Se were compared with those calculated by using a statistical model calculation code TALYS. (author)

  6. Measuring global oil trade dependencies: An application of the point-wise mutual information method

    International Nuclear Information System (INIS)

    Kharrazi, Ali; Fath, Brian D.

    2016-01-01

    Oil trade is one of the most vital networks in the global economy. In this paper, we analyze the 1998–2012 oil trade networks using the point-wise mutual information (PMI) method and determine the pairwise trade preferences and dependencies. Using examples of the USA's trade partners, this research demonstrates the usefulness of the PMI method as an additional methodological tool to evaluate the outcomes from countries' decisions to engage in preferred trading partners. A positive PMI value indicates trade preference where trade is larger than would be expected. For example, in 2012 the USA imported 2,548.7 kbpd despite an expected 358.5 kbpd of oil from Canada. Conversely, a negative PMI value indicates trade dis-preference where the amount of trade is smaller than what would be expected. For example, the 15-year average of annual PMI between Saudi Arabia and the U.S.A. is −0.130 and between Russia and the USA −1.596. We reflect the three primary reasons of discrepancies between actual and neutral model trade can be related to position, price, and politics. The PMI can quantify the political success or failure of trade preferences and can more accurately account temporal variation of interdependencies. - Highlights: • We analyzed global oil trade networks using the point-wise mutual information method. • We identified position, price, & politics as drivers of oil trade preference. • The PMI method is useful in research on complex trade networks and dependency theory. • A time-series analysis of PMI can track dependencies & evaluate policy decisions.

  7. Measurements and analysis of the 127I and 129I neutron capture and total cross sections

    International Nuclear Information System (INIS)

    Noguere, G.

    2005-01-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of 129 I produced yearly in the reactors of the EU countries and a very long β - half-life of 1.57 x 10 7 years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, 129 I is potentially a key long-lived fission product for transmutation applications, since 129 I transmutes in 130 I after a single neutron capture and decays to 130 Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI 2 samples used in this work contain natural and radioactive iodine, extensive measurements of 129 I have been carried out under the same experimental conditions as for the 129 I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  8. Dusty WDs in the WISE all sky survey ∩ SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: barber@nhn.ou.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  9. A Review of Point-Wise Motion Tracking Algorithms for Fetal Magnetic Resonance Imaging.

    Science.gov (United States)

    Chikop, Shivaprasad; Koulagi, Girish; Kumbara, Ankita; Geethanath, Sairam

    2016-01-01

    We review recent feature-based tracking algorithms as applied to fetal magnetic resonance imaging (MRI). Motion in fetal MRI is an active and challenging area of research, but the challenge can be mitigated by strategies related to patient setup, acquisition, reconstruction, and image processing. We focus on fetal motion correction through methods based on tracking algorithms for registration of slices with similar anatomy in multiple volumes. We describe five motion detection algorithms based on corner detection and region-based methods through pseudocodes, illustrating the results of their application to fetal MRI. We compare the performance of these methods on the basis of error in registration and minimum number of feature points required for registration. Harris, a corner detection method, provides similar error when compared to the other methods and has the lowest number of feature points required at that error level. We do not discuss group-wise methods here. Finally, we attempt to communicate the application of available feature extraction methods to fetal MRI.

  10. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  11. Application of Energy Window Concept in Doppler Broadening of {sup 238}U Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Khassnov, Azamat; Choi, Soo Young; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for {sup 2}38U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of {sup 238}U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K.

  12. Light stops emerging in WW cross section measurements?

    International Nuclear Information System (INIS)

    Rolbiecki, Krzysztof

    2013-03-01

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2σ, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m t 1 ∝200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  13. Detection of kinetic change points in piece-wise linear single molecule motion

    Science.gov (United States)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  14. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  15. A Cross-Section Adjustment Method for Double Heterogeneity Problem in VHTGR Analysis

    International Nuclear Information System (INIS)

    Yun, Sung Hwan; Cho, Nam Zin

    2011-01-01

    Very High Temperature Gas-Cooled Reactors (VHTGRs) draw strong interest as candidates for a Gen-IV reactor concept, in which TRISO (tristructuralisotropic) fuel is employed to enhance the fuel performance. However, randomly dispersed TRISO fuel particles in a graphite matrix induce the so-called double heterogeneity problem. For design and analysis of such reactors with the double heterogeneity problem, the Monte Carlo method is widely used due to its complex geometry and continuous-energy capabilities. However, its huge computational burden, even in the modern high computing power, is still problematic to perform wholecore analysis in reactor design procedure. To address the double heterogeneity problem using conventional lattice codes, the RPT (Reactivityequivalent Physical Transformation) method considers a homogenized fuel region that is geometrically transformed to provide equivalent self-shielding effect. Another method is the coupled Monte Carlo/Collision Probability method, in which the absorption and nu-fission resonance cross-section libraries in the deterministic CPM3 lattice code are modified group-wise by the double heterogeneity factors determined by Monte Carlo results. In this paper, a new two-step Monte Carlo homogenization method is described as an alternative to those methods above. In the new method, a single cross-section adjustment factor is introduced to provide self-shielding effect equivalent to the self-shielding in heterogeneous geometry for a unit cell of compact fuel. Then, the homogenized fuel compact material with the equivalent cross-section adjustment factor is used in continuous-energy Monte Carlo calculation for various types of fuel blocks (or assemblies). The procedure of cross-section adjustment is implemented in the MCNP5 code

  16. A cross-sectional study of the temporal evolution of electricity consumption of six commercial buildings.

    Directory of Open Access Journals (Sweden)

    Ethan M Pickering

    Full Text Available Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies. The utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature and corresponding averaged variables (electricity consumption(TSAOV method. The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method

  17. Energy meshing techniques for processing ENDF/B-VI cross sections using the AMPX code system

    International Nuclear Information System (INIS)

    Dunn, M.E.; Greene, N.M.; Leal, L.C.

    1999-01-01

    Modern techniques for the establishment of criticality safety for fissile systems invariably require the use of neutronic transport codes with applicable cross-section data. Accurate cross-section data are essential for solving the Boltzmann Transport Equation for fissile systems. In the absence of applicable critical experimental data, the use of independent calculational methods is crucial for the establishment of subcritical limits. Moreover, there are various independent modern transport codes available to the criticality safety analyst (e.g., KENO V.a., MCNP, and MONK). In contrast, there is currently only one complete software package that processes data from the Version 6 format of the Evaluated Nuclear Data File (ENDF) to a format useable by criticality safety codes. To facilitate independent cross-section processing, Oak Ridge National Laboratory (ORNL) is upgrading the AMPX code system to enable independent processing of Version 6 formats using state-of-the-art procedures. The AMPX code system has been in continuous use at ORNL since the early 1970s and is the premier processor for providing multigroup cross sections for criticality safety analysis codes. Within the AMPX system, the module POLIDENT is used to access the resonance parameters in File 2 of an ENDF/B library, generate point cross-section data, and combine the cross sections with File 3 point data. At the heart of any point cross-section processing code is the generation of a suitable energy mesh for representing the data. The purpose of this work is to facilitate the AMPX upgrade through the development of a new and innovative energy meshing technique for processing point cross-section data

  18. WISE and the Dusty Universe

    Science.gov (United States)

    Benford, Dominic J.

    2010-01-01

    The Wide-field Infrared Survey is a medium class Explorer mission that was launched onl4Dec 2009. WISE should detect hundreds of millions of stars and galaxies, including millions of ULIRGS and QSOs; hundreds of thousands of asteroids; and hundreds of cold brown dwarfs. The telescope cover was ejected on 29 Dec 2009 and the all-sky survey started on 14 Jan 2010. WISE takes more the 7000 framesets per day, with each frameset covering 0.6 square degrees in four bands centered at 3.4, 4.6, 12 and 22 microns. WISE is well-suited to the discovery of brown dwarfs, ultraluminous infrared galaxies, and near-Earth objects. With an angular resolution of 6 arcsecouds at 12 microns, a 5(sigma) point-source sensitivity of around 1 mJy at 12 microns and 6 mJy at 22 microns, and coverage of over 99% of the sky, WISE also provides a powerful database for the study of the dusty ISM in our own galaxy. A preliminary release of WISE data will be made available to the community 6 months after the end of the cryogenic survey, or about May 2011. The final data release will be 11 months later, about April 2012.

  19. Light stops emerging in WW cross section measurements?

    Energy Technology Data Exchange (ETDEWEB)

    Rolbiecki, Krzysztof [IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2{sigma}, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m{sub t{sub 1}}{proportional_to}200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  20. WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES

    International Nuclear Information System (INIS)

    Lang, Dustin; Hogg, David W.; Schlegel, David J.

    2016-01-01

    We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS). We use a “forced photometry” technique, using measured SDSS source positions, star–galaxy classification, and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our “unWISE” coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero given our uncertainties. However, for many sources we get 3σ or 4σ measurements; these sources would not be reported by the “official” WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements can be used in stacking analyses at the catalog level. The forced photometry approach has the advantage that we measure a consistent set of sources between SDSS and WISE, taking advantage of the resolution and depth of the SDSS images to interpret the WISE images; objects that are resolved in SDSS but blended together in WISE still have accurate measurements in our photometry. Our results, and the code used to produce them, are publicly available at http://unwise.me

  1. POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.; Greene, N.M.

    2000-12-01

    POLIDENT (Point Libraries of Data from ENDF/B Tapes) is an AMPX module that accesses the resonance parameters from File 2 of an ENDF/B library and constructs the continuous-energy cross sections in the resonance energy region. The cross sections in the resonance range are subsequently combined with the File 3 background data to construct the cross-section representation over the complete energy range. POLIDENT has the capability to process all resonance reactions that are identified in File 2 of the ENDF/B library. In addition, the code has the capability to process the single- and multi-level Breit-Wigner, Reich-Moore and Adler-Adler resonance formalisms that are identified in File 2. POLIDENT uses a robust energy-mesh-generation scheme that determines the minimum, maximum and points of inflection in the cross-section function in the resolved-resonance region. Furthermore, POLIDENT processes all continuous-energy cross-section reactions that are identified in File 3 of the ENDF/B library and outputs all reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules.

  2. Photo-neutron reaction cross-section for 93Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    International Nuclear Information System (INIS)

    Naik, H.; Kim, G.N.; Schwengner, R.; Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C.; John, R.; Massarczyk, R.; Junghans, A.; Shin, S.G.; Key, Y.; Wagner, A.; Lee, M.W.; Goswami, A.; Cho, M.-H.

    2013-01-01

    The photo-neutron cross-sections of 93 Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The 93 Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the 93 Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections are sharper compared to 93 Nb(γ, 3n) and 93 Nb(γ, 4n) reaction cross-sections. The sharp increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual 93 Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels

  3. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  4. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    Taboada, H.; Marajofsky, A.

    1996-01-01

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  5. The γ total cross section and the photon structure functions

    International Nuclear Information System (INIS)

    Alexander, G.

    1986-01-01

    A review on the current experimental status of the photon-photon total hadronic cross section as a function of energy and Q 2 is given in addition to the results obtained for the leptonic and hadronic photon structure functions. The results are discussed in terms of the point-like part of the photon and non-perturbative VDM part. It is shown that the cross section at Q 2 = 0 is well described by VDM derived models

  6. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  7. Total cross section for e+e- → hadrons and its associated spectroscopy at SPEAR

    International Nuclear Information System (INIS)

    Lynch, H.L.

    1976-05-01

    The relation between the cross section for e + e - → hadrons and pp → e + e - + hadrons is briefly discussed. The structure of these cross sections is described in detail and its implications pointed out. 8 refs

  8. Effect of XCOM photoelectric cross-sections on dosimetric quantities calculated with EGSnrc

    International Nuclear Information System (INIS)

    Hobeila, F.; Seuntjens, J.P.

    2002-01-01

    The EGSnrc Monte-Carlo code system incorporates improved low energy photon physics such as atomic relaxations and the implementation of bound Compton cross-sections using the impulse approximation. The total cross-section for photoelectric absorption however, still relies on the data by Storm and Israel (S and I). Yet, low energy applications such as brachytherapy (e.g. 125 I) require up-to-date low-energy photoelectric cross-section data. In this paper, we study the dosimetric effects of a simple implementation of NIST XCOM-based photoelectric cross-sections in EGSnrc. This is done by calculating mass energy-absorption coefficients, absorbed dose from point sources, kilovoltage x-ray beams and ion chamber response. In the EGS code system, the PEGS4 routine reads the photoelectric and pair cross-sections for elements from a file (pgspepr.dat) and provides numerical fits for compounds which will be used by EGSnrc. We updated the photoelectric cross-sections of the pgspepr.dat file with the XCOM total photoelectric absorption cross-sections from NIST. After validation of this new implementation, we studied its effects on a number of dosimetrically relevant quantities. Firstly, we calculated mass energy-absorption coefficients by scoring energy transferred in a thin slab of water and air using the DOSRZnrc user code. Secondly, we calculated inverse-square corrected absorbed dose distributions from point sources in water by using an internally developed user code, KERNELph. Thirdly, we studied the differences in free-air ion chamber response calculations. Ion chamber response is defined as the dose to the cavity of an ionization chamber, D gas , positioned with its effective point of measurement at a reference point divided by air-kerma measured free-in-air at the same point. The ion chamber response was calculated using monoenergetic photon beams of energy 10 keV to 200 keV. The comparison of the Storm and Israel photoelectric cross-sections with the XCOM cross-sections

  9. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  10. Neutrino-nucleus cross sections for oscillation experiments

    Science.gov (United States)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  11. MUTIL, Asymmetry Factor of Mott Cross-Sections for Electron, Positron Scattering

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The asymmetry factor S of Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series, F and G, appearing in the asymmetry factor using two consecutive transformations: The one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the factor S. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  12. Measurement of Antiproton-proton Cross-Sections at Low Antiproton Momenta

    CERN Multimedia

    2002-01-01

    The experiment is designed to measure four different cross sections in the momentum range 150~MeV/c to 600~MeV/c: 1)~~~~the differential elastic \\\\ \\\\ 2)~~~~the differential charge exchange\\\\ \\\\ 3)~~~~the annihilation into charged and neutral pions\\\\ \\\\ 4)~~~~and the total cross section via the optical theorem. \\\\ \\\\ The experiment allows one to search once again and with good precision for baryonium. Of special interest is the existence of the S-meson, for which a signal of about 20~MeV-mb was found in a 1981 experiment (performed in the East Hall).\\\\ \\\\ A second point of special interest is the momentum region below 300~MeV/c because the cross sections are basically unknown. We will be able to explore the momentum dependence of this region for the first time.\\\\ \\\\ The elastic cross section is measured by a cylindrical multiwire proportional chamber and a scintillator hodoscope placed around a scattering chamber under vacuum. The charge exchange cross section is measured by a ring of 32~anti-neutron detector...

  13. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  14. A code system to generate multigroup cross-sections using basic data

    International Nuclear Information System (INIS)

    Garg, S.B.; Kumar, Ashok

    1978-01-01

    For the neutronic studies of nuclear reactors, multigroup cross-sections derived from the basic energy point data are needed. In order to carry out the design based studies, these cross-sections should also incorporate the temperature and fuel concentration effects. To meet these requirements, a code system comprising of RESRES, UNRES, FIGERO, INSCAT, FUNMO, AVER1 and BGPONE codes has been adopted. The function of each of these codes is discussed. (author)

  15. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  16. SLP - A single level Breit-Wigner cross-section generating programme

    International Nuclear Information System (INIS)

    Doherty, G.

    1965-06-01

    Unbroadened cross-sections are calculated from a single level Breit-Wigner approximation which allows for resonance-potential interference but not resonance-resonance interference. Doppler broadening, and instrumental resolution broadening for thin samples, are optionally performed by successive numerical convolutions. An energy point selection and discard system enables the cross-section over a specified energy range to be represented to a required degree of accuracy using the minimum number of energy points. An energy grid prepared by the user can be incorporated in the calculation but the programme will usually be more efficient if only the end points of the energy range of interest are specified by the user and the intermediate energy points left to the programme to organise. The capacity of the programme varies with the energy range and type of resonance (narrow or broad). About fifty resonances may be sufficient to generate an energy grid of 4000 energy points, which is the maximum allowable energy vector. The programme is written in KDF9 EGTRAN (a FORTRAN dialect); output is printed and may be copied on cards, and intermediate results are stored on magnetic disc. (author)

  17. Activities of the JILA Atomic Collisions Cross Sections Data Center

    International Nuclear Information System (INIS)

    Gallagher, J.W.

    1983-01-01

    The JILA Atomic Collisions Cross Sections Data Center compiles, critically evaluates, and reviews cross sections and rates for low energy (<100 keV) collisions of electrons, photons, and heavy particles with atoms, ions, and simple molecules. Reports are prepared which provide easily accessible recommended data with error limits, list the fundamental literature related to specific topics, identify regions where data are missing, and point out inconsistencies in existing data. The general methodology used in producing evaluated compilations is described. Recently completed projects and work in progress are reported

  18. Capture cross section and resonance parameters of thulium-169

    International Nuclear Information System (INIS)

    Arbo, J.C.; Felvinci, J.P.; Melkonian, E.; Havens, W.W. Jr.

    1975-01-01

    The previously analyzed energy range for thulium capture resonance parameters is extended from 1 keV to 2 keV. In addition, point and group averaged thulium cross section curves are extended to above 2 keV and 181 Ta impurity levels are discussed. (SDF)

  19. A database of fragmentation cross section measurements applicable to cosmic ray propagation calculations

    International Nuclear Information System (INIS)

    Crawford, H.J.; Engelage, J.; Jones, F.C.

    1989-08-01

    A database of single particle inclusive fragment production cross section measurements has been established and is accessible over common computer networks. These measurements have been obtained from both published literature and direct communication with experimenters and include cross sections for nuclear beams on H, He, and heavier targets, and for H and He beams on nuclear targets, for energies >30 MeV/nucleon. These cross sections are directly applicable to calculations involving cosmic ray nuclear interactions with matter. The data base includes projectile, target, and fragment specifications, beam energy, cross section with uncertainty, literature reference, and comment code. It is continuously updated to assure accuracy and completeness. Also available are widely used semi-empirical formulations for calculating production cross sections and excitation functions. In this paper we discuss the database in detail and describe how it can be accessed. We compare the measurements with semi-empirical calculations and point out areas where improved calculations and further cross section measurements are required. 5 refs., 2 figs

  20. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  1. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    International Nuclear Information System (INIS)

    Jarrett, T. H.; Masci, F.; Cutri, R. M.; Marsh, K.; Padgett, D.; Tsai, C. W.; Cohen, M.; Wright, E.; Petty, S.; Stern, D.; Eisenhardt, P.; Mainzer, A.; Ressler, M.; Benford, D.; Blain, A.; Carey, S.; Surace, J.; Lonsdale, C.; Skrutskie, M.; Stanford, S.

    2011-01-01

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg 2 for the EP-N and 1.28 deg 2 for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 μm, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of ∼1.5 deg 2 for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 μm channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total

  2. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  3. Relationship between e-cigarette point of sale recall and e-cigarette use in secondary school children: a cross-sectional study.

    Science.gov (United States)

    Best, Catherine; Haseen, Farhana; van der Sluijs, Winfried; Ozakinci, Gozde; Currie, Dorothy; Eadie, Douglas; Stead, Martine; MacKintosh, Anne Marie; Pearce, Jamie; Tisch, Catherine; MacGregor, Andy; Amos, Amanda; Frank, John; Haw, Sally

    2016-04-14

    There has been a rapid increase in the retail availability of e-cigarettes in the UK and elsewhere. It is known that exposure to cigarette point-of-sale (POS) displays influences smoking behaviour and intentions in young people. However, there is as yet no evidence regarding the relationship between e-cigarette POS display exposure and e-cigarette use in young people. This cross sectional survey was conducted in four high schools in Scotland. A response rate of 87 % and a total sample of 3808 was achieved. Analysis was by logistic regression on e-cigarette outcomes with standard errors adjusted for clustering within schools. The logistic regression models were adjusted for recall of other e-cigarette adverts, smoking status, and demographic variables. Multiple chained imputation was employed to assess the consistency of the findings across different methods of handling missing data. Adolescents who recalled seeing e-cigarettes in small shops were more likely to have tried an e-cigarette (OR 1.92 99 % CI 1.61 to 2.29). Adolescents who recalled seeing e-cigarettes for sale in small shops (OR 1.80 99 % CI 1.08 to 2.99) or supermarkets (OR 1.70 99 % CI 1.22 to 2.36) were more likely to intend to try them in the next 6 months. This study has found a cross-sectional association between self-reported recall of e-cigarette POS displays and use of, and intention to use, e-cigarettes. The magnitude of this association is comparable to that between tobacco point of sale recall and intention to use traditional cigarettes in the same sample. Further longitudinal data is required to confirm a causal relationship between e-cigarette point of sale exposure and their use and future use by young people.

  4. Relationship between e-cigarette point of sale recall and e-cigarette use in secondary school children: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Catherine Best

    2016-04-01

    Full Text Available Abstract Background There has been a rapid increase in the retail availability of e-cigarettes in the UK and elsewhere. It is known that exposure to cigarette point-of-sale (POS displays influences smoking behaviour and intentions in young people. However, there is as yet no evidence regarding the relationship between e-cigarette POS display exposure and e-cigarette use in young people. Methods This cross sectional survey was conducted in four high schools in Scotland. A response rate of 87 % and a total sample of 3808 was achieved. Analysis was by logistic regression on e-cigarette outcomes with standard errors adjusted for clustering within schools. The logistic regression models were adjusted for recall of other e-cigarette adverts, smoking status, and demographic variables. Multiple chained imputation was employed to assess the consistency of the findings across different methods of handling missing data. Results Adolescents who recalled seeing e-cigarettes in small shops were more likely to have tried an e-cigarette (OR 1.92 99 % CI 1.61 to 2.29. Adolescents who recalled seeing e-cigarettes for sale in small shops (OR 1.80 99 % CI 1.08 to 2.99 or supermarkets (OR 1.70 99 % CI 1.22 to 2.36 were more likely to intend to try them in the next 6 months. Conclusions This study has found a cross-sectional association between self-reported recall of e-cigarette POS displays and use of, and intention to use, e-cigarettes. The magnitude of this association is comparable to that between tobacco point of sale recall and intention to use traditional cigarettes in the same sample. Further longitudinal data is required to confirm a causal relationship between e-cigarette point of sale exposure and their use and future use by young people.

  5. Total cross section for hadron production by e+e- annihilation at PETRA energies

    International Nuclear Information System (INIS)

    Bartel, W.; Canzler, T.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Godermann, E.; Haidt, D.; Kawabata, S.; Krehbiel, H.

    1979-10-01

    The cross section for the process e + e - → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross-section in units of the point-like e + e - → μ + μ - cross-section) to be 2.9 +- 0.7, 4.0 +- 0.5, 4.6 +- 0.4 and 4.2 +- 0.6 at √s of 22, 27.7, 30 and 31.6 GeV respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy. (orig.)

  6. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  7. A classification scheme for young stellar objects using the wide-field infrared survey explorer AllWISE catalog: revealing low-density star formation in the outer galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, X. P. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Leisawitz, D. T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-08-20

    We present an assessment of the performance of WISE and the AllWISE data release for a section of the Galactic Plane. We lay out an approach to increasing the reliability of point-source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near- and mid-infrared colors and magnitudes and test it in a section of the outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star-forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  8. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  9. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  10. Measurement of {sup 238}Np fission cross-section by neutrons near thermal point (preliminary results)

    Energy Technology Data Exchange (ETDEWEB)

    Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others

    1995-10-01

    Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.

  11. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  12. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  13. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  14. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  15. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  16. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  17. Application of backpack Lidar to geological cross-section measurement

    Science.gov (United States)

    Lin, Jingyu; Wang, Ran; Xiao, Zhouxuan; Li, Lu; Yao, Weihua; Han, Wei; Zhao, Baolin

    2017-11-01

    As the traditional geological cross section measurement, the artificial traverse method was recently substituted by using point coordinates data. However, it is still the crux of the matter that how to acquire the high-precision point coordinates data quickly and economically. Thereby, the backpack Lidar is presented on the premise of the principle of using point coordinates in this issue. Undoubtedly, Lidar technique, one of booming and international active remote sensing techniques, is a powerful tool in obtaining precise topographic information, high-precision 3-D coordinates and building a real 3-D model. With field practice and date processing indoors, it is essentially accomplished that geological sections maps could be generated simply, accurately and automatically in the support of relevant software such as ArcGIS and LiDAR360.

  18. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  19. Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Hussein, Bassam A.; Weed, David; Shabana, Ahmed A.

    2009-01-01

    In the finite element absolute nodal coordinate formulation (ANCF), the elimination of the relative translations and rotations at a point does not necessarily define a fully clamped joint, particularly in the case of fully parameterized ANCF finite elements that allow for the deformation of the cross section. In this investigation, the formulations and results of two different sets of clamped end conditions that define two different joints are compared. The first joint, called the partially clamped joint, eliminates only the translations and rotations at a point on the cross section. The second joint, called the fully clamped joint, eliminates all the translation, rotation and deformation degrees of freedom at a point on the cross section. The kinematic equations that define the partially and fully clamped joints are developed, and the dynamic equations used in the comparative numerical study presented in this paper are shown. As discussed in this investigation, the fully clamped joint does not allow for the deformation of the cross section at the joint node since the gradient vectors remain orthogonal unit vectors. The partially clamped joint, on the other hand, allows for the deformation of the cross section. Nanson's formula is used as a measure of the deformation of the cross section in the case of the partially clamped joint. A very flexible pendulum that has a rigid body attached to its free end is used to compare the results of the partially and fully clamped joints. The numerical results obtained using this very flexible pendulum example show that, while the type of joint (partially or fully clamped) does not significantly affect the gross reference motion of the system, there are fundamental differences between the two joints since the partially clamped joint allows for the cross section deformations at the joint node

  20. WiseView: Visualizing motion and variability of faint WISE sources

    Science.gov (United States)

    Caselden, Dan; Westin, Paul, III; Meisner, Aaron; Kuchner, Marc; Colin, Guillaume

    2018-06-01

    WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.

  1. Summary - COG: A new point-wise Monte Carlo code for burnup credit analysis

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1989-01-01

    COG, a new point-wise Monte Carlo code being developed and tested at Lawrence Livermore National Laboratory (LLNL) for the Cray-1, solves the Boltzmann equation for the transport of neutrons, photons, and (in future versions) other particles. Techniques included in the code for modifying the random walk of particles make COG most suitable for solving deep-penetration (shielding) problems and a wide variety of criticality problems. COG is similar to a number of other computer codes used in the shielding community. Each code is a little different in its geometry input and its random-walk modification options. COG is a Monte Carlo code specifically designed for the CRAY (in 1986) to be as precise as the current state of physics knowledge. It has been extensively benchmarked and used as a shielding code at LLNL since 1986, and has recently been extended to accomplish criticality calculations. It will make an excellent tool for future shipping cask studies

  2. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    Science.gov (United States)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  3. MINX, Multigroup Cross-Sections and Self-Shielding Factors from ENDF/B for Program SPHINX

    International Nuclear Information System (INIS)

    Soran, P.D.; MacFarlane, R.E.; Harris, D.R.; LaBauve, R.J.; Hendricks, J.S.; Kidman, R.B.; Weisbin, C.R.; White, J.E.

    1977-01-01

    1 - Description of problem or function: MINX calculates fine-group averaged infinitely diluted cross sections and self-shielding factors from ENDF/B-IV data. Its primary purpose is to generate a pseudo-composition-independent multigroup library which is input to the SPHINX space-energy collapse program (2) (PSR-0129) through standard CCCC-III (8) interfaces. MINX incorporates and improves upon the resonance capabilities of existing codes such as ETOX (5) (NESC0388) and ENDRUN (9) and the high-order group-to-group transfer matrices of SUPERTOG (10) (PSR-0013) and ETOG (11). Fine group energy boundaries, Legendre expansion order, gross spectral shape component (in the Bondarenko flux model), temperatures and dilutions can all be used specifically. 2 - Method of solution: Infinitely dilute, un-broadened point cross sections are obtained from resolved resonance parameters using a modified version of the RESEND program (3) (NESC0465). The SIGMA1 (4) (IAEA0854) kernel-broadening method is used to Doppler broaden and thin the tabulated linearized pointwise cross sections at 0 K (outside of the unresolved energy region). Effective temperature- dependent self-shielded pointwise cross sections are derived from the formulation in the ETOX code. The primary modification to the ETOX algorithm is associated with the numerical quadrature scheme used to establish the mean values of the fluctuation intervals. The selection of energy mesh points, at which the effective cross sections are calculated, has been modified to include the energy points given in the ENDF/B file or, if the energy-independent formalism was employed, points at half-lethargy intervals. Infinitely dilute group cross sections and self-shielding factors are generated using the Bondarenko flux weighting model with the gross spectral shape under user control. The integral over energy for each group is divided into a set of panels defined by the union of the grid points describing the total cross section, the

  4. Exotic behavior of elastic scattering differential cross-sections of weakly bound nucleus 17F at small angles

    International Nuclear Information System (INIS)

    Han Jianlong; Hu Zhengguo; Zhang Xueyin; Yuan Xiaohua; Xu Huagen; Qi Huirong; Wang Yue; Jia Fei; Wu Lijie; Ding Xianli; Gao Qi; Gao Hui; Bai Zhen

    2006-01-01

    The differential cross-sections for elastic scattering of 17 F and 17 O on 208 Pb have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degree-20 degree) for 17 F having exotic structure, while no turning point was observed in the 17 O elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon. (authors)

  5. Analysis of fusion neutronics calculations and appraisal of UW cross-section library

    International Nuclear Information System (INIS)

    Xie Jianping; Li Xingzhong; Ying Chuntong

    1989-01-01

    A series of calculations for different cases (especially for the values of tritium breeding ratio T, and the fuel breeding ratio F in the blanket of a hybrid reactor) were carried out by using ANISN program and UW cross-section library. The comparison with other results in China and abroad kalso was done. It was shownwn that the installation and execution of ANISN program on ELXSI machine at Tsinghua University are successful, and the UW cross-section library is reliable. It may be used for fusion neutronics calculation in the future. The paper also points out that the difference between the calculations and by the authors are due to jthe different in cross-section data used

  6. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  7. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  8. Brief note on the statistical calculation of final continuum reaction cross sections of light nuclides

    International Nuclear Information System (INIS)

    Murata, Toru

    2003-01-01

    The level density parameters are determined to reproduce level structure and/or resonance level spacing of the nucleus. In the statistical compound nucleus model, cross sections to discrete levels decrease abruptly, and continuum level cross section increase strongly above the energy point where the continuum levels switched on. In the present study, for the nucleus which level scheme were well determined up to higher excitation energy more than 10 MeV, discrete level cross sections were calculated and summed up and compared with the cross section to the assumed continuum level corresponding to the discrete levels above several MeV excitation energy. Calculation of the (n, n') cross sections were made with CASTHY code of Moldauer model option using level density parameters determined with former method. It is shown that the assumed continuum cross section is fairly large compared with the summed up cross section. Origins of the discrepancy were discussed. (J.P.N.)

  9. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  10. Measurement of the total proton-proton cross section with ATLAS at LHC

    CERN Document Server

    khalek, Samah Abdel

    It is now nearly fifty years since total proton-proton (pp) cross sections have been found to grow with energy after it was believed for long time that they would become asymptotically constant . The uncertainties of the cosmic ray data, at high energy, do not allow to determine the exact growth with energy of the total cross section .The Large Hadron Collider (LHC) at CERN in Geneva has already delivered collisions with an energy never reached in a particle accelerator. The energy in the center of mass was 7 TeV (2010 - 2011) or 8 TeV (2012) and will ultimately reached 14 TeV in the near future. Thus, this will provide a good environment for a new precise measurement of the total pp cross section at this energy.The ATLAS detector installed in one of the four LHC interaction points is used to collect the result of the pp collisions. Its sub-detector ALFA located 240 m from the interaction point, is used to track protons resulting from elastic collisions.Therefore, within special beam optics conditions, ALFA i...

  11. XNWLUP, Graphical user interface to plot WIMS-D library multigroup cross sections

    International Nuclear Information System (INIS)

    Ganesan, S.; Jagannathan, V.; Thiyagarajan, T.K.

    2005-01-01

    1 - Description of program or function: XnWlup is a computer program with user-friendly graphical interface to help the users of WIMS-D library to enable quick visualisation of the plots of the energy dependence of the multigroup cross sections of any nuclide of interest. This software enables the user to generate and view the histogram of 69 multi-group cross sections as a function of neutron energy under Microsoft Windows environment. This software is designed using Microsoft Visual C++ and Microsoft Foundation Classes Library. IAEA1395/05: New features of version 3.0: - Plotting absorption and fission cross sections of resonant nuclide after applying the self-shielding cross section. - Plotting the data of Resonant Integral table, as a function of dilution cross section for a selected temperature and for a given energy group. - Plotting the data of Resonant Integral table, as a function of temperature for a selected background dilution cross section and for a given energy group. - Clearing all the graphs except one graph from the display screen is easily done by using a tool bar button. - Displaying the coordinate of the cursor point with appropriate units. 2 - Methods: XnWlup helps to obtain histogram plots of the values of cross section data of an element/isotope available as 69-group WIMS-D library as a function of energy bins. The software XnWlup is developed with this graphical user interface in order to help those users who frequently refer to the WIMS-D library cross section data of neutron-nuclear reactions. The software also helps to produce handbook of WIMS-D cross sections

  12. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  13. Restoration of an object from its complex cross sections and surface smoothing of the object

    International Nuclear Information System (INIS)

    Agui, Takeshi; Arai, Kiyoshi; Nakajima, Masayuki

    1990-01-01

    In clinical medicine, restoring the surface of a three-dimensional object from its set of parallel cross sections obtained by CT or MRI is useful in diagnoses. A method of connecting a pair of contours on neighboring cross sections to each other by triangular patches is generally used for this restoration. This method, however, has the complexity of triangulation algorithm, and requires the numerous quantity of calculations when surface smoothing is executed. In our new method, the positions of sampling points are expressed in cylindrical coordinates. Sampling points including auxiliary points are extracted and connected using simple algorithm. Surface smoothing is executed by moving sampling points. This method extends the application scope of restoring objects by triangulation. (author)

  14. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  15. The Total Cross Section at the LHC: Models and Experimental Consequences

    CERN Document Server

    Cudell, J R

    2010-01-01

    I review the predictions of the total cross section for many models, and point out that some of them lead to the conclusion that the standard experimental analysis may lead to systematic errors much larger than expected.

  16. GROUPIE2007, Bondarenko Self-Shielded Cross sections from ENDF/B

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of problem or function - GROUPIE reads evaluated data in ENDF/B Format and uses these to calculate unshielded group averaged Cross sections, Bondarenko self-shielded Cross sections, and multiband parameters. The program allows the user to specify arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighting function). IAEA0849/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. 2 - Modifications from previous versions: Groupie VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 120,000 to 600,000 points. 3 - Method of solution: All integrals are performed analytically; in no case is iteration or any approximate form of integration used. GROUPIE reads either the 0 deg. Kelvin Cross sections or the Doppler broadened Cross sections to calculate the self-shielded Cross sections and multiband parameters for 25 values of the 'background' Cross sections (representing the combined effects of all other isotopes and of leakage). 4 - Restrictions on the complexity of the problem: GROUPIE requires that the energy-dependent neutron spectrum and all Cross sections be given in tabular form, with linear interpolation between tabulated values. There is no limit to the size of the table used to describe the spectrum, so the spectrum may be described in as much detail as required. - If only unshielded averages are calculated, the program can handle up to 3000 groups. If self-shielded averages and/or multiband parameters are calculated, the program can handle up to 175 groups. These limits can easily be extended. - The program only uses the

  17. Does Realized Skewness Predict the Cross-Section of Equity Returns?

    DEFF Research Database (Denmark)

    Amaya, Diego; Christoffersen, Peter; Jacobs, Kris

    2015-01-01

    We use intraday data to compute weekly realized moments for equity returns and study their time-series and cross-sectional properties. Buying stocks in the lowest realized skewness decile and selling stocks in the highest realized skewness decile generates an average return of 19 basis points...

  18. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  19. Age-wise and gender-wise prevalence of oral habits in 7–16-year-old school children of Mewar ethnicity, India

    Directory of Open Access Journals (Sweden)

    Pradeep Vishnoi

    2017-01-01

    Full Text Available Objectives: The study aimed to check the age- and gender-wise prevalence of oral habits in the children of 7–16-year-old Indian children. Materials and Methods: A cross-sectional survey involving 1029 (661 males and 368 females children of age 7–16 years was done to record the presence or absence of the oral habits with the aid of the anamnestic questionnaire. The recorded oral habits were tongue thrusting, thumb or digit sucking, mouth breathing, bruxism, lip biting or lip sucking, and nail biting. The collected data were subjected to Pearson's Chi-square statistical analysis to know the overall difference in the prevalence rate of different oral habits and to evaluate the gender- and age-wise difference in the prevalence of oral habits. Results: Oral habits were present in 594 participants (57.73%. The highest prevalence rate was registered for tongue thrusting habit (28.8%, which was followed by nail biting (201/19.5% and thumb sucking (128/12.4%, mouth breathing (109/10.6%, lip biting (85/8.3%, and bruxism (29/2.8%. The male participants showed a greater prevalence rate for the oral habits than the female participants (58.55% vs. 56.25%. There was a significant difference in the age-wise prevalence of oral habits with older children showing greater prevalence of oral habits than the younger ones. Conclusion: The prevalence of oral habits in the current group of children is high. It warrants the need for the community-based educational preventive and interceptive programs to spread the awareness regarding the deleterious effects of these oral habits.

  20. Empirical Fit to Inelastic Electron-Deuteron and Electron-Neutron Resonance Region Transverse Cross Sections

    International Nuclear Information System (INIS)

    Peter Bosted; M. E. Christy

    2007-01-01

    An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic range of four-momentum transfer 0 (le) Q 2 2 and final state invariant mass 1.2 p of longitudinal to transverse cross sections for the proton, and the assumption R p =R n . The underlying fit parameters describe the average cross section for proton and neutron, with a plane-wave impulse approximation (PWIA) used to fit to the deuteron data. Pseudo-data from MAID 2007 were used to constrain the average nucleon cross sections for W<1.2 GeV. The mean deviation of data from the fit is 3%, with less than 5% of the data points deviating from the fit by more than 10%

  1. Neutron cross sections for defect production by high-energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1983-08-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects

  2. Neutron cross sections for defect production by high energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1984-01-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after short-term annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after short-term annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects. (orig.)

  3. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  4. Code implementation of partial-range angular scattering cross sections: GAMMER and MORSE

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1978-01-01

    A partial-range (finite-element) method has been previously developed for representing multigroup angular scattering in Monte Carlo photon transport. Computer application of the method, with preliminary quantitative results is discussed here. A multigroup photon cross section processing code, GAMMER, was written which utilized ENDF File 23 point data and the Klein--Nishina formula for Compton scattering. The cross section module of MORSE, along with several execution routines, were rewritten to permit use of the method with photon transport. Both conventional and partial-range techniques were applied for comparison to calculating angular and spectral penetration of 6-MeV photons through a six-inch iron slab. GAMMER was found to run 90% faster than SMUG, with further improvement evident for multiple-media situations; MORSE cross section storage was reduced by one-third; cross section processing, greatly simplified; and execution time, reduced by 15%. Particle penetration was clearly more forward peaked, as moment accuracy is retained to extremly high order. This method of cross section treatment offers potential savings in both storage and handling, as well as improved accuracy and running time in the actual execution phase. 3 figures, 4 tables

  5. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  6. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  7. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  8. Sensitivity analysis of U238 cross section in thermal nuclear systems

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Oliveira, E.C. de; Moura Neto, C. de.

    1980-01-01

    A sensitivity analysis system is developed for assessing the implication of uncertainties in nuclear data and related computational methods for light water power reactor. Sensitivies, at equilibrium cycle condition, are carried out for the few group macroscopic cross section of the U 238 with respect to their 35 group microscopic absorption cross section using the batch depletion code SENTEAV similar to those calculation methods used in the industry. This investigation indicates that improvements are requested on specific range of energy. These results point out the direction for worth while experimental measurements based on an analysis of costs and economic benefits. (Author) [pt

  9. Granular effect on the effective cross sections in the HTGR type reactors

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de.

    1975-01-01

    Effective cross section of bars for HTGR is studied from the point of view of heterogeneity. Microscopical heterogeneity due to grains is represented by a self-shielding factor, which is well determined [pt

  10. Justification of the Shape of a Non-Circular Cross-Section for Drilling With a Roller Cutter

    Science.gov (United States)

    Buyalich, Gennady; Husnutdinov, Mikhail

    2017-11-01

    The parameters of the shape of non-circular cross-section affect not only the process of blasting, but also the design of the tool and the process of drilling as well. In the conditions of open-pit mining, it is reasonable to use a roller cutter to produce a non-circular cross-section of blasting holes. With regard to the roller cutter, the impact of the cross-section shape on the oscillations of the axial force arising upon its rotation is determined. It is determined that a polygonal shape with rounded comers of the borehole walls connections and their convex shape, which ensures a smaller range of the total axial force and the torque deflecting the bit from the axis of its rotation is the rational form of the non-circular cross-section of the borehole in terms of bit design. It has been shown that the ratio of the number of cutters to the number of borehole corners must be taken into account when justifying the shape of the cross-section, both from the point of view of the effectiveness of the explosion action and from the point of view of the rational design of the bit.

  11. Performance of Traffic Noise Barriers with Varying Cross-Section

    Directory of Open Access Journals (Sweden)

    Sanja Grubeša

    2011-05-01

    Full Text Available The efficiency of noise barriers largely depends on their geometry. In this paper, the performance of noise barriers was simulated using the numerical Boundary Element Method (BEM. Traffic noise was particularly considered with its standardized noise spectrum adapted to human hearing. The cross-section of the barriers was varied with the goal of finding the optimum shape in comparison to classical rectangular barriers. The barrier performance was calculated at different receiver points for a fixed barrier height and source position. The magnitude of the insertion loss parameter was used to evaluate the performance change, both in one-third octave bands and as the broadband mean insertion loss value. The proposed barriers of varying cross-section were also compared with a typical T-shape barrier of the same height.

  12. ARP: A PC-compatible scheme for generating ORIGEN-S cross section library

    International Nuclear Information System (INIS)

    Leal, L.C.; Hermann, O.W.; Parks, C.V.

    1995-01-01

    The SAS2H sequence of the SCALE code system has been widely used for treating problems related to the characterization of nuclear systems for disposal, storage, and shipment. The calculations, in general, consist of determining the isotope compositions of the different materials present in the problem as a function of time, which subsequently enable determination of the heat generation and radiation source terms. In the SAS2H scheme, time-dependent material concentrations are obtained using the ORIGEN-S code based on a point-depletion calculation that utilizes problem-dependent cross-section libraries generated by distinct codes of the SAS2H sequence. In this paper we will be concerned with the methodology utilized in the SAS2H control module to create cross-section libraries for point-depletion calculations with the ORIGEN-S code. A brief description of the SAS2H scheme will be given, and a new capability, the automatic rapid processing (ARP), for generating problem-dependent ORIGEN-S cross-section libraries will be presented. Use of ARP can enable execution of ORIGEN-S on a personal computer with identical accuracy to that obtained with SAS2H

  13. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  14. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-01-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, the parameters of each level are not known; only the average parameters. Therefore the authors simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the x 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, the authors survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors

  15. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  16. Investigation on macroscopic cross section model for BWR pin-by-pin core analysis - 118

    International Nuclear Information System (INIS)

    Fujita, T.; Tada, K.; Yamamoto, A.; Yamane, Y.; Kosaka, S.; Hirano, G.

    2010-01-01

    A cross section model used in the pin-by-pin core analysis for BWR is investigated. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of state and history variables that have influences on the cross section and are tabulated prior to the core calculations. Variation of a cross section in a core simulator is classified into two different types, i.e., the instantaneous effect and the history effect. The instantaneous effect is incorporated by the variation of cross section which is caused by the instantaneous change of state variables. For this effect, the exposure, the void fraction, the fuel temperature, the moderator temperature and the control rod are used as indexes. The history effect is the cumulative effect of state variables. We treat this effect with a unified approach using the spectral history. To confirm accuracy of the cross section model, the pin-by-pin fission rate distribution and the k-infinity of fuel assembly which are obtained with the tabulated and the reference cross sections are compared. For the instantaneous effect, the present cross section model well reproduces the reference results for all off-nominal conditions. For the history effect, however, considerable differences both on the pin-by-pin fission rate distribution and the k-infinity are observed at high exposure points. (authors)

  17. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  18. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  19. User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code; Notice d'utilisation du code Tripoli-4, version 4.3: code de transport de particules par la methode de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B

    2003-07-01

    This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k{sub eff} (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)

  20. User manual for version 4.3 of the Tripoli-4 Monte-Carlo method particle transport computer code

    International Nuclear Information System (INIS)

    Both, J.P.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.

    2003-01-01

    This manual relates to Version 4.3 TRIPOLI-4 code. TRIPOLI-4 is a computer code simulating the transport of neutrons, photons, electrons and positrons. It can be used for radiation shielding calculations (long-distance propagation with flux attenuation in non-multiplying media) and neutronic calculations (fissile medium, criticality or sub-criticality basis). This makes it possible to calculate k eff (for criticality), flux, currents, reaction rates and multi-group cross-sections. TRIPOLI-4 is a three-dimensional code that uses the Monte-Carlo method. It allows for point-wise description in terms of energy of cross-sections and multi-group homogenized cross-sections and features two modes of geometrical representation: surface and combinatorial. The code uses cross-section libraries in ENDF/B format (such as JEF2-2, ENDF/B-VI and JENDL) for point-wise description cross-sections in APOTRIM format (from the APOLLO2 code) or a format specific to TRIPOLI-4 for multi-group description. (authors)

  1. Study of evaporation residue cross-section for 48Ti + 140,142Ce systems

    International Nuclear Information System (INIS)

    Kaur, Devinder Pal; Behera, B.R.; Kaur, M.

    2017-01-01

    For understanding the reaction mechanism of heavy compound nucleus (CN), the study of evaporation residue (ER) cross-section plays a vital role. For heavier systems, the probability of formation of CN is strongly influenced by the properties of the di-nuclear system at contact configuration, where entrance channel plays a major role in reaction dynamics. Nuclear structure of the colliding nuclei also plays a key role, which influence the fusion probability. In some of the recent studies the dependence of the fusion reaction on the nuclear shell structure of projectile and target nuclei was also investigated and the importance of N = 82 in the heavy ion fusion reaction was proposed. It was reported that shell closure of one of the interacting nuclei can lead to the enhanced ER cross-section and helps in the synthesis of heavy nuclei. Keeping these points in mind, a systematic measurement of ER cross sections for 48 Ti + 140,142 Ce, 124 Sn systems was performed. Here, 140 Ce target is neutron shell closed (N T =82) but 142 Ce have 84 neutrons. By comparing the ER cross-sections of these systems, the effect of neutron shell closure on fusion probability can be examined. The ER excitation function for third system ( 48 Ti + 124 Sn) was also measured at few energy points to estimate the transmission efficiency of the spectrometer

  2. Empirical continuation of the differential cross section

    International Nuclear Information System (INIS)

    Borbely, I.

    1978-12-01

    The theoretical basis as well as the practical methods of empirical continuation of the differential cross section into the nonphysical region of the cos theta variable are discussed. The equivalence of the different methods is proved. A physical applicability condition is given and the published applications are reviewed. In many cases the correctly applied procedure turns out to provide nonsignificant or even incorrect structure information which points to the necessity for careful and statistically complete analysis of the experimental data with a physical understanding of the analysed process. (author)

  3. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  4. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  5. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  6. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given

  7. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  8. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  9. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  10. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)

    2010-06-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  11. NNLO jet cross sections by subtraction

    CERN Document Server

    Somogyi, Gabor; Trocsanyi, Zoltan

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  12. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration

    International Nuclear Information System (INIS)

    Khakoo, M. A.; Wrkich, J.; Larsen, M.; Kleiban, G.; Kanik, I.; Trajmar, S.; Brunger, M.J.; Teubner, P.J.O.; Crowe, A.; Fontes, C.J.; Clark, R.E.H.; Zeman, V.; Bartschat, K.; Madison, D.H.; Srivastava, R.; Stauffer, A.D.

    2002-01-01

    Electron-impact differential cross-section measurements for the excitation of the 2p 5 3s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n=2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We also present results from calculations of these differential cross sections using the R-matrix and unitarized first-order many-body theory, the distorted-wave Born approximation, and relativistic distorted-wave methods. Comparison with available experimental differential cross sections and differential cross-section ratios is also presented

  13. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  14. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  15. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  16. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Seamon, R.E.; Soran, P.D.

    1980-06-01

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  17. Astro-WISE information system

    NARCIS (Netherlands)

    Valentijn, E. A.; Belikov, A. N.; Kleijn, G. A. Verdoes; Williams, O.R.; Radziwill, NM; Chiozzi, G

    2012-01-01

    Astro-WISE is the first information system in astronomy which covers all aspects of data processing, storage and visualization. We show the various concepts behind the Astro-WISE, their realization and use, migration of Astro-WISE to other astronomical and non-astronomical information systems.

  18. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  19. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  20. Characterizing the evolution of WISE-selected obscured and unobscured quasars using HOD models.

    Science.gov (United States)

    Myers, Adam D.; DiPompeo, Michael A.; Mitra, Kaustav; Hickox, Ryan C.; Chatterjee, Suchetana; Whalen, Kelly

    2018-06-01

    Large-area imaging surveys in the infrared are now beginning to unlock the links between the activity of supermassive black holes and the cosmic evolution of dark matter halos during the significant times when black hole growth is enshrouded in dust. With data from the Wide-Field Infrared Survey Explorer (WISE) and complementary optical photometry, we construct samples of nearly half-a-million obscured and unobscured quasars around redshift 1. We study the dark matter halos of these populations using both angular autocorrelation functions and CMB lensing cross-correlations, carefully characterizing the redshift distribution of the obscured quasar sample using cross-correlations. Independent of our measurement technique, we find that obscured quasars occupy dark matter halos a few times more massive than their unobscured counterparts, despite being matched in luminosity at 12 and 22 microns. Modeling the two-point correlation function using a four-parameter Halo Occupation Distribution (HOD) formalism, we determine that purely optically selected quasars reside in dark matter halos that are about half the mass of WISE-selected obscured quasars, and that satellite fractions are somewhat larger for obscured quasars. We investigate scenarios such as merger-driven fueling and Eddington-dependent obscuration to explore what combinations of physical effects can reproduce our observed halo mass measurements. This work was, in part, supported by NASA ADAP award NNX16AN48G.

  1. Quantifying and predicting interpretational uncertainty in cross-sections

    Science.gov (United States)

    Randle, Charles; Bond, Clare; Monaghan, Alison; Lark, Murray

    2015-04-01

    Cross-sections are often constructed from data to create a visual impression of the geologist's interpretation of the sub-surface geology. However as with all interpretations, this vision of the sub-surface geology is uncertain. We have designed and carried out an experiment with the aim of quantifying the uncertainty in geological cross-sections created by experts interpreting borehole data. By analysing different attributes of the data and interpretations we reflect on the main controls on uncertainty. A group of ten expert modellers at the British Geological Survey were asked to interpret an 11.4 km long cross-section from south-east Glasgow, UK. The data provided consisted of map and borehole data of the superficial deposits and shallow bedrock. Each modeller had a unique set of 11 boreholes removed from their dataset, to which their interpretations of the top of the bedrock were compared. This methodology allowed quantification of how far from the 'correct answer' each interpretation is at 11 points along each interpreted cross-section line; through comparison of the interpreted and actual bedrock elevations in the boreholes. This resulted in the collection of 110 measurements of the error to use in further analysis. To determine the potential control on uncertainty various attributes relating to the modeller, the interpretation and the data were recorded. Modellers were asked to fill out a questionnaire asking for information; such as how much 3D modelling experience they had, and how long it took them to complete the interpretation. They were also asked to record their confidence in their interpretations graphically, in the form of a confidence level drawn onto the cross-section. Initial analysis showed the majority of the experts' interpreted bedrock elevations within 5 metres of those recorded in the withheld boreholes. Their distribution is peaked and symmetrical about a mean of zero, indicating that there was no tendency for the experts to either under

  2. Cross-Sectional Analysis of Longitudinal Mediation Processes.

    Science.gov (United States)

    O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio

    2018-01-01

    Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.

  3. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  4. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-09-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, we do not know the parameters of each level but only the average parameters. Therefore we simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the X 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, we will survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors. 8 refs

  5. ZZ HPICE/F, Gamma Interaction Cross-Section Library in ENDF/B Format for Transport Calculation

    International Nuclear Information System (INIS)

    1984-01-01

    Nature of physical problem solved: Format: ENDF/B file 23; Number of groups: Point Cross Sections, energies 1 keV to 100 MeV. Nuclides: Z = 1-83, 86, 90, 92 an 94. Origin: Lawrence Livermore Laboratory; Weighting spectrum: none. The data are for use in general purpose gamma-ray transport codes. The Lawrence Livermore Laboratory has a continuing program to evaluate photon cross section. The data are given in units of (barns/atom) for energies 1 keV to 100 MeV and for elements Z = 1-83, 86, 90, 92 and 94. The MAT numbers are equal to the atomic numbers (Z). The following cross sections are tabulated: MT cross section type: 501 total; 502 coherent scattering; 504 incoherent scattering; 516 pair production (includes triplet); 603 photoelectric

  6. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  7. Wireless Positioning Based on a Segment-Wise Linear Approach for Modeling the Target Trajectory

    DEFF Research Database (Denmark)

    Figueiras, Joao; Pedersen, Troels; Schwefel, Hans-Peter

    2008-01-01

    Positioning solutions in infrastructure-based wireless networks generally operate by exploiting the channel information of the links between the Wireless Devices and fixed networking Access Points. The major challenge of such solutions is the modeling of both the noise properties of the channel...... measurements and the user mobility patterns. One class of typical human being movement patterns is the segment-wise linear approach, which is studied in this paper. Current tracking solutions, such as the Constant Velocity model, hardly handle such segment-wise linear patterns. In this paper we propose...... a segment-wise linear model, called the Drifting Points model. The model results in an increased performance when compared with traditional solutions....

  8. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  9. Group cross-section processing method and common nuclear group cross-section library based on JENDL-3 nuclear data file

    International Nuclear Information System (INIS)

    Hasegawa, Akira

    1991-01-01

    A common group cross-section library has been developed in JAERI. This system is called 'JSSTDL-295n-104γ (neutron:295 gamma:104) group constants library system', which is composed of a common 295n-104γ group cross-section library based on JENDL-3 nuclear data file and its utility codes. This system is applicable to fast and fusion reactors. In this paper, firstly outline of group cross-section processing adopted in Prof. GROUCH-G/B system is described in detail which is a common step for all group cross-section library generation. Next available group cross-section libraries developed in Japan based on JENDL-3 are briefly reviewed. Lastly newly developed JSSTDL library system is presented with some special attention to the JENDL-3 data. (author)

  10. FIZCON, ENDF/B Cross-Sections Redundancy Check

    International Nuclear Information System (INIS)

    Dunford, Charles L.

    2007-01-01

    1 - Description of program or function: FIZCON is a program for checking that an evaluated data file has valid data and conforms to recommended procedures. Version 7.01 (April 2005): set success flag after return from beginning; fixed valid level check for an isomer; fixed subsection energy range test in ckf9; changed lower limit on potential scattering test; fixed error in j-value test when l=0 and i=0; added one more significant figure to union grid check and sum up output messages; partial fission cross sections mt=19,20,21 and 38 did not require secondary energy distributions in file 5; corrected product test for elastic scattering; moved potential scattering test to psyche. Version 7.02 (May 2005): Fixed resonance parameter sum test. 2 - Method of solution: FIZCON can recognise the difference between ENDF-6 and ENDF-5 formats and performs its tests accordingly. Some of the tests performed include: data arrays are in increasing energy order; resonance parameter widths add up to the total; Q-values are reasonable and consistent; no required sections are missing and all cover the proper energy range; secondary distributions are normalized to 1.0; energy conservation in decay spectra. Optional tests can be performed to check the redundant cross sections, and algorithms can be used to check for possible incorrect entry of data values (Deviant Point test)

  11. Evaluation of fission spectra and cross sections by zero-leakage core experiments

    International Nuclear Information System (INIS)

    Iijima, T.; Mukaiyama, T.

    1979-01-01

    A series of unit k-infinity core experiments were performed in FCA of JAERI to obtain the information on the equivalence of 239 Pu to 235 U in fast reactors, and to examine the inelastic slowing down cross section of 238 U. Three assemblies were built. Each assembly consists of a test zone (about 44l) of nearly unit k-infinity, a 20% enriched uranium driver and a natural uranium blanket. Assembly IV-1 (first built in 1969 and rebuilt in 1972) is an all uranium system, and Assemblies IV-1-P, IV-1-P' have a plutonium/natural uranium test zone. Three assemblies are nearly the same from the view-point of the slowing down cross section in the main energy region of the neutron spectrum, since 238 U occupies the most part of the composition. The main difference between Assembly IV-1 and the latter two is the difference in the fissile material. Fission rate ratios and k-infinity values were measured to obtain knowledge of the fission spectra and cross sections important for the criticality. In order to evaluate the inelastic slowing down cross section of 238 U, neutron spectra were measured with various methods. The analysis was done with four cross section sets. The agreement of k-infinity values between the experiment and the calculation is unsatisfactory, especially for Pu/NU systems

  12. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  13. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  14. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  15. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  16. Errata and update to ;Experimental cross sections for L-shell X-ray production and ionization by protons;

    Science.gov (United States)

    Miranda, J.; Lapicki, G.

    2018-01-01

    A compilation of experimental L-shell X-ray production and ionization cross sections induced by proton impact was published recently (Miranda and Lapicki, 2014), collecting 15 439 experimental cross sections. The database covers an energy range from 10 keV to 1 GeV, and targets from 10Ne to 95Am. A correction to several tabulated values that were in error, as well as an update including new data published after 2012 and older references not found previously are given in the present work. The updated data base increased the total number of experimental cross sections by 3.1% to 15 921. A new analysis of the total number of experimental points per year shows that the possible saturation in the cumulative total number of data is increased to 15 950 ± 110 points.

  17. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  18. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  19. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  20. Point source reconstruction principle of linear inverse problems

    International Nuclear Information System (INIS)

    Terazono, Yasushi; Matani, Ayumu; Fujimaki, Norio; Murata, Tsutomu

    2010-01-01

    Exact point source reconstruction for underdetermined linear inverse problems with a block-wise structure was studied. In a block-wise problem, elements of a source vector are partitioned into blocks. Accordingly, a leadfield matrix, which represents the forward observation process, is also partitioned into blocks. A point source is a source having only one nonzero block. An example of such a problem is current distribution estimation in electroencephalography and magnetoencephalography, where a source vector represents a vector field and a point source represents a single current dipole. In this study, the block-wise norm, a block-wise extension of the l p -norm, was defined as the family of cost functions of the inverse method. The main result is that a set of three conditions was found to be necessary and sufficient for block-wise norm minimization to ensure exact point source reconstruction for any leadfield matrix that admit such reconstruction. The block-wise norm that satisfies the conditions is the sum of the cost of all the observations of source blocks, or in other words, the block-wisely extended leadfield-weighted l 1 -norm. Additional results are that minimization of such a norm always provides block-wisely sparse solutions and that its solutions form cones in source space

  1. Diffraction and Total Cross-Section at the Tevatron and the LHC

    CERN Document Server

    Deile, M; Aurola, A; Avati, V; Berardi, V; Bottigli, U; Bozzo, M; Brucken, E; Buzzo, A; Calicchio, M; Capurro, F; Catanesi, M G; Ciocci, M A; Cuneo, S; Da Vià, C; Dimovasili, E; Eggert, K; Eraluoto, M; Ferro, F; Giachero, A; Guillaud, J P; Hasi, J; Haug, F; Heino, J; Hilden, T; Jarron, P; Kalliopuska, J; Kaspar, J; Kempa, J; Kenney, C; Kok, A; Kundrát, V; Kurvinen, K; Lami, S; Lamsa, J; Latino, G; Lauhakangas, R; Lippmaa, J; Lokajícek, M; Lo Vetere, M; Macina, D; Macri, M; Meucci, M; Minutoli, S; Morelli, A; Musico, P; Negri, M; Niewiadomski, H; Noschis, E; Ojala, J; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Paoletti, R; Parker, S; Perrot, Anne Laure; Radermacher, E; Radicioni, E; Robutti, E; Ropelewski, Leszek; Ruggiero, G; Saarikko, H; Sanguinetti, G; Santroni, A; Saramad, S; Sauli, Fabio; Scribano, A; Sette, G; Smotlacha, J; Snoeys, W; Taylor, C; Toppinen, A; Turini, N; Van Remortel, N; Verardo, L; Verdier, A; Watts, S; Whitmore, J

    2006-01-01

    At the Tevatron, the total p_bar-p cross-section has been measured by CDF at 546 GeV and 1.8 TeV, and by E710/E811 at 1.8 TeV. The two results at 1.8 TeV disagree by 2.6 standard deviations, introducing big uncertainties into extrapolations to higher energies. At the LHC, the TOTEM collaboration is preparing to resolve the ambiguity by measuring the total p-p cross-section with a precision of about 1 %. Like at the Tevatron experiments, the luminosity-independent method based on the Optical Theorem will be used. The Tevatron experiments have also performed a vast range of studies about soft and hard diffractive events, partly with antiproton tagging by Roman Pots, partly with rapidity gap tagging. At the LHC, the combined CMS/TOTEM experiments will carry out their diffractive programme with an unprecedented rapidity coverage and Roman Pot spectrometers on both sides of the interaction point. The physics menu comprises detailed studies of soft diffractive differential cross-sections, diffractive structure func...

  2. Empirical fit to inelastic electron-deuteron and electron-neutron resonance region transverse cross sections

    International Nuclear Information System (INIS)

    Bosted, P. E.; Christy, M. E.

    2008-01-01

    An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic range of four-momentum transfer 0≤Q 2 2 and final state invariant mass 1.1 p of longitudinal to transverse cross sections for the proton, and the assumption R p =R n . The underlying fit parameters describe the average cross section for a free proton and a free neutron, with a plane-wave impulse approximation used to fit to the deuteron data. Additional fit parameters are used to fill in the dip between the quasi-elastic peak and the Δ(1232) resonance. The mean deviation of data from the fit is 3%, with less than 4% of the data points deviating from the fit by more than 10%

  3. Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on {sup 132,134}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Hexi Univ., Zhangye (China). Inst. of New Energy; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Li, Suyuan [Hexi Univ., Zhangye (China). Inst. of New Energy

    2017-07-01

    Cross sections of the {sup 132}Ba(n,2n){sup 131m,g}Ba and {sup 134}Ba(n,2n){sup 133m,g}Ba reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} have been measured by means of the activation technique at three neutron energies in the range 13-15 MeV. BaCO{sub 3} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The quasimonoenergetic neutrons beam were produced via the {sup 3}H(d,n){sup 4}He reaction at the Pd-300 Neutron Generator of the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  4. L X-ray fluorescence cross sections experimentally determined for elements with 45

    Energy Technology Data Exchange (ETDEWEB)

    Bonzi, Edgardo V., E-mail: bonzie@famaf.unc.edu.ar [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria-5010, Cordoba (Argentina); Badiger, Nagappa M. [Departments of Physics, Karnatak University, Dharwad 580 003, Karnataka (India); Grad, Gabriela B. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria-5010, Cordoba (Argentina); Barrea, Raul A. [The Biophysics Collaborative Access Team (BioCAT), Dept of Biological Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616 (United States); Figueroa, Rodolo G. [Departamento de Cs. Fisicas, Universidad de La Frontera, Temuco (Chile)

    2012-04-15

    Experimental determination of L fluorescence cross-sections for elements with 45cross sections obtained in this work were compared with data calculated using coefficients from , , and Scofield and Puri et al. (1993, 1995) - Highlights: Black-Right-Pointing-Pointer Experimental data of L fluorescence cross-sections with 45Pointing-Pointer The cross sections Ll, L{alpha}, L{beta}{sub I}, L{beta}{sub II}, L{gamma}{sub {Iota}} and L{gamma}{sub {Iota}{Iota}} obtained, were compared with calculated data. Black-Right-Pointing-Pointer The Hypermet function was used to fit the data, because it considers a tail on the left side of the peak. Black-Right-Pointing-Pointer The tail is relevant when a small peak has another one on the right side with a big area.

  5. Dielectronic recombination cross sections for H-like ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Badnell, N.R.; Griffin, D.C.

    1990-01-01

    Dielectronic recombination cross sections for several H-like atomic ions are calculated in an isolated-resonance, distorted-wave approximation. Fine-structure and configuration-interaction effects are examined in detail for the O 7+ cross section. Hartree-Fock, intermediate-coupled, multiconfiguration dielectronic recombination cross sections for O 7+ are then compared with the recent experimental measurements obtained with the Test Storage Ring in Heidelberg. The cross-section spectra line up well in energy and the shape of the main resonance structures are comparable. The experimental integrated cross sections differ by up to 20% from theory, but this may be due in part to uncertainties in the electron distribution function

  6. Comparative analysis among several cross section sets

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1983-01-01

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt

  7. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  8. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  9. Vortex breakdown in closed containers with polygonal cross sections

    International Nuclear Information System (INIS)

    Naumov, I. V.; Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

    2015-01-01

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results

  10. A method to obtain new cross-sections transport equivalent

    International Nuclear Information System (INIS)

    Palmiotti, G.

    1988-01-01

    We present a method, that allows the calculation, by the mean of variational principle, of equivalent cross-sections in order to take into account the transport and mesh size effects on reactivity variation calculations. The method validation has been made in two and three dimensions geometries. The reactivity variations calculated in three dimensional hexagonal geometry with seven points by subassembly using two sets of equivalent cross-sections for control rods are in a very good agreement with the ones of a transport, extrapolated to zero mesh size, calculation. The difficulty encountered in obtaining a good flux distribution has lead to the utilisation of a single set of equivalent cross-sections calculated by starting from an appropriated R-Z model that allows to take into account also the axial transport effects for the control rod followers. The global results in reactivity variations are still satisfactory with a good performance for the flux distribution. The main interest of the proposed method is the possibility to simulate a full 3D transport calculation, with fine mesh size, using a 3D diffusion code, with a larger mesh size. The results obtained should be affected by uncertainties, which do not exceed ± 4% for a large LMFBR control rod worth and for very different rod configurations. This uncertainty is by far smaller than the experimental uncertainties. (author). 5 refs, 8 figs, 9 tabs

  11. cmpXLatt: Westinghouse automated testing tool for nodal cross section models

    International Nuclear Information System (INIS)

    Guimaraes, Petri Forslund; Rönnberg, Kristian

    2011-01-01

    The procedure for evaluating the merits of different nodal cross section representation models is normally both cumbersome and time consuming, and includes many manual steps when preparing appropriate benchmark problems. Therefore, a computer tool called cmpXLatt has been developed at Westinghouse in order to facilitate the process of performing comparisons between nodal diffusion theory results and corresponding transport theory results on a single node basis. Due to the large number of state points that can be evaluated by cmpXLatt, a systematic and comprehensive way of performing verification and validation of nodal cross section models is provided. This paper presents the main features of cmpXLatt and demonstrates the benefits of using cmpXLatt in a real life application. (author)

  12. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  13. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  14. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  15. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  16. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  17. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  18. Methodology series module 3: Cross-sectional studies

    Directory of Open Access Journals (Sweden)

    Maninder Singh Setia

    2016-01-01

    Full Text Available Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case–control studies (participants selected based on the outcome status or cohort studies (participants selected based on the exposure status, the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  19. Methodology Series Module 3: Cross-sectional Studies.

    Science.gov (United States)

    Setia, Maninder Singh

    2016-01-01

    Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case-control studies (participants selected based on the outcome status) or cohort studies (participants selected based on the exposure status), the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  20. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  1. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  2. On the Significance of the Upcoming Large Hadron Collider Proton-Proton Cross Section Data

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-04-01

    Full Text Available The relevance of the Regular Charge-Monopole Theory to the proton structure is described. The discussion relies on classicalelectrodynamics and its associated quantum mechanics. Few experimental data are used as a clue to the specific structure of baryons. This basis provides an explanation for the shape of the graph of the pre-LHC proton-proton cross section data. These data also enable a description of the significance of the expected LHC cross section measurements which will be known soon. Problematic QCD issues are pointed out.

  3. Evaluation of fusion-evaporation cross-section calculations

    Science.gov (United States)

    Blank, B.; Canchel, G.; Seis, F.; Delahaye, P.

    2018-02-01

    Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

  4. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  5. Sensitivity analysis for reactivity parameter change of the creole experiment caused by the differences between ENDF-BVII and JENDL neutron cross section evaluations

    International Nuclear Information System (INIS)

    Boulaich, Y.; Bardouni, C.; Elyounoussi, C.; Elbakkari, H.; Boukhal, H.; Erradi, L.; Nacir, B.

    2011-01-01

    Full text: In this work, we present our analysis of the CREOLE experiment on the parameter by using the three-dimensional continuous energy code (MCNPS) and the last updated nuclear data evaluations. This experiment performed in the EOLE critical facility located at CEA-Cadarache, was dedicated to studies for both UO2 and UO2-PuO2 PWR type lattices covering the whole temperature range from 20 0 C to 300 0 C. We have developed an accurate model of the EOLE reactor to be used by the MCNP5 Monte Carlo code. This model guarantees a high level of fidelity in the description of different configurations at various temperatures taking into account their consequence on neutron cross section data and all thermal expansion effects. In this case, the remaining error between calculation and experiment will be awarded mainly to uncertainties on nuclear data. Our own cross section library was constructed by using NJOY99.259 code with point-wise nuclear data based on ENDF-BVII. JEFF3.1, JENDL3.3 and JENDL4 evaluation files. The MCNP model was validated through the axial and radial fission rate measurements at room and hot temperatures. Calculation-experiment discrepancies of the reactivity parameter were analyzed and the results have shown that the JENDL evaluations give the most consistent values. In order to specify the source of the relatively large difference between experiment and calculation due to ENDF-BVII nuclear data evaluation, the discrepancy in reactivity between ENDF-BVII and JENDL evaluations was decomposed using sensitivity and uncertainty analysis technique

  6. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  7. ENDF/B-5 fission product cross section evaluations

    International Nuclear Information System (INIS)

    Schenter, R.E.; England, T.R.

    1979-12-01

    Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables

  8. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  9. Activities of the cross-section compilation and evaluation centers at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chernick, J.

    1967-01-01

    The growth of the compilation and evaluation efforts at the Brookhaven National Laboratory are reviewed. The current work of the Sigma Center is discussed, including the status of the publication of supplements to BNL-325 and the current state of the SCISRS-I tape. Future needs for BNL-325 type publications and SCISRS-II cross-section tapes are outlined. The history of the Cross-Section Evaluation Center at the Brookhaven National Laboratory is similarly reviewed. The status of current work is discussed, including the growth of the ENDF/A tape. The status of US efforts to produce a cross-section tape (ENDF7B) at an early date to satisfy the needs of US reactor designers is discussed. The continued importance of integral experiments and their accurate analysis to provide checks of the cross-section tapes is pointed out. The role of the Brookhaven National Laboratory in collaboration on an international basis is reviewed, including its current relationship to the ENEA Neutron Data Compilation Centre, the International Atomic Energy Agency and other nuclear centres. (author)

  10. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  11. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  12. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  13. Cross Sections for Inner-Shell Ionization by Electron Impact

    Energy Technology Data Exchange (ETDEWEB)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  14. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  15. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  16. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  17. Computation of the locus crossing point location of MC circuit

    International Nuclear Information System (INIS)

    Liu Hai-Jun; Li Zhi-Wei; Bu Kai; Sun Zhao-Lin; Nie Hong-Shan

    2014-01-01

    In this paper, the crossing point property of the i–v hysteresis curve in a memristor–capacitor (MC) circuit is analyzed. First, the ideal passive memristor on the crossing point property of i–v hysteresis curve is studied. Based on the analysis, the analytical derivation with respect to the crossing point location of MC circuit is given. Then the example of MC with linear memristance-versus-charge state map is demonstrated to discuss the drift property of cross-point location, caused by the frequency and capacitance value. (interdisciplinary physics and related areas of science and technology)

  18. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    Science.gov (United States)

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  19. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  20. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  1. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  2. Vibrational enhancement of total breakup cross sections

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1984-01-01

    This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)

  3. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  4. Detection of progression of glaucomatous visual field damage using the point-wise method with the binomial test.

    Science.gov (United States)

    Karakawa, Ayako; Murata, Hiroshi; Hirasawa, Hiroyo; Mayama, Chihiro; Asaoka, Ryo

    2013-01-01

    To compare the performance of newly proposed point-wise linear regression (PLR) with the binomial test (binomial PLR) against mean deviation (MD) trend analysis and permutation analyses of PLR (PoPLR), in detecting global visual field (VF) progression in glaucoma. 15 VFs (Humphrey Field Analyzer, SITA standard, 24-2) were collected from 96 eyes of 59 open angle glaucoma patients (6.0 ± 1.5 [mean ± standard deviation] years). Using the total deviation of each point on the 2(nd) to 16(th) VFs (VF2-16), linear regression analysis was carried out. The numbers of VF test points with a significant trend at various probability levels (pbinomial test (one-side). A VF series was defined as "significant" if the median p-value from the binomial test was binomial PLR method (0.14 to 0.86) was significantly higher than MD trend analysis (0.04 to 0.89) and PoPLR (0.09 to 0.93). The PIS of the proposed method (0.0 to 0.17) was significantly lower than the MD approach (0.0 to 0.67) and PoPLR (0.07 to 0.33). The PBNS of the three approaches were not significantly different. The binomial BLR method gives more consistent results than MD trend analysis and PoPLR, hence it will be helpful as a tool to 'flag' possible VF deterioration.

  5. Differential cross section measurement of radiative capture of protons by nuclei 12C

    International Nuclear Information System (INIS)

    Burtebayev, N.; Zazulin, D.M.; Buminskii, V.P.; Zarifov, R.A.; Tohtarov, R.N.; Sagindykov, Sh.Sh.; Baktibayev, M.K.

    2003-01-01

    Measurements of differential cross sections of nuclear reaction 12 C(p, γ) 13 N at 0, 45, 90, 135 Deg. to beam direction of flying protons in the field of E p = 350-1100 KeV with an error it is not worse than 10 % have been carried out. Most important was studied, from the astrophysical point of view, process of capture of protons by nucleuses 12 C on the ground state of a nucleus 13 N. It is experimentally shown isotropy of angular distribution of differential cross sections of reaction 12 C(p, γ) 13 N, in the given field energy of protons

  6. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  7. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  8. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  9. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  10. Calculation of atom displacement cross section for structure material

    International Nuclear Information System (INIS)

    Liu Ping; Xu Yiping

    2015-01-01

    The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)

  11. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals.

    Science.gov (United States)

    Lintern, Katherine B; Guidato, Sonia; Rowe, Alison; Saldanha, José W; Itasaki, Nobue

    2009-08-21

    Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.

  12. The total cross section γγ->hadrons

    International Nuclear Information System (INIS)

    Knies, G.

    1984-12-01

    Measurements of the total cross section for γγ-> hadrons are presented. There are new results from double-tagging (P 2 not=0, Q 2 not=0), single tagging (P 2 approx.=0, Q 2 not=0), and no-tagging (P 2 approx.=0, Q 2 approx.=0n experiments at e + e - storage rings. The measurements cover a Q 2 range from 0 to 100 GeV 2 , and a W range from 2 to 20 GeV. The significance of these data for the interpretation of the photon as a set of vector mesons (VDM) and as an electromagnetic field quantum coupling to point-like quarks (QPM) is discussed. (orig.)

  13. Derived Born cross sections of e+e‑ annihilation into open charm mesons from CLEO-c measurements

    Science.gov (United States)

    Dong, Xiang-Kun; Wang, Liang-Liang; Yuan, Chang-Zheng

    2018-04-01

    The exclusive Born cross sections of the production of D0, D+ and {{{D}}}{{s}}{{+}} mesons in e+e‑ annihilation at 13 energy points between 3.970 and 4.260 GeV are obtained by applying corrections for initial state radiation and vacuum polarization to the observed cross sections measured by the CLEO-c experiment. Both the statistical and the systematic uncertainties for the obtained Born cross sections are estimated. Supported in part by National Natural Science Foundation of China (NSFC) (11235011, 11475187, 11521505, U1632106), the Ministry of Science and Technology of China (2015CB856701), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH011) and the CAS Center for Excellence in Particle Physics (CCEPP)

  14. A Closer Look at Chinese EFL Learners' Test-Wiseness Strategies in Reading Test

    Science.gov (United States)

    Haiyan, Miao; Rilong, Liu

    2016-01-01

    This paper reports on an investigation into the relationship of test-takers' use of test-wiseness strategies to Chinese EFL learners' reading test performance. A test-wiseness questionnaire was administered immediately after the final achievement test to probe into how learners thought while completing the reading section of the test. It was found…

  15. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  16. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  17. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  18. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  19. FENDL/E-2.0. Evaluated nuclear data library of neutron-nucleus interaction cross sections and photon production cross sections and photon-atom interaction cross sections for fusion applications. Version 1, March 1997. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.

    1998-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron-nucleus interaction cross sections, photon production cross sections and photon-atom interaction cross sections for fusion applications. It is part of the evaluated nuclear data library for fusion applications FENDL-2. The data are available cost-free from the Nuclear Data Section upon request. The data can also be retrieved by the user via online access through international computer networks. (author)

  20. R-matrix analysis of the 235U neutron cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1988-01-01

    The ENDFB-V representation of the 235 U neutron cross sections in the resolved resonance region is unsatisfactory: below 1 eV the cross sections are given by ''smooth files'' (file 3) rather than by resonance parameters; above 1 eV the single-level formalism used by ENDFB-V necessitates a structured file 3 contribution consisting of more than 1300 energy points; furthermore, information on level-spins has not been included. Indeed the ENDFB-V 235 U resonance region is based on an analysis done in 1970 for ENDFB-III and therefore does not include the results of high quality measurements done in the past 18 years. The present paper presents the result of an R-matrix multilevel analysis of recent measurements as well as older data. The analysis also extends the resolved resonance region from its ENDFB-V upper limit of 81 eV to 110 eV. 13 refs., 2 figs., 1 tab

  1. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  2. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  3. Cross sections for hadron and lepton production processes

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    1976-01-01

    Charged heavy lepton production in proton-proton collisions is studied. Motivated by recent experimental results from the Stanford Linear Accelerator Center a parton model analysis is given of the reaction p + p → L + + L - + x → μ +- + e/ -+ / + neutrinos + x. Results are presented for the total cross section and the differential cross sections with respect to the invariant mass squared of the final charged leptons and the transverse momenta of each one of them. The two-photon mechanism for pair production in colliding beam exeriments is considered. Through the use of mapped invariant integration variables, a reliable exact numerical calculation of the cross section for the production of muon and pion pairs by the two-photon mechanism is provided. Results are given for the exact total cross sections and also the differential cross sections with respect to the invariant mass squared of the pair. These are compared to the results obtained from the equivalent photon approximation method

  4. Macrosegregation Caused by Convection Associated with Directional Solidification through Cross-Section Change

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Tewari, S. N.; Poirier, D. R..; Grugel, R. N.

    2015-01-01

    Al-7 wt% Si and Pb-6 wt% Sb alloy samples were directionally solidified (DS), with liquid above and solid below and gravity pointing down, in cylindrical graphite crucibles through an abrupt cross-section change. Fraction eutectic distribution in the microstructure, primary dendrite spacing and primary dendrite trunk diameters have been measured in the DS samples in the vicinity of section change in order to examine the effect of convection associated with the combined influence of thermosolutal factors and solidification shrinkage. It is observed that convection not only produces extensive radial and axial macrosegregation near cross-section change, it also affects the dendritic array morphology. Primary dendrite spacing and primary dendrite trunk diameter, both, are influenced by this convection. In addition to the experimental results, preliminary results from a numerical model which includes solidification shrinkage and thermosolutal convection in the mushy zone in its analysis will also be presented

  5. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  6. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  7. Distorted eikonal cross sections: A time-dependent view

    International Nuclear Information System (INIS)

    Turner, R.E.

    1982-01-01

    For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method

  8. Discussion of electron cross sections for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1983-01-01

    This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table

  9. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  10. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  11. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)

    2010-08-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  12. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  13. On the Significance of the Upcoming Large Hadron Collider Proton-Proton Cross Section Data

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-04-01

    Full Text Available The relevance of the Regular Charge-Monopole Theory to the proton structure is de- scribed. The discussion relies on classical electrodynamics and its associated quantum mechanics. Few experimental data are used as a clue to the specific structure of baryons. This basis provides an explanation for the shape of the graph of the pre-LHC proton- proton cross section data. These data also enable a description of the significance of the expected LHC cross section measurements which will be known soon. Problematic QCD issues are pointed out.

  14. Basis calculation of phase cross section library in a low power fast reactor neutronic simulation

    International Nuclear Information System (INIS)

    Jachic, J.

    1993-09-01

    In order to implement the utilization of the efficient multidimensional cubic SPLINE interpolation, we determine the phase library bases for net like relevant state components. A generic cubic surface and a weighted plane pertinent alternative interpolating methods used capable to generate cross sections values for fixed coordinates from cell code calculated data points is used. It is verified that the phase library bases increases or decrease smoothly and monotonically with the spectrum asymmetry and total flux buckling. This justifies its use in cross section updating avoiding cell calculations. (author)

  15. FENDL/E. Evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross sections for fusion applications. Version 1.1 of November 1994

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.; Ganesan, S.; McLaughlin, P.K.

    1996-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross-sections for fusion applications. It is part of FENDL, the evaluated nuclear data library for fusion applications. The nuclear data are available cost-free for distribution to interested scientists upon request. The data can also be retrieved by the user via online access through international computer networks. (author). 11 refs, 1 tab

  16. Measurements and analysis of the {sup 127}I and {sup 129}I neutron capture and total cross sections; Mesure et analyses des sections efficaces neutroniques totales et de capture radiative des iodes 127 et 129 de 0.5 eV a 100keV

    Energy Technology Data Exchange (ETDEWEB)

    Noguere, G

    2005-07-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of {sup 129}I produced yearly in the reactors of the EU countries and a very long {beta}{sup -} half-life of 1.57 x 10{sup 7} years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, {sup 129}I is potentially a key long-lived fission product for transmutation applications, since {sup 129}I transmutes in {sup 130}I after a single neutron capture and decays to {sup 130}Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI{sub 2} samples used in this work contain natural and radioactive iodine, extensive measurements of {sup 129}I have been carried out under the same experimental conditions as for the {sup 129}I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  17. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  18. Cross section library DOSCROS77 (in the SAND-II format)

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.; Borg, N.J.C.M. van der.

    1977-08-01

    The dosimetry cross section library DOSCROS77 is documented with tables, plots and cross section values averaged over a few reference spectra. This library is based on the ENDF/B-IV dosimetry file, supplemented with some other evaluations. The total number of reaction cross section sets incorporated in this library is 49 (+3 cover cross sections sets). The cross section data are available in a format which is suitable for the program SAND-II

  19. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  20. Evidence of pair correlations in actinide neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2000-01-01

    It is shown that irregularities in fission cross sections in MeV incident neutron energy region could be attributed to the interplay of few-quasiparticle excitations in the level density of the fissioning and residual nuclei. It is suggested the intrinsic quasiparticle state density modelling approach both at stable and saddle-point deformations. The experimental manifestation of few-quasiparticle irregularities in the level density depends on the fission barrier structure and internal excitation energy at the saddle point, corresponding to the higher barrier hump. The explicit evidence is observed in case of fissile and non-fissile target nuclides [ru

  1. JSD1000: multi-group cross section sets for shielding materials

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    A multi-group cross section library for shielding safety analysis has been produced by using ENDF/B-IV. The library consists of ultra-fine group cross sections, fine-group cross sections, secondary gamma-ray production cross sections and effective macroscopic cross sections for typical shielding materials. Temperature dependent data at 300, 560 and 900 K have been also provided. Angular distributions of the group to group transfer cross section are defined by a new method of ''Direct Angular Representation'' (DAR) instead of the method of finite Legendre expansion. The library designated JSD1000 are stored in a direct access data base named DATA-POOL and data manipulations are available by using the DATA-POOL access package. The 3824 neutron group data of the ultra-fine group cross sections and the 100 neutron, 20 photon group cross sections are applicable to shielding safety analyses of nuclear facilities. This report provides detailed specifications and the access method for the JSD1000 library. (author)

  2. Depression: point-prevalence and risk factors in a North Cyprus household adult cross-sectional study.

    Science.gov (United States)

    Çakıcı, Mehmet; Gökçe, Özlem; Babayiğit, Asra; Çakıcı, Ebru; Eş, Ayhan

    2017-12-04

    Depression is one of the most common diagnosed psychiatric disorders in the world. Besides individual risk factors, it is also found that environment and socio-cultural factors are the other main risk factors for depression. In this article, the results of the 2016 national household survey of depression in North Cyprus (NC) are presented. The aim of the study is to determine the prevalence and possible risk factors of depression in NC households. The study was conducted between April and June 2016, the sample consisting of Turkish-speaking individuals between 18 and 88 years of age living permanently in NC. A multi-stage stratified (randomized) quota was used in the survey, and 978 people were selected according to the 2011 census. A 21 item questionnaire prepared by the researchers and a Turkish version of the Beck Depression Inventory scales were used for obtaining data. This cross-sectional study found a point prevalence of 23.4% for relatively high BDI scores (≥17) suggesting clinical depression. Being female, a widow, unemployed, having a limited education and low income level, having a physical illness, living alone, and using illicit substances were defined as possible risk factors for depression. When we consider the world prevalence, NC has one of the higher depression prevalence. NC has environmental and socio-cultural characteristics such as a history of war, migration and colonization, high unemployment rates, socioeconomic problems, similar to other extremely high prevalence depression countries and regions, which give a strong indication of the importance of socio-cultural factors on depression.

  3. H + H2 on LEPS and Porter-Karplus surfaces;Quasiclassical differential cross sections for reactive scattering

    International Nuclear Information System (INIS)

    Jorgensen, A.D.; Gislason, E.A.; Hillenbrand, E.A.

    1981-01-01

    The reactive differential cross section is determined by the use of a fourier sine series for the H + H 2 reaction on the Porter Karplus and LEPS surfaces. The A + BC program was used to run quasiclassical trajectories. Saddle-point properties are compared, including those for SLTH surfaces. The use of the Fourier sine series enables one to obtain very accurate differential cross sections, allowing precise comparison of the reaction dynamics on different potential energy surfaces and at different energies

  4. ZZ ELAST2, Database of Cross Sections for the Elastic Scattering of Electrons and Positrons by Atoms

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: This database is an extension of the earlier database, 'Elastic Scattering of Electrons and Positrons by Atoms: Database ELAST', Report NISTIR 5188, 1993. Cross sections for the elastic scattering of electrons and positrons by atoms were calculated at energies from 1 KeV to 100 MeV. Up to 10 MeV the RELEL code of Riley was used. Above 10 MeV the ELSCAT code was used, which calculated the factored cross sections and evaluates the screening factor Kscr in WKB approximation. 2 - Application of the data: This database was developed to provide input for the transport codes, such as ETRAN, and includes differential cross sections, the total cross section, and the transport cross sections. In addition, a code TRANSX is provided that generates transport cross section of arbitrary order needed as input for the calculation of Goudsmit-Saunderson multiple-scattering angular distribution 3 - Source and scope of data: The database includes cross sections at 61 energies for electrons and 41 energies from positrons, covering the energy region from 1 KeV to 100 MeV. The number of deflection angles included in the database is 314 angles. Total and transport cross sections are also included in this package. The data files have an extension (jjj) that represents the atomic number of the target atom. The database includes auxiliary data files that enable the ELASTIC code to include the following optional modifications: (i) the inclusion of the exchange correction for electrons scattering; (ii) the conversion of the cross sections for scattering by free atoms to cross sections for scattering by atoms in solids; (iii) ti reduction of the cross sections at large angles and at high energies when the nucleus is treated as an extended rather than a point charge

  5. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  6. The total collision cross section in the glory region

    International Nuclear Information System (INIS)

    Biesen, J.J.H. van den.

    1982-01-01

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  7. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  8. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  9. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  10. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  11. A review of experimental L-shell ionization cross sections for light ion impact

    International Nuclear Information System (INIS)

    Orlic, I.

    1994-01-01

    More than 20 000 experimental L-shell cross sections data points for light ion impact are presently available. This number of data provides a solid ground for detailed statistical analysis and comparison with theoretical predictions. An overview of all available experimental data is given in this work. Discussed are annual growth and decline of published data, distribution of L-shell cross section data vs. target atomic number as well as distribution of number of data vs. incident ions. Data for proton impact were recently tabulated by this group and compared with the ECPSSR theoretical predictions in a usual manner: by plotting ratio S = σ exper. /σ theory vs. reduced velocity parameter for each individual subshell L1, L2 and L3, and separately for three groups of target atomic numbers. After applying statistical procedure recommended by the Particle Data Group, so called open-quotes reference cross sectionsclose quotes for proton impact were obtained. Statistical errors of reference cross sections obtained in such a way were significantly smaller than errors of individual experimental results which allowed for some generalization and comparison with theoretical predictions. A review of obtained results is presented in this work

  12. Electron-impact ionization cross section of rubidium

    International Nuclear Information System (INIS)

    Kim, Y.; Migdalek, J.; Siegel, W.; Bieron, J.

    1998-01-01

    A theoretical model for electron-impact ionization cross section has been applied to Rb and the theoretical cross section (from the threshold to 1 keV in incident energy) is in good agreement with the recent experimental data obtained using Rb atoms trapped in a magneto-optical trap. The theoretical model, called the binary-encounter endash dipole (BED) model, combines a modified Mott cross section with the high-energy behavior of Born cross sections. To obtain the continuum dipole oscillator strength df/dE of the 5s electron required in the BED model, we used Dirac-Fock continuum wave functions with a core polarization potential that reproduced the known position of the Cooper minimum in the photoionization cross section. For inner-shell ionization, we used a simpler version of df/dE, which retained the hydrogenic shape. The contributions of the 4p→4d, 5s, and 5p autoionizing excitations were estimated using the plane-wave Born approximation. As a by-product, we also present the dipole oscillator strengths for the 5s→np 1/2 and 5s→np 3/2 transitions for high principal quantum numbers n near the ionization threshold obtained from the Dirac-Fock wave functions with the same core polarization potential as that used for the continuum wave functions. copyright 1998 The American Physical Society

  13. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  14. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  15. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  16. Resistivity of epitaxial copper nanolines with trapezoidal cross-section

    International Nuclear Information System (INIS)

    Lu, Zonghuan; Frey, David M.; Merkh, Thomas; Lord, Robert; Washington, Morris A.; Lu, Toh-Ming

    2016-01-01

    The resistivity of epitaxial Cu nanolines with line width ranging from 20 to 180 nm and line height from 40 to 50 nm was measured using a four-point probe technique. The Cu nanolines were fabricated using ebeam lithography with a polymethyl methacrylate bilayer resist system for improved line edge smoothness. The cross-section profile of the lines was examined using the focused ion beam milling technique. The results indicate that the cross-section should be more accurately described as trapezoidal rather than as rectangular. Using the trapezoidal profile, the electrical resistivity was calculated from the measured resistance data. Modeling based on the Fuchs–Sondheimer (FS) theory using the trapezoidal profile was also carried out. The results were compared with the experimentally calculated resistivity data. For Cu lines with line width less than 30 nm, the measured resistivity was shown to be up to 20% higher than the value predicted by the FS theory. Further examination of Cu lines using atomic force microscopy and scanning electron microscopy was conducted to extract the surface roughness and line edge roughness information. Their contribution to the resistivity increase was estimated to be only up to 3% for the Cu nanolines fabricated, which did not significantly contribute to the overall resistivity for Cu lines with line width less than 30 nm. Other possible factors affecting the resistivity of the Cu nanolines were also discussed, including the oxide formation on the surface of the Cu lines. - Highlights: • Epitaxial copper nanolines were fabricated using ebeam lithography. • The effect of line cross-section profiles on electrical resistivity was studied. • Trapezoidal cross−section gives better resistivity estimation for lines down to 20 nm. • Impact of surface roughness and line edge roughness to resistivity is small. • Oxidization layer has an effect on the resistivity increase.

  17. FIXUP2007, ENDF Format Redundant Cross-Sections Check

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: FIXUP is designed to read evaluated data in the ENDF/B format, perform corrections and output the results in the ENDF/B format. One of the most important functions of this code is to redefine all redundant cross sections to be exactly equal to the sum of its parts. IAEA1309/11: This version includes the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Fixup VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 data points 2 - Method of solution: FIXUP: All MAT numbers on an ENDF/B tape are processed; each MAT is treated separately. Within each MAT, each section before and after MF=3 is read, checked/corrected and output. When MF=3 is located, all cross sections are read, sections deleted, created, checked/corrected (based on user input) and after several intermediate stages written to output. 3 - Restrictions on the complexity of the problem: The program uses only the ENDF/B BCD format tape and copy all sections except File 3 as read. It is assumed that the data is correctly coded. No error checking is performed. Since File 3 data are in identical format for ENDF/B versions I through VI, the program can be used with all these versions. - All data in file 3 and 23 must be linearly interpolable

  18. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  19. Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei

    International Nuclear Information System (INIS)

    Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz

    2016-01-01

    Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.

  20. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  1. View-CXS neutron and photon cross-sections viewer

    International Nuclear Information System (INIS)

    Subbaiah, K.V.; Sunil Sunny, C.

    2004-01-01

    A graphical user-friendly interface is developed in Visual Basic (VB)-6 to view the variation of neutron and photon interaction cross-sections of different isotopes as a function of energy. VB subroutines developed read the binary data files of cross-sections created in MCNP-ACE (Briesmeister, J.F., 1993. MCNP - a general purpose Monte Carlo N-Particle Transport code. Version 4A. LANL, USA), ANISN-DLC (Engle W.W. Jr., 1967, A User's Manual for ANISN, K-1693; ORNL, 1974. 100 group neutron cross section data based on ENDF/B-III. Oak Ridge National Laboratory, USA) and KENO-AMPX (Petrie, L.M., Landers, N.F., 1984 KENO-Va- An Improved Monte Carlo Criticality Program with Super Grouping. RSICC-CCC-548, USA) formats using LAHEY-77 Fortran Compiler. The information on isotopes present in each library will be displayed with the help of database files prepared using Micro-Soft ACESS. The cross-section data can be viewed in different presentation styles namely, line graphs, bar graphs, histograms etc., with different color and symbol options. The cross-section plots generated can be saved as Bit-Map file to embed in any other text files. This software enables inter comparison of cross-sections from different type of libraries for isotopes as well as mixtures. Provision is made to view the cross-sections for nuclear reactions such as (n,γ), (n,f), (n,α), etc. The software can be obtained from Radiation Safety Information and Computational Centre (RSICC), ORNL, USA with the code package identification number PSR-514. The software package needs a hard disk space of about 80 MB when installed and works in WINDOWS-95/98/2000 operating systems

  2. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  3. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  4. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  5. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  6. Compact fitting formulas for electron-impact cross sections

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1992-01-01

    Compact fitting formulas, which contain four fitting constants, are presented for electron-impact excitation and ionization cross sections of atoms and ions. These formulas can fit experimental and theoretical cross sections remarkably well, when resonant structures are smoothed out, from threshold to high incident electron energies (<10 keV), beyond which relativistic formulas are more appropriate. Examples of fitted cross sections for some atoms and ions are presented. The basic form of the formula is valid for both atoms and molecules

  7. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  8. Scalar properties of transversely isotropic tuff from images of orthogonal cross sections

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.

    1997-01-01

    Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross

  9. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  10. MXS cross-section preprocessor user's manual

    International Nuclear Information System (INIS)

    Parker, F.; Ishikawa, M.; Luck, L.

    1987-03-01

    The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature

  11. NNLO jet cross sections by subtraction

    Science.gov (United States)

    Somogyi, G.; Bolzoni, P.; Trócsányi, Z.

    2010-08-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  12. Total and (n, 2n) neutron cross section measurements on 241Am

    International Nuclear Information System (INIS)

    Sage, C.

    2009-01-01

    Neutron induced reaction cross sections on 241 Am have been measured at the IRMM in Geel, Belgium, in the frame of a collaboration between the EC Joint Research Centres IRMM and ITU and French laboratories from CNRS and CEA. Raw material coming from the Atalante facility of CEA Marcoule has been transformed into suitable AmO 2 samples embedded in Al 2 O 3 and Y 2 O 3 matrices. The irradiations for the 241 Am(n, 2n) 240 Am reaction cross section measurement were carried out at the 7 MV Van de Graaff accelerator using the activation technique with quasi mono-energetic neutrons from 8 to 21 MeV produced via the D(d, n) 3 He and the T(d, n) 4 He reactions. The cross section was determined relative to the 27 Al(n, α) 24 Na standard cross section and was investigated for the first time above 15 MeV. The induced activity was measured off-line by standard γ-ray spectrometry using a high purity Ge detector. A special effort was made for the estimation of the uncertainties and the correlations between our experimental points. A different sample of the same isotope 241 Am has been measured in transmission and capture experiments in the resolved resonance region at the neutron ToF facility GELINA. The transmission measurement was performed in two campaigns, with an upgrade of the whole data acquisition system in between, followed by an investigation of its new performances. A preliminary analysis of the resonance parameters tends to confirm the recent evaluation to a higher value for the cross section at the bottom of the first resonances. A new design of C 6 D 6 detectors for capture measurements has been studied, but the data reduction and analysis of the measurement are not part of this work. (author) [fr

  13. Differential cross sections of proton Compton scattering at photon laboratory energies between 1.2 and 1.7 GeV

    International Nuclear Information System (INIS)

    Duda, J.; Hoefner, F.W.; Jung, M.; Kleissler, R.; Kueck, H.; Leu, P.; Marne, K.D. de; Munk, B.; Vogl, W.; Wedemeyer, R.

    1982-11-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. The experiment covers photon laboratory energies between 1.2 GeV and 1.7 GeV and the square of the four-momentum transfer ranges from t = -0.17 GeV 2 to -0.98 GeV 2 corresponding to c.m. scattering angles between 35 0 and 80 0 . The cross sections exhibit a forward peak followed by a monotone fall-off up to the largest measured vertical stroketvertical stroke-values. Fits of the form dsigma/dt = A.exp(Bt) to the data points with vertical stroketvertical stroke 2 yield forward cross sections A, which are consistent with the 0 0 cross sections calculated from the measured total photon-proton cross section. The average slope is B = 5.6 +- 0.14 GeV 2 . (orig.)

  14. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  15. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  16. Revisiting the T2K data using different models for the neutrino-nucleus cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, D., E-mail: meloni@fis.uniroma3.it [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Martini, M., E-mail: mmartini@ulb.ac.be [Institut d' Astronomie et d' Astrophysique, CP-226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)

    2012-09-17

    We present a three-flavor fit to the recent {nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {mu}} T2K oscillation data with different models for the neutrino-nucleus cross section. We show that, even for a limited statistics, the allowed regions and best fit points in the ({theta}{sub 13},{delta}{sub CP}) and ({theta}{sub 23},{Delta}m{sub atm}{sup 2}) planes are affected if, instead of using the Fermi gas model to describe the quasielastic cross section, we employ a model including the multinucleon emission channel.

  17. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  18. Analytical calculation of the average scattering cross sections using fourier series

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  19. Analytical calculation of the average scattering cross sections using fourier series

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  20. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  1. Developing Scientific Reasoning Through Drawing Cross-Sections

    Science.gov (United States)

    Hannula, K. A.

    2012-12-01

    Cross-sections and 3D models of subsurface geology are typically based on incomplete information (whether surface geologic mapping, well logs, or geophysical data). Creating and evaluating those models requires spatial and quantitative thinking skills (including penetrative thinking, understanding of horizontality, mental rotation and animation, and scaling). However, evaluating the reasonableness of a cross-section or 3D structural model also requires consideration of multiple possible geometries and geologic histories. Teaching students to create good models requires application of the scientific methods of the geosciences (such as evaluation of multiple hypotheses and combining evidence from multiple techniques). Teaching these critical thinking skills, especially combined with teaching spatial thinking skills, is challenging. My Structural Geology and Advanced Structural Geology courses have taken two different approaches to developing both the abilities to visualize and to test multiple models. In the final project in Structural Geology (a 3rd year course with a pre-requisite sophomore mapping course), students create a viable cross-section across part of the Wyoming thrust belt by hand, based on a published 1:62,500 geologic map. The cross-section must meet a number of geometric criteria (such as the template constraint), but is not required to balance. Each student tries many potential geometries while trying to find a viable solution. In most cases, the students don't visualize the implications of the geometries that they try, but have to draw them and then erase their work if it does not meet the criteria for validity. The Advanced Structural Geology course used Midland Valley's Move suite to test the cross-sections that they made in Structural Geology, mostly using the flexural slip unfolding algorithm and testing whether the resulting line lengths balanced. In both exercises, students seemed more confident in the quality of their cross-sections when the

  2. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  3. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the gener......A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...... for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of three...

  4. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  5. Cross-section crushing behaviour of hat-sections (Part II: Analytical modelling)

    NARCIS (Netherlands)

    Hofmeyer, H.

    2005-01-01

    Hat-sections are often used to experimentally investigate building sheeting subject to a concentrated load and bending. In car doors, hat-sections are used for side-impact protection. Their crushing behaviour can partly be explained by only observing their cross-sectional behaviour [1]. This

  6. Asymptotic behaviour of pion-pion total cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Greynat, David [Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”,Via Cintia, 80126 Napoli (Italy); Rafael, Eduardo de [Aix-Marseille Université, CNRS,CPT, UMR 7332, 13288 Marseille (France); Université de Toulon, CNRS,CPT, UMR 7332, 83957 La Garde (France); Vulvert, Grégory [Departament de Física Teórica, IFIC,CSIC - Universitat de València, Apt. Correus 22085, E-46071 València (Spain)

    2014-03-24

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log{sup 2} s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π{sup +}π{sup −}, π{sup ±}π{sup 0} and π{sup 0}π{sup 0} scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N{sub c} and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N{sub c} QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N{sub c} counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ{sub π{sup ±}π{sup 0total}}(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N{sub c} Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections.

  7. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    Greynat, David; Rafael, Eduardo de; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2  s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  8. Step-wise stimulated martensitic transformations

    International Nuclear Information System (INIS)

    Airoldi, G.; Riva, G.

    1991-01-01

    NiTi alloys, widely known both for their shape memory properties and for unusual pseudoelastic behaviour, are now on the forefront attention for step-wise induced memory processes, thermal or stress stimulated. Literature results related to step-wise stimulated martensite (direct transformation) are examined and contrasted with step-wise thermal stimulated parent phase (reverse transformation). Hypothesis are given to explain the key characters of both transformations, a thermodynamic model from first principles being till now lacking

  9. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  10. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  11. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  12. Heavy flavour hadro-production cross-sections

    CERN Document Server

    Wöhri, H K

    2003-01-01

    Hadro-production data on charm and beauty absolute cross-sections, collected by experiments at CERN, DESY and Fermilab, are reviewed. The measurements, corrected for the 'time evolution' of the branching ratios, are compared to calculations done with Pythia, as a function of the collision energy, using the latest parametrizations of the parton densities. We then estimate some charm and beauty production cross-sections relevant for future measurements, including nuclear effectes in the PDFs. We finish by briefly addressing the relevance, in heavy-ion collisions, of beauty production as feed-down for J/psi production.

  13. Evaluated activation cross-sections and intercomparison of the ...

    Indian Academy of Sciences (India)

    mental data cross-section with the theoretical codes, to study the quality of the theoretical ... the cross-section, angular distribution, double differential data, gamma ..... TALYS. TENDL. Figure 6. Excitation function of the 87Sr(p, 2n)86Y reaction.

  14. A point-wise fiber Bragg grating displacement sensing system and its application for active vibration suppression of a smart cantilever beam subjected to multiple impact loadings

    International Nuclear Information System (INIS)

    Chuang, Kuo-Chih; Ma, Chien-Ching; Liao, Heng-Tseng

    2012-01-01

    In this work, active vibration suppression of a smart cantilever beam subjected to disturbances from multiple impact loadings is investigated with a point-wise fiber Bragg grating (FBG) displacement sensing system. An FBG demodulator is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. To investigate the ability of the proposed FBG displacement sensor as a feedback sensor, velocity feedback control and delay control are employed to suppress the vibrations of the first three bending modes of the smart cantilever beam. To improve the control performance for the first bending mode when the cantilever beam is subjected to an impact loading, we improve the conventional velocity feedback controller by tuning the control gain online with the aid of information from a higher vibration mode. Finally, active control of vibrations induced by multiple impact loadings due to a plastic ball is performed with the improved velocity feedback control. The experimental results show that active vibration control of smart structures subjected to disturbances such as impact loadings can be achieved by employing the proposed FBG sensing system to feed back out-of-plane point-wise displacement responses with high sensitivity. (paper)

  15. Topological supersymmetric structure of hadron cross sections

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Ouvry, S.

    1980-12-01

    Recently a way of fully implementing unitarity in the framework of a Dual Topological Unitarization theory, including not only mesons but also baryons, was found. This theory consists in the topological description of hadron interactions involving confined quarks in terms of two 2-dimensional surfaces (a closed 'quantum' surface and a bounded 'classical' surface). We show that this description directly leads, at the zeroth order of the topological expansion, to certain relations between hadron cross-sections, in nice agreement with experimental data. A new topological suppression mechanism is shown to play an important dynamical role. We also point out a new topological supersymmetry property, which leads to realistic experimental consequences. A possible topological origin of the rho and ω universality relations emerges as a by-product of our study

  16. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  17. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  18. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  19. single-top quark production cross section using the ATLAS detector

    CERN Document Server

    Feng, Cunfeng; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. For this process, for the first time a fiducial cross section measured within the detector acceptance is presented and the modelling uncertainty when extrapolating to the total inclusive cross section is assessed with a large number of different Monte Carlo generators. The result is in good agreement with the most up-to-date theory predictions. Furthermore, the single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. Differential cross sections are measured as a function of the transverse momentum and the absolute value of the rapidity of top and anti-top quarks. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. The s-channel production is explored and l...

  20. Effects of cross-section on mechanical properties of Au nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Vazinishayan, Ali; Yang, Shuming, E-mail: shuming.yang@mail.xjtu.edu.cn; Duongthipthewa, Anchalee; Wang, Yiming [State Key Laboratory for manufacturing system engineering, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2016-02-15

    The aim of this paper is study of the effects of multiple cross-section of Au nanowire on mechanical properties. Different cross-section models of Au nanowires including circular, hexagonal, pentagonal and rectangular were simulated by finite element modeling using ABAQUS. In this study, the bending technique was applied so that both ends of the model were clamped with mid-span under loading condition. The cross-sections had the length of 400 nm and the diameter of 40 nm, except the circular cross-section while the rest of the cross-sections had an equivalent diameter. Von Misses stresses distribution were used to define the stress distribution in the cross-section under loading condition, and elastic deformation was analyzed by the beam theory. The results disclosed that the circular and the rectangular models had highest and lowest strengths against plastic deformation, respectively.

  1. Invisible anti-cloak with elliptic cross section using phase complement

    International Nuclear Information System (INIS)

    Yang Yu-Qi; Zhang Min; Yue Jian-Xiang

    2011-01-01

    Based on the theory of phase complement, an anti-cloak with circular cross section can be made invisible to an object outside its domain. As the cloak with elliptic cross section is more effective to make objects invisible than that with circular cross section, a scaled coordinate system is proposed to design equivalent materials of invisible anti-cloak with elliptic cross section using phase complement. The cloaks with conventional dielectric and double negative parameters are both simulated with the geometrical transformations. The results show that the cloak with elliptic cross section through phase complement can effectively hide the outside objects. (classical areas of phenomenology)

  2. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  3. Photoionization cross sections: present status and future needs

    International Nuclear Information System (INIS)

    Manson, S.T.

    1988-01-01

    The existing experimental data situation for photoionization cross section of ground-state atoms, excited states and positive ions is reviewed. The ability of theory to predict these cross sections is also discussed. The likely progress for the near future is presented [pt

  4. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    Science.gov (United States)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  5. Priority cross-sections. Joint Nordic analyses of important cross-sections in the Nordel system. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Nordic Grid Master Plan 2002 shed light on the energy and power balance for the Nordel area but with special focus on 2005. There was a lot to suggest that the tradi-tional transport patterns with frequent southbound transports would change and be more frequently replaced by northbound transports. Against this background, a number of cross-sections were identified within the Nordel area where expansion is expected to have considerable significance for the Nordic elec-tricity market. The present report 'Priority Cross-sections' concludes the work which was started with the grid master plan. The priority cross-sections are subjected to a technical and socio-economic analysis. The analysis aims to understand the transports in the Nordel system and to support Nor-del when prioritizing forthcoming initiatives. The market price is the driving force for the initiatives which will be carried out on the supply and demand side. The commissioning and decommissioning of commercial pro-duction capacity is determined by the market players, and the task of the transmission system operators (TSOs) is to ensure a robust infrastructure for the smooth operation of the electricity market. (au)

  6. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  7. Preparation of TEM specimen by cross-section technique

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1986-01-01

    Transmission electron microscopy (TEM) is applied to the direct observation of the depth dependent damage structure in ion-irradiated stainless steel by using the cross-section technique; obtaining the TEM specimen from a slice of the irradiated stainless steel with thick Ni plating. Here has been developed the specimen preparation method of cross-section technique without heat treatment, which was necessary in the conventional method to strengthen the bonding between Ni and stainless steel. Nickel plating with good bonding to stainless steel is enabled by the following manner. First, the irradiated stainless steel is immersed in the Wood's nickel solution at room temperature for 60s to activate the surface, followed by the stricking for 300s at a current density of 300 A/m 2 in the solution to make fine and homogeneous nucleation of Ni on the stainless steel. Then, the sample is plated with Ni in the Watt's nickel plating solution at 333 K with current density of 900 ∼ 1,000 A/m 2 . The TEM disc is obtained by mechanical slicing from the specimen with Ni plating of more than 3 mm thickness. Electropolishing is accomplished by using both Ballmann method and jet electropolishing to perforate the disc accurately at the aimed point for the observation of the damage structure. (author)

  8. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  9. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  10. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  11. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  12. THE MASSIVE DISTANT CLUSTERS OF WISE SURVEY: THE FIRST DISTANT GALAXY CLUSTER DISCOVERED BY WISE

    International Nuclear Information System (INIS)

    Gettings, Daniel P.; Gonzalez, Anthony H.; Mancone, Conor; Stanford, S. Adam; Eisenhardt, Peter R. M.; Stern, Daniel; Brodwin, Mark; Zeimann, Gregory R.; Masci, Frank J.; Papovich, Casey; Tanaka, Ichi; Wright, Edward L.

    2012-01-01

    We present spectroscopic confirmation of a z = 0.99 galaxy cluster discovered using data from the Wide-field Infrared Survey Explorer (WISE). This is the first z ∼ 1 cluster candidate from the Massive Distant Clusters of WISE Survey to be confirmed. It was selected as an overdensity of probable z ∼> 1 sources using a combination of WISE and Sloan Digital Sky Survey DR8 photometric catalogs. Deeper follow-up imaging data from Subaru and WIYN reveal the cluster to be a rich system of galaxies, and multi-object spectroscopic observations from Keck confirm five cluster members at z = 0.99. The detection and confirmation of this cluster represents a first step toward constructing a uniformly selected sample of distant, high-mass galaxy clusters over the full extragalactic sky using WISE data.

  13. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  14. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  15. Poster - 18: New features in EGSnrc for photon cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, David W.O. [The Ottawa Hospital Cancer Centre, National Research Council Canada, Carleton University (Canada)

    2016-08-15

    Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministic calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.

  16. MINERvA - neutrino nucleus cross section experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Recent results from MINERvA, a neutrino cross section experiment at Fermilab, are presented. MINERVA has the goal of providing precision results which will have important impact on oscillation experiments.  Initial data runs for muon neutrino and antineutrino beams of ~3.5 GeV have produced a large number of new results. This seminar will introduce the experiment and describe results for quasielastic, pion production, and inclusive cross sections.

  17. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  18. Evaluation of cross sections for neutron-induced reactions in sodium

    International Nuclear Information System (INIS)

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of 23 Na has been done for the energy range from 10 -5 eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables

  19. Evaluation for ENDF/B-IV of the neutron cross sections for 235U from 82 eV to 25 keV

    International Nuclear Information System (INIS)

    Peelle, R.W.

    1976-05-01

    Capture and fission cross sections for 235 U in the ''unresolved resonance'' energy region were evaluated to permit determination of local-average resonance parameters for the ENDF/B-IV cross section file. Microscopic data were examined for infinitely dilute average fission and capture cross sections and also for intermediate structure unlikely to be reproduced by statistical fluctuations of resonance widths and spacings within known laws. Evaluated cross sections, averaged over lethargy intervals greater than 0.1, were obtained as an average over selected data sets after appropriate renormalization. Estimated uncertainties are given for these evaluated average cross sections. The ''intermediate'' structure fluctuations common to a few independent data sets were approximated by straight lines joining successive cross sections at 120 selected energy points; the cross sections at the vertices were adjusted to reproduce the evaluated average cross sections over the broad energy regions. Data sources and methods are reviewed, output values are tabulated, and some modified procedures are suggested for future evaluations. Evaluated fission and capture integrals for the resolved resonance region are also tabulated. These are not in agreement with integrals based on the resonance parameters of ENDF/B versions III and IV. 8 tables, 5 figures

  20. Pin-wise Reactor Analysis Based on the Generalized Equivalence Theory

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan Yeal; Heo, Woong; Kim, Yong Hee [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, a pin-wise reactor analysis is performed based on the generalized equivalence theory. From the conventional fuel assembly lattice calculations, pin-wise 2-group cross sections and pin DFs are generated. Based on the numerical results on a small PWR benchmark, it is observed that the pin-wise core analysis provide quite accurate prediction on the effective multiplication factor and the peak pin power error is bounded by about 3% in peripheral fuel assemblies facing the baffle-reflector. Also, it was found that relatively large pin power errors occur along the interface between clearly different fuel assemblies. It is expected that the GET-based pin-by-pin core calculation can be further developed as an advanced method for reactor analysis via improving the group constants and discontinuity factors. Recently, high-fidelity multi-dimensional analysis tools are gaining more attention because of their accurate prediction of local parameters for core design and safety assessment. In terms of accuracy, direct whole-core transport is quite promising. However, it is clear that it is still very costly in terms of the computing time and memory requirements. Another possible solution is the pin-by-pin core analysis in which only small fuel pins are homogenized and the 3-D core analysis is still performed using a low-order operator such as the diffusion theory. In this paper, a pin-by-pin core analysis is performed using the hybrid CMFD (HCMFD) method. Hybrid CMFD is a new global-local iteration method that has been developed for efficient parallel calculation of pinby-pin heterogeneous core analysis. For the HCMFD method, the one-node CMFD scheme is combined with a local two-node CMFD method in a non-linear way. Since the SPH method is iterative and SPH factors are not direction dependent, it is clear that SPH method takes more computing cost and cannot take into account the different heterogeneity and transport effects at each pin interface. Unlike the SPH

  1. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  2. Study of p-4He Total Reaction cross section using Glauber and Modified Glauber Models

    International Nuclear Information System (INIS)

    Tag El Din, I.M.A.; Taha, M.M.; Hassan, S.S.A.

    2012-01-01

    The total nuclear reaction cross-section for p - 4 He in the energy range from 25 to 1000 MeV is calculated within Glauber and modified Glauber models. The modified Glauber model is introduced via both Coulomb trajectory of the projectile and calculation of the effective radius of interaction. The effects of density dependent total cross-section and phase variation of nucleon-nucleon scattering amplitude are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR at E p 2 at e = e0 = 0 and γ=2fm 2 at e = e0 = 0.17fm -3 .

  3. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  4. NESKA, Electron and Positron Scattering from Point Nuclei

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series appearing in Mott's cross section using two consecutive transformations: the one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the ratio of the Mott cross section to the classical Rutherford cross section. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  5. Measurement of cross sections producing short-lived nuclei by 14 MeV neutron. Br, Te, Dy, Ho, Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Matsumoto, T.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1997-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 2 min and 57 min have been measured at energy range between 13.4 and 14.9 MeV for Br, Te, Dy, Ho, Yb. The cross sections of {sup 81}Br(n,p){sup 81m}Se, {sup 128}Te(n,p){sup 128m}Sb, {sup 128}Te(n,{alpha}){sup 125m}Sn, {sup 164}Dy(n,p){sup 164}Tb, {sup 165}Ho(n,{alpha}){sup 162}Tb, {sup 176}Yb(n,p){sup 176}Tm were newly obtained at the six energy points between 13.4-14.9 MeV, although the previous results have been obtained at one energy point. {sup 79}Br(n,2n){sup 78}Br, {sup 164}Dy(n,p){sup 164}Tb are compared with evaluated data of JENDL-3.2. The evaluations for these reactions agree reasonably well with experimental results. The cross sections of (n,p) reaction are compared with systematics by Kasugai et. al. The systematics agrees with experimental results. (author)

  6. Tracking, $b$-Tagging and Measurement of the $b$-Jet Production Cross Section with the ATLAS Detector

    CERN Document Server

    Fleckner, Johanna Elisabeth; Tapprogge, S

    2011-01-01

    The Standard Model of elementary particle physics was developed to describe the fundamental particles which constitute matter and the interactions between them. The Large Hadron Collider (LHC) at CERN in Geneva was built to solve some of the remaining open questions in the Standard Model and to explore physics beyond it, by colliding two proton beams at world-record centre-of-mass energies. The ATLAS experiment is designed to reconstruct particles and their decay products originating from these collisions. The precise reconstruction of particle trajectories plays an important role in the identification of particle jets which originate from bottom quarks (b-tagging). This thesis describes the step-wise commissioning of the ATLAS track reconstruction and b-tagging software and one of the first measurements of the b-jet production cross section in pp collisions at sqrt(s)=7 TeV with the ATLAS detector. The performance of the track reconstruction software was studied in great detail, first using data from cosmi...

  7. pp production cross sections and the constraint method

    International Nuclear Information System (INIS)

    Anjos, J.C.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    A method of constructing production cross sections that satisfy the constraints represented by the first few moments is shown to give an excellent account of the data when applied to the high energy pp production cross section ν sub(n) (s) plotted as functions of n. (Author) [pt

  8. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  9. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Yuji [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. Black-Right-Pointing-Pointer Temperature effects can be reasonably reproduced with the present model. Black-Right-Pointing-Pointer All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H{sub 2}O and CF{sub 3}Cl, for which several previous studies are available from both the experimental and theoretical sides.

  10. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  11. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  12. THE WISE BLAZAR-LIKE RADIO-LOUD SOURCES: AN ALL-SKY CATALOG OF CANDIDATE γ-RAY BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Paggi, A.; Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Masetti, N. [INAF/IASF di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Landoni, M. [INAF/Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2014-11-01

    We present a catalog of radio-loud candidate γ-ray emitting blazars with WISE mid-infrared colors similar to the colors of confirmed γ-ray blazars. The catalog is assembled from WISE sources detected in all four WISE filters, with colors compatible with the three-dimensional locus of the WISE γ-ray emitting blazars, and which can be spatially cross-matched with radio sources from one of the three radio surveys: NVSS, FIRST, and/or SUMSS. Our initial WISE selection uses a slightly modified version of previously successful algorithms. We then select only the radio-loud sources using a measure of the radio-to-IR flux, the q {sub 22} parameter, which is analogous to the q {sub 24} parameter known in the literature but which instead uses the WISE band-four flux at 22 μm. Our final catalog contains 7855 sources classified as BL Lacs, FSRQs, or mixed candidate blazars; 1295 of these sources can be spatially re-associated as confirmed blazars. We describe the properties of the final catalog of WISE blazar-like radio-loud sources and consider possible contaminants. Finally, we discuss why this large catalog of candidate γ-ray emitting blazars represents a new and useful resource to address the problem of finding low-energy counterparts to currently unidentified high-energy sources.

  13. Drug dispensing practices at pharmacies in Bengaluru: A cross-sectional study

    OpenAIRE

    R Soumya; Vijayalakshmi Devarashetty; C R Jayanthi; M Sushma

    2016-01-01

    Objectives: Pharmacists are one of the crucial focal points for health care in the community. They have tremendous outreach to the public as pharmacies are often the first-port-of-call. With the increase of ready-to-use drugs, the main health-related activity of a pharmacist today is to assure the quality of dispensing, a key element to promote rational medicine use. Materials and Methods: A cross-sectional study of 200 pharmacies, 100 each in various residential (R) and commercial (C) areas ...

  14. Differential cross section of atomic hydrogen photoionization

    International Nuclear Information System (INIS)

    Kondratovich, V.D.; Ostrovskij, V.N.

    1986-01-01

    Differential cross-section of atomic hydrogen photoeffect in external electric field was investigated in semiclassical approximation. Interference was described. It occurred due to the fact that infinite number of photoelectron trajectories leads to any point of classically accessible motion region. Interference picture can reach macroscopic sizes. The picture is determined by location of function nodes, describing finite electron motion along one of parabolic coordinates. The squares of external picture rings are determined only by electric field intensity in the general case at rather high energies. Quantum expression for photocurrent density was obtained using Green function in superposition of Coulomb and uniform field as well as semiclassical approximation. Possible applications of macroscopic interference picture to specification of atom ionization potentials, selective detection of atoms or particular molecules, as well as weak magnetic field and observation of Aaronov-Bom effect are discussed

  15. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  16. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  17. Calculated Cross Sections for the Electron Impact Ionization of Molecular Ions

    Science.gov (United States)

    Deutsch, H.; Becker, K.; Defrance, P.; Onthong, U.; Parajuli, R.; Probst, M.; Matt-Leubner, S.; Maerk, T.

    2002-10-01

    We report the results of the application of the semi- classical Deutsch-Märk (DM) formalism to the calculation of the absolute electron-impact ionization cross section of the molecular ions H2+, N2+, O2+, CD+, CO+, CO2+, H3O+, and CH4+ for which experimental data have been reported . Where available, we also compare our calculated cross sections with calculated cross sections using the BEB method of Kim and co-workers. The level of agreement between the experimentally determined and calculated cross section is satisfactory in some cases. In all cases, the calculated cross sections exceed the measured cross sections which is not surprising in view of the experimental complications in measuring ionization cross sections of molecular ions due to the presence of competing channels such as ionization dissociative ionization, and dissociative excitation. Work supported in part by FWF, OEAW, and NASA.

  18. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  19. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  20. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  1. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  2. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  3. Q.C.D. estimates of hadronic cross sections

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.

    1983-03-01

    Estimates for hadron-hadron cross-sections are made using the leading log approximation of Q.C.D. The rise of the total inelastic pp cross-sections at high energy is reproduced, thanks to the competition between the small parton-parton interaction and the large multiplicity of gluons predicted by Q.C.D

  4. Inhibition of WISE preserves renal allograft function.

    Science.gov (United States)

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  5. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  6. Electron capture cross sections by O+ from atomic He

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2009-01-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  7. Electron capture cross sections by O+ from atomic He

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  8. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  9. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Sigaud, Lucas; Montenegro, Eduardo C. [Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Tavares, Andre C. [Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, PO 38071, Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, RJ (Brazil)

    2014-02-14

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful tool to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.

  10. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  11. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  12. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  13. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  14. Habit, Production, and the Cross-Section of Stock Returns

    OpenAIRE

    Chen, Andrew Y.

    2014-01-01

    Solutions to the equity premium puzzle should inform us about the cross-section of stock returns. An external habit model with heterogeneous firms reproduces numerous stylized facts about both the equity premium and the value premium. The equity premium is large, time-varying, and linked with consumption volatility. The cross-section of expected returns is log-linear in B/M, and the slope matches the data. The explanation for the value premium lies in the interaction between the cross-section...

  15. Drell-Yan cross section in the jet calculus scheme

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Kobayashi, Hirokazu

    2009-01-01

    We calculate factorized cross sections for lepton pair production mediated by a virtual photon in hadron-hadron collisions using the jet calculus scheme, in which a kinematical constraint due to parton radiation is taken into account. This method guarantees a proper phase space boundary for subtraction terms. Some properties of the calculated cross sections are examined. We also discuss matching between the hard scattering cross sections and parton showers at the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). (author)

  16. Testing of cross section libraries for TRIGA criticality benchmark

    International Nuclear Information System (INIS)

    Snoj, L.; Trkov, A.; Ravnik, M.

    2007-01-01

    Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼ 2 20 pcm) are from 235 U and Zr. (author)

  17. Cross-section sensitivity analyses for a Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Simmons, E.L.; Gerstl, S.A.W.; Dudziak, D.J.

    1977-09-01

    The objectives of this report were (1) to determine the sensitivity of neutronic responses in the preliminary design of the Tokamak Experimental Power Reactor by Argonne National Laboratory, and (2) to develop the use of a neutron-gamma coupled cross-section set in the calculation of cross-section sensitivity analysis. Response functions such as neutron plus gamma kerma, Mylar dose, copper transmutation, copper dpa, and activation of the toroidal field coil dewar were investigated. Calculations revealed that the responses were most sensitive to the high-energy group cross sections of iron in the innermost regions containing stainless steel. For example, both the neutron heating of the toroidal field coil and the activation of the toroidal field coil dewar show an integral sensitivity of about -5 with respect to the iron total cross sections. Major contributors are the scattering cross sections of iron, with -2.7 and -4.4 for neutron heating and activation, respectively. The effects of changes in gamma cross sections were generally an order of 10 lower

  18. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  19. Implementation of the rapid cross section adjustment approach at General Electric

    International Nuclear Information System (INIS)

    Cowan, C.L.; Kujawski, E.; Protsik, R.

    1978-01-01

    The General Electric rapid cross section adjustment approach was developed to use the shielding factor method for formulating multigroup cross sections. In this approach, space- and composition-dependent cross sections for a particular reactor or shield design are prepared from a generalized cross section library by the use of resonance self-shielding factors, and by the adjustment of elastic scattering cross sections for the local neutron flux spectra. The principal tool in the cross section adjustment package is the data processing code TDOWN. This code was specified to give the user a high degree of flexibility in the analysis of advanced reactor designs. Of particular interest in the analysis of critical experiments is the ability to carry out cell heterogeneity self-shielding calculations using a multiregion equivalence relationship, and the homogenization of the cross sections over the specified cell with the flux weighting obtained from transport theory calculations. Extensive testing of the rapid cross section adjustment approach, including comparisons with Monte Carlo methods, indicated that this approach can be utilized with a high degree of confidence in the design analysis of complex fast reactor systems. 2 figures, 1 table

  20. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  1. Total and partial recombination cross sections for F6+

    International Nuclear Information System (INIS)

    Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.

    1999-01-01

    Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society

  2. Absolute cross-section measurements of inner-shell ionization

    Science.gov (United States)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  3. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    Science.gov (United States)

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  4. From ZZ to ZH: How Low Can These Cross Sections Go or Everybody, Let's Cross Section Limbo

    International Nuclear Information System (INIS)

    Strauss, Emanuel Alexandre

    2009-01-01

    We report on two searches performed at the D0 detector at the Fermi National Laboratory. The first is a search for Z di-boson production with a theoretical cross section of 1.4 pb. The search was performed on 2.6 fb -1 of data and contributed to the first observation of ZZ production at a hadron collider. The second is a search for a low mass Standard Model Higgs in 4.2 fb -1 of data. The Higgs boson is produced in association with a Z boson where the Higgs decays hadronically and the Z decays to two leptons. The ZZ search was performed in both the di-electron and di-muon channels. For the ZH search, we will focus on the muonic decays where we expanded the traditional coverage by considering events in which one of the two muons fails the selection requirement, and is instead reconstructed as an isolated track. We consider Higgs masses between 100 and 150 GeV, with theoretical cross sections ranging from 0.17 to 0.042 pb, and set upper limits on the ZH production cross-section at 95% confidence level

  5. Measurement of photo-neutron cross sections and isomeric yield ratios in the {sup 89}Y(γ,xn){sup 89-x}Y reactions at the bremsstrahlung end-point energies of 65, 70 and 75 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tatari, Mansoureh [Yazd Univ. (Iran, Islamic Republic of). Physics Dept.; Naik, Haladhara [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Kim, Guinyun; Kim, Kwangsoo [Kyungpook National Univ., Daegu (Korea, Republic of). Dept. of Physics; Shin, Sung-Gyun; Cho, Moo-Hyun [Pohang Univ. of Science and Technology (Korea, Republic of). Div. of Advanced Nuclear Engineering

    2017-07-01

    The flux-weighted average cross sections of the {sup 89}Y(γ,xn; x=1-4){sup 89-x}Y reactions and the isomeric yield ratios of the {sup 87m,g}Y, {sup 86m,g}Y, and {sup 85m,g}Y radionuclides produced in these reactions with the bremsstrahlung end-point energies of 65, 70 and 75 MeV have been determined by an activation and off-line γ-ray spectrometric technique using the 100 MeV electron linac in Pohang Accelerator Laboratory, Korea. The theoretical {sup 89}Y(γ,xn; x=1-4){sup 89-x}Y reaction cross sections for mono-energetic photons have been calculated using the computer code TALYS 1.6. Then the flux-weighted theoretical values were obtained to compare with the present data. The flux-weighted experimental and theoretical {sup 89}Y(γ,xn; x=1-4){sup 89-x}Y reaction cross sections increase very fast from the threshold values to a certain bremsstrahlung energy, where the other reaction channels open up. Thereafter it remains constant a while and then slowly decreases with the increase of cross sections for other reactions. Similarly, the isomeric yield ratios of {sup 87m,g}Y, {sup 86m,g}Y and {sup 85m,g}Y in the {sup 89}Y(γ,xn; x=2-4){sup 89-x}Y reactions from the present work and literature data show an increasing trend from their respective threshold values to a certain bremsstrahlung energy. After a certain point of energy, the isomeric yield ratios increase slowly with the bremsstrahlung energy. These observations indicate the role of excitation energy and its partitioning in different reaction channels.

  6. A new approach to make collapsed cross section for burnup calculation of subcritical system

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao

    2008-01-01

    A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)

  7. Collapsing of multigroup cross sections in optimization problems solved by means of the maximum principle of Pontryagin

    International Nuclear Information System (INIS)

    Anton, V.

    1979-05-01

    A new formulation of multigroup cross section collapsing based on the conservation of point or zone value of hamiltonian is presented. This attempt is proper to optimization problems solved by means of maximum principle of Pontryagin. (author)

  8. Split Fermions in Extra Dimensions and Exponentially Small Cross-Sections at Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, yuval

    1999-09-22

    We point out a dramatic new experimental signature for a class of theories with extra dimensions, where quarks and leptons are localized at slightly separated parallel ''walls'' whereas gauge and Higgs fields live in the bulk of the extra dimensions. The separation forbids direct local couplings between quarks and leptons, allowing for an elegant solution to the proton decay problem. We show that scattering cross sections for collisions of fermions which are separated in the extra dimensions vanish at energies high enough to probe the separation distance. This is because the separation puts a lower bound on the attainable impact parameter in the collision. We present cross sections for two body high energy scattering and estimate the power with which future colliders can probe this scenario, finding sensitivity to inverse fermion separations of order 10-70 TeV.

  9. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  10. Development of unfolding method to obtain pin-wise source strength distribution from PWR spent fuel assembly measurement

    International Nuclear Information System (INIS)

    Sitompul, Yos Panagaman; Shin, Hee-Sung; Park, Se-Hwan; Oh, Jong Myeong; Seo, Hee; Kim, Ho Dong

    2013-01-01

    An unfolding method has been developed to obtain a pin-wise source strength distribution of a 14 × 14 pressurized water reactor (PWR) spent fuel assembly. Sixteen measured gamma dose rates at 16 control rod guide tubes of an assembly are unfolded to 179 pin-wise source strengths of the assembly. The method calculates and optimizes five coefficients of the quadratic fitting function for X-Y source strength distribution, iteratively. The pin-wise source strengths are obtained at the sixth iteration, with a maximum difference between two sequential iterations of about 0.2%. The relative distribution of pin-wise source strength from the unfolding is checked using a comparison with the design code (Westinghouse APA code). The result shows that the relative distribution from the unfolding and design code is consistent within a 5% difference. The absolute value of the pin-wise source strength is also checked by reproducing the dose rates at the measurement points. The result shows that the pin-wise source strengths from the unfolding reproduce the dose rates within a 2% difference. (author)

  11. Can cross sections be accurately known for priori?

    International Nuclear Information System (INIS)

    Pigni, M.T.; Dietrich, F.S.; Herman, M.; Oblozinsky, P.

    2008-01-01

    Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin of this oscillating structure. Specifically, we analyze the case of neutron reactions on 56 Fe, for which total cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70 MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth V v by its expected uncertainty ±ΔV v . Inspecting the effect of this perturbation on the partial wave cross sections we found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves. Similar considerations can be extended for the third minimum, although it can be also explained in terms of the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the potential importance of these minima for practical applications as well as the implications of this work for the uncertainties in total and absorption cross sections

  12. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  13. Models for Pooled Time-Series Cross-Section Data

    Directory of Open Access Journals (Sweden)

    Lawrence E Raffalovich

    2015-07-01

    Full Text Available Several models are available for the analysis of pooled time-series cross-section (TSCS data, defined as “repeated observations on fixed units” (Beck and Katz 1995. In this paper, we run the following models: (1 a completely pooled model, (2 fixed effects models, and (3 multi-level/hierarchical linear models. To illustrate these models, we use a Generalized Least Squares (GLS estimator with cross-section weights and panel-corrected standard errors (with EViews 8 on the cross-national homicide trends data of forty countries from 1950 to 2005, which we source from published research (Messner et al. 2011. We describe and discuss the similarities and differences between the models, and what information each can contribute to help answer substantive research questions. We conclude with a discussion of how the models we present may help to mitigate validity threats inherent in pooled time-series cross-section data analysis.

  14. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  15. Double-differential heavy-ion production cross sections

    International Nuclear Information System (INIS)

    Miller, T. M.; Townsend, L. W.

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production. (authors)

  16. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  17. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  18. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  19. Development of automatic cross section compilation system for MCNP

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi

    1999-01-01

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  20. In-plane impulse response of a curved bar with varying cross-section

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Miyashita, Yasushi.

    1984-01-01

    The vibration problem of a curved bar, of which the center line is represented with a plane curve, is important for the aseismatic design of the piping system and structures in chemical and nuclear plants. The dynamic response problem of an in-plane curved bar has not been sufficiently examined. In this study, the in-plane impact response of an in-plane curved bar having varying cross section when impact load acts in the direction of the center of curvature was analyzed. First, the Lagrangian of a curved bar with varying cross section when general exciting distributed load acts in the direction of the center of curvature along the center line was determined by the classic theory, and from its stationary condition, the equations of motion and boundary conditions were derived. Next, the equations of motion were analyzed by eigen-function development method. In the example of numerical calculation, the variation of displacement and bending moment in course of time when stepwise concentrated impact load acts on a both ends fixed symmetric semi-elliptic arc bar was determined. Besides, the change of response due to the change of cross section and the change of the point of impact load application was clarified. Displacement and bending moment varied at a certain period with static value at the center. (Kako, I.)

  1. EDDIX--a database of ionisation double differential cross sections.

    Science.gov (United States)

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure.

  2. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties Report of the LHC Higgs Cross Section Working Group

    CERN Document Server

    Heinemeyer, S; Passarino, G; Tanaka, R; Andersen, J R; Artoisenet, P; Bagnaschi, E A; Banfi, A; Becher, T; Bernlochner, F U; Bolognesi, S; Bolzoni, P; Boughezal, R; Buarque, D; Campbell, J; Caola, F; Carena, M; Cascioli, F; Chanon, N; Cheng, T; Choi, S Y; David, A; de Aquino, P; Degrassi, G; Del Re, D; Denner, A; van Deurzen, H; Diglio, S; Di Micco, B; Di Nardo, R; Dittmaier, S; Dührssen, M; Ellis, R K; Ferrera, G; Fidanza, N; Flechl, M; de Florian, D; Forte, S; Frederix, R; Frixione, S; Gangal, S; Gao, Y; Garzelli, M V; Gillberg, D; Govoni, P; Grazzini, M; Greiner, N; Griffiths, J; Gritsan, A V; Grojean, C; Hall, D C; Hays, C; Harlander, R; Hernandez-Pinto, R; Höche, S; Huston, J; Jubb, T; Kadastik, M; Kallweit, S; Kardos, A; Kashif, L; Kauer, N; Kim, H; Klees, R; Krämer, M; Krauss, F; Laureys, A; Laurila, S; Lehti, S; Li, Q; Liebler, S; Liu, X; Logan, E; Luisoni, G; Malberti, M; Maltoni, F; Mawatari, K; Maierhoefer, F; Mantler, H; Martin, S; Mastrolia, P; Mattelaer, O; Mazzitelli, J; Mellado, B; Melnikov, K; Meridiani, P; Miller, D J; Mirabella, E; Moch, S O; Monni, P; Moretti, N; Mück, A; Mühlleitner, M; Musella, P; Nason, P; Neu, C; Neubert, M; Oleari, C; Olsen, J; Ossola, G; Peraro, T; Peters, K; Petriello, F; Piacquadio, G; Potter, C T; Pozzorini, S; Prokofiev, K; Puljak, I; Rauch, M; Rebuzzi, D; Reina, L; Rietkerk, R; Rizzi, A; Rotstein-Habarnau, Y; Salam, G P; Sborlini, G; Schissler, F; Schönherr, M; Schulze, M; Schumacher, M; Siegert, F; Slavich, P; Smillie, J M; Stål, O; von Soden-Fraunhofen, J F; Spira, M; Stewart, I W; Tackmann, F J; Taylor, P T E; Tommasini, D; Thompson, J; Thorne, R S; Torrielli, P; Tramontano, F; Tran, N V; Trócsányi, Z; Ubiali, M; Vazquez Acosta, M; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Wagner, C; Walsh, J R; Wang, J; Weiglein, G; Whitbeck, A; Williams, C; Yu, J; Zanderighi, G; Zanetti, M; Zaro, M; Zerwas, P M; Zhang, C; Zirke, T J E; Zuberi, S

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered p...

  3. Highlights of top quark cross-section measurements at ATLAS

    Directory of Open Access Journals (Sweden)

    Berta Peter

    2017-01-01

    Full Text Available The highlights of the measurements of top quark production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector are presented. The inclusive measurements of the top-pair production cross section have reached high precision and are compared to the best available theoretical calculations. The differential cross section measurements, including results using boosted top quarks, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers. Measurements of the single top quark production cross section are presented in the t-channel and s-channel, and with associated production with a W boson. For the t-channel production, results on the ratio between top quark and antitop quark production cross sections and differential measurements are also included.

  4. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions

    CERN Document Server

    Dittmaier, S; Passarino, G; Tanaka, R; Alekhin, S; Alwall, J; Bagnaschi, E A; Banfi, A; Blumlein, J; Bolognesi, S; Chanon, N; Cheng, T; Cieri, L; Cooper-Sarkar, A M; Cutajar, M; Dawson, S; Davies, G; De Filippis, N; Degrassi, G; Denner, A; D'Enterria, D; Diglio, S; Di Micco, B; Di Nardo, R; Ellis, R K; Farilla, A; Farrington, S; Felcini, M; Ferrera, G; Flechl, M; de Florian, D; Forte, S; Ganjour, S; Garzelli, M V; Gascon-Shotkin, S; Glazov, S; Goria, S; Grazzini, M; Guillet, J -Ph; Hackstein, C; Hamilton, K; Harlander, R; Hauru, M; Heinemeyer, S; Hoche, S; Huston, J; Jackson, C; Jimenez-Delgado, P; Jorgensen, M D; Kado, M; Kallweit, S; Kardos, A; Kauer, N; Kim, H; Kovac, M; Kramer, M; Krauss, F; Kuo, C -M; Lehti, S; Li, Q; Lorenzo, N; Maltoni, F; Mellado, B; Moch, S O; Muck, A; Muhlleitner, M; Nadolsky, P; Nason, P; Neu, C; Nikitenko, A; Oleari, C; Olsen, J; Palmer, S; Paganis, S; Papadopoulos, C G; Petersen, T C; Petriello, F; Petrucci, F; Piacquadio, G; Pilon, E; Potter, C T; Price, J; Puljak, I; Quayle, W; Radescu, V; Rebuzzi, D; Reina, L; Rojo, J; Rosco, D; Salam, G P; Sapronov, A; Schaarschmidt, J; Schonherr, M; Schumacher, M; Siegert, F; Slavich, P; Spira, M; Stewart, I W; Stirling, W J; Stockli, F; Sturm, C; Tackmann, F J; Thorne, R S; Tommasini, D; Torrielli, P; Tramontano, F; Trocsanyi, Z; Ubiali, M; Uccirati, S; Acosta, M Vazquez; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Warsinsky, M; Weber, M; Wiesemann, M; Weiglein, G; Yu, J; Zanderighi, G

    2012-01-01

    This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

  5. High-energy behaviour of e--H scattering cross section

    International Nuclear Information System (INIS)

    Saha, B.C.; Chaudhuri, J.; Ghosh, A.S.

    1976-01-01

    An integral form of the close coupling equation has been employed to investigate the high energy behaviour of the elastic and 2s excitation cross sections of hydrogen atom by electron impact retaining the 1s and 2s states. The results, with and without exchange, for both the total and the differential cross sections are presented. The effects of exchange as well as of couplings to the 1s-2s states on the elastic cross section have been studied. The FBA results for the elastic cross section differ from the present results appreciably in the energy range 100 to 200 eV where FBA is considered to be valid. On the other hand, the present 1s-2s excitation results are very close to the corresponding FBA results in the said energy region. (auth.)

  6. Girl in the Cellar: A Repeated Cross-Sectional Investigation of Belief in Conspiracy Theories about the Kidnapping of Natascha Kampusch

    Directory of Open Access Journals (Sweden)

    Stefan eStieger

    2013-05-01

    Full Text Available The present study utilized a repeated cross-sectional survey design to examine belief in conspiracy theories about the abduction of Natascha Kampusch. At two time points (October 2009 and October 2011, participants drawn from independent cross-sections of the Austrian population (Time Point 1, N = 281; Time Point 2, N = 277 completed a novel measure of belief in conspiracy theories concerning the abduction of Kampusch, as well as measures of general conspiracist ideation, self-esteem, paranormal and superstitious beliefs, cognitive ability, and media exposure to the Kampusch case. Results indicated that although belief in the Kampusch conspiracy theory declined between testing periods, the effect size of the difference was small. In addition, belief in the Kampusch conspiracy theory was significantly predicted by general conspiracist ideation at both time points. The need to conduct further longitudinal tests of conspiracist ideation is emphasized in conclusion.

  7. Girl in the cellar: a repeated cross-sectional investigation of belief in conspiracy theories about the kidnapping of Natascha Kampusch

    Science.gov (United States)

    Stieger, Stefan; Gumhalter, Nora; Tran, Ulrich S.; Voracek, Martin; Swami, Viren

    2013-01-01

    The present study utilized a repeated cross-sectional survey design to examine belief in conspiracy theories about the abduction of Natascha Kampusch. At two time points (October 2009 and October 2011), participants drawn from independent cross-sections of the Austrian population (Time Point 1, N = 281; Time Point 2, N = 277) completed a novel measure of belief in conspiracy theories concerning the abduction of Kampusch, as well as measures of general conspiracist ideation, self-esteem, paranormal and superstitious beliefs, cognitive ability, and media exposure to the Kampusch case. Results indicated that although belief in the Kampusch conspiracy theory declined between testing periods, the effect size of the difference was small. In addition, belief in the Kampusch conspiracy theory was significantly predicted by general conspiracist ideation at both time points. The need to conduct further longitudinal tests of conspiracist ideation is emphasized in conclusion. PMID:23745118

  8. Collision processes of Li3+ with atomic hydrogen: cross section database

    International Nuclear Information System (INIS)

    Murakami, I.; Janev, R.K.; Kato, T.; Yan, J.; Sato, H.; Kimura, M.

    2004-08-01

    Using the available experimental and theoretical data, as well as established cross section scaling relationships, a cross section database for excitation, ionization and charge exchange in collisions of Li 3+ ion with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form. (author)

  9. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  10. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  11. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  12. Second order effects in adjustment processes of cross sections

    International Nuclear Information System (INIS)

    Silva, F.C. da; D'Angelo, A.; Gandini, A.; Rado, V.

    1982-01-01

    An iterative processe, that take in account the non linear effects of some integral quantities in relation to cross sections, is used to execute an adjustment of cross sections of some elements that constitute the fast reactors shielding. (E.G.) [pt

  13. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  14. Adjustement of multigroup cross sections using fast reactor integral data

    International Nuclear Information System (INIS)

    Renke, C.A.C.

    1982-01-01

    A methodology for the adjustment of multigroup cross section is presented, structured with aiming to compatibility the limitated number of measured values of integral parameters known and disponible, and the great number of cross sections to be adjusted the group of cross section used is that obtained from the Carnaval II calculation system, understanding as formular the sets of calculation methods and data bases. The adjustment is realized, using the INCOAJ computer code, developed in function of one statistical formulation, structural from the bayer considerations, taking in account the measurement processes of cross section and integral parameters defined on statistical bases. (E.G.) [pt

  15. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration

    OpenAIRE

    Wisse, L.E.M.; Das, S.R.; Davatzikos, C.; Dickerson, B.C.; Xie, S.X.; Yushkevich, P.A.; Wolk, D.A.

    2018-01-01

    Introduction: Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect “active” neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional ‘hippocampal volume’ only (SNAP/L−) versus both cross-sectional and ...

  16. Measurements of fusion cross sections of the 16O+46,50Ti systems

    International Nuclear Information System (INIS)

    Liguori Neto, R.

    1986-01-01

    Excitation functions for complete fusion of the systems 16 O + 46,50 Ti, with energies near and below the Coulomb barrier, were measured. With the use of the in-beam and out of beam γ spectroscopy, the formation of the compound nucleus was experimentally detected. The fusion cross section was then attained by the sum of all observed compound nucleus decay channels. The limitation and advantages of measurements methods are discussed. Theoretical analysis of the experimental results using the semi-classical barrier penetration model allowed us to obtain the fusion barrier height and radius for the studied systems. These values are in good agreement with others reported for this mass range. Using the unidimensional barrier penetration model with different nuclear potentials, describing the heavy ion interactions gave theoretical fusion cross section values systematically smaller than our measured values in the energy region below the Coulomb barrier. The introduction of the nuclear surface zero point vibrations enhances the theoretical fusion cross sections in the sub-Coulomb region, but simultaneously introduces an isotopic difference in the fusion excitation functions that is not observed experimentally. The statistical model predictions for the compound nucleus decay (calculated by the CASCADE program) show reasonable agreement for the more intense decay channels [pt

  17. Measurement of the stellar (n,γ) cross section of the shortlived radioactive isotope 147Pm

    International Nuclear Information System (INIS)

    Gerstenhoefer, T.W.

    1993-05-01

    During helium burning in the red giant phase of stellar evolution, nuclei with A>60 are produced by the slow neutron capture process (s-process). Starting from the iron group isotopes, the synthesis path works along the valley of beta stability by subsequent neutron captures and beta decays. An important feature of the s-process is the occurence of branchings in this path whenever unstable isotopes with half-lives comparable to the typical neutron capture time scale of about one year are encountered. The analysis of the corresponding abundance patterns can be used to derive estimates for the stellar neutron flux, temperature, and density. Quantitative branching analyses require reliable (n,γ) cross sections for the branch point nuclei. This report presents the first ever measured (n,γ) cross section for the branch point 147 Pm (t 1/2 =2.6 yr) in the neutron energy range 1 n 7 Li(p,n) 7 Be reaction that allowes to simulate a quasi-stellar neutron spectrum. To this end, the rf gas discharge ion source and optical components of the Karlsruhe 3.75 Van de Graaff accelerator were revised. Last but not least, the radiation hazard of the 147 Pm sample (180 GBq) had to be accounted for. In addition of the measurements on 147 Pm, the stellar (n,γ) cross section on its stable daughter, 147 Sm was also determined, mainly in order to verify the experimental technique with Moxon-Rae detectors. (orig.)

  18. Burn Wise

    Science.gov (United States)

    Burn Wise is a partnership program of the U.S. Environmental Protection Agency that emphasizes the importance of burning the right wood, the right way, in the right appliance to protect your home, health, and the air we breathe.

  19. Neutrino-carbon cross section in QRPA models

    International Nuclear Information System (INIS)

    Samana, Arturo R.; Krmpotic, Francisco; Bertulani, Carlos A.; Paar, Nils

    2009-01-01

    Full text follows. The ν/ν-bar - 12 C cross sections are calculated in the projected quasiparticle random phase approximation (PQRPA) [1,2] and the relativistic quasiparticle random phase approximation (RQRPA) [3,4]. We compare these cross section as a function of the incident neutrino energy and the number of shells used in the nuclear structure calculation. Additional comparison with other RPA models are performed. A guide to find an upper limit of the incident neutrino energy as a function of the number of shell is implemented. Important consequences on the extrapolation of the cross section to higher neutrino energies is discussed. The formalism obtained in Ref. [1] for the neutrino interaction is extended for antineutrino scattering. This formalism includes the effect of the violation of the Conserved Vector Current by the Coulomb field. It is furthermore simplified by classifying the nuclear matrix elements in natural and unnatural parities. The distribution of cross sections averaged with the Michel spectrum as well as with other estimated fluxes for future experiments are compared for ν e and ν-bar e . Some astrophysical implications are addressed. References [1] F. Krmpotic, A. Mariano and A. Samana, Phys.Lett. B541, 298 (2002). [2] F. Krmpotic, A. Mariano and A. Samana, Phys. Rev. C 71, 044319 (2005). [3] N. Paar, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 69, 054303 (2004). [4] N. Paar, D. Vretenar, T. Marketin and P. Ring, Phys. Rev. C 77, 024608 (2008)

  20. Update to the R33 cross section file format

    International Nuclear Information System (INIS)

    Vickridge, I.C.

    2003-01-01

    In September 1991, in response to the workshop on cross sections for Ion Beam Analysis (IBA) held in Namur (July 1991, Nuclear Instruments and Methods B66(1992)), a simple ascii format was proposed to facilitate transfer and collation of nuclear reaction cross section data for Ion Beam Analysis (IBA) and especially for Nuclear Reaction Analysis (NRA). Although intended only as a discussion document, the ascii format - referred to as the R33 (Report 33) format - has become a de facto standard. In the decade since this first proposal there have been spectacular advances in computing power and in software usability, however the cross-platform compatibility of the ascii character set has ensured that the need for an ascii format remains. Nuclear reaction cross section data for Nuclear Reaction analysis has been collected and archived on internet web sites over the last decade. This data has largely been entered in the R33 format, although there is a series of elastic cross sections that are expressed as the ratio to the corresponding Rutherford cross sections that have been entered in a format referred to as RTR (ratio to Rutherford). During this time the R33 format has been modified and added to - firstly to take into account angular distributions, which were not catered for in the first proposal, and more recently to cater for elastic cross sections expressed as the ratio-to- Rutherford, which it is useful to have for some elastic scattering programs. It is thus timely to formally update the R33 format. There also exists the large nuclear cross section data collections of the Nuclear Data Network - of which the core centres are the OECD NEA Nuclear Data Bank, the IAEA Nuclear Data Section, the Brookhaven National Laboratory National Nuclear Data Centre and CJD IPPE Obninsk, Russia. The R33 format is now proposed to become a legal computational format for the NDN. It is thus also necessary to provide an updated formal definition of the R33 format in order to provide

  1. Radar cross sections for mesospheric echoes at Jicamarca

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2009-07-01

    Full Text Available Radar cross sections (RCS of mesospheric layers at 50 MHz observed at Jicamarca, Peru, range from 10−18 to 10−16 m−1, three orders of magnitudes smaller than cross sections reported for polar mesospheric winter echoes during solar proton events and six orders of magnitude smaller than polar mesospheric summer echoes. Large RCS are found in thick layers around 70 km that also show wide radar spectra, which is interpreted as turbulent broadening. For typical atmospheric and ionospheric conditions, volume scattering RCS for stationary, homogeneous, isotropic turbulence at 3 m are also in the range 10−18 to 10−16 m−1, in reasonable agreement with measurements. Moreover, theory predicts maximum cross sections around 70 km, also in agreement with observations. Theoretical values are still a matter of order-of-magnitude estimation, since the Bragg scale of 3 m is near or inside the viscous subrange, where the form of the turbulence spectrum is not well known. In addition, steep electron density gradients can increase cross-sections significantly. For thin layers with large RCS and narrow spectra, isotropic turbulence theory fails and scattering or reflection from anisotropic irregularities may gain relevance.

  2. Partial wave analysis for folded differential cross sections

    Science.gov (United States)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  3. Nuclear Data Processing for Generation of Stainless Steel Cross-Sections Data

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2007-01-01

    Stainless steel has been used as important material in nuclear reactor and also in non nuclear industries. Nuclear data processing for generation of composite mixture cross-sections from several nuclides have been made. Provided evaluated nuclear data file (ENDF) such as ENDF/B- VI.8, JEFF-3.1 and JENDL-3.3 files were employed. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in calculation. Sequence of nuclear data processing for generation of mixture cross-sections data from several nuclides is started from LINEAR, RECENT, SIGMA1 and MIXER codes taken from PREPR02000 utility code. Nuclear data processing is started from linearization of nuclear cross-sections data by using LINEAR code and counting background contribution of resonance parameter (MF2) with RECENT code (0 K) at energy ranges from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (300 K) by using SIGMA1 code. Consistency of each cross-sections which used in nuclear data processing is checked and verified using FIXUP code. The next step is to define the composite mixture density (gr/cm 3 ) of stainless steel SUS-310 and weight fraction of each nuclide composition prior used it in MIXER code. All of the stainless steel SUS-310 cross sections are condensed to 650 energy groups structure (TART-energy structure) by using GROUPIE code to evaluate, analysis and review it more easily. The total, elastic scattering, non-elastic scattering and capture cross- sections of stainless steel SUS-310 have been made of ENDF/B-VI.8, JEFF-3.1 and JENDL-3.3 files. The stainless steel cross-sections made of ENDF/B- VI.8 file was taken as reference during validation process. The validation result of total cross-sections for stainless steel SUS-310 is clearly observed that the differences of total cross-sections error in nuclear data processing is relatively low than 0.01%. (author)

  4. A survey of cross-section sensitivity analysis as applied to radiation shielding

    International Nuclear Information System (INIS)

    Goldstein, H.

    1977-01-01

    Cross section sensitivity studies revolve around finding the change in the value of an integral quantity, e.g. transmitted dose, for a given change in one of the cross sections. A review is given of the principal methodologies for obtaining the sensitivity profiles-principally direct calculations with altered cross sections, and linear perturbation theory. Some of the varied applications of cross section sensitivity analysis are described, including the practice, of questionable value, of adjusting input cross section data sets so as to provide agreement with integral experiments. Finally, a plea is made for using cross section sensitivity analysis as a powerful tool for analysing the transport mechanisms of particles in radiation shields and for constructing models of how cross section phenomena affect the transport. Cross section sensitivities in the shielding area have proved to be highly problem-dependent. Without the understanding afforded by such models, it is impossible to extrapolate the conclusions of cross section sensitivity analysis beyond the narrow limits of the specific situations examined in detail. Some of the elements that might be of use in developing the qualitative models are presented. (orig.) [de

  5. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Sun Weiguo; Cheng Yansong

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  6. Review of multigroup nuclear cross-section processing

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D.K.; Hendrickson, H.R. (comps.)

    1978-10-01

    These proceedings consist of 18 papers given at a seminar--workshop on ''Multigroup Nuclear Cross-Section Processing'' held at Oak Ridge, Tennessee, March 14--16, 1978. The papers describe various computer code systems and computing algorithms for producing multigroup neutron and gamma-ray cross sections from evaluated data, and experience with several reference data libraries. Separate abstracts were prepared for 13 of the papers. The remaining five have already been cited in ERA, and may be located by referring to the entry CONF-780334-- in the Report Number Index. (RWR)

  7. Cross sections for charm production by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S

    1983-02-03

    The production of charmed particles has been measured using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative cross section for charged current charmed particle production is sigma(v -> ..mu../sup -/c)/sigma(v -> ..mu../sup -/) = 6.5 +- 1.9/1.8%, and the energy dependence of the cross section is presented. One event with charm pair production was observed. A limit of sigma(v -> ..mu..canti c)/sigma(v -> ..mu..c) < 6% (90% CL) is found for the ratio of charged current pair and single charm production.

  8. New techniques for multi-level cross section calculation and fitting

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-09-01

    A number of recent developments in multi-level cross section work are described. A new iteration scheme for the conversion of Reich-Moore resonance parameters to Kapur-Peierls parameters allows application of Turing's method for Gaussian broadening of meromorphic functions directly to multi-level cross section expressions, without recourse to the Voigt profiles psi and chi. This makes calculation of Doppler-broadened Reich-Moore and MLBW cross sections practically as fast as SLBW and Adler-Adler cross section calculations involving the Voigt profiles. A convenient distant-level treatment utilizing average resonance parameters is presented. Apart from effectively dealing with edge effects in resonance fitting work it also leads to a simple prescription for the determination of bound levels which reproduce the thermal cross sections correctly. A brief discussion of improved resonance shape fitting techniques is included, with empahsis on the importance of correlated errors and proper use of prior information by application of Bayes' theorem. (orig.) [de

  9. New techniques for multi-level cross section calculation and fitting

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1981-01-01

    A number of recent developments in multi-level cross section work are described. A new iteration scheme for the conversion of Reich-Moore resonance parameters to Kapur-Peierls parameters allows application of Turing's method for Gaussian broadening of meromorphic functions directly to multi-level cross section expressions, without recourse to the Voigt profiles psi and chi. This makes calculation of Doppler-broadened Reich-Moore and MLBW cross sections practically as fast as SLBW and Adler-Adler cross section calculations involving the Voigt profiles. A convenient distant-level treatment utilizing average resonance parameters is presented. Apart from effectively dealing with edge effects in resonance fitting work it also leads to a simple prescription for the determination of bound levels which reproduce the thermal cross sections correctly. A brief discussion of improved resonance shape fitting techniques is included, with emphasis on the importance of correlated errors and proper use of prior information by application of Bayes' theorem

  10. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  11. Quantifying uncertainties in the high-energy neutrino cross-section

    Indian Academy of Sciences (India)

    2012-11-10

    Nov 10, 2012 ... Corresponding author. E-mail: s.sarkar@physics.ox.ac.uk .... i.e. cross-sections in the present case, modern PDF sets provide not only the best-fit PDF, but also .... However, any power-law rise in the cross-section will eventu-.

  12. Use of nuclear reaction models in cross section calculations

    International Nuclear Information System (INIS)

    Grimes, S.M.

    1975-03-01

    The design of fusion reactors will require information about a large number of neutron cross sections in the MeV region. Because of the obvious experimental difficulties, it is probable that not all of the cross sections of interest will be measured. Current direct and pre-equilibrium models can be used to calculate non-statistical contributions to neutron cross sections from information available from charged particle reaction studies; these are added to the calculated statistical contribution. Estimates of the reliability of such calculations can be derived from comparisons with the available data. (3 tables, 12 figures) (U.S.)

  13. ATLAS-ALFA measurements on the total cross section and diffraction

    CERN Document Server

    Mortensen, Simon Stark; The ATLAS collaboration

    2015-01-01

    The measurement of the total pp cross section at the LHC at $\\sqrt{s}=7$ TeV with the ALFA subdetector of ATLAS is presented in this talk. In a special run with $\\beta^*=90$ m beam optics corresponding to an integrated luminosity of 80 $\\text{mb}^{-1}$ the differential elastic cross section is measured in the range from $-t=0.0025\\text{ GeV}^2$ to $-t=0.38\\text{ GeV}^2$. The total cross section $\\sigma(pp\\rightarrow X)$ is extracted using the Optical Theorem by extrapolation of the differential elastic cross section to $t=0\\text{ GeV}^2$. Prospects for diffractive measurements using ALFA to detect the intact proton(s) is also discussed.

  14. Validity of Hansen-Roach cross sections in low-enriched uranium systems

    International Nuclear Information System (INIS)

    Busch, R.D.; O'Dell, R.D.

    1991-01-01

    Within the nuclear criticality safety community, the Hansen-Roach 16 group cross section set has been the ''standard'' for use in k eff calculations over the past 30 years. Yet even with its widespread acceptance, there are still questions about its validity and adequacy, about the proper procedure for calculating the potential scattering cross section, σ p , for uranium and plutonium, and about the concept of resonance self shielding and its impact on cross sections. This paper attempts to address these questions. It provides a brief background on the Hansen-Roach cross sections. Next is presented a review of resonances in cross sections, self shielding of these resonances, and the use of σ p to characterize resonance self shielding. Three prescriptions for calculating σ p are given. Finally, results of several calculations of k eff on low-enriched uranium systems are provided to confirm the validity of the Hansen-Roach cross sections when applied to such systems

  15. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  16. Validity of Hansen-Roach cross sections in low-enriched uranium systems

    International Nuclear Information System (INIS)

    Busch, R.D.; O'Dell, R.D.

    1991-01-01

    Within the nuclear criticality safety community, the Hansen-Roach 16 group cross section set has been the standard for use in k eff calculations over the past 30 years. Yet even with its widespread acceptance, there are still questions about its validity and adequacy, about the proper procedure for calculating the potential scattering cross section, σ p , for uranium and plutonium, and about the concept of resonance self shielding and its impact on cross sections. This paper attempts to address these questions. It provides a brief background on the Hansen-Roach cross sections. Next is presented a review of resonances in cross sections, self shielding of these resonances, and the use of σ p to characterize resonance self shielding. Three prescriptions for calculating σ p are given. Finally, results of several calculations of k eff on low-enriched uranium systems are provided to confirm the validity of the Hansen-Roach cross sections when applied to such systems. (Author)

  17. SENSIT: a cross-section and design sensitivity and uncertainty analysis code

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.

    1980-01-01

    SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections of standard multigroup cross section sets and for secondary energy distributions (SEDs) of multigroup scattering matrices. In the design sensitivity mode, SENSIT computes changes in an integral response due to design changes and gives the appropriate sensitivity coefficients. Cross section uncertainty analyses are performed for three types of input data uncertainties: cross-section covariance matrices for pairs of multigroup reaction cross sections, spectral shape uncertainty parameters for secondary energy distributions (integral SED uncertainties), and covariance matrices for energy-dependent response functions. For all three types of data uncertainties SENSIT computes the resulting variance and estimated standard deviation in an integral response of interest, on the basis of generalized perturbation theory. SENSIT attempts to be more comprehensive than earlier sensitivity analysis codes, such as SWANLAKE

  18. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    International Nuclear Information System (INIS)

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-01-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the

  19. Elliptical cross section fuel rod study II; Estudio de barras combustibles de seccion eliptica II

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, H; Marajofsky, A [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Combustibles Nucleares

    1997-12-31

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab.

  20. MPI version of NJOY and its application to multigroup cross-section generation

    Energy Technology Data Exchange (ETDEWEB)

    Alpan, A.; Haghighat, A.

    1999-07-01

    Multigroup cross-section libraries are needed in performing neutronics calculations. These libraries are referred to as broad-group libraries. The number of energy groups and group structure are highly dependent on the application and/or user's objectives. For example, for shielding calculations, broad-group libraries such as SAILOR and BUGLE with 47-neutron and 20-gamma energy groups are used. The common procedure to obtain a broad-group library is a three-step process: (1) processing pointwise ENDF (PENDF) format cross sections; (2) generating fine-group cross sections; and (3) collapsing fine-group cross sections to broad-group. The NJOY code is used to prepare fine-group cross sections by processing pointwise ENDF data. The code has several modules, each one performing a specific task. For instance, the module RECONR performs linearization and reconstruction of the cross sections, and the module GROUPR generates multigroup self-shielded cross sections. After fine-group, i.e., groupwise ENDF (GENDF), cross sections are produced, cross sections are self-shielded, and a one-dimensional transport calculation is performed to obtain flux spectra at specific regions in the model. These fluxes are then used as weighting functions to collapse the fine-group cross sections to obtain a broad-group cross-section library. The third step described is commonly performed by the AMPX code system. SMILER converts NJOY GENDF filed to AMPX master libraries, AJAX collects the master libraries. BONAMI performs self-shielding calculations, NITAWL converts the AMPX master library to a working library, XSDRNPM performs one-dimensional transport calculations, and MALOCS collapses fine-group cross sections to broad-group. Finally, ALPO is used to generate ANISN format libraries. In this three-step procedure, generally NJOY requires the largest amount of CPU time. This time varies depending on the user's specified parameters for each module, such as reconstruction tolerances

  1. MPI version of NJOY and its application to multigroup cross-section generation

    International Nuclear Information System (INIS)

    Alpan, A.; Haghighat, A.

    1999-01-01

    Multigroup cross-section libraries are needed in performing neutronics calculations. These libraries are referred to as broad-group libraries. The number of energy groups and group structure are highly dependent on the application and/or user's objectives. For example, for shielding calculations, broad-group libraries such as SAILOR and BUGLE with 47-neutron and 20-gamma energy groups are used. The common procedure to obtain a broad-group library is a three-step process: (1) processing pointwise ENDF (PENDF) format cross sections; (2) generating fine-group cross sections; and (3) collapsing fine-group cross sections to broad-group. The NJOY code is used to prepare fine-group cross sections by processing pointwise ENDF data. The code has several modules, each one performing a specific task. For instance, the module RECONR performs linearization and reconstruction of the cross sections, and the module GROUPR generates multigroup self-shielded cross sections. After fine-group, i.e., groupwise ENDF (GENDF), cross sections are produced, cross sections are self-shielded, and a one-dimensional transport calculation is performed to obtain flux spectra at specific regions in the model. These fluxes are then used as weighting functions to collapse the fine-group cross sections to obtain a broad-group cross-section library. The third step described is commonly performed by the AMPX code system. SMILER converts NJOY GENDF filed to AMPX master libraries, AJAX collects the master libraries. BONAMI performs self-shielding calculations, NITAWL converts the AMPX master library to a working library, XSDRNPM performs one-dimensional transport calculations, and MALOCS collapses fine-group cross sections to broad-group. Finally, ALPO is used to generate ANISN format libraries. In this three-step procedure, generally NJOY requires the largest amount of CPU time. This time varies depending on the user's specified parameters for each module, such as reconstruction tolerances, temperatures

  2. Bodies with noncircular cross sections and bank-to-turn missiles

    Science.gov (United States)

    Jackson, C. M., Jr.; Sawyer, W. C.

    1992-01-01

    A development status evaluation is presented for the aerodynamics of missile configurations with noncircular cross-sections and bank-to-turn maneuvering systems, giving attention to cases with elliptical and square cross-sections, as well as bodies with variable cross-sections. The assessment of bank-to-turn missile performance notes inherent stability/control problems. A summary and index are provided for aerodynamic data on monoplanar configurations, including those which incorporate airbreathing propulsion systems.

  3. Quality Quantification of Evaluated Cross Section Covariances

    International Nuclear Information System (INIS)

    Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.

    2015-01-01

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations

  4. Low temperature ultrahigh vacuum cross-sectional scanning tunneling microscope for luminescence measurements

    International Nuclear Information System (INIS)

    Khang, Yoonho; Park, Yeonjoon; Salmeron, Miquel; Weber, Eicke R.

    1999-01-01

    We have constructed a scanning tunneling microscope with simultaneous light collection capabilities in order to investigate the opto-electronic properties of semiconductors. The microscope has in situ sample cleavage mechanism for cross-sectional sample. In order to reach low temperature (4 K), we used a specially designed cryostat. The efficiency of light collection generated in the tip-surface junction was greatly improved by use of a small parabolic mirror with the tip located at its focal point. (c) 1999 American Institute of Physics

  5. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  6. Scattering cross-section of an inhomogeneous plasma cylinder

    International Nuclear Information System (INIS)

    Jiaming Shi; Lijian Qiu; Ling, Y.

    1995-01-01

    Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated

  7. Low energy total cross section of 36Ar

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Magurno, B.A.

    1975-01-01

    To compare the predictions of the valence model with measured partial radiative widths of 36 Ar an accurate knowledge of the bound-level parameters is required. This is achieved by carrying out a Breit-Wigner parameter fit to the total cross section of 36 Ar measured by Chrien et al and renormalized to the recommended values of the thermal capture and scattering cross sections. (1 figure, 1 table) (U.S.)

  8. An Ada environment for relativistic cross section calculations

    International Nuclear Information System (INIS)

    Nilsson, E.

    1990-01-01

    We have developed an Ada environment adapted to relativistic cross section calculations. Objects such as four-vectors, γ- matrices and propagators are defined as well as operations between these objects. In this environment matrix elements can be expressed in a compact and readable way as Ada code. Unpolarized cross sections are calculated numerically by explicitly summing and averaging over spins and polarizations. A short presentation of the technique is given

  9. [Landmark-based automatic registration of serial cross-sectional images of Chinese digital human using Photoshop and Matlab software].

    Science.gov (United States)

    Su, Xiu-yun; Pei, Guo-xian; Yu, Bin; Hu, Yan-ling; Li, Jin; Huang, Qian; Li, Xu; Zhang, Yuan-zhi

    2007-12-01

    This paper describes automatic registration of the serial cross-sectional images of Chinese digital human by projective registration method based on the landmarks using the commercially available software Photoshop and Matlab. During cadaver embedment for acquisition of the Chinese digital human images, 4 rods were placed parallel to the vertical axis of the frozen cadaver to allow orientation. Projective distortion of the rod positions on the cross-sectional images was inevitable due to even slight changes of the relative position of the camera. The original cross-sectional images were first processed using Photoshop software firstly to obtain the images of the orientation rods, and the centroid coordinate of every rod image was acquired with Matlab software. With the average coordinate value of the rods as the fiducial point, two-dimensional projective transformation coefficient of each image was determined. Projective transformation was then carried out and projective distortion from each original serial image was eliminated. The rectified cross-sectional images were again processed using Photoshop to obtain the image of the first orientation rod, the coordinate value of first rod image was calculated using Matlab software, and the cross-sectional images were cut into images of the same size according to the first rod spatial coordinate, to achieve automatic registration of the serial cross-sectional images. sing Photoshop and Matlab softwares, projective transformation can accurately accomplish the image registration for the serial images with simpler calculation processes and easier computer processing.

  10. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  11. Burn Wise Educational Materials for Businesses

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  12. Eigenvalues of relaxed toroidal plasmas of arbitrary sharp edged cross sections. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Sh M [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Relaxed (force-free) toroidal plasmas described by the equations cur 1 B={mu}B, and grad {mu}=O (B is the magnetic field) induces interest in nuclear fusion. Its solution is perceived to describe the gross of the reversed field pinch (RFP), spheromak configuration, current limitation in toroidal plasmas, and others. The parameter {mu} plays an important roll in relaxed states. It cannot exceed the smallest eigenvalue {mu} (min), and that for a toroidal discharge there is a maximum toroidal current which is connected to this value. The values of{mu} were calculated numerically, using the methods of collocation points, for toroids of arbitrary aspect ratio {alpha} ({alpha} = R/a, ratio of major/minor radii of tokamak) and arbitrary curved cross-sections (circle, ellipse, cassini, and D-shaped). The aim of present work is to prove the applicability of the numerical methods for calculating the eigenvalues for toroidal plasmas having sharp edged cross sections and arbitrary aspect ratio. The lowest eigenvalue {mu} (min), satisfy the boundary condition {beta} .n = O (or RB. = O) for which the toroidal flux are calculated. These are the zero field eigenvalues of the equation cur 1 b={mu}B. The poloidal magnetic field lines corresponding to different cross sections are shown by plotting the boundary condition B.n=O. The plots showed good fulfillment of the boundary condition along the whole boundaries of different cross sections. Dependence of eigenvalues {mu}a on aspect ratio {alpha} is also obtained. Several runs of the programme with various wave numbers K showed that {mu}a is very insensitive to the choice of K. 8 figs.

  13. Sensitivity of LWR fuel cycle costs to uncertainties in detailed thermal cross sections

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Becker, M.; Harris, D.R.

    1979-01-01

    Cross sections averaged over the thermal energy (< 1 or 2 eV) group have been shown to have an important economic role for light-water reactors. Cost implications of thermal cross section uncertainties at the few-group level were reported earlier. When it has been determined that costs are sensitive to a specific thermal-group cross section, it becomes desirable to determine how specific energy-dependent cross sections influence fuel cycle costs. Multigroup cross-section sensitivity coefficients vary with fuel exposure. By changing the shape of a cross section displayed on a view-tube through an interactive graphics system, one can compute the change in few-group cross section using the exposure dependent sensitivity coefficients. With the changed exposure dependent few-group cross section, a new fuel cycle cost is computed by a sequence of batch depletion, core analysis, and fuel batch cost code modules. Fuel cycle costs are generally most sensitive to cross section uncertainties near the peak of the hardened Maxwellian flux

  14. Electron-impact-excitation cross sections of hydrogenlike ions

    International Nuclear Information System (INIS)

    Fisher, V.I.; Ralchenko, Y.V.; Bernshtam, V.A.; Goldgirsh, A.; Maron, Y.; Vainshtein, L.A.; Bray, I.; Golten, H.

    1997-01-01

    Convergent close-coupling (CCC) and Coulomb-Born with exchange and normalization (CBE) methods are used to study electron-impact excitation of hydrogenlike ions. The nl→n ' l ' cross sections demonstrate (i) good agreement between the CCC and CBE results, (ii) a scaling over ion nuclear charge z, (iii) a domination of the dipole (l ' =l±1) contributions in total n→n ' cross sections, and (iv) significant effect of electron exchange in the energy range x n,n ' ). For ions with z>5 the n→n ' cross sections obtained in the CCC and CBE approximations agree with each other to better than 10% for any x. An accuracy of the cross sections scaling over z 4 depends on z: for z=6 endash 18 the scaling is accurate to better than 10% (quantitative analysis is done for n ' 4 scaling more significantly (at x about unity). The n→n ' cross sections are presented by a formula which fits our CCC and CBE results with an accuracy to better than 10% (for transitions with n ' 5). The new Gaunt factor G(x) suggested for the widely used Van Regemorter formula [Astrophys. J. 136, 906 (1962)] makes this formula accurate to better than 50% in the x>3 range and to better than 20% in the x>100 range. It is shown that the semiempirical formula by Vainshtein, Sobelman, and Yukov provides an accuracy to better than 50% for any incident electron energy. For x<2 this formula is accurate to better than 30%. These accuracy assessments are based on a comparison with our CCC and CBE results. copyright 1997 The American Physical Society

  15. CASTHY, Statistical Model for Neutron Cross-Sections and Gamma-Ray Spectra

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Fukahori, Tokio

    1998-01-01

    Description of program or function: CASTHY calculates neutron cross sections of total, shape elastic scattering and compound nucleus formation with the optical model, and compound elastic, inelastic and capture cross sections by the statistical model. The other cross sections, such as (n,2n), (n,p), (n,f) reactions are treated as cross sections of competing processes, and their sum is given through input data. Capture gamma-ray spectra can also be calculated. The branching ratio for primary transition can be treated in a particular way, if required

  16. GridWise Standards Mapping Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bosquet, Mia L.

    2004-04-01

    ''GridWise'' is a concept of how advanced communications, information and controls technology can transform the nation's energy system--across the spectrum of large scale, central generation to common consumer appliances and equipment--into a collaborative network, rich in the exchange of decision making information and an abundance of market-based opportunities (Widergren and Bosquet 2003) accompanying the electric transmission and distribution system fully into the information and telecommunication age. This report summarizes a broad review of standards efforts which are related to GridWise--those which could ultimately contribute significantly to advancements toward the GridWise vision, or those which represent today's current technological basis upon which this vision must build.

  17. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  18. Elastic cross-section and luminosity measurement in Atlas at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Efthymiopoulos, I. [Conseil Europeen pour la recherche nucleaire, AB Dept., Geneve (Switzerland)

    2005-07-01

    Recently the Atlas experiment was complemented with a set of ultra-small-angle detectors located in 'Roman Pot' inserts at 240 m on either side of the interaction point, aiming at the absolute determination of the LHC luminosity by measuring the elastic scattering rate at the Coulomb Nuclear Interference region. Details of the proposed measurement the detector construction and the expected performance as well as the challenges involved are discussed here. Our aim is to determine the luminosity within a 2% error and give a competitive measurement on other parameters like the {rho}-parameter, the total cross-section and the nuclear slope.

  19. Ideal MHD equilibrium of a weakly toroidal plasma column with elongated cross-section

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Schuurman, W.

    1980-07-01

    Solutions are obtained of the ideal MHD equations describing the equilibrium of a weakly toroidal plasma with an elliptic cross-section surrounded by a force-free magnetic field with constant ratio between current density and magnetic field strength. The force-free field parameter causes the stagnation points to recede along the major axis of the ellipse. Above a certain value of the force-free field parameter, stagnation points do not exist, so that the compression ratio of the plasma column is no longer limited. The analysis was carried out to first order in the force-free field parameter as well as to second order for an estimate of the error

  20. Self-scattering cross-section of molecules in a beam

    International Nuclear Information System (INIS)

    Lou, Y.S.

    1974-01-01

    Molecular collision cross-section has always been measured by the beam scattering method, or by the measurements of thermal conductivity and/or viscosity coefficient, etc. The cross-section thus obtained has been found to be different, qualitatively, from that of the self-scattering of the molecules moving within a molecular beam. By perturbing the zeroth order solution of the Boltzmann equation with a B-G-K kinetic model for the gas upstream to the orifice, and performing particle scattering calculation for molecules within the beam downstream to the orifice, such self-scattering collision cross-section can be determined from the experimental data of velocity distribution functions of molecules in the beam

  1. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  2. Inclusive cross sections in AA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-01-01

    Inclusive cross sections in AA collisions at high energies are considered in the Glauber multiple scattering theory taking into account many-nucleon collisions. Correspondence is found between the AA amplitude and the effective action of the two-dimensional quantum field theory with exponential interaction. The tree and one-loop contributions are calculated in this formalism. The rules are derived, which relate the absorption part of the AA-collision amplitudes associated with various inclusive cross sections to the absorption parts of NN amplitudes. These rules generalize the well-known Agranowsky-Gribov-Kanchelli rules for hh and hA collisions. Formulas are written for single and double inclusive cross sections in AA collisions

  3. Total cross section for relativistic positronium interaction with atom

    International Nuclear Information System (INIS)

    Pak, A.S.; Tarasov, A.V.

    1985-01-01

    Total cross sections of interaction of positronium relativistic atoms with atoms are calculated. Calculations are conducted within the framework of potential theory in Born approximaton. Contributions in total cross section of coherent (σsub(coh)) and incoherent (σsub(inc)) parts are analyzed. It is shown that for light elements σsub(inc) value is comparable with σsub(coh), and for heavy ones the ratio σsub(inc)/σsub(coh) sufficiently exceeds Zsup(-1) (Z-charge of the atomic nucleus. Numerical calculation results are presented. A conclusion is made on importance of the coherent part account during the calculation of total cross sections

  4. Neutron cross sections of 28 fission product nuclides adopted in JENDL-1

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Nakagawa, Tsuneo; Igarasi, Sin-iti; Matsunobu, Hiroyuki; Kawai, Masayoshi; Iijima, Shungo.

    1981-02-01

    This is the final report concerning the evaluated neutron cross sections of 28 fission product nuclides adopted in the first version of Japanese Evaluated Nuclear Data Library (JENDL-1). These 28 nuclides were selected as being most important for fast reactor calculations, and are 90 Sr, 93 Zr, 95 Mo, 97 Mo, 99 Tc, 101 Ru, 102 Ru, 103 Rh, 104 Ru, 105 Pd, 106 Ru, 107 Pd, 109 Ag, 129 I, 131 Xe, 133 Cs, 135 Cs, 137 Cs, 143 Nd, 144 Ce, 144 Nd, 145 Nd, 147 Pm, 147 Sm, 149 Sm, 151 Sm, 153 Eu and 155 Eu. The status of the experimental data was reviewed over the whole energy range. The present evaluation was performed on the basis of the measured data with the aid of theoretical calculations. The optical and statical models were used for evaluation of the smooth cross sections. An improved method was developed in treating the multilevel Breit-Wigner formula for the resonance region. Various physical parameters and the level schemes, adopted in the present work are discussed by comparing with those used in the other evaluations such as ENDF/B-IV, CEA, CNEN-2 and RCN-2. Furthermore, the evaluation method and results are described in detail for each nuclide. The evaluated total, capture and inelastic scattering cross sections are compared with the other evaluated data and some recent measured data. Some problems of the present work are pointed out and ways of their improvement are suggested. (author)

  5. Cross sections for electron-impact excitation of argon by fourier transform spectroscopy

    International Nuclear Information System (INIS)

    Chilton, J.E.; Boffard, J.B.; Chun C.L.

    1996-01-01

    The authors report absolute measurements of electron-impact excitation cross sections out of the ground level to the ten levels in the 3p 5 4p configuration of argon. The apparent excitation cross sections are determined by measuring the optical cross sections for the emission lines in the 3p 5 4p → 3p 5 4s manifold. For cascade corrections the authors measured the optical cross sections for the various 3p 5 5s → 3p 5 4p and 3p 5 4p infrared lines using a Fourier transform weak emission spectrometer to obtain the direct excitation cross sections from the optical data. Although the optical cross sections vary with pressure in the regime of 0.1 to 6 mTorr, the direct cross sections remain invariant. These pressure effects are understood within the framework of a radiation-reabsorption model. The excitation functions for the different transitions are also found to show considerable variation in shape

  6. The 10B(n,α)7Li cross section

    International Nuclear Information System (INIS)

    1997-01-01

    The data base relevant to an evaluation of the 10 B(n,α) standard cross sections have been improved through interlaboratory collaboration. Changes in the evaluated 10 B(n,α) cross sections resulted form the measurements made since the ENDF/B-VI evaluation have been estimated. 12 refs, 4 figs

  7. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.

    2011-01-01

    Complete text of publication follows. Diatomic molecular Hydrogen is the most abundant molecule in interstellar molecular clouds. The modeling of these environments relies on accurate cross sections for the various relevant processes. Among them, the photoionization plays a major role in the kinetics and in the energy exchanges involving H 2 . The recent discovery of vibrationally excited molecular hydrogen in extragalactic environments revealed the need for accurate evaluation of the corresponding photoionization cross sections. In the present work we report theoretical photoionization cross sections for excitation from excited vibrational levels of the ground state, dealing with the Q(N = 1) (ΔN = 0, where N is the total angular momentum of the molecule) transitions which account for roughly one third of the total photoabsorption cross section. We will focus on the v' = 1 excited level of the ground electronic state. Our calculations are based on Multichannel Quantum Defect Theory (MQDT), which allows us to take into account of the full manifold of Rydberg states and their interactions with the electronic continuum. We have carried out two types of MQDT calculations. First, we omitted all open channels and calculated energy levels, wave functions and spontaneous emission Einstein coefficients, making use of the theoretical method presented in [2]. In a second set of calculations we included the open ionization channels in the computations getting the continuum phase shifts, channel mixing coefficients and channel dipole moments and finally the photoabsorption/ photoionization cross section. The cross section is dominated by the presence of resonance structures corresponding to excitation of various vibrational levels of bound electronic states which lie above the ionization threshold. In order to assess the importance of the resonances we have calculated for each vibrational interval (the energy interval between two consecutive ionization thresholds) the

  8. Production, separation and target preparation of {sup 171}Tm and {sup 147}Pm for neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heinitz, Stephan; Maugeri, Emilio A.; Schumann, Dorothea; Dressler, Rugard; Kivel, Niko [Paul Scherrer Institute, Villigen (Switzerland); Guerrero, Carlos [Sevilla Univ. (Spain); Koester, Ullrich [Institut Laue-Langevin, Grenoble (France); Tessler, Moshe; Paul, Michael [Hebrew Univ. of Jerusalem (Israel); Halfon, Shlomi [Soreq Nuclear Research Center, Yavne (Israel); Collaboration: nTOF Collaboration

    2017-07-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg {sup 171}Tm from 240 mg {sup 170}Er{sub 2}O{sub 3} and 72 μg {sup 147}Pm from 100 mg {sup 146}Nd{sub 2}O{sub 3} irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at nTOF CERN and the SARAF-LiLiT facility.

  9. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  10. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  11. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  12. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  13. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  14. a cross-sectional analytic study 2014

    African Journals Online (AJOL)

    Assessment of HIV/AIDS comprehensive correct knowledge among Sudanese university: a cross-sectional analytic study 2014. ... There are limited studies on this topic in Sudan. In this study we investigated the Comprehensive correct ...

  15. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  16. (n, Xn) cross sections measurements at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Inmaculada C.

    2006-01-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n, Xn) reactions in this energy range. Neutron double differential cross sections measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL laboratory, in Uppsala (Sweden). The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 deg.-98 deg.). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100 MeV). The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparisons between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its original treatment of nucleon-nucleus reactions. (author) [fr

  17. Electron-collision excitation cross section of the silver atom

    International Nuclear Information System (INIS)

    Krasavin, A.Y.; Kuchenev, A.N.; Smirnov, Y.M.

    1983-01-01

    The cross sections for direct excitation by electron collision were measured for fifteen transitions of the silver atom. For thirteen of these transitions the optical excitation functions were recorded, varying the energy of the exciting electrons from the threshold energy to 250 eV. The operating region of the spectrum was 2000--5500 A. The excitation cross sections of the two principal lines exceeded the excitation cross sections of all the remaining lines by more than an order of magnitude. Reabsorption of the resonance lines was detected from the change in the ratio of intensities of the lines at 3280.68 and 3382.89 A, and so their intensity has been corrected relative to the intensities of the nonreabsorbed lines. All radiative transitions, with the exception of resonance transitions, participate in cascade population of the lowest resonance levels, making it possible to determine the resulting direct excitation cross sections of the 5p 2 P/sub 1/2/ and 5p 2 P/sub 3/2/ levels from the ground state of the silver atom. The part played by cascade population of the resonance levels is not large and is 2 P/sub 3/2/ level, and 10% for the 5p 2 P/sub 1/2/ level, of the excitation cross sections of the corresponding resonance transitions

  18. Measurement of aluminum activation cross section and gas production cross section for 0.4 and 3-GeV protons

    Directory of Open Access Journals (Sweden)

    Meigo Shin-ichiro

    2017-01-01

    Full Text Available To estimate the lifetime and the radiation dose of the proton beam window used in the spallation neutron source at J-PARC, it is necessary to understand the accuracy of the production cross section of 3-GeV protons. To obtain data on aluminum, the reaction cross section of aluminum was measured at the entrance of the beam dump placed in the 3-GeV proton synchrotron. Owing to the use of well-calibrated current transformers and a well-collimated beam, the present data has good accuracy. After irradiation, the cross sections of Al(p,x7Be, Al(p,x22Na-22 and Al(p,x24Na were obtained by gamma-ray spectroscopy using a Ge detector. It was found that the evaluated data of JENDL/HE-2007 agree well with the current experimental data, whereas intra-nuclear cascade models (Bertini, INCL-4.6, and JAM with the GEM statistical decay model underestimate by about 30% in general. Moreover, gas production, such as T and He, and the cross sections were measured for carbon, which was utilized as the muon production target in J-PARC. The experiment was performed with 3-GeV proton having beam power of 0.5 MW, and the gasses emitted in the process were observed using a quadrupole mass spectrometer in the vacuum line for beam transport to the mercury target. It was found that the JENDL/HE-2007 data agree well with the present experimental data.

  19. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.; Rimpault, G.

    2012-01-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, which better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)

  20. Electron capture cross sections by O{sup +} from atomic He

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Dwayne C; Saha, Bidhan C [Department of Physics, Florida A and M University, Tallahassee, FL-32307 (United States)

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  1. Measurements of fusion cross sections of 16O+46,50Ti systems

    International Nuclear Information System (INIS)

    Liguori Neto, R.

    1986-01-01

    Excitation functions for complete fusion of the systems 16 O + 46,50 Ti, with50)Ti, energies near and below the Coulomb barrier, were measured. With the use of the in-beam and out of beam γ spectroscopy, the formation of the compound nucleus was experimentally detected. The fusion cross was then attained by the sum of all observed compound nucleus decay channels. The limitation and advantages of measurements methods are discussed. Theoretical analysis of the experimental results using the semi-classical barrier penetration model allowed us to obtain the fusion barrier height and radius for the studied systems. These values are in good agreement with others reported for this mass range. Using the unidimensional barrier penetration model with different nuclear potentials, describing the heavy ion interactions gave theoretical fusion cross section values systematically smaller than our measured values in the energy region below the Coulomb barrier. The introduction of the nuclear surface zero point vibrations enhances the theoretical fusion cross sections in the sub-Coulomb region, but simultaneoulsy introduces an isotopic difference in the fusion excitation functions that is not observed experimentally. The statistical model predictions for the compound nucleous decay (calculated by the CASCADE program) show reasonable agreement for the more intense decay channels. (author) [pt

  2. Fusion cross sections from measurements of delayed X-rays

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Gregorio, D.E. di; Fernandez Niello, J.O; Elgue, M.

    1988-01-01

    The program XRAY is a FORTRAN 77 computer code for the extraction of fusion cross sections from delayed X-ray measurements. This is accomplished by calculating the theoretical expressions of the time dependence of the evaporation-residue cross sections and taking them as adjustable parameters in a χ 2 minimization procedure. (orig.)

  3. Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Dube, L.; Herzenberg, A.

    1979-01-01

    The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section

  4. Multivariate survivorship analysis using two cross-sectional samples.

    Science.gov (United States)

    Hill, M E

    1999-11-01

    As an alternative to survival analysis with longitudinal data, I introduce a method that can be applied when one observes the same cohort in two cross-sectional samples collected at different points in time. The method allows for the estimation of log-probability survivorship models that estimate the influence of multiple time-invariant factors on survival over a time interval separating two samples. This approach can be used whenever the survival process can be adequately conceptualized as an irreversible single-decrement process (e.g., mortality, the transition to first marriage among a cohort of never-married individuals). Using data from the Integrated Public Use Microdata Series (Ruggles and Sobek 1997), I illustrate the multivariate method through an investigation of the effects of race, parity, and educational attainment on the survival of older women in the United States.

  5. Confidence intervals for the first crossing point of two hazard functions.

    Science.gov (United States)

    Cheng, Ming-Yen; Qiu, Peihua; Tan, Xianming; Tu, Dongsheng

    2009-12-01

    The phenomenon of crossing hazard rates is common in clinical trials with time to event endpoints. Many methods have been proposed for testing equality of hazard functions against a crossing hazards alternative. However, there has been relatively few approaches available in the literature for point or interval estimation of the crossing time point. The problem of constructing confidence intervals for the first crossing time point of two hazard functions is considered in this paper. After reviewing a recent procedure based on Cox proportional hazard modeling with Box-Cox transformation of the time to event, a nonparametric procedure using the kernel smoothing estimate of the hazard ratio is proposed. The proposed procedure and the one based on Cox proportional hazard modeling with Box-Cox transformation of the time to event are both evaluated by Monte-Carlo simulations and applied to two clinical trial datasets.

  6. ZZ ENDL82, Evaluated Charged Particle, Neutron, Photon Cross-Section Library

    International Nuclear Information System (INIS)

    2001-01-01

    Description of program or function: - Format: Described in the manual; - Number of groups: (energies between 100 eV and 100 MeV); - Nuclides: 94 (Z 1 to 99); - Origin: LLNL Evaluated Nuclear Data Library. ENDL82 is a collection of evaluated data for neutron-induced reactions, photon interactions with matter, and charged-particle-induced reactions. It is maintained in a computer-oriented system. All interpolable quantities for neutron-induced reactions are presented so that linear interpolation between successive entries yields values that are consistent with stated experimental errors, where experiments exist, or that adhere to an assumed law, such as 1/v energy dependence, within a small fraction (typically 1%). In the case of an assumed energy-dependence law for cross sections, this is accomplished by creating a large number of (energy, cross section) pairs by computer and subsequently thinning the points to a specified accuracy, using the subroutine THINER. All angular distributions are differential probabilities normalized to an integral of unity over the cosine of the scattering angle. All energy distributions of secondary particles are presented as normalized Legendre polynomial representations. The linear interpolation will construct an acceptable angular distribution at an intermediate energy

  7. Analytical Absorption Cross-Section for Photon by a Hydrogen 2s Atom

    International Nuclear Information System (INIS)

    Ndinya, Boniface Otieno; Okeyo, Stephen Onyango

    2011-01-01

    We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker-Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper pair minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing. (atomic and molecular physics)

  8. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  9. Evaluation of the (n,p) cross sections for natural Ni and its isotopes {sup 58,60,61,62,64}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Gonggui, Ma; Shiming, Wang; Kun, Zhang [Sichuan Univ., Chengdu (China). Inst. of Nuclear Science and Technology

    1996-06-01

    Nickel is a very important structure material in nuclear engineering. The neutron activation cross section of the (n,p) reaction is very important for fusion reactor from the view point of monitoring neutron field. The cross sections {sup 58,60,61,62,64}Ni(n,p){sup 58,60,61,62,64}Co were evaluated based on measured data and theoretical calculation from threshold to 20 MeV. The present evaluations agree well with the measured data of Ni isotopes. (6 figs.).

  10. Measurement of np→dπ0 cross sections very near threshold

    International Nuclear Information System (INIS)

    Hutcheon, D.A.; Abegg, R.; Greeniaus, L.G.; Miller, C.A.; Korkmaz, E.; Moss, G.A.; Edwards, G.W.R.; Mack, D.; Olsen, W.C.; Ye, Y.

    1989-06-01

    We have measured np→dπ 0 cross sections at ten beam energies within 16 MeV of threshold. Total cross sections followed closely the relationship σ tot (np→dπ 0 ) = (1/2)[(184±5)η 3 ]μb, where η is the c.m. pion momentum in units of m π c. The differential cross sections are anisotropic at only 1 MeV (c.m.) above threshold. These results are predicted by Faddeev model calculations and by a perturbative model. Our cross sections are in fair agreement with previous π + d→pp data. (Author) 12 refs., tab., 4 figs

  11. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  12. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components

    International Nuclear Information System (INIS)

    Champion, Christophe

    2013-01-01

    Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.

  13. Cross sections for fast-neutron interaction with ytterbium isotopes

    International Nuclear Information System (INIS)

    Luo, Junhua; Liu, Rong; Jiang, Li; Ge, Suhong; Liu, Zhenlai; Sun, Guihua

    2013-01-01

    Highlights: ► The cross sections for the (n,x) reactions on ytterbium isotopes have been measured. ► Mono-energetic neutron beams using the D + T reaction; Energies: 13.5 and 14.8 MeV. ► Neutron cross-section measurements by means of the activation technique. ► Reference reactions 93 Nb(n,2n) 92m Nb and 27 (n,α) 24 Na. ► Data for 172 Yb(n,p) 172 Tm and 176 Yb(n,d * ) 175 Tm are reported for the first time. - Abstract: Measurements of (n,2n), (n,p), and (n,d * ) (The expression (n,d * ) cross section used in this work includes a sum of (n,d), (n,np) and (n,pn) cross sections.) reaction cross-sections on ytterbium isotopes have been carried out in the range of 13.5–14.8 MeV using the activation technique. The monoenergetic neutron beams were produced via the 3 H(d,n) 3 He reaction. The neutron energies of different directions were determined using the Nb/Zr method. Samples were activated along with along with Nb and Al monitor foils to determine the incident neutron flux. Data are reported for the following reactions: 168 Yb(n,2n) 167 Yb, 170 Yb(n,2n) 169m+g Yb, 176 Yb(n,2n) 175m+g Yb, 172 Yb(n,p) 172 Tm, 173 Yb(n,p) 173 Tm, 176 Yb(n,d * ) 175 Tm, 174 Yb(n,p) 174 Tm, and 176 Yb(n,p) 176 Tm. The experimentally deduced cross-sections are compared with the existing experimental data. Furthermore, theoretical statistical model, based on the Hauser–Feshbach formalism, have been carried out using the HFTT

  14. Systematics in total (n,2n) cross sections at 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1976-11-20

    The 14-15 MeV (n,2n) cross sections are found to depend mainly on the asymmetry parameter and the Q-value. No shell effects are found to exist in these cross sections. The total (n,2n) cross sections are found to be well predicted by an empirical relation which takes into account the Q-value and the asymmetry parameter in addition to the geometrical cross section.

  15. Summary of activation cross section measurements at FNS

    International Nuclear Information System (INIS)

    Ikeda, Y.; Konno, C.; Kasugai, Y.; Kumar, A.

    1996-01-01

    Neutron activation cross sections around 14 MeV for seventeen reactions have been measured at the FNS facility in JAERI in order to provide experimental data meeting the requirement in the radioactive wastes disposal assessment in the D-T fusion reactor. This report summarizes contributing data measured in several phases of experiments to the IAEA-CRP on ''Activation Cross sections for the Generation of Long-Lived radionuclides of Importance in Fusion Reactor Technology''. (author). 18 refs, 1 tab

  16. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  17. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  18. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  19. Charge transfer cross sections for dysprosium and cerium

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Hajime; Tamura, Koji; Okazaki, Tetsuji; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    Symmetric resonant charge transfer cross sections between singly ionized ions and the parent atoms were measured for dysprosium and cerium in the impact energy of 200-2000eV. The cross sections were determined from the ratio between the number of ions produced by charge transfer and those in primary ion beam. The primary ion beam was produced by a laser ion source in which their atoms were ionized by laser resonant photo-ionization. The slow ions produced by charge transfer and fast primary ions were detected with Faraday cups. The obtained cross sections were (1.82{+-}0.14) x 10{sup -14} cm{sup 2} for dysprosium and (0.88{+-}0.12) x 10{sup -14} cm{sup 2} for cerium in the above energy range. The difference of these values can mostly be explained by considering the electron configurations of these atoms and ions. (author)

  20. Charge transfer cross sections for dysprosium and cerium

    International Nuclear Information System (INIS)

    Adachi, Hajime; Tamura, Koji; Okazaki, Tetsuji; Shibata, Takemasa

    1998-06-01

    Symmetric resonant charge transfer cross sections between singly ionized ions and the parent atoms were measured for dysprosium and cerium in the impact energy of 200-2000eV. The cross sections were determined from the ratio between the number of ions produced by charge transfer and those in primary ion beam. The primary ion beam was produced by a laser ion source in which their atoms were ionized by laser resonant photo-ionization. The slow ions produced by charge transfer and fast primary ions were detected with Faraday cups. The obtained cross sections were (1.82±0.14) x 10 -14 cm 2 for dysprosium and (0.88±0.12) x 10 -14 cm 2 for cerium in the above energy range. The difference of these values can mostly be explained by considering the electron configurations of these atoms and ions. (author)