Digital microwave communication engineering point-to-point microwave systems
Kizer, George
2013-01-01
The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en
High speed file transfer - Point to point and multipoint, using satellite links
Valet, I.
Techniques developed for simulation trials of high-speed file transfer via the Telecom-1 satellite system (using the ANIS simulator) by the French NADIR project are characterized. The choice of frame length, error-correction procedure, numbering scheme, and flow-control technique is discussed, and the problems encountered in applying classical protocols such as HDLC are indicated. A 32-bit numbering field and a selective-acknowledgement error algorithm with minimal flow-control will be implemented in the point-to-point simulation, using minicomputers linked by ANIS. The multipoint 'file broadcasting' simulation will be conducted with two different configurations (sending directly to all stations, with AND-forwarded random-access return channels or with only virtual packet-switched return channels, and the selective-acknowledgement algorithm. The goal of both simulations is efficient transmission of bulk files of up to 100 Mbytes.
Point to point multispectral light projection applied to cultural heritage
Vázquez, D.; Alvarez, A.; Canabal, H.; Garcia, A.; Mayorga, S.; Muro, C.; Galan, T.
2017-09-01
Use of new of light sources based on LED technology should allow the develop of systems that combine conservation and exhibition requirements and allow to make these art goods available to the next generations according to sustainability principles. The goal of this work is to develop light systems and sources with an optimized spectral distribution for each specific point of the art piece. This optimization process implies to maximize the color fidelity reproduction and the same time to minimize the photochemical damage. Perceived color under these sources will be similar (metameric) to technical requirements given by the restoration team uncharged of the conservation and exhibition of the goods of art. Depending of the fragility of the exposed art objects (i.e. spectral responsivity of the material) the irradiance must be kept under a critical level. Therefore, it is necessary to develop a mathematical model that simulates with enough accuracy both the visual effect of the illumination and the photochemical impact of the radiation. Spectral reflectance of a reference painting The mathematical model is based on a merit function that optimized the individual intensity of the LED-light sources taking into account the damage function of the material and color space coordinates. Moreover the algorithm used weights for damage and color fidelity in order to adapt the model to a specific museal application. In this work we show a sample of this technology applied to a picture of Sorolla (1863-1923) an important Spanish painter title "woman walking at the beach".
Numerical simulation in astrophysics
International Nuclear Information System (INIS)
Miyama, Shoken
1985-01-01
There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)
Comments on numerical simulations
International Nuclear Information System (INIS)
Sato, T.
1984-01-01
The author comments on a couple of things about numerical simulation. One is just about the philosophical discussion that is, spontaneous or driven. The other thing is the numerical or technical one. Frankly, the author didn't want to touch on the technical matter because this should be a common sense one for those who are working at numerical simulation. But since many people take numerical simulation results at their face value, he would like to remind you of the reality hidden behind them. First, he would point out that the meaning of ''driven'' in driven reconnection is different from that defined by Schindler or Akasofu. The author's definition is closer to Axford's definition. In the spontaneous case, for some unpredicted reason an excess energy of the system is suddenly released at a certain point. However, one does not answer how such an unstable state far beyond a stable limit is realized in the magnetotail. In the driven case, there is a definite energy buildup phase starting from a stable state; namely, energy in the black box increases from a stable level subject to an external source. When the state has reached a certain position, the energy is released suddenly. The difference between driven and spontaneous is whether the cause (plasma flow) to trigger reconnection is specified or reconnection is triggered unpredictably. Another difference is that in driven reconnection the reconnection rate is dependent on the speed of the external plasma flow, but in spontaneous reconnection the rate is dependent on the internal condition such as the resistivity
Confidence in Numerical Simulations
International Nuclear Information System (INIS)
Hemez, Francois M.
2015-01-01
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ''forecast,'' that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ''think.'' This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ''Confidence'' derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
2010-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
May 2002 Lidar Point Data of Southern California Coastline: Dana Point to Point La Jolla
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains lidar point data from a strip of Southern California coastline (including water, beach, cliffs, and top of cliffs) from Dana Point to Point La...
September 2002 Lidar Point Data of Southern California Coastline: Dana Point to Point La Jolla
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains lidar point data from a strip of Southern California coastline (including water, beach, cliffs, and top of cliffs) from Dana Point to Point La...
Limits in point to point resolution of MOS based pixels detector arrays
Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.
2018-01-01
In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.
Combining Narrative and Numerical Simulation
DEFF Research Database (Denmark)
Hansen, Mette Sanne; Ladeby, Klaes Rohde; Rasmussen, Lauge Baungaard
2011-01-01
Strategic simulation is the combination of narrative and numerical simulation and can be used as a tool to support strategic decision making by providing different scenarios in combination with computer modelling. The core of the combined simulation approach (CSA) is to make it possible for decis......Strategic simulation is the combination of narrative and numerical simulation and can be used as a tool to support strategic decision making by providing different scenarios in combination with computer modelling. The core of the combined simulation approach (CSA) is to make it possible...... to the decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy...
Numerical simulation of welding
DEFF Research Database (Denmark)
Hansen, Jan Langkjær; Thorborg, Jesper
Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...
Network Competition - the Coexistence of Hub-and-Spoke and Point-to-Point Systems
Alderighi, M.; Cento, A.; Nijkamp, P.; Rietveld, P.
2005-01-01
The paper identifies conditions under which asymmetric equilibria may exist when carriers compete in designing their network configurations in a game-theoretical framework. Two carriers are assumed here, which are allowed to play three different strategies: Point-to-point (PP), hub-and-spoke (HS) or
2013-09-09
... sale within the United States after importation of certain point-to- point network communication... sale within the United States after importation of certain point-to- point network communication... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-892] Certain Point-to-Point Network...
Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing
Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.
2011-01-01
Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.
Energy-efficient technologies for point-to-point fiber access
Lee, Ka-Lun; Li, Jie; Chan, Chien Aun; Anthapadmanabhan, N. Prasanth; Chow, Hungkei (Keith)
2015-12-01
This article discusses the fundamental issues and the technologies to achieve an energy-efficient Gigabit-Ethernet point-to-point (PtP) fiber access network. To minimize the power consumption of PtP fiber access for long-term development, it is essential to optimize each of the network components such as optical transceiver, user network interface, Ethernet aggregator and also their modes of operation. Our analysis shows that the energy consumption of a PtP fiber access network using our proposed technologies can be up to 7.5 times lower than that of the 2010 technologies when a combination of appropriate technologies is applied.
Numerical simulation of electrochemical desalination
Hlushkou, D.; Knust, K. N.; Crooks, R. M.; Tallarek, U.
2016-05-01
We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier-Stokes, Nernst-Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass-charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.
Numerical Simulation of Complex Wetting
Linder, Nicklas
2015-01-01
Many multiphase-flows are governed by capillarity and wettability such as spray painting and ink-jet printing applications, cooling devices of small scaled microchips and inside internal combustion engines referring to the fuel injection. The contact angle is a decisive parameter when such a system is analyzed. If the contact angle is in the bounds of the hysteresis, the contact line is pinned (immobile). An accurate numerical simulation is not trivial because of the contact line singularity,...
TeleHealth networks: Instant messaging and point-to-point communication over the internet
International Nuclear Information System (INIS)
Sachpazidis, Ilias; Ohl, Roland; Kontaxakis, George; Sakas, Georgios
2006-01-01
This paper explores the advantages and disadvantages of a medical network based on point-to-point communication and a medical network based on Jabber instant messaging protocol. Instant messaging might be, for many people, a convenient way of chatting over the Internet. We will attempt to illustrate how an instant messaging protocol could serve in the best way medical services and provide great flexibility to the involved parts. Additionally, the directory services and presence status offered by the Jabber protocol make it very attractive to medical applications that need to have real time and store and forward communication. Furthermore, doctors connected to Internet via high-speed networks could benefit by saving time due to the data transmission acceleration over Jabber
Performance-Driven Symbol Mapping for Downlink and Point-to-Point MIMO Systems
Directory of Open Access Journals (Sweden)
Alsusa E
2011-01-01
Full Text Available An adaptive symbol mapping scheme is proposed for single-user point-to-point and multiuser downlink multiple-input multiple output (MIMO systems aiming at the minimization of the overall system bit error rate. The proposed scheme introduces a disorder to the symbols to be transmitted within a MIMO subframe by means of dynamic mapping, with the objective to optimise the interference between them and enhance the received symbols' power. This is done by either changing the allocation order of the symbols to the antennas or by applying a scrambling process that alters the symbols sign. This procedure is targeted to optimizing, rather than strictly minimizing the interference between the symbols such that constructive instantaneous interference is utilized in enhancing the decision variables at the receiver on a symbol-by-symbol basis so that detection is made more reliable. In this way, the overall system performance is improved without the need to raise the transmitted power. The proposed scheme can be used in conjunction with various conventional MIMO precoding and detection techniques. The presented results show that for a given transmit power budget this scheme provides significant benefits to the corresponding conventional system's error rate performance.
Spectrography analysis of stainless steel by the point to point technique
International Nuclear Information System (INIS)
Bona, A.
1986-01-01
A method for the determination of the elements Ni, Cr, Mn, Si, Mo, Nb, Cu, Co and V in stainless steel by emission spectrographic analysis using high voltage spark sources is presented. The 'point-to-point' technique is employed. The experimental parameters were optimized taking account a compromise between the detection sensitivity and the precision of the measurement. The parameters investigated were the high voltage capacitance, the inductance, the analytical and auxiliary gaps, the period of pre burn spark and the time of exposure. The edge shape of the counter electrodes and the type of polishing and diameter variation of the stailess steel eletrodes were evaluated in preliminary assays. In addition the degradation of the chemical power of the developer was also investigated. Counter electrodes of graphite, copper, aluminium and iron were employed and the counter electrode itself was used as an internal standard. In the case of graphite counter electrodes the iron lines were employed as internal standard. The relative errors were the criteria for evaluation of these experiments. The National Bureau of Standards - Certified reference stainless steel standards and the Eletrometal Acos Finos S.A. samples (certified by the supplier) were employed for drawing in the calibration systems and analytical curves. The best results were obtained using the convencional graphite counter electrodes. The inaccuracy and the imprecision of the proposed method varied from 2% to 15% and from 1% to 9% respectively. This present technique was compared to others instrumental techniques such as inductively coupled plasma, X-ray fluorescence and neutron activation analysis. The advantages and disadvantages for each case were discussed. (author) [pt
Rocket Engine Numerical Simulator (RENS)
Davidian, Kenneth O.
1997-01-01
Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The
Visualization of numerically simulated aerodynamic flow fields
International Nuclear Information System (INIS)
Hian, Q.L.; Damodaran, M.
1991-01-01
The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs
Numerical methods in simulation of resistance welding
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi
2015-01-01
Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...
Numerical simulations of disordered superconductors
International Nuclear Information System (INIS)
Bedell, K.S.; Gubernatis, J.E.; Scalettar, R.T.; Zimanyi, G.T.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors carried out Monte Carlo studies of the critical behavior of superfluid 4 He in aerogel. They found the superfluid density exponent increases in the presence of fractal disorder with a value roughly consistent with experimental results. They also addressed the localization of flux lines caused by splayed columnar pins. Using a Sine-Gordon-type of renormalization group study they obtained an analytic form for the critical temperature. They also determined the critical temperature from I-V characteristics obtained from a molecular dynamics simulation. The combined studies enabled one to construct the phase diagram as a function of interaction strength, temperature, and disorder. They also employed the recently developed mapping between boson world-lines and the flux motion to use quantum Monte Carlo simulations to analyze localization in the presence of disorder. From measurements of the transverse flux line wandering, they determined the critical ratio of columnar to point disorder strength needed to localize the bosons
Numerical simulation of mechatronic sensors and actuators
Kaltenbacher, Manfred
2007-01-01
Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.
Directory of Open Access Journals (Sweden)
M. Ficky Duskarnaen
2017-12-01
Full Text Available Tujuan dari penelitian ini adalah membangun jaringan wireless point to point antara Kampus A dan Kampus B Universitas Negeri Jakarta. Penelitian ini menggunakan metode research and development yang meliputi kegiatan analisis, perancangan, dan implementasi. Jalur komunikasi untuk menghubungkan Kampus A dan Kampus B Universitas Negeri Jakarta menggunakan jalur kabel Telkom, jalur tersebut digunakan sebagai backbone utama. Karena belum adanya penerapan fault tolerance pada jalur tersebut maka jaringan wireless point to point perlu dipersiapkan sebagai alternatif apabila terjadi kegagalan. Analisis kondisi lokasi pemasangan wireless yaitu ketinggian Gedung Sertifikasi 42 m dan Gedung Rusun Mahasiswa 17 m, dua lokasi berjarak 911 m dengan besar free space loss 99,24 dB – 99,49 dB, line of sight terbebas dari penghalang, dan radius fresnel zone 4,27 m – 4,33 m (BTS Telkom dan 5,24 m – 5,32 m (Gedung Rabbani dalam kondisi tidak terhalang. Perencanaan desain jaringan dalam mode bridge – station bridge, menggunakan perangkat keras Mikrotik Metal 2SHPn 30 dBm, Antena Grid 24 dBi, kabel pigtail LMR-400, dan tower triangle. Jaringan wireless point to point berhasil diimplementasikan dengan hasil pengujian yaitu terdapat banyak interferensi dari wireless access point lain, sambungan berhasil dilakukan dengan 0% packet loss, kekuatan sinyal -64,75 dBm, SNR 41,25 dB, CCQ 86,14%, dan throughput 11,15 Mbps.
Numerical simulation of autoigniting flames
Asaithambi, Rajapandiyan; Mahesh, Krishnan
2012-11-01
Autoignition is highly sensitive to temperature and mixing. A density based method for DNS/LES of compressible chemically reacting flows is proposed with an explicit predictor step for advection and diffusion terms, and a semi-implicit corrector step for stiff chemical source terms. This segregated approach permits independent modification of the Navier-Stokes solver and the time integration algorithm for the chemical source term. The algorithm solves the total chemical and sensible energy equation and heat capacities of species are obtained from thermodynamic tables. Chemical mechanisms in the Chemkin format is parsed and source terms are automatically linearized allowing the ability to simulate multiple fuels with minimal effort. Validation of the algorithm is presented and results from autoigniting non-premixed flames in vitiated coflow with different fuels are discussed.
Direct numerical simulation of supercritical annular electroconvection
Tsai, Peichun Amy; Daya, Zahir A.; Deyirmenjian, Vatche B.; Morris, Stephen W.
2007-01-01
We use direct numerical simulation to study electrically driven convection in an annular thin film. The simulation models a laboratory experiment that consists of a weakly conducting, submicron thick liquid crystal film suspended between two concentric electrodes. The film is driven to convect by
Direct Numerical Simulation of Driven Cavity Flows
Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been
The FEROL40, a microTCA card interfacing custom point-to-point links and standard TCP/IP
Gigi, Dominique; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Contescu, Cristian; da Silva Gomes, Diego; Darlea, Georgiana-Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Doualot, Nicolas; Erhan, Samim; Fulcher, Jonathan Richard; Gladki, Maciej; Glege, Frank; Gomez-Ceballos, Guillelmo; Hegeman, Jeroen; Holzner, Andre; Janulis, Mindaugas; Lettrich, Michael; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K; Morovic, Srecko; O'Dell, Vivian; Orn, Samuel Johan; Orsini, Luciano; Papakrivopoulos, Ioannis; Paus, Christoph; Petrova, Petia; Petrucci, Andrea; Pieri, Marco; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Vazquez Velez, Cristina; Vougioukas, Michail; Zejdl, Petr
2017-01-01
In order to accommodate new back-end electronics of upgraded CMS sub-detectors, a new FEROL40 card in the microTCA standard has been developed. The main function of the FEROL40 is to acquire event data over multiple point-to-point serial optical links, provide buffering, perform protocol conversion, and transmit multiple TCP/IP streams (4x10Gbps) to the Ethernet network of the aggregation layer of the CMS DAQ (data acquisition) event builder. This contribution discusses the design of the FEROL40 and experience from operation.
Study of Cardiac Defibrillation Through Numerical Simulations
Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.
Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.
Contribution to Numerical Simulation of Laser Welding
Turňa, Milan; Taraba, Bohumil; Ambrož, Petr; Sahul, Miroslav
Contribution deals with numerical simulation of thermal and stress fields in welding tubes made of austenitic stainless CrNi steel type AISI 304 with a pulsed Nd:YAG laser. Process simulation was realised by use of ANSYS 10 software. Experiments were aimed at solution of asymptotic, standard and the so-called shell model. Thermally dependent properties of AISI 304 steel were considered. Thermal fields developed in the course of welding process and also shape of weld pool were assessed. Contribution is aimed at simulation of technological welding process with input parameters regarding the thermal and strain task and comparison of attained results with real experiment. The achieved results of numerical simulation were almost identical with a real weldment thermally affected by welding process.
Numerical simulation of radial compressor stage
Syka, T.; Luňáček, O.
2013-04-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.; Syka T.
2013-01-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Directory of Open Access Journals (Sweden)
Luňáček O.
2013-04-01
Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical Implementation and Computer Simulation of Tracer ...
African Journals Online (AJOL)
Numerical Implementation and Computer Simulation of Tracer Experiments in a Physical Aquifer Model. ... African Research Review ... A sensitivity analysis showed that the time required for complete source depletion, was most dependent on the source definition and the hydraulic conductivity K of the porous medium.
Simple Numerical Simulation of Strain Measurement
Tai, H.
2002-01-01
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.
Evolving mechanical design from numerical simulation
Indian Academy of Sciences (India)
A recipe for obtaining mechanical design of arc plasma devices from numerical simulation incorporating two-temperature thermal non-equilibrium model is presented in this article with reference to the plasma of the mixture of molecular gases like nitrogen and oxygen. Such systems are technologically important as they ...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Numerical Simulation of a Convective Turbulence Encounter
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The numerical results show severe turbulence of similar scale and intensity to that encountered during the test flight. This turbulence is associated with buoyant plumes that penetrate the upper-level thunderstorm outflow. The simulated radar reflectivity compares well with that obtained from the aircraft's onboard radar. Resolved scales of motion as small as 50 m are needed in order to accurately diagnose aircraft normal load accelerations. Given this requirement, realistic turbulence fields may be created by merging subgrid-scales of turbulence to a convective-cloud simulation. A hazard algorithm for use with model data sets is demonstrated. The algorithm diagnoses the RMS normal loads from second moments of the vertical velocity field and is independent of aircraft motion.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Juarez, A; Gomez-Colin, M R; Rojas-Hernandez, A G [Universidad de Sonora (Mexico); Zaldivar-Huerta, I E; Aguayo-Rodriguez, G [Instituto Nacional de Astrofisica, Optica y Electronica (Mexico); Rodriguez-Asomoza, J, E-mail: agarcia@cifus.uson.mx [Universidad de las Americas-Puebla (Mexico)
2011-01-01
An optical communications system using a couple microstrip antennas for distributing point to point analog TV with coherent demodulation based on optical heterodyne in close vicinity is reported in this paper. In the proposed experimental setup, two optical waves at different wavelengths are mixed and applied to a photodetector. Then a beat signal with a frequency equivalent to the spacing of the two wavelengths is obtained at the output of the photodetector. This signal corresponds to a microwave signal located at 1.25 GHz, which it is used as a microwave carrier in the transmitter and as a local oscillator in the receiver of our optical communication system. The feasibility of this technique is demonstrated transmitting a TV signal of 66-72 MHz.
On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System
Makki, Behrooz
2015-11-12
In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.
Experiments and Numerical Simulations of Electrodynamic Tether
Iki, Kentaro; Kawamoto, Satomi; Takahashi, Ayaka; Ishimoto, Tomori; Yanagida, Atsushi; Toda, Susumu
As an effective means of suppressing space debris growth, the Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) has been investigating an active space debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates tether deployment dynamics by means of on-ground experiments and numerical simulations of an electrodynamic tether system. Some key parameters used in the numerical simulations, such as the elastic modulus and damping ratio of the tether, the spring constant of the coiling of the tether, and deployment friction, must be estimated, and various experiments are conducted to determine these values. As a result, the following values were obtained: The elastic modulus of the tether was 40 GPa, and the damping ratio of the tether was 0.02. The spring constant and the damping ratio of the tether coiling were 10-4 N/m and 0.025 respectively. The deployment friction was 0.038ν + 0.005 N. In numerical simulations using a multiple mass tether model, tethers with lengths of several kilometers are deployed and the attitude dynamics of satellites attached to the end of the tether and tether libration are calculated. As a result, the simulations confirmed successful deployment of the tether with a length of 500 m using the electrodynamic tether system.
Reactor numerical simulation and hydraulic test research
International Nuclear Information System (INIS)
Yang, L. S.
2009-01-01
In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device
Contributions to reinforced concrete structures numerical simulations
International Nuclear Information System (INIS)
Badel, P.B.
2001-07-01
In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)
Numerical simulations on ion acoustic double layers
International Nuclear Information System (INIS)
Sato, T.; Okuda, H.
1980-07-01
A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length
Numerical simulation of a natural circulation loop
Energy Technology Data Exchange (ETDEWEB)
Verissimo, Gabriel L.; Moreira, Maria de Lourdes; Faccini, Jose Luiz H., E-mail: gabrielverissimo@poli.ufrj.b, E-mail: malu@ien.gov.b, E-mail: faccini@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2011-07-01
This work presents a numerical simulation of a natural circulation loop using computational fluid dynamics. The simulated loop is an experimental model in a reduced scale of 1:10 of a passive heat removal system typical of advanced PWR reactors. The loop is composed of a heating vessel containing 52 electric heaters, a vertical shell-tube heat exchanger and a column of expansion. The working fluid is distilled water. Initially it was created a tridimensional geometric model of the loop components. After that, it was generated a tridimensional mesh of finite elements in order to calculate the variables of the problem. The boundaries of the numerical simulation were the power of the electric resistances and the cooling flow in the secondary side of the heat exchanger. The initial conditions were the temperature, the pressure and the fluid velocity at the time just before the power has been switched on. The results of this simulation were compared with the experimental data, in terms of the evolution of the temperatures in different locations of the loop, and of the average natural circulation flow as a function of time for a given power. (author)
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Gatto, A.; Parolari, P.; Boffi, P.
2018-05-01
Frequency division multiplexing (FDM) is attractive to achieve high capacities in multiple access networks characterized by direct modulation and direct detection. In this paper we take into account point-to-point intra- and inter-datacenter connections to understand the performance of FDM operation compared with the ones achievable with standard multiple carrier modulation approach based on discrete multitone (DMT). DMT and FDM allow to match the non-uniform and bandwidth-limited response of the system under test, associated with the employment of low-cost directly-modulated sources, such as VCSELs with high-frequency chirp, and with fibre-propagation in presence of chromatic dispersion. While for very short distances typical of intra-datacentre communications, the huge number of DMT subcarriers permits to increase the transported capacity with respect to the FDM employment, in case of few tens-km reaches typical of inter-datacentre connections, the capabilities of FDM are more evident, providing system performance similar to the case of DMT application.
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Numerical simulation of real-world flows
Energy Technology Data Exchange (ETDEWEB)
Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)
2015-10-15
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)
Numerical Simulation of Piston Ring Lubrication
DEFF Research Database (Denmark)
Felter, Christian Lotz
2006-01-01
and the angle between the normals of the solid and the free surface. The numerical model is compared with the results from an analytical solution of Reynolds equation for a fixed incline slider bearing. Then results from a more compli- cated simulation of piston ring lubrication is given and discussed.......This paper describes a numerical method that can be used to model the lubrication of piston rings. Classical lubrication theory is based on the Reynolds equation which is ap- plicable to confined geometries and open geometries where the flooding conditions are known. Lubrication of piston rings...... on solids and the equilibrium of stresses on the free surface. It is assumed that the surrounding gas phase has zero viscosity. Surface tension can be included in the model if necessary. The contact point where the three phases solid, liquid, and gas intersect is updated based on the velocity of the solid...
Lagrangian numerical methods for ocean biogeochemical simulations
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
Numerical simulation of flow by perforated plates
International Nuclear Information System (INIS)
Santos, Andre Augusto Campagnole dos
2005-01-01
The commercial code, CFX-5, was used in the numerical calculation of the pressure loss in water flow through perforated plates. Studies for adequate definition of both turbulence model and mesh refinement have been carried through, especially near the wall. Simulations were performed on the plates with different orifices configurations (number and diameter), keeping the same cross-section coefficient (flow area of the perforated plate / pipe section before the plate). The results have been compared with the obtained by the Handbook of Hydraulic Resistance of I. E. Idelchik, reference in this kind of estimate. The differences between the methodologies were small when applying the turbulence model k-e and a high degree of mesh refinement. The study aims to contribute with the validation process of the numerical methodology in the determination of pressure drop in elements with similar geometry to a perforated plate, such as the bottom end piece of the nuclear fuel element. (author)
Spectral methods in numerical plasma simulation
International Nuclear Information System (INIS)
Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.
1989-01-01
in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed.......An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Numerical simulation of coupler cavities for linacs
Energy Technology Data Exchange (ETDEWEB)
Ng, C.K.; Derutyer, H.; Ko, K.
1993-04-01
We present numerical procedures involved in the evaluation of the performance of coupler cavities for linacs. The MAFIA code is used to simulate an X-Band accelerator section in the time domain. The input/output coupler cavities for the structure arc of the symmetrical double-input design. We calculate the transmission properties of the coupler and compare the results with measurements. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak field gradient in the computer.
Numerical Simulations Of Flagellated Micro-Swimmers
Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey
2017-11-01
We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.
Numerical simulation of viscous transonic airfoil flows
Coakley, Thomas J.
1987-01-01
Numerical simulations of transonic airfoil flows using the Reynolds-averaged Navier-Stokes equations and various turbulence models are presented and compared with experimental data. Three different airfoils were investigated under varying flow conditions ranging from subcritical unseparated flows to supercritical separated flows. The turbulence models investigated consisted of three zero-equation models and one two-equation model. For unseparated flows involving weak viscous-inviscid interactions, the four models were comparable in their agreement with experiment. For separated flows involving strong viscous-inviscid interactions, the nonequilibrium zero-equation model of Johnson and King gave the best overall agreement with experiment.
Numerical Simulation of Cyclic Thermodynamic Processes
DEFF Research Database (Denmark)
Andersen, Stig Kildegård
2006-01-01
This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced......, compressible flow in one space dimension is presented. The implementation produces models where all the equations, which are on a form that should be understandable to someone with a background in engineering thermodynamics, can be accessed and modified individually. The implementation was designed to make...
Numerical simulations of regolith sampling processes
Schäfer, Christoph M.; Scherrer, Samuel; Buchwald, Robert; Maindl, Thomas I.; Speith, Roland; Kley, Wilhelm
2017-07-01
We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroid's surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earth's and Phobos') and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.
Numerical simulation of human biped locomotion
International Nuclear Information System (INIS)
Ishiguro, Misako; Fujisaki, Masahide
1988-04-01
This report describes the numerical simulation of the motion of human-like robot which is one of the research theme of human acts simulation program (HASP) begun at the Computing Center of JAERI in 1987. The purpose of the theme is to model the human motion using robotics kinematic/kinetic equations and to get the joint angles as the solution. As the first trial, we treat the biped locomotion (walking) which is the most fundamental human motion. We implemented a computer program on FACOM M-780 computer, where the program is originated from the book of M. Vukobratovic in Yugoslavia, and made a graphic program to draw a walking shot sequence. Mainly described here are the mathematical model of the biped locomotion, implementation method of the computer program, input data for basic walking pattern, computed results and its validation, and graphic representation of human walking image. Literature survey on robotics equation and biped locomotion is also included. (author)
Direct Numerical Simulations of Transient Dispersion
Porter, M.; Valdes-Parada, F.; Wood, B.
2008-12-01
Transient dispersion is important in many engineering applications, including transport in porous media. A common theoretical approach involves upscaling the micro-scale mass balance equations for convection- diffusion to macro-scale equations that contain effective medium quantities. However, there are a number of assumptions implicit in the various upscaling methods. For example, results obtained from volume averaging are often dependent on a given set of length and time scale constraints. Additionally, a number of the classical models for dispersion do not fully capture the early-time dispersive behavior of the solute for a general set of initial conditions. In this work, we present direct numerical simulations of micro-scale transient mass balance equations for convection-diffusion in both capillary tubes and porous media. Special attention is paid to analysis of the influence of a new time- decaying coefficient that filters the effects of the initial conditions. The direct numerical simulations were compared to results obtained from solving the closure problem associated with volume averaging. These comparisons provide a quantitative measure of the significance of (1) the assumptions implicit in the volume averaging method and (2) the importance of the early-time dispersive behavior of the solute due to various initial conditions.
Makki, Behrooz
2016-03-22
This paper investigates the performance of the point-To-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas, which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency/feedback error probability on the performance of the MIMO-HARQ systems is analyzed. Then, we use some recent results on the achievable rates of finite block-length codes, to analyze the effect of the codewords lengths on the system performance. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 1972-2012 IEEE.
Direct numerical simulation of dynamo transition for nonhelical MHD
Energy Technology Data Exchange (ETDEWEB)
Nath, Dinesh; Verma, Mahendra K [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Lessinnes, Thomas; Carati, Daniele [Physique Statistique et Plasmas, Universite Libre de Bruxellers, B-1050 Bruxelles (Belgium); Sarris, Ioannis [Department of Mechanical and Industrial Engineering, University of Thessaly, Volos (Greece)
2010-02-01
Pseudospectral Direct Numerical Simulation (DNS) has been performed to simulate dynamo transition for nonhelical magnetohydrodynamics turbulence. The numerical results are compared with a recent low-dimensional model [Verma et al. [13
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Numerical simulation of pump-intake vortices
Directory of Open Access Journals (Sweden)
Rudolf Pavel
2015-01-01
Full Text Available Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.
Numerical simulations of coupled problems in engineering
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Numerical simulation of the pulsed Pirani gauges
Gospodinov, P.; Dankov, D.; Roussinov, V.; Mironova, M.
2017-10-01
The transient heat transfer process is studied in rarefied gas confined between two stationary concentric cylinders. The inner cylinder (filament) is subjected to a periodically heating-cooling cycle. The energy transfer is modeled with a continuous model based on Navier-Stokes-Fourier (NSF) equations of motion and energy transfer and with a statistical Direct Simulation Monte Carlo Method (DSMC). Numerical results for the temperature, thermodynamic pressure and pressure difference between thermodynamic pressure and radial stress tensor component are obtained for different circular frequencies of heating cooling cycle of filament and for different filament radii. The pressure variation at the end of any local heating stage of heating-cooling cycle is close to the value of equilibrium thermodynamic pressure. The results are applicable in designing the pulsed Pirani gauges.
Numerical simulation of transonic flows in diffusers
Liou, M.-S.; Coakley, T. J.; Bergmann, M. Y.
1981-01-01
Numerical simulations were made of two-dimensional transonic flows in diffusers, including flow separation induced by a shock or adverse pressure gradient. The mass-averaged, time-dependent, compressible Navier-Stokes equations, simplified by the thin-layer approximation, were solved using MacCormack's hybrid method. The eddy-viscosity formulation was described by the Wilcox-Rubesin's two-equation, k-omega model. Detailed comparison of the computed results with measurements showed good agreement in all cases, including one with massive separation induced by a strong shock. The computation correctly predicted the details of a distinct lambda shock pattern, closely duplicating the configuration observed experimentally in spark-schlieren photographs.
Direct Numerical Simulation of Automobile Cavity Tones
Kurbatskii, Konstantin; Tam, Christopher K. W.
2000-01-01
The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.
Coupled numerical simulation of fire in tunnel
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is
Direct numerical simulation of human phonation
Bodony, Daniel; Saurabh, Shakti
2017-11-01
The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).
Collisionless microinstabilities in stellarators. II. Numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Proll, J. H. E.; Xanthopoulos, P.; Helander, P. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, 17491 Greifswald, Germany and Max-Planck/Princeton Research Center for Plasma Physics, 17491 Greifswald (Germany)
2013-12-15
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations.
Numerical simulation of the Polywell device
International Nuclear Information System (INIS)
Simmons, K.H.; Santarius, J.F.
1995-01-01
Recent ideas concerning inertial-electrostatic confinement (IEC) of fusion plasmas coupled with recent experimental results have motivated looking at the problem of confinement of these plasmas in both the gridded (pure electrostatic) and magnetically assisted (via confinement of high beta plasmas in a magnetic cusp) configuration. Questions exist as to the nature of the potential well structure and the confinement properties of high beta plasmas in magnetic cusp configurations. This work focuses on the magnetically assisted concept known as the Polywell trademark. Results are reported on the numerical simulation of IEC plasmas aimed at answering some of these questions. In particular the authors focus on two aspects of the Polywell, namely the structure of the magnetic cusp field in the Polywell configuration and the nature of the confinement of a high beta plasma in a magnetic cusp field. The existence of line cusps in the Polywell is still in dispute. A computer code for modeling the magnetic field structure and mod-B surface has been written and results are presented for the Polywell. Another source of controversy is the nature of the confinement of a high beta plasma in a magnetic cusp, and in particular in the polywell. Results from 2-D Particle In Cell (PIC) simulations aimed at answering some of these questions are presented
Numerical simulation of electromagnetic surface treatment
Sonde, Emmanuel; Chaise, Thibaut; Nelias, Daniel; Robin, Vincent
2018-01-01
Surface treatment methods, such as shot peening or laser shock peening, are generally used to introduce superficial compressive residual stresses in mechanical parts. These processes are carried out during the manufacturing steps or for the purpose of repairing. The compressive residual stresses prevent the initiation and growth of cracks and thus improve the fatigue life of mechanical components. Electromagnetic pulse peening (EMP) is an innovative process that could be used to introduce compressive residual stresses in conductive materials. It acts by generating a high transient electromagnetic field near the working surface. In this paper, the EMP process is presented and a sequentially coupled electromagnetic and mechanical model is developed for its simulation. This 2D axisymmetric model is set up with the commercial finite element software SYSWELD. After description and validation, the numerical model is used to simulate a case of introducing residual stresses of compression in a nickel-based alloy 690 thick sample, by the means of electromagnetic pulses. The results are presented in terms of effective plastic strain and residual mean stress. The influence of the process parameters, such as current intensity and frequency, on the results is analyzed. Finally, the predictability of the process is shown by several correlation studies.
Numerical Simulations of Hypersonic Boundary Layer Transition
Bartkowicz, Matthew David
Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-04-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but
Proton decay: Numerical simulations confront grand unification
Energy Technology Data Exchange (ETDEWEB)
Brower, R.C.; Maturana, G.; Giles, R.C.; Moriarty, K.J.M.; Samuel, S.
The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.).
Transonic aeroelastic numerical simulation in aeronautical engineering
International Nuclear Information System (INIS)
Yang, G.
2005-01-01
An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)
Numerical simulation of the gould belt dynamics
Vasilkova, O. O.
2014-01-01
The results of numerical simulations of the Gould Belt motion for the 2D (a ring in the Galactic plane) and 3D (a spherical shell outside the Galactic plane) cases are presented. Particles of the expanding shell interact with each other within the framework of the N-body problem. The Galactic potential has been borrowed from Flynn et al. (1996). The total mass of the shell is 1.5 × 106 M⊙ in accordance with the estimate from Bobylev (2006). The initial mutual distances and velocities of the shell components are chosen in such a way that the shell reaches the present-day sizes of the Gould Belt in 30-60 Myr. In the 2D case, the ring is shown to be stretched with time into a rotating ellipse, which is consistent with the results from Blaauw (1952) obtained by other methods. In the 3D case, the projections of the initially spherical shell onto the Galactic plane are also rotating ellipses. A vertical oscillation of the Gould Belt components relative to the Galactic plane, a flattening of the spherical shell, and its inclination to the Galactic plane after a certain time interval have been revealed.
DEFF Research Database (Denmark)
Tömösközi, Máté; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2014-01-01
. This metric captures the elapsed time between (network) encoding RTP packets and completely decoding the packets in-order on the receiver side. Our solutions are implemented and evaluated on a point-to-point link between a Raspberry Pi device and a network (de)coding enabled software running on a regular PC...
Numerical Simulations of Gas Cloud Expansion in Rarefied Environment
National Research Council Canada - National Science Library
Dogra, Virendra K; Wadsworth, Dean C
2005-01-01
Time accurate numerical simulations of a high temperature source cloud of gas expanding into an ambient atmosphere are performed using a multiple temperature gas model and the direct simulation Monte Carlo (DSMC) method...
A Numerical Simulation for a Deterministic Compartmental ...
African Journals Online (AJOL)
In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...
Numerical simulation of separated flows in channels
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2012-04-01
The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an explicit algebraic Reynolds stress model (EARSM) is studied. The used test cases are flows in channels with various backward facing steps where the step is perpendicular or inclined and the top wall is parallel or deflected. Furthermore, a channel with the circular ramp is considered. The numerical solution is achieved by the finite volume method or by the finite element method. The results of both numerical approaches are compared.
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Numerical simulation of single bubble boiling behavior
Directory of Open Access Journals (Sweden)
Junjie Liu
2017-06-01
Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.
Numerical simulations of the solar corona and Coronal Mass Ejections
Poedts, S.; Jacobs, C.; van der Holst, B.; Chane, E.; Keppens, R.
2009-01-01
Numerical simulations Of Coronal Mass Ejections (CMEs) call provide a deeper Insight ill the Structure and propagation of these impressive solar events. lit this work, we present our latest results Of numerical simulations of the initial evolution Of a fast CME. For this purpose, the equations Of
Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic
2015-09-01
ARL-TR-7416 ● SEP 2015 US Army Research Laboratory Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic...of Ballistic Impact of Layered Aluminum Nitride Ceramic by JD Clayton Weapons and Materials Research Directorate, ARL...Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Modular numerical tool for gas turbine simulation
Sampedro Casis, Rodrigo
2015-01-01
In this work a free tool for the simulation of turboprops was implemented, capable of simulating the various components of a jet engine, separately or in conjunction, with different degrees of thermodynamic modelling or complexity, in order to simulate an entire jet engine. The main characteristics of this software includes its compatibility, open code and GNU license, non-existing in today's market. Furthermore, the tool was designed with a greater flexibility and a more adapted work environ...
Numerical simulation on multiphase spray cooling
Yan, Peiliang; Liu, Hong; Cai, Chang; Gao, Jiuliang; Yin, Hongchao
2017-12-01
The purpose of this work is using distilled water as working fluid to study the spray cooling heat transfer characteristics from non-boiling zone to boiling zone by CFD method. Simulation is performed using a Euler-Lagrangian method based on the air and liquid droplet two phase flow dynamics. The results of this simulation are in accordance with the experimental results of the laboratory. The simulation results show that the spray height is an important factor influencing the cooling characteristics. With the decrease of spray height, the heat transfer effect is enhanced.
Detailed numerical simulations of laser cooling processes
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
A numerical simulation of a contrail
Energy Technology Data Exchange (ETDEWEB)
Levkov, L.; Boin, M.; Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)
1997-12-31
The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.
Numerical simulations of nanostructured gold films
DEFF Research Database (Denmark)
Repan, Taavi; Frydendahl, Christian; Novikov, Sergey M.
2017-01-01
We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which then was ca...... then was captured using scanning transmission electron microscopy (STEM) and the obtained dark field images are used to set up COMSOL simulations corresponding to actual structures....
Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.
2017-07-01
Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.
Numerical simulation of hemorrhage in human injury
Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff
2015-11-01
Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.
Numerical simulation of baseflow modification due to effects of ...
African Journals Online (AJOL)
Numerical simulation of baseflow modification due to effects of sediment yield. ... Physically-based mathematical modelling affords the opportunity to look at this kind of interaction, which should be simulated by deterministic responses of both water and fluvial processes. In addition to simulating the streamflow and ...
Numerical simulation of AM1 microstructure
Directory of Open Access Journals (Sweden)
Rougier Luc
2014-01-01
Full Text Available A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate radius during isothermal heat treatments at 1100 ∘C and 1210 ∘C. The chained microsegregation and precipitation simulations indicate that the global sequences of precipitation events remains are qualitatively the same at the different locations in the microstructure, but the growth and dissolution kinetics are strongly influenced by the local compositions. Local supersaturations have a larger effect on the average radius of the precipitates than certain stages of the precipitation heat treatment.
Numerical simulations of progressive hardening by using ABAQUS FEA software
Directory of Open Access Journals (Sweden)
Domański Tomasz
2018-01-01
Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.
Numerical simulations of nanostructured gold films
DEFF Research Database (Denmark)
Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.
2017-01-01
We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...
Numerical aspects of giant impact simulations
Reinhardt, Christian; Stadel, Joachim
2017-06-01
In this paper, we present solutions to three short comings of smoothed particles hydrodynamics (SPH) encountered in previous work when applying it to giant impacts. First we introduce a novel method to obtain accurate SPH representations of a planet's equilibrium initial conditions based on equal area tessellations of the sphere. This allows one to imprint an arbitrary density and internal energy profile with very low noise which substantially reduces computation because these models require no relaxation prior to use. As a consequence one can significantly increase the resolution and more flexibly change the initial bodies to explore larger parts of the impact parameter space in simulations. The second issue addressed is the proper treatment of the matter/vacuum boundary at a planet's surface with a modified SPH density estimator that properly calculates the density stabilizing the models and avoiding an artificially low-density atmosphere prior to impact. Further we present a novel SPH scheme that simultaneously conserves both energy and entropy for an arbitrary equation of state. This prevents loss of entropy during the simulation and further assures that the material does not evolve into unphysical states. Application of these modifications to impact simulations for different resolutions up to 6.4 × 106 particles show a general agreement with prior result. However, we observe resolution-dependent differences in the evolution and composition of post-collision ejecta. This strongly suggests that the use of more sophisticated equations of state also demands a large number of particles in such simulations.
Numerical Simulations of Acoustically Driven, Burning Droplets
Kim, Heon-Chang; Karagozian, Ann R.; Smith, Owen I.
1999-11-01
The burning characteristics of fuel droplets exposed to external acoustical excitation within a microgravity environment are investigated numerically. The issue of acoustic excitation of flames in microgravity is especially pertinent to understanding the behavior of accidental fires which could occur in spacecraft crew quarters and which could be affected by pressure perturbations as result from ventilation fans or engine vibrations. Combustion of methanol fuel droplets is considered here using a full chemical reaction mechanism.(Marchese, A.J., et al., 26th Symp. (Int.) on Comb., p. 1209, 1997) The droplet and surrounding diffusion flame are situated within a cylindrical acoustic waveguide where standing waves are generated with varying frequency and amplitude. Applied sound pressure levels are limited at present to magnitudes for which the droplet shape remains spherical. A third order accurate, essentially-non-oscillatory (ENO) numerical scheme is employed to accurately resolve the spatial and temporal evolution of the flame front. Acoustically excited vs. non-excited external conditions for the burning droplet in microgravity are compared, and the effects of acoustic frequency, sound pressure level, and relative position of the droplet with respect to pressure and velocity nodes are explored.
Numerical simulation of imaging laser radar system
Han, Shaokun; Lu, Bo; Jiang, Ming; Liu, Xunliang
2008-03-01
Rational and effective design of imaging laser radar systems is the key of imaging laser radar system research. Design must fully consider the interrelationship between various parameters. According to the parameters, choose suitable laser, detector and other components. To use of mathematical modeling and computer simulation is an effective imaging laser radar system design methods. This paper based on the distance equation, using the detection statistical methods, from the laser radar range coverage, detection probability, false-alarm rate, SNR to build the laser radar system mathematical models. In the process of setting up the mathematical models to fully consider the laser, atmosphere, detector and other factors on the performance that is to make the models be able to respond accurately the real situation. Based on this using C# and Matlab designed a simulation software.
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Numerical simulation of distributed parameter processes
Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad
2013-01-01
The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...
Numerical Simulation of Wire-Coating
DEFF Research Database (Denmark)
Wapperom, Peter; Hassager, Ole
1999-01-01
A finite element program has been used to analyze the wire-coating process of an MDPE melt. The melt is modeled by a nonisothermal Carreau model. The emphasis is on predicting an accurate temperature field. Therefore, it is necessary to include the heat conduction in the metal parts. A comparison...... is made with the results of a simulation that models the heat conduction in the metal head by means of a Biot boundary condition. The influence of the wire velocity, inlet temperature and power-law index will be examined....
Numerical simulation of Platonic hydrocarbons and fullerenes
International Nuclear Information System (INIS)
Katin, K P; Lobanov, D A; Maslov, M M
2010-01-01
Thermal stability of small cage clusters known as Platonic hydrocarbons (tetrahedrane, cubane) was studied over a wide temperature range using tight-binding molecular dynamics simulation. Activation energies and frequency factors in the Arrhenius equation were obtained for these clusters. Ab initio calculations using HF, and B3LYP methods with 6-31G* basis set were performed on C 20 , C 36 and C 60 fullerenes to compute the lowest energy barriers preventing their decomposition. Possible decomposition products were also analyzed in detail.
Numerical simulation and physical aspects of supersonic vortex breakdown
Liu, C. H.; Kandil, O. A.; Kandil, H. A.
1993-01-01
Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.
NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS
International Nuclear Information System (INIS)
LUCCIO, A.; D'IMPERIO, N.; MALITSKY, N.
2005-01-01
Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package
Numerical methods for simulation of high-intensity hadron synchrotrons
International Nuclear Information System (INIS)
Luccio, Alfredo U.; D'Imperio, Nicholas; Malitsky, Nikolay
2006-01-01
Numerical algorithms for PIC simulation of beam dynamics in a high-intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space-charge forces. The working code for the simulation here presented is SIMBAD, that can be run as standalone or as part of the Unified Accelerator Libraries (UAL) package
Numerical methods for simulation of high-intensity hadron synchrotrons
Energy Technology Data Exchange (ETDEWEB)
Luccio, Alfredo U. [Brookhaven National Laboratory, C-AD Department, Upton, NY 11973 (United States)]. E-mail: luccio@bnl.gov; D' Imperio, Nicholas [Brookhaven National Laboratory, C-AD Department, Upton, NY 11973 (United States); Malitsky, Nikolay [Brookhaven National Laboratory, C-AD Department, Upton, NY 11973 (United States)
2006-06-01
Numerical algorithms for PIC simulation of beam dynamics in a high-intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space-charge forces. The working code for the simulation here presented is SIMBAD, that can be run as standalone or as part of the Unified Accelerator Libraries (UAL) package.
NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.
Energy Technology Data Exchange (ETDEWEB)
LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.
2005-09-12
Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.
Numerical simulations of moon-ringlet interaction
Hanninen, J.
1993-05-01
Nonaxisymmetric ring features excited by perturbations of shepherd satellites are studied in terms of direct particle simulations using Aarseth's N-body integrator combined with the calculation of particle-particle impacts. Interaction parameters typical to Saturn's F-ring are investigated. The generation of clumps by external satellites is verified, but the interparticle collisions tend to smooth sharp features. Using F-ring parameters the clumps are observed to cover the total azimuthal length, but it is not clear whether these azimuthally overlapping clumps would be detectable in the actual F-ring. Gravitational scattering by ring particles increases the velocity dispersion, smearing regular azimuthal features at least in the rings of low optical depths. Considerable accretion is observed to occur, particles sticking pairwise to each other, even if the tendency of the particles to accrete is artificially reduced in the simulations. A new explanation for the braided appearance of the F-ring is proposed, based on the interaction between the shepherding satellites and the ring containing embedded moonlets. In our model the braiding is a dynamic phenomenon: the braids are destroyed and recreated in a cyclical manner.
Direct Numerical Simulations of turbulent flow in a driven cavity
Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.
Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large
Theoretical study and numerical simulation of secondary flow in channels
Energy Technology Data Exchange (ETDEWEB)
Fort, J.; Halama, J.; Hrusova, M.; Kozel, K. [Technical Univ. Prague (Czech Republic). Dept. of Technical Mathematics; Skvor, M. [Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics
1999-12-01
Presented work deals with flow in a 3D curved channel of constant curvature and constant rectangular cross-section. Properties of typical secondary flow structures are theoretically studied. Some cases of subsonic flow were simulated numerically by two different finite volume methods. Numerical results are compared with experimental data. (orig.)
Theoretical study and numerical simulation of secondary flow in channels
Energy Technology Data Exchange (ETDEWEB)
Fort, J.; Halama, J.; Hrusova, M.; Kozel, K. (Technical Univ. Prague (Czech Republic). Dept. of Technical Mathematics); Skvor, M. (Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics)
1999-01-01
Presented work deals with flow in a 3D curved channel of constant curvature and constant rectangular cross-section. Properties of typical secondary flow structures are theoretically studied. Some cases of subsonic flow were simulated numerically by two different finite volume methods. Numerical results are compared with experimental data. (orig.)
Numerical simulation of a precessing vortex breakdown
International Nuclear Information System (INIS)
Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.
2006-01-01
The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow
Numerical simulation of supersonic gap flow.
Directory of Open Access Journals (Sweden)
Xu Jing
Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
A numerical relativity scheme for cosmological simulations
Daverio, David; Dirian, Yves; Mitsou, Ermis
2017-12-01
Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3 + 1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.
Batman-cracks. Observations and numerical simulations
Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.
1991-05-01
To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.
Scorching heat and numerical simulation; Canicule et simulation numerique
Energy Technology Data Exchange (ETDEWEB)
Deque, M
2007-07-01
A simulation of 140 years has been realized with ARPEGE-climat using the hypothesis of the increase of the greenhouse effect gases, of the scenario called A2 by the GIEC. The summer temperature observed at Pais and simulated between 1960 and 2003, as the average temperature in France are presented and discussed. (A.L.B.)
NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL
Directory of Open Access Journals (Sweden)
Nicusor ALEXANDRESCU
2009-09-01
Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters
Numerical simulations for terrestrial planets formation
Directory of Open Access Journals (Sweden)
Ji J.
2011-07-01
Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.
Numerical simulation of transverse jet flow field under supersonic inflow
Directory of Open Access Journals (Sweden)
Qian Li
2017-01-01
Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.
Numerical Simulation of Barotropic Tides around Taiwan
Directory of Open Access Journals (Sweden)
Chih-Kai Hu
2010-01-01
Full Text Available A 1/12°, 2-D barotropic tide model was used to examine the characteristics of barotropic tides and to improve the accuracy of predicting tidal sea levels and currents in the seas around Taiwan. The form ratio suggests that tides are predominantly semidiurnal in the northern reaches of the Taiwan Strait and mixed of diurnal and semidiurnal elsewhere around Taiwan. When the dominant M2 wave enters the Strait from the north, its amplitude is magnified to ~2 m in the middle, and then decreases rapidly toward the south end of the Strait. The predominance of diurnal tides along the southwest to the south coast of Taiwan is attributed to the quasi-resonance of diurnal waves in the South China Sea. The tidal range is small and tidal currents are weak off the east coast of Taiwan. Barotropic tidal energy is mostly dissipated on the shallow banks of the southwestern Strait. Results summarized from sensitivity tests on the bottom drag coefficient (CD and horizontal eddy viscosity (AM indicate that CD = 0.0015 - 0.00175 and AM = 150 m2 s-1 lead to the best model-data fit when compared to the observed tidal sea levels at ten reference tide-gauge stations around Taiwan. The averaged root-mean-squared (RMS differences of the simulated tidal sea level for the six principal constituents of O1, P1, K1, N2, M2, and S2 are significantly reduced to 1.3, 0.7, 2.0, 1.6, 5.1, and 3.1 cm, respectively, compared to that calculated from a 0.5° resolution global tide harmonic constant database, NAO.99b (Matsumoto et al. 2000. The averaged RMS differences of barotropic tidal currents (U, V for O1, K1, M2, and S2 are (0.92, 1.64, (1.17, 0.61, (3.88, 2.37, and (1.52, 1.20 cm s-1. A database of tidal sea levels and current harmonic constants, TWTIDE08, for Q1, O1, P1, K1, J1, OO1, 2N2, μ2, N2, ν2, M2, L2, T2, S2, and K2 is established with this study.
Mitigation of numerical noise for beam loss simulations
Kesting, Frederik
2017-01-01
Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.
Numerical simulation of random stresses on an annular turbulent flow
International Nuclear Information System (INIS)
Marti-Moreno, Marta
2000-01-01
The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr
Numerical Simulation of Solidification Microstructure based on Adaptive Octree Grids
Directory of Open Access Journals (Sweden)
Yin Y.
2016-06-01
Full Text Available The main work of this paper focuses on the simulation of binary alloy solidification using the phase field model and adaptive octree grids. Ni-Cu binary alloy is used as an example in this paper to do research on the numerical simulation of isothermal solidification of binary alloy. Firstly, the WBM model, numerical issues and adaptive octree grids have been explained. Secondary, the numerical simulation results of three dimensional morphology of the equiaxed grain and concentration variations are given, taking the efficiency advantage of the adaptive octree grids. The microsegregation of binary alloy has been analysed emphatically. Then, numerical simulation results of the influence of thermophysical parameters on the growth of the equiaxed grain are also given. At last, a simulation experiment of large scale and long-time has been carried out. It is found that increases of initial temperature and initial concentration will make grain grow along certain directions and adaptive octree grids can effectively be used in simulations of microstructure.
Comparison of GPU-Based Numerous Particles Simulation and Experiment
International Nuclear Information System (INIS)
Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook
2014-01-01
The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment
High-Order Numerical Simulations of Wind Turbine Wakes
DEFF Research Database (Denmark)
Kleusberg, E.; Mikkelsen, Robert Flemming; Schlatter, Philipp
2017-01-01
Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier–Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical...... the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments...... and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well...
Numerical simulation of steady and unsteady flows through plane cascades
Fořt, J.; Huněk, M.; Kozel, K.; Lain, J.; Šejna, M.; Vavřincová, M.
This paper of a few co-authors presents some works of the group of the Department of Technical Mathematics, Faculty of Mechanical Eng., TU Prague, which deals with numerical methods in fluid dynamics. We present numerical methods for a solution of different physical and mathematical models of flow through plane cascades. We use the Mac Cormack's scheme, Ron — Ho — Ni's scheme and Runge — Kutta schemes on H — type structured grid and upwind schemes on an unstructured triangular grid. This methods are used for simulation of steady or unsteady inviscid flow and for simulation of viscous laminar flow. We deal with comparison of different methods mutually and with experimental data and with comparison of different physical and mathematical models of flow used for numerical simulation.
Numerical simulation on quantum turbulence created by an oscillating object
Energy Technology Data Exchange (ETDEWEB)
Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp
2009-02-01
We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.
On Numerical Simulation of Flow Through Oil Filters
Iliev, O.; Laptev, V.
2003-01-01
This paper concerns numerical simulation of flow through oil filters. Oil filters consist of filter housing (filter box), and a porous filtering medium, which completely separates the inlet from the outlet. We discuss mathematical models, describing coupled flows in the pure liquid subregions and in the porous filter media, as well as interface conditions between them. Further, we reformulate the problem in fictitious regions method manner, and discuss peculiarities of the numerical algorithm...
Numerical simulations of flux flow in stacked Josephson junctions
DEFF Research Database (Denmark)
Madsen, Søren Peder; Pedersen, Niels Falsig
2005-01-01
We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...... numerical simulations, we are able to clearly distinguish between triangular and square vortex lattices and to identify the parameters leading to an in-phase vortex configuration....
Energy Technology Data Exchange (ETDEWEB)
Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.; Ratterman, Joseph D.
2018-01-30
Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.
Numerical Simulation for a Core Simulator of ACOP
Energy Technology Data Exchange (ETDEWEB)
Bae, Jun Ho; Euh, Dong Jin; Kwon, Tae Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2011-05-15
An experimental facility, called ACOP, is being constructed in order to evaluate the flow and pressure distribution in the APR+ reactor core. The ACOP facility has a 1/5 linear scale of the prototype. The design is based on the conservation of Euler number which is a ratio of pressure drop to dynamic pressure under a sufficient turbulent flow condition. The each fuel channel in the reactor core, which consists of 257 HIPER fuel assemblies, will be modeled as a 1/5-scale core simulator, which preserves the hydraulic characteristics of the HIPER fuel assembly. The present study is to develop and verify the design parameters applied to the core flow simulator by using a commercial CFD code
Direct numerical simulation of noninvasive channel healing in electrical field
Wang, Yi
2017-11-25
Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.
On the elimination of numerical Cerenkov radiation in PIC simulations
Greenwood, Andrew D.; Cartwright, Keith L.; Luginsland, John W.; Baca, Ernest A.
2004-12-01
Particle-in-cell (PIC) simulations are a useful tool in modeling plasma in physical devices. The Yee finite difference time domain (FDTD) method is commonly used in PIC simulations to model the electromagnetic fields. However, in the Yee FDTD method, poorly resolved waves at frequencies near the cut off frequency of the grid travel slower than the physical speed of light. These slowly traveling, poorly resolved waves are not a problem in many simulations because the physics of interest are at much lower frequencies. However, when high energy particles are present, the particles may travel faster than the numerical speed of their own radiation, leading to non-physical, numerical Cerenkov radiation. Due to non-linear interaction between the particles and the fields, the numerical Cerenkov radiation couples into the frequency band of physical interest and corrupts the PIC simulation. There are two methods of mitigating the effects of the numerical Cerenkov radiation. The computational stencil used to approximate the curl operator can be altered to improve the high frequency physics, or a filtering scheme can be introduced to attenuate the waves that cause the numerical Cerenkov radiation. Altering the computational stencil is more physically accurate but is difficult to implement while maintaining charge conservation in the code. Thus, filtering is more commonly used. Two previously published filters by Godfrey and Friedman are analyzed and compared to ideally desired filter properties.
On the elimination of numerical Cerenkov radiation in PIC simulations
International Nuclear Information System (INIS)
Greenwood, Andrew D.; Cartwright, Keith L.; Luginsland, John W.; Baca, Ernest A.
2004-01-01
Particle-in-cell (PIC) simulations are a useful tool in modeling plasma in physical devices. The Yee finite difference time domain (FDTD) method is commonly used in PIC simulations to model the electromagnetic fields. However, in the Yee FDTD method, poorly resolved waves at frequencies near the cut off frequency of the grid travel slower than the physical speed of light. These slowly traveling, poorly resolved waves are not a problem in many simulations because the physics of interest are at much lower frequencies. However, when high energy particles are present, the particles may travel faster than the numerical speed of their own radiation, leading to non-physical, numerical Cerenkov radiation. Due to non-linear interaction between the particles and the fields, the numerical Cerenkov radiation couples into the frequency band of physical interest and corrupts the PIC simulation. There are two methods of mitigating the effects of the numerical Cerenkov radiation. The computational stencil used to approximate the curl operator can be altered to improve the high frequency physics, or a filtering scheme can be introduced to attenuate the waves that cause the numerical Cerenkov radiation. Altering the computational stencil is more physically accurate but is difficult to implement while maintaining charge conservation in the code. Thus, filtering is more commonly used. Two previously published filters by Godfrey and Friedman are analyzed and compared to ideally desired filter properties
Study on Computer Numerical Simulation of Driving Static Pressure Pile
Hong, Ji; Xueyi, Yu
The method to study soil compaction effect caused by driving static pressure pile was proposed with the holes expansion principle analysis. It uses FEM (finite element method) computer numerical simulation to research holes expansion commonly. The expansion of holes radius changes from a0 to 2a0 corresponding to original one from zero to R. Comparing with conclusions obtained from other theories, FEM computer numerical simulation is valid for the analysis of holes expansion. Comparing with the traditional holes expansion principle, it expands the application scope and can be extended to analyze other cross-section forms of holes.
Numerical simulations for investigating EMC problems in industrial life
Directory of Open Access Journals (Sweden)
Bernd Jaekel W.
2008-01-01
Full Text Available The complexity of current EMC problems and the necessity to solve them in an accurate, reliable and efficient way require various analysis techniques. Numerical simulations can be considered as one of the most powerful tools for performing EMC analysis. Computational electromagnetics is used within basic research for example at universities as well as during nearly all phases of a product or system development process occurring in industrial life. Especially here, several challenges result from the application of numerical simulations. The most important ones are described and discussed in this paper. An exemplary interference problem is presented demonstrating the relevance and impact of those challenges.
NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY
Directory of Open Access Journals (Sweden)
P. V. Bulat
2016-05-01
Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.
Numerical simulation of double-diffusive finger convection
Hughes, J.D.; Sanford, W.E.; Vacher, H.L.
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double-diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density-dependent, saturated-unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute-transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute-transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High-resolution data from a double-diffusive Hele-Shaw experiment, initially in a density-stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double-diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer. Copyright 2005 by the American Geophysical Union.
Global numerical simulations of turbulence and transport in a tokamak
Energy Technology Data Exchange (ETDEWEB)
Thyagaraja, A.
1996-07-01
In this work an attempt is made to present an overview of the work on global numerical simulations of tokamak turbulence and transport being conducted at Culham using a two-fluid, electromagnetic, Large Eddy Simulation (LES) code called CUTIE which has been developed for the purpose. This review discusses the motivation and philosophy behind the construction of this code, its principal features, some results and the possible course of future investigations. (UK).
Direct Numerical Simulation and Visualization of Subcooled Pool Boiling
Directory of Open Access Journals (Sweden)
Tomoaki Kunugi
2014-01-01
Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.
Numerical solution of the differential equation for simulation of the ...
African Journals Online (AJOL)
The Euler's method is used to approximate the solutions of the ODEs. According to the RMSE, the simulation results were good agreement with the field collection data. Therefore, the numerical methods can be the technical tool for solving the severity of rice blast disease. Keywords: EPIRICE model, Khao Dawk Mali 105, ...
Numerical simulation of airfoil trailing edge serration noise
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...
Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation
Khatami, F.; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie
2015-01-01
For an elliptic Arndt’s hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the
Numerical simulation of species dependent interaction in a polluted ...
African Journals Online (AJOL)
In this study, we have utilized a sound numerical simulation technique to derive the conditions under which a legally-binding control related policy is necessary in order to mitigate the endemic Niger Delta polluted environmental issue. The implication of this present analysis if implemented will have several benefits for the ...
Numerical convergence improvements for porflow unsaturated flow simulations
Energy Technology Data Exchange (ETDEWEB)
Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-08-14
Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.
Numerical simulation of an intense precipitation event over ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Numerical simulation of an intense precipitation event ... Incursion of moist air, in the lower levels, converges at the foothills of the mountains and rise along the orography to form the updraft zone of the storm. Such rapid unstable ascent leads to deep ...
Direct Numerical Simulation Sediment Transport in Horizontal Channel
International Nuclear Information System (INIS)
Uhlmann, M.
2006-01-01
We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs
Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies
Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.
2006-01-01
Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Seasonal cycle of Martian climate : Experimental data and numerical simulation
Rodin, A. V.; Willson, R. J.
2006-01-01
The most adequate theoretical method of investigating the present-day Martian climate is numerical simulation based on a model of general circulation of the atmosphere. First and foremost, such models encounter the greatest difficulties in description of aerosols and clouds, which in turn
Numerical simulations of time-resolved quantum electronics
International Nuclear Information System (INIS)
Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier
2014-01-01
Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations
International Nuclear Information System (INIS)
Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F
2010-01-01
This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.
3D numerical simulations of multiphase continental rifting
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and
The hydrodynamics of astrophysical jets: scaled experiments and numerical simulations
Belan, M.; Massaglia, S.; Tordella, D.; Mirzaei, M.; de Ponte, S.
2013-06-01
Context. In this paper we study the propagation of hypersonic hydrodynamic jets (Mach number >5) in a laboratory vessel and make comparisons with numerical simulations of axially symmetric flows with the same initial and boundary conditions. The astrophysical context is that of the jets originating around young stellar objects (YSOs). Aims: In order to gain a deeper insight into the phenomenology of YSO jets, we performed a set of experiments and numerical simulations of hypersonic jets in the range of Mach numbers from 10 to 20 and for jet-to-ambient density ratios from 0.85 to 5.4, using different gas species and observing jet lengths of the order of 150 initial radii or more. Exploiting the scalability of the hydrodynamic equations, we intend to reproduce the YSO jet behaviour with respect to jet velocity and elapsed times. In addition, we can make comparisons between the simulated, the experimental, and the observed morphologies. Methods: In the experiments the gas pressure and temperature are increased by a fast, quasi-isentropic compression by means of a piston system operating on a time scale of tens of milliseconds, while the gas density is visualized and measured by means of an electron beam system. We used the PLUTO software for the numerical solution of mixed hyperbolic/parabolic conservation laws targeting high Mach number flows in astrophysical fluid dynamics. We considered axisymmetric initial conditions and carried out numerical simulations in cylindrical geometry. The code has a modular flexible structure whereby different numerical algorithms can be separately combined to solve systems of conservation laws using the finite volume or finite difference approach based on Godunov-type schemes. Results: The agreement between experiments and numerical simulations is fairly good in most of the comparisons. The resulting scaled flow velocities and elapsed times are close to the ones shown by observations. The morphologies of the density distributions agree
Numerical simulation in material science: principles and applications
International Nuclear Information System (INIS)
Ruste, Jacky
2006-06-01
The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)
Numerical simulation of tip clearance impact on a pumpjet propulsor
Directory of Open Access Journals (Sweden)
Lin Lu
2016-05-01
Full Text Available Numerical simulation based on the Reynolds Averaged Navier–Stokes (RANS Computational Fluid Dynamics (CFD method had been carried out with the commercial code ANSYS CFX. The structured grid and SST k–ω turbulence model had been adopted. The impact of non-condensable gas (NCG on cavitation performance had been introduced into the Schnerr and Sauer cavitation model. The numerical investigation of cavitating flow of marine propeller E779A was carried out with different advance ratios and cavitation numbers to verify the numerical simulation method. Tip clearance effects on the performance of pumpjet propulsor had been investigated. Results showed that the structure and characteristics of the tip leakage vortex and the efficiency of the propulsor dropped more sharply with the increase of the tip clearance size. Furthermore, the numerical simulation of tip clearance cavitation of pumpjet propulsor had been presented with different rotational speed and tip clearance size. The mechanism of tip clearance cavitation causing a further loss of the efficiency had been studied. The influence of rotational speed and tip clearance size on tip clearance cavitation had been investigated.
Numerical simulation of heat transfer in metal foams
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
Numerical simulation support to the ESA/THOR mission
Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.
2016-12-01
THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence
Numerical simulation of the RISOe1-airfoil dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)
Modeling and numerical simulations of the influenced Sznajd model
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Numerical Integration with Graphical Processing Unit for QKD Simulation
2014-03-27
33 NUMERICAL INTEGRATION WITH GRAPHICAL PROCESSING UNIT FOR QKD SIMULATION Virginia R. Garrett, B.S.E.E. Captain, USAF Approved: //signed// Douglas ...17] B. Nelson, R. Kirby , and R. Haimes, “Gpu-based volume visualization from high- order finite element fields,” IEEE Transactions on Visualization and...Intel i7-3610QM CPU. 15. SUBJECT TERMS Software Engineering, GPU Programming, Numerical Methods, Quantum Key Distribution U U U UU 74 Dr. Douglas Hodson, AFIT/ENG (937) 785-3636 x4719
Numerical simulation of water quality in Yangtze Estuary
Directory of Open Access Journals (Sweden)
Xi Li
2009-12-01
Full Text Available In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP. Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD and the initial water quality distribution as manifested by dissolved oxygen (DO, were obtained by application of the Environmental Fluid Dynamics Code (EFDC with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.
Expert System Architecture for Rocket Engine Numerical Simulators: A Vision
Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.
1998-01-01
Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.
GPU based numerical simulation of core shooting process
Directory of Open Access Journals (Sweden)
Yi-zhong Zhang
2017-11-01
Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model (TFM and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit (GPU has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture (CUDA platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.
Numerical simulation of tornado-borne missile impact
International Nuclear Information System (INIS)
Tu, D.K.; Murray, R.C.
1977-01-01
The feasibility of using a finite element procedure to examine the impact phenomenon of a tornado-borne missile impinging on a reinforced concrete barrier was assessed. The major emphasis of this study was to simulate the impact of a nondeformable missile. Several series of simulations were run, using an 8-in.-dia steel slug as the impacting missile. The numerical results were then compared with experimental field tests and empirical formulas. The work is in support of tornado design practices for fuel reprocessing and fuel fabrication plants
Numerical simulation of low Mach number reacting flows
International Nuclear Information System (INIS)
Bell, J B; Aspden, A J; Day, M S; Lijewski, M J
2007-01-01
Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures
Numerical simulation of void growth under dynamic loading
International Nuclear Information System (INIS)
Iqbal, A.
1996-01-01
Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)
Direct numerical simulations of gas-liquid multiphase flows
Tryggvason, Grétar; Zaleski, Stéphane
2011-01-01
Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and
Numerical simulations of viscoelastic flows with free surfaces
DEFF Research Database (Denmark)
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
2013-01-01
We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory......” of their past deformations. This generates some numerical difficulties which are addressed with the log-conformation transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free surfaces of the viscoelastic flows. We present some preliminary results of test case...
Numerical simulation of non-linear phenomena in geotechnical engineering
DEFF Research Database (Denmark)
Sørensen, Emil Smed
-fluid interaction can be treated numerically using a finite element formulation based on the theory of poro-elasto-plasticity. However, due to the complex nature of the governing differential equations, commercial finite element codes often rely on a simplified formulation, which neglects the inertia of the fluid....... In this thesis, a finite element code has been developed, which incorporates the full equation set. The code is used to evaluate the difference between the full and simplified formulations for the simulation of the dynamic tensile resistance of a suction bucket. Further, the thesis deals with the development...... and implementation of constitutive models for use in the finite element method with particular focus on rock materials where the empirical Hoek-Brown material model is commonly used. In particular, the thesis deals with numerical implementations that is capable of simulating crucial aspects of the strength...
Numerical simulation of the accident of Three Mile Island
International Nuclear Information System (INIS)
Perrin, M.H.; Kastelanski, P.
1981-01-01
The chief object of the present study was to assess the ability of our numerical code for the dynamic behavior of power plants, SICLE, to handle the simulation of small accidents in PWRs. In the first part of the paper the authors introduce the main principles, equations and numerical methods of the code. In the second part those of the elements of Three Mile Island Power Plant which were simulated, the different phases of the accident and the results obtained with the code are described. These results are compared to the values recorded in the plant and generally a good agreement is found (for instance the primary pressure). As a conclusion SICLE is the minimum code for representing accidents such as Three Mile Island; its main advantage lies in its ability to take into account all the elements of the plant which are important in the study
Numerical simulation of draft tube flow of a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)
2013-07-01
In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.
Three-dimensional numerical simulation during laser processing of CFRP
Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro
2017-09-01
We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.
Numerical simulation of fluid particle transport through porous media
Najam, S
1999-01-01
The work presented in this report aims at the numerical simulation of fluid particle transport through porous medium. For this purpose various mathematical models and numerical schemes are studied. A mathematical model is derived based on Darcy's Law and continuity equation, it is discretized using finite difference schemes and Guass Seidal iterative procedure is used as a solver. For transient problems Crank Nicolson's method is used. Finally a software in Visual Basic 3.0 is developed that can simulate fluid transport through porous medium by promoting the user to specify the material and geometrical properties of the medium. The unknown pressure heads can be determined at various nodal points and the results are visualized by the colored grid display or by the surface plots.
3D numerical simulation and analysis of railgun gouging mechanism
Directory of Open Access Journals (Sweden)
Jin-guo Wu
2016-04-01
Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.
Numerical Relativity Simulations for Black Hole Merger Astrophysics
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
Numerical simulation of weakly ionized hypersonic flow over reentry capsules
Scalabrin, Leonardo C.
The mathematical and numerical formulation employed in the development of a new multi-dimensional Computational Fluid Dynamics (CFD) code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium over reentry configurations is presented. The flow is modeled using the Navier-Stokes equations modified to include finite-rate chemistry and relaxation rates to compute the energy transfer between different energy modes. The set of equations is solved numerically by discretizing the flowfield using unstructured grids made of any mixture of quadrilaterals and triangles in two-dimensions or hexahedra, tetrahedra, prisms and pyramids in three-dimensions. The partial differential equations are integrated on such grids using the finite volume approach. The fluxes across grid faces are calculated using a modified form of the Steger-Warming Flux Vector Splitting scheme that has low numerical dissipation inside boundary layers. The higher order extension of inviscid fluxes in structured grids is generalized in this work to be used in unstructured grids. Steady state solutions are obtained by integrating the solution over time implicitly. The resulting sparse linear system is solved by using a point implicit or by a line implicit method in which a tridiagonal matrix is assembled by using lines of cells that are formed starting at the wall. An algorithm that assembles these lines using completely general unstructured grids is developed. The code is parallelized to allow simulation of computationally demanding problems. The numerical code is successfully employed in the simulation of several hypersonic entry flows over space capsules as part of its validation process. Important quantities for the aerothermodynamics design of capsules such as aerodynamic coefficients and heat transfer rates are compared to available experimental and flight test data and other numerical results yielding very good agreement. A sensitivity analysis of predicted radiative
Numerical Simulation of Polynomial-Speed Convergence Phenomenon
Li, Yao; Xu, Hui
2017-11-01
We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
Numerical simulation of droplet evaporation between two circular plates
International Nuclear Information System (INIS)
Bam, Hang Jin; Son, Gi Hun
2015-01-01
Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.
Experimentation and numerical simulation of steel fibre reinforced concrete pipes
International Nuclear Information System (INIS)
Fuente, A. de la; Domingues de Figueiredo, A.; Aguado, A.; Molins, C.; Chama Neto, P. J.
2011-01-01
The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m3 were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology. (Author) 27 refs.
Developing a numerical simulation for fading in feldspar
DEFF Research Database (Denmark)
Larsen, A.; Greilich, Steffen; Jain, Mayank
2009-01-01
Most models describing anomalous fading in feldspars are based on analytical solutions. As an alternative approach we present an entirely numerical model based on statistical sampling that simulates stepwise the charge creation/trapping and recombination in a given phosphor. We assume the number...... of nearest-neighbor distances with time. The best agreement with experimental data is achieved if we assume the crystal to consist of small subvolumes (nanocrystals) only within which charge carriers are allowed to recombine....
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
Numerical simulation of underexpanded air jet using OpenFOAM
Talukdar, Mohammad
2015-01-01
Master's thesis in Risk management It is of utmost importance for the awareness of safety issues involved in high pressure gas storage to perceive the adjacent field of high pressure gas jet release for the establishment of the decomposition laws in the far field. The numerical simulations of the first cell of an underexpanded gas jet can be performed executing finite volume solver which can be validated later by means of available literature source. The prominence of OpenFoam is irrefutab...
NUMERICAL SIMULATION OF DIGITAL VLSI TOTAL DOSE FUNCTIONAL FAILURES
Directory of Open Access Journals (Sweden)
O. A. Kalashnikov
2016-10-01
Full Text Available The technique for numerical simulation of digital VLSI total dose failures is presented, based on fuzzy logic sets theory. It assumes transfer from boolean logic model of a VLSI with values {0,1} to fuzzy model with continuous interval [0,1], and from boolean logic functions to continuous minimax functions. The technique is realized as a calculation system and allows effective estimating of digital VLSI radiation behavior without experimental investigation.
Highly parallel methods for numerical simulation in nonlinear structural mechanics
Negrello, Camille
2017-01-01
This thesis is aimed to contribute to the adoption of virtual testing, an industrial practice still embryonic which consists in optimizing and certifying by numerical simulations the dimensioning of critical industrial structures. The virtual testing will allow colossal savings in the design of mechanical parts and a greater respect for the environment, thanks to optimized designs. In order to achieve this goal, new calculation methods must be implemented, satisfying more requirements concern...
Numerical Simulations of Settlement of Jet Grouting Columns
Directory of Open Access Journals (Sweden)
Juzwa Anna
2016-03-01
Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.
Deorbit efficiency assessment through numerical simulation of electromagnetic tether devices
Directory of Open Access Journals (Sweden)
Alexandru IONEL
2016-03-01
Full Text Available This paper examines the deorbit efficiency of an electromagnetic tether deorbit device when used to deorbit an upper stage at end of mission from low Earth orbit. This is done via a numerical simulation in Matlab R2013a, using ode45, taking into account perturbations on the upper stage’s trajectory. The perturbations taken into account are the atmospheric drag, the 3rd body (Sun and Moon, and Earth’s gravitational potential expanded into spherical harmonics.
Remark on numerical simulation of 2D unsteady transonic flows
Foŕt, J.; Hülek, T.; Kozel, K.; Vavrincová, M.
The work deals with three numerical methods solving the system of Euler or Navier-Stokes equations. Mac Cormack cell centered and Ni cell vertex finite volume schemes were used for simulation of inviscid unsteady solution of transonic flows through a 2D cascade. Unsteady motion is caused by a periodic change of downstream pressure. The Runge-Kutta multistage cell centered finite volume scheme has been used for viscous laminar steady and unsteady transonic flows over NACA 0012.
Use of Numerical Simulations During Continuous Steel Casting
Directory of Open Access Journals (Sweden)
David DITTEL
2010-12-01
Full Text Available This paper describes numerical modeling of round billets solidification process during continuous steel casting. Emphasis is placed not only on the mathematical nature of transmission events that affect the casting billet (heat conduction, convection and radiation, but also the methods of solving thermal problems (analytical, numerical. The numerical methods are discussed in detail the finite element method and the method of networks that form the core of the most common commercially used simulation software for modeling the temperature fields at various technological processes. In the research was compiled its own sophisticated software - Tefis - solving the problems of temperature fields by using of an explicit (numerical method of networks. The actual solution is implemented using Fourier-Kirchhoff equation in differential form of enthalpy, which includes the velocity of solidified billet. By software Tefis are carried out a series of computer simulations and sensitivity analysis method to examine the effects of different levels of steel in a mould, different casting velocities, different temperatures above the liquidus temperature of steel and different intensity in the secondary cooling zone on the overall temperature field of continuously casted billets. Thus the calculated temperature fields, of declared steel marks, are subsequently confronted with the results of experimental measurements on real operating casting machine.
Numerical simulation methods of fires in nuclear power plants
International Nuclear Information System (INIS)
Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.
1992-01-01
Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)
Issues in direct numerical simulation of plasma turbulence and transport
Thyagaraja, A.; Arter, W.; Haas, F. A.
1991-04-01
The problem of direct numerical simulation of plasma turbulence in magnetic confinement systems such as a tokamak is important in gaining a theoretical understanding of anomalous transport of particles, energy, momentum and impurities in such systems. Two approaches to this question are being developed. The design philosophy and the basic numerical problems encountered and solved in the construction of a two-fluid, 3-D, electro-magnetic, finite difference, time evolution code, CUTIE, are outlined. The importance of qualitative consistency, time-reversal, conservation properties, phase mixing, and boundary conditions are illustrated in the context of both passive and active electrostatic turbulence. A separate study was undertaken to aid in the understanding of drift wave turbulence in tokamak plasmas. In this connection a 3-D, time-dependant, electrostatic drift wave code called DRIFT was written. This has features which take account of toroidicity, non-adiabaticity and magnetic shear. The resulting code is very flexible, and was used to solve the Hasegawa-Mima equation efficiently in 2-D. Results from time-dependant, 3-D calculation run on a Cray-2 are presented. The aim is to obtain a proper physical understanding of plasma turbulence in typical tokamak conditions by calculating the power spectra of the turbulent fluctuations and their transport consequences. It is believed that this can only be achieved by a step-by-step approach to the numerics, making sure that the calculated effects represent genuine physics and are not mere artifacts of the numerical simulation.
Numerical Simulation of Microbiological Growth in the Capillary Fringe
Hron, P.; Jost, D.; Engwer, C.; Ippisch, O.; Bastian, P.
2012-04-01
The capillary fringe (CF) is a highly dynamic zone in a porous media at the interface between water-saturated aquifer and vadose zone, where steep biogeochemical gradients and thus high bioactivities are expected. In recent years, considerable effort has been undertaken to deepen the understanding of the physical (flow, diffusion, dispersion), geochemical (dissolution, precipitation) and biological (metabolism, excretion, biofilm formation) processes in the CF. We developed a numerical simulator for multiphase multicomponent flow in porous media which is able to consider simultaneously multiphase flow, component transport, phase exchange, geochemical reactions and microbiological processes. A splitting approach for phase transport, component transport and reaction/phase exchanges allows the usage of higher-order discretizations for the component transport. This reduces numerical dispersion significantly, which is especially important in the simulation of reactive flow. In a flow-through laboratory experiment performed at the Karlsruhe Institute of Technology, Germany, within the project "Dynamic Capillary Fringes - A Multidisciplinary Approach", the oxygen phase transfer, the growth and the transport of a bacteria (green fluorescent Escherichia coli) were investigated. The results of numerical simulations of the E. coli growth in the CF with a high nutrient supply under steady-state and transient flow conditions are compared to the experimental data.
Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation
Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla
2014-07-01
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.
Transient productivity index for numerical well test simulations
Energy Technology Data Exchange (ETDEWEB)
Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others
1997-08-01
The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.
Numerical simulation of flow-induced vibrations in tube bundles
International Nuclear Information System (INIS)
Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli
2005-01-01
Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific
3D Numerical Simulations of Hypervapotron Cooling Concept
International Nuclear Information System (INIS)
Pascal-Ribot, S.; Grandotto, M.; Saroli, A.; Escourbiac, F.; Spitz, P.
2006-01-01
The expected heat flux for specific plasma facing components in ITER is in the same range (10-20 MW/m 2 ) as those observed in electron tubes. Historically, the concepts with enhanced cooling capabilities implying boiling/condensation effects based on a fin/slot design named hypervapotron were developed by Thomson CSF tube. This cooling concept adapted to a CuCrZr heat sink armoured with CFC or W was envisaged for the vertical targets of the ITER divertor [F. Escourbiac and A. Durocher and A. Grosman and X. Courtois and J.L. Farjon and J. Schlosser and M. Merola and R. Tivey, Actively cooled plasma facing components qualification, commissioning and health monitoring, SOFT 2006 - Topic F, Warsaw, Poland, 11-15 Sept., 2006]. Although this hypervapotron cooling concept is very efficient, the different thermalhydraulic phenomena coupled with turbulence are not well mastered. Consequently, both the geometric and thermalhydraulic optimization of this concept are difficult without the help of numerous experiments or detailed numerical simulations. In order to help optimize the hypervapotron concept, 3D numerical simulations have been performed with the Neptune CFD and Syrthes computer codes for two slots. The Neptune CFD code is dedicated to local two-phase thermalhydraulic studies while the Syrthes code calculates the heat conduction in solid parts. A finite volume method with collocated unknowns is used for all variables. A derived model based on the Podowski's approach has been implemented for the heat transfer between the heated wall and the subcooled fluid. The whole boiling curve (forced convection, nucleate, transition and film boiling), the process of vapour generation in the slots between two adjacent fins, the subsequent vapour transport, and condensation outside the fins into the subcooled liquid bulk can thus be simulated. Numerical results are analysed and discussed. Comparisons of wall temperatures with both experimental measurements and former 2D numerical
Direct Numerical Simulations of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Livescu, D; Wei, T; Petersen, M R
2011-01-01
The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.
Numerical simulations of rubber bearing tests and shaking table tests
International Nuclear Information System (INIS)
Hirata, K.; Matsuda, A.; Yabana, S.
2002-01-01
Test data concerning rubber bearing tests and shaking table tests of base-isolated model conducted by CRIEPI are provided to the participants of Coordinated Research Program (CRP) on 'Intercomparison of Analysis Methods for predicting the behaviour of Seismically Isolated Nuclear Structure', which is organized by International Atomic Energy Agency (IAEA), for the comparison study of numerical simulation of base-isolated structure. In this paper outlines of the test data provided and the numerical simulations of bearing tests and shaking table tests are described. Using computer code ABAQUS, numerical simulations of rubber bearing tests are conducted for NRBs, LRBs (data provided by CRIEPI) and for HDRs (data provided by ENEA/ENEL and KAERI). Several strain energy functions are specified according to the rubber material test corresponding to each rubber bearing. As for lead plug material in LRB, mechanical characteristics are reevaluated and are made use of. Simulation results for these rubber bearings show satisfactory agreement with the test results. Shaking table test conducted by CRIEPI is of a base isolated rigid mass supported by LRB. Acceleration time histories, displacement time histories of the isolators as well as cyclic loading test data of the LRB used for the shaking table test are provided to the participants of the CRP. Simulations of shaking table tests are conducted for this rigid mass, and also for the steel frame model which is conducted by ENEL/ENEA. In the simulation of the rigid mass model test, where LRBs are used, isolators are modeled either by bilinear model or polylinear model. In both cases of modeling of isolators, simulation results show good agreement with the test results. In the case of the steel frame model, where HDRs are used as isolators, bilinear model and polylinear model are also used for modeling isolators. The response of the model is simulated comparatively well in the low frequency range of the floor response, however, in
3d Numerical Simulation of Flow Structure in Confluence River
Qing-yuan, Yang; Yi, Sun; Xian-ye, Wang; Wei-zhen, Lu; Xie-kang, Wang
2010-05-01
Confluence zones in rivers are common occurrence in natural rivers, and its flow structure, especially secondary flow, has much impact on sediment transport and pollutant dispersion in confluence region. Flume experiment studies have proved the variation of separation zone from the water surface to the bottom, but there are little numerical simulation studies on the scale of separation zone. As the developing of computational fluid dynamics, there are several models to simulate the turbulence properties in the river. This paper uses the standard k-e, RNG k-e and RSM turbulence model to simulate the secondary flow and separation zone in the confluence river, and compared the results with the experiment data quantification ally.
Hygrothermal Numerical Simulation Tools Applied to Building Physics
Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto
2013-01-01
This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...
Numerical simulation and experimental study of explosive projectile devices
Selivanov, V. V.; Gryaznov, E. F.; Goldenko, N. A.; Sudomoev, A. D.; Feldstein, V. A.
2017-06-01
A study of explosive-throwing device (ETD) was undertaken to simulate the hypervelocity impact of space debris fragments (SDF) and meteoroids with spacecrafts. The principle of operation of an ETD is based on the cumulative effect in combination with the cut-off head of the cumulative jet, which enables one to simulate a compact particle, such as a meteoroid or a fragment of space debris. Different design schemes of ETD with different composition explosive charge initiation schemes with notably low speeds of the jet cut-off are explored, and a method to control the particle velocity is proposed. Numerical simulation of device modes and basic technical characteristics of experimental testing are investigated.
Numerical simulation of explosive welding using Smoothed Particle Hydrodynamics method
Directory of Open Access Journals (Sweden)
J Feng
2017-09-01
Full Text Available In order to investigate the mechanism of explosive welding and the influences of explosive welding parameters on the welding quality, this paper presents numerical simulation of the explosive welding of Al-Mg plates using Smoothed Particle Hydrodynamics method. The multi-physical phenomena of explosive welding, including acceleration of the flyer plate driven by explosive detonation, oblique collision of the flyer and base plates, jetting phenomenon and the formation of wavy interface can be reproduced in the simulation. The characteristics of explosive welding are analyzed based on the simulation results. The mechanism of wavy interface formation is mainly due to oscillation of the collision point on the bonding surfaces. In addition, the impact velocity and collision angle increase with the increase of the welding parameters, such as explosive thickness and standoff distance, resulting in enlargement of the interfacial waves.
Direct numerical simulation of bubbles with parallelized adaptive mesh refinement
International Nuclear Information System (INIS)
Talpaert, A.
2015-01-01
The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation
Doru, Zdrenghea
2017-10-01
The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater
Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
High accuracy mantle convection simulation through modern numerical methods
Kronbichler, Martin
2012-08-21
Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.
NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST
Directory of Open Access Journals (Sweden)
Andrea Formato
2007-03-01
Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.
Numerical simulation on coolant flow and heat transfer in core
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis
Direct numerical simulation of bluff-body-stabilized premixed flames
Arias, Paul G.
2014-01-10
To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.
Assessing numerical methods for molecular and particle simulation.
Shang, Xiaocheng; Kröger, Martin; Leimkuhler, Benedict
2017-11-22
We discuss the design of state-of-the-art numerical methods for molecular dynamics, focusing on the demands of soft matter simulation, where the purposes include sampling and dynamics calculations both in and out of equilibrium. We discuss the characteristics of different algorithms, including their essential conservation properties, the convergence of averages, and the accuracy of numerical discretizations. Formulations of the equations of motion which are suited to both equilibrium and nonequilibrium simulation include Langevin dynamics, dissipative particle dynamics (DPD), and the more recently proposed "pairwise adaptive Langevin" (PAdL) method, which, like DPD but unlike Langevin dynamics, conserves momentum and better matches the relaxation rate of orientational degrees of freedom. PAdL is easy to code and suitable for a variety of problems in nonequilibrium soft matter modeling; our simulations of polymer melts indicate that this method can also provide dramatic improvements in computational efficiency. Moreover we show that PAdL gives excellent control of the relaxation rate to equilibrium. In the nonequilibrium setting, we further demonstrate that while PAdL allows the recovery of accurate shear viscosities at higher shear rates than are possible using the DPD method at identical timestep, it also outperforms Langevin dynamics in terms of stability and accuracy at higher shear rates.
Numerical Simulation of Flood Levels for Tropical Rivers
Energy Technology Data Exchange (ETDEWEB)
Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor, E-mail: thamer@enf.upm.edu.my [University Putra Malaysia, Faculty of Engineering (Malaysia)
2011-02-15
Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.
Numerical Simulation of Flood Levels for Tropical Rivers
International Nuclear Information System (INIS)
Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor
2011-01-01
Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.
Study and simulation of a parallel numerical processing machine
International Nuclear Information System (INIS)
Bel Hadj, Slaheddine
1981-12-01
This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr
Numerical simulation of superheated vapor bubble rising in stagnant liquid
Samkhaniani, N.; Ansari, M. R.
2017-09-01
In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.
Numerical simulations of seepage flow in rough single rock fractures
Directory of Open Access Journals (Sweden)
Qingang Zhang
2015-09-01
Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.
Martin-Short, R.; Edmiston, J. K.
2015-12-01
Typical hydraulic fracturing operations involve the use of a large quantity of water, which can be problematic for several reasons including possible formation (permeability) damage, disposal of waste water, and the use of precious local water resource. An alternate reservoir permeability enhancing technology not requiring water is cryogenic fracturing. This method induces controlled fracturing of rock formations by thermal shock and has potentially important applications in the geothermal and hydrocarbon industries. In this process, cryogenic fluid—such as liquid nitrogen—is injected into the subsurface, causing fracturing due to thermal gradients. These fractures may improve the formation permeability relative to that achievable by hydraulic fracturing alone. We conducted combined laboratory visualization and numerical simulations studies of thermal-shock-induced fracture initiation and propagation resulting from liquid nitrogen injection in rock and analog materials. The experiment used transparent soda-lime glass cubes to facilitate real-time visualization of fracture growth and the fracture network geometry. In this contribution, we report the effect of overall temperature difference between cryogenic fluid and solid material on the produced fracture network, by pre-heating the glass cubes to several temperatures and injecting liquid nitrogen. Temperatures are monitored at several points by thermocouple and the fracture evolution is captured visually by camera. The experiment was modeled using a customized, thermoelastic, fracture-capable numerical simulation code based on peridynamics. The performance of the numerical code was validated by the results of the laboratory experiments, and then the code was used to study the different factors affecting a cryogenic fracturing operation, including the evolution of residual stresses and constitutive relationships for material failure. In complex rock such as shale, understanding the process of cryogenic
Energy Technology Data Exchange (ETDEWEB)
Reckinger, Scott James [Montana State Univ., Bozeman, MT (United States); Livescu, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vasilyev, Oleg V. [Univ. of Colorado, Boulder, CO (United States)
2016-09-02
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Numerical simulation of Rayleigh-Taylor turbulent mixing layers
International Nuclear Information System (INIS)
Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.
2009-01-01
Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)
2D numerical simulation of the resistive reconnection layer
International Nuclear Information System (INIS)
Uzdensky, D. A.; Kulsrud, R. M.
2000-01-01
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like
Multi-physics Simulation of Thermoelectric Generators through Numerically Modeling
DEFF Research Database (Denmark)
Chen, Min; Rosendahl, Lasse; Bach, Inger Palsgaard
2007-01-01
The governing equations taken from the assumption of local equilibrium and the heat transfer rate form of Onsager flux have been compared with those based on classical heat transfer formulation by a simplified one dimensional (1-D) thermoelectric generator (TEG) model. In this paper, the simulation...... of coupled multi-physics effects in a TEG is realized in a three dimensional (3-D) way, based on the heat transfer formulation, through finite-difference numerical method and PSPICE computational tool. The feature to take the real temperature dependence of the materials properties into account is included...
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Direct Numerical Simulation of a Plane Transitional Wall Jet
Ramesh, O.; Varghese, Joel
2017-11-01
A transitional plane wall jet is studied using direct numerical simulation. The presence of an inflectional point leads to the outer layer rolling up into vortices that interacts with the inner region resulting in a double array of counter rotating vortices before breakdown into turbulence. Past studies have focused on forced wall jet which results in shorter transition region and prominent vortical structures. In the present work, natural transition will be discussed by analysing the coherent structures and scaled frequency spectra. Clear hairpin like structures leaning downstream in the inner region(as in a boundary layer) and leaning upstream in the outerstream (as in a jet) are evident.
Numerical simulation of tensile behaviour of nuclear fuel cladding materials
International Nuclear Information System (INIS)
Hosbons, R.R.; Coleman, C.E.; Holt, R.A.
1975-10-01
We have developed an expression to describe the true-stress true-strain behaviour of irradiated Zircaloy, the usual fuel sheathing material. The expression includes strain rate sensitivity, work hardening, irradiation hardening and strain softening due to the annihilation of irradiation damage. A cylindrical specimen, containing a slight taper, was used to simulate the development of plastic instability. By combining the phenomenological expression with the model specimen, numerical calculation of tensile tests on irradiated Zircaloy accurately described load-elongation curves, true-stress true-strain behaviour during necking, the effect of irradiation on ductility, and stress relaxation. (author)
Numerical simulation of laser filamentation in underdense plasma
International Nuclear Information System (INIS)
Yu Lichun; Chen Zhihua; Tu Qinfen
2000-01-01
Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation
Numerical simulation of convective boundary layer above polynyas and leads.
Debolskiy, Andrey; Stepanenko, Victor
2013-04-01
Arctic region is very important as one of drivers for global atmosphere circulation. Meanwhile, results of modern global atmospheric models, both climatic and weather forecasting differs significantly from each other and observations in this region. One of the reasons for these uncertainties can be inaccurate simulation of ice and snow cover distribution, which accuracy depends in turn on variety of factors. Among others, appropriate parameterizations of atmospheric boundary layer over inhomogeneous surface, not explicitly resolved at the atmospheric model grid, can decrease these inaccuracies. The main objective of these parameterizations is to calculate surface heat and water vapor fluxes, averaged over the whole model cell. However, due to great differences in structure of boundary layers formed over cold ice and relatively warm open water, which cause nonlinear dependencies,the parameterizations suggested to the moment can hardly be regarded as applicable for "complete" set of synoptic scenarios . The present paper attempts to improve standard mosaic method of flux aggregation, which is still common in climate models [1]. The main idea is to derive heat fluxes using data from numerical experiments, explicitly reproducing most of sub grid (for global models) turbulence motions spectra, and compare with fluxes calculated using mosaic method implying the part of model domain to be a global model cell. The study is based on idealized high resolution (~10 m) experiments with typically observed surface parameters (temperature and roughness), ice-open water distribution, initial temperature and wind profiles distribution included in Large Eddy Simulation model of Insitute of Numerical Mathematics RAS [2],[3]. Analysis of other boundary layer characteristics such as its height, eddy diffusivity profiles, kinetic energy is presented. The modeling results are compared with field experiments' data gathered at White Sea. References: 1. V.M. Stepanenko, P.M. Miranda, V
Numerical simulation of the drop spreading on a horizontal plane
Zyuzina, N. A.; Ostapenko, V. V.
2017-10-01
A shallow water model of film flow is used to describe the process of a drop spreading on a horizontal plane, taking into account the liquid viscosity, heat-mass transfer and surface tension forces. To simulate this flow numerically in polar coordinates an unconditionally stable implicit difference scheme has been developed, which (in the case of evaporation) can calculate the drop spreading over a dry surface without special allocation of the drop boundary. A region of dimensionless parameters is singled out under which the evaporating droplet, as a result of surface tension forces, transforms into a circular ring before complete evaporation.
Numerical Simulation of Transition in Hypersonic Boundary Layers
2011-02-01
208 29 List of Symbols Abbrevations 2D, 3D Two-/three-dimensional DNS Direct Numerical Simulation EXP Experiments FFT Fast Fourier...ω = 0.4176), 2D (β ∼ 10−8), (c) f ∗ = 6.36kHz (F = 3.0 × 10−5, ω = 0.03132), 3D (β = 0.102); M=3.0, T∗∞=103.6K, flat plate. 100 spectra (cph,x = 1...only a spanwise average is used. In figure 5.27, all velocity components experience an energy decline as predicted by theory ( Heisenberg , 1948
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Continuum modeling and numerical simulation of cell motility.
Hodge, Neil; Papadopoulos, Panayiotis
2012-06-01
This work proposes a continuum-mechanical model of cell motility which accounts for the dynamics of motility-relevant protein species. For the special case of fish epidermal keratocytes, the stress and cell-substrate traction responses are postulated to depend on selected protein densities in accordance with the structural features of the cells. A one-dimensional version of the model is implemented using Arbitrary Lagrangian-Eulerian finite elements in conjunction with Lagrange multipliers for the treatment of kinematic constraints related to surface growth. Representative numerical tests demonstrate the capacity of the proposed model to simulate stationary and steady crawling states.
Numerical simulation of bosonic-superconducting-string interactions
International Nuclear Information System (INIS)
Laguna, P.; Matzner, R.A.
1990-01-01
Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies
Diffusive mesh relaxation in ALE finite element numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Numerical simulation of realistic high-temperature superconductors
International Nuclear Information System (INIS)
1997-01-01
One of the main obstacles in the development of practical high-temperature superconducting (HTS) materials is dissipation, caused by the motion of magnetic flux quanta called vortices. Numerical simulations provide a promising new approach for studying these vortices. By exploiting the extraordinary memory and speed of massively parallel computers, researchers can obtain the extremely fine temporal and spatial resolution needed to model complex vortex behavior. The results may help identify new mechanisms to increase the current-capability capabilities and to predict the performance characteristics of HTS materials intended for industrial applications
Numerical simulation of the kinetic effects in the solar wind
Sokolov, I.; Toth, G.; Gombosi, T. I.
2017-12-01
Global numerical simulations of the solar wind are usually based on the ideal or resistive MagnetoHydroDynamics (MHD) equations. Within a framework of MHD the electric field is assumed to vanish in the co-moving frame of reference (ideal MHD) or to obey a simple and non-physical scalar Ohm's law (resistive MHD). The Maxwellian distribution functions are assumed, the electron and ion temperatures may be different. Non-disversive MHD waves can be present in this numerical model. The averaged equations for MHD turbulence may be included as well as the energy and momentum exchange between the turbulent and regular motion. With the use of explicit numerical scheme, the time step is controlled by the MHD wave propagtion time across the numerical cell (the CFL condition) More refined approach includes the Hall effect vie the generalized Ohm's law. The Lorentz force acting on light electrons is assumed to vanish, which gives the expression for local electric field in terms of the total electric current, the ion current as well as the electron pressure gradient and magnetic field. The waves (whistlers, ion-cyclotron waves etc) aquire dispersion and the short-wavelength perturbations propagate with elevated speed thus strengthening the CFL condition. If the grid size is sufficiently small to resolve ion skindepth scale, then the timestep is much shorter than the ion gyration period. The next natural step is to use hybrid code to resolve the ion kinetic effects. The hybrid numerical scheme employs the same generalized Ohm's law as Hall MHD and suffers from the same constraint on the time step while solving evolution of the electromagnetic field. The important distiction, however, is that by sloving particle motion for ions we can achieve more detailed description of the kinetic effect without significant degrade in the computational efficiency, because the time-step is sufficient to resolve the particle gyration. We present the fisrt numerical results from coupled BATS
Numerical simulation of low pressure die-casting aluminum wheel
Directory of Open Access Journals (Sweden)
Mi Guofa
2009-02-01
Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
Numerical Simulations of Plasma Based Flow Control Applications
Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.
2005-01-01
A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.
Transport phenomena in RTP: experiment and numerical simulations
Thyagaraja, A.; de Baar, M. R.; Knight, P.; Hogeweij, G. M. D.; Min, E.
2002-11-01
CUTIE (a computer model to simulate saturated 2 fluid electromagnetic global turbulence) is used to simulate the transition from an Ohmic to an RTP (circular cross-section, R=0.72m, a=0.16 m) type-D discharge. This is a discharge with dominant, off-axis ECH in which steady state hollow temperature profiles are observed. The dynamics of the q-profile, the bootstrap current, the turbulence drive terms, the E × B flow and the dynamo terms will be followed. The numerical results will be compared with the experimental observations. In particular, we will show that CUTIE positions the barriers near simple rational q values, naturally generates advective transport to support off-axis maxima in Te and produces off-axis MHD events similar to what has been observed in RTP.
Material flow data for numerical simulation of powder injection molding
Duretek, I.; Holzer, C.
2017-01-01
The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.
Numerical Simulation Modelling for Velocity Measurement of Electromagnetic Flow Meter
International Nuclear Information System (INIS)
Wang, J Z; Gong, C L; Tian, G Y; Lucas, G P
2006-01-01
An induced voltage EMF in the area of measuring single-phase flow rate in pipes has been used in many industrial areas. To measure the continuous phase velocity profile in multiphase flows where the continuous phase is an electrical conductor, Electrical capacitance and resistance tomography has been comprehensively investigated, except for continuous phase velocity profile measurement. This paper tries to design the numerical simulation model according to the basic electromagnetic induction law and to investigate the relationship between induced electric potential or potential drop and the velocity distribution of the conductive continuous phase in the flow. First, the 3-Dimenssion simulating module for EMF is built. Given the most simple velocity profile of the fluid in the pipe, the value of the induced potential difference between electrodes is obtained by simulation and theoretical computation according to J A Shercliff's weight function. The relative error is 6.066 . This proves that the simulation model is accurate enough to investigate the characteristic of the induced potential difference of EMF. Finally, the relationship between induced potential difference and the velocity profile is analysed in detail where the complicated velocity profile is expressed as vz = 1m/s when 0.022< x2+y2< = 0.02652 and vz = 5m/s when x2+y2< = 0.022
Numerical simulation of pollutant transport in soils surrounding subway infrastructure.
Zhou, Cuihong; Liu, Chengqing; Liang, Jiahao; Wang, Shihan
2018-03-01
With continued urbanization, public transport infrastructure, e.g., subways, is expected to be built in historically industrial areas. To minimize the transfer of volatile organic compounds and metalloids like arsenic from industrial areas into subway environments and reduce their impact on public health, the transport of pollutants in soil was simulated in this study. During numerical simulations of a contaminated site, the pollutant (arsenic) was transported from layers of higher to lower concentration, and concentration changes were particularly evident in the early simulation stages. The pollutant was transported in soil along the direction of groundwater flow and spread from the center to the periphery of the contaminated zone without inputs from pollution sources. After approximately 400 days, the concentration of all layers became uniform, with slow decreases occurring over time. The pollutant supply rate had a major influence on the pollutant diffusion distance. When other conditions were kept constant, higher supply rates resulted in longer diffusion distances. The simulation results show that a diaphragm wall of a certain depth can effectively control the diffusion of pollutants in soil. These results can be used to improve environmental assessments and remediation efforts and inform engineering decisions during the construction of urban infrastructure at sites affected by historical pollution.
Real-time numerical simulation of the Carnot cycle
International Nuclear Information System (INIS)
Hurkala, J; Gall, M; Kutner, R; Maciejczyk, M
2005-01-01
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view
Magnetic reconnection in numerical simulations of the Bastille day flare
Vincent, A. P.; Charbonneau, P.
2011-12-01
If neither waves nor adiabatic heating due to compression are taken into account, coronal heating may be obtained in numerical simulations from current dissipation inside solar flares. To increase Joule heating locally we used a model for hyper resistivity (Klimas et al., 2004: Journal of Geophysical Research, 109, 2218-2231). Here the change in resistivity is due to small scale (less than 1Mm in our simulations) current density fluctuations. Whenever the current exceeds a cut-off value, magnetic resistivity jumps sharply to reach a maximum locally thus increasing magnetic gradients at the border of the flare. In this way, not only the current increases but also the maximum is slowly displaced and simulations of the full set of 3-D MHD equations show a progression westward as can be seen in SOHO-EIT images of the ''slinky''. In our simulations of the Bastille day flare, most of the reconnection events take place just above the transition and mostly follow the neutral line but it is Spitzer thermal diffusivity together with radiative cooling that illuminates magnetic arcades in a way similar to what can be seen in extreme ultra-violet animations of the slinky.
Numerical Simulations of the Flame of a Single Coaxial Injector
Directory of Open Access Journals (Sweden)
Victor P. Zhukov
2017-01-01
Full Text Available The processes of mixing and combustion in the jet of a shear-coaxial injector are investigated. Two test cases (nonreacting and reacting are simulated using the commercial computational fluid dynamics code ANSYS CFX. The first test case is an experiment on the mixing in a nonreacting coaxial jet carried out with the use of planar laser induced fluorescence (PLIF. The second test case is an experiment on the visualization of hydrogen-oxygen flame using PLIF of OH in a single injector combustion chamber at pressure of 53 bar. In the first test case, the two-dimensional axisymmetric simulations are performed using the shear-stress turbulence (SST model. Due to the dominant flow unsteadiness in the second test case, the turbulence is modeled using transient SAS (Scale-Adaptive Simulation model. The combustion is modeled using the burning velocity model (BVM while both two- and three-dimensional simulations are carried out. The numerical model agrees with the experimental data very well in the first test case and adequately in the second test case.
Direct numerical simulation of water droplet coalescence in the oil
International Nuclear Information System (INIS)
Mohammadi, Mehdi; Shahhosseini, Shahrokh; Bayat, Mahmoud
2012-01-01
Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.
Numerical simulation system for environmental studies: SPEEDI-MP
International Nuclear Information System (INIS)
Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko
2006-09-01
A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)
Numerical Simulation of Oil Jet Lubrication for High Speed Gears
Directory of Open Access Journals (Sweden)
Tommaso Fondelli
2015-01-01
Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.
Numerical Simulation for Mechanism of Airway Narrowing in Asthma
Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi
A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.
Numerical simulation of a DFB - fiber laser sensor (part 1
Directory of Open Access Journals (Sweden)
Dan SAVASTRU
2010-06-01
Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.
Influence of clearance model on numerical simulation of centrifugal pump
Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.
2016-05-01
Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen
2014-09-01
Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
Directory of Open Access Journals (Sweden)
Smitha Gopinath
2014-09-01
Full Text Available Fiber-reinforced polymer (FRP composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
Possible tsunami transmission across the Strait of Gibraltar: numerical simulations
Carbone, V.; Servidio, S.; Vecchio, A.; Anzidei, M.; Guerra, I.
2012-12-01
The possibility that a tsunami, generated as a consequence of the large earthquake in the Atlantic or Pacific ocean, could be recorded by the tide gauge stations located in the Mediterranean has been numerically investigated. In particular, direct numerical simulations of the nonlinear Shallow Water Equations (SWE) have been performed in order to simulate the transmission of large scale waves trough the Strait of Gibraltar. The SWE have wide applications in ocean and hydraulic engineering: tidal flows in estuary and coastal water regions, bore wave propagation, hydraulic jump, open channel flows, and so on. Among all these examples, the application of SWE to tsunamies is indeed one of the most successful. A numerical scheme, based on a Godunov-type method for solving the SWE with source term, has been proposed in Ref. [1]. In contrast to conventional data reconstruction methods based on conservative variables, the water surface level is chosen as the basis for data reconstruction. This provides accurate values of the conservative variables at cell interfaces so that the fluxes can be accurately calculated with a Riemann solver. The surface gradient method can be incorporated into any Godunov-type method which requires data reconstruction. Here, the MUSCL-Hancock finite-volume method has been combined with a body-fitted cut cell mesh [2], which can efficiently treat irregular boundaries while retaining the simplicity of a Cartesian grid implementation. Preliminary results show that incident waves, coming from the free ocean, can enter the Mediterraneum sea, passing trough the Strait. The incoming wave, altough is strongly reduced in intensity, fragmentate because of the bed profile and the interaction with the coasts, producing low ang high frequency disturbances. In agreement with observations (See Ref. [3]), these numerical simulations suggest that large tsunamis can pass through Gibraltar, initiating anomalous fluctuations in the Mediterraneum. [1] J. G. Zhou, D
Numerical simulation of impact tests on reinforced concrete beams
International Nuclear Information System (INIS)
Jiang, Hua; Wang, Xiaowo; He, Shuanhai
2012-01-01
Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.
Taylor bubbles at high viscosity ratios: experiments and numerical simulations
Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar
2015-11-01
The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Direct numerical simulation of free falling sphere in creeping flow
Reddy, Rupesh K.; Jin, Shi; Nandakumar, K.; Minev, Peter D.; Joshi, Jyeshtharaj B.
2010-03-01
In the present study, direct numerical simulations (DNS) are performed on single and a swarm of particles settling under the action of gravity. The simulations have been carried out in the creeping flow range of Reynolds number from 0.01 to 1 for understanding the hindrance effect, of the other particles, on the settling velocity and drag coefficient. The DNS code is a non-Lagrange multiplier-based fictitious-domain method, which has been developed and validated by Jin et al. (2008; A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. In: Conference proceedings of the 16th annual conference of the CFD Society of Canada). It has been observed that the time averaged settling velocity of the particle in the presence of other particles, decreases with an increase in the number of particles surrounding it (from 9 particles to 245 particles). The effect of the particle volume fraction on the drag coefficient has also been studied and it has been observed that the computed values of drag coefficients are in good agreement with the correlations proposed by Richardson and Zaki (1954; Sedimentation and fluidization: part I. Transactions of the Institution of Chemical Engineers, 32, 35-53) and Pandit and Joshi (1998; Pressure drop in packed, expanded and fluidised beds, packed columns and static mixers - a unified approach. Reviews in Chemical Engineering, 14, 321-371). The suspension viscosity-based model of Frankel and Acrivos (1967; On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847-853) shows good agreement with the DNS results.
Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes
International Nuclear Information System (INIS)
Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P
2007-01-01
Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each
A simplified DEM numerical simulation of vibroflotation without backfill
Jiang, M. J.; Liu, W. W.; He, J.; Sun, Y.
2015-09-01
Vibroflotation is one of the deep vibratory compaction techniques for ground reinforcement. This method densities the soil and improves its mechanical properties, thus helps to protect people's lives and property from geological disasters. The macro reinforcement mechanisms of vibroflotation method have been investigated by numerical simulations, laboratory and in-situ experiments. However, little attention has been paid on its micro - mechanism, which is essential to fully understand the principle of the ground reinforcement. Discrete element method (DEM), based on discrete mechanics, is more powerful to solve large deformation and failure problems. This paper investigated the macro-micro mechanism of vibroflotation without backfill under two conditions, i.e., whether or not the ground water was considered, by incorporating inter-particle rolling resistance model in the DEM simulations. Conclusions obtained are as follows: The DEM simulations incorporating rolling resistance well replicate the mechanical response of the soil assemblages and are in line with practical observations. The void ratio of the granular soil fluctuates up and down in the process of vibroflotation, and finally reduces to a lower value. It is more efficient to densify the ground without water compared to the ground with water.
Numerical simulations of the IPPE target geometry flows
International Nuclear Information System (INIS)
Prakash, Akshay; Kakarantzas, Sotiris; Bernardi, Davide; Micciche, Gioacchino; Massaut, Vincent; Knaepen, Bernard
2013-01-01
Highlights: ► We performed numerical simulation of flow over IPPE geometry using turbulence models in FLUENT. ► Stable free surface profile well within the required design limits was predicted by the models. ► Velocity profiles across the liquid jet and jet thickness different for different models. ► There were some 3D effects noticeable for the velocity profiles but the predicted jet thickness similar to 2D models. ► TKE predicted by different models close to each other and compare will with published data. -- Abstract: A high speed water and liquid lithium (Li) flow is computed over the IPPE geometry to evaluate the performance of different turbulence models in 2D and 3D simulations. Results reported are the thickness of the liquid jet, irregularities in the surface, transient phenomena at the wall which can affect fluid surface and effect of the variation in bulk velocity on these quantities. All models show good near wall resolution of the boundary layer and expected profiles for the free surface flow. Predicted turbulent kinetic energy compare well with published data. Fluctuations of the flow surface at the control location (center of the curved section) and elsewhere are well within 1 mm for all models. However it was observed that the predictions are strongly dependent on the model used. Overall, the predictions of RANS models are close to each other whereas predictions of laminar simulations are close to those obtained with LES models
Numerical simulation of backward erosion piping in heterogeneous fields
Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong
2017-04-01
Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.
Color Gradients Within Globular Clusters: Restricted Numerical Simulation
Directory of Open Access Journals (Sweden)
Young-Jong Sohn
1997-06-01
Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.
Numerical Simulation of Density Current Evolution in a Diverging Channel
Directory of Open Access Journals (Sweden)
Mitra Javan
2012-01-01
Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.
Numerical simulations of the IPPE target geometry flows
Energy Technology Data Exchange (ETDEWEB)
Prakash, Akshay, E-mail: akshayprakash@gmail.com [University Libre de Bruxelles (Belgium); Kakarantzas, Sotiris [University of Thessaly, Volos (Greece); Bernardi, Davide; Micciche, Gioacchino [EURATOM-ENEA, Brasimore (Italy); Massaut, Vincent [SCK-CEN, Mol (Belgium); Knaepen, Bernard [University Libre de Bruxelles (Belgium)
2013-10-15
Highlights: ► We performed numerical simulation of flow over IPPE geometry using turbulence models in FLUENT. ► Stable free surface profile well within the required design limits was predicted by the models. ► Velocity profiles across the liquid jet and jet thickness different for different models. ► There were some 3D effects noticeable for the velocity profiles but the predicted jet thickness similar to 2D models. ► TKE predicted by different models close to each other and compare will with published data. -- Abstract: A high speed water and liquid lithium (Li) flow is computed over the IPPE geometry to evaluate the performance of different turbulence models in 2D and 3D simulations. Results reported are the thickness of the liquid jet, irregularities in the surface, transient phenomena at the wall which can affect fluid surface and effect of the variation in bulk velocity on these quantities. All models show good near wall resolution of the boundary layer and expected profiles for the free surface flow. Predicted turbulent kinetic energy compare well with published data. Fluctuations of the flow surface at the control location (center of the curved section) and elsewhere are well within 1 mm for all models. However it was observed that the predictions are strongly dependent on the model used. Overall, the predictions of RANS models are close to each other whereas predictions of laminar simulations are close to those obtained with LES models.
Numerical simulation for a process analysis of a coke oven
Energy Technology Data Exchange (ETDEWEB)
Zhancheng Guo; Huiqing Tang [Chinese Academy of Sciences, Beijing (China). Institute of Process Engineering
2005-07-01
A computational fluid dynamic model is established for a coking process analysis of a coke oven using PHOENICS CFD package. The model simultaneously calculates the transient composition, temperatures of the gas and the solid phases, velocity of the gas phase and porosity and density of the semi-coke phase. Numerical simulation is illustrated in predicting the evolution of volatile gases, gas flow paths, profiles of density, porosity of the coke oven charge, profiles of temperatures of the coke oven gas and the semi-coke bed. On the basis of above modeling, the flow of coke oven gas (COG) blown from the bottom of the coke oven into the porous semi-coke bed is simulated to reveal whether or not and when the blown COG can uniformly flow through the porous semi-coke bed for the purpose of desulfurizing the semi-coke by recycling the COG. The simulation results show that the blown COG can uniformly flow through the semi-coke bed only after the temperature at the center of the semi-coke bed has risen to above 900{sup o}C.
Numerical simulation of the selection process of the ovarian follicles
Directory of Open Access Journals (Sweden)
Aymard Benjamin
2013-01-01
Full Text Available This paper presents the design and implementation of a numerical method to simulate a multiscale model describing the selection process in ovarian follicles. The PDE model consists in a quasi-linear hyperbolic system of large size, namely Nf × Nf, ruling the time evolution of the cell density functions of Nf follicles (in practice Nf is of the order of a few to twenty. These equations are weakly coupled through the sum of the first order moments of the density functions. The time-dependent equations make use of two structuring variables, age and maturity, which play the roles of space variables. The problem is naturally set over a compact domain of R2. The formulation of the time-dependent controlled transport coefficients accounts for available biological knowledge on follicular cell kinetics. We introduce a dedicated numerical scheme that is amenable to parallelization, by taking advantage of the weak coupling. Numerical illustrations assess th e relevance of the proposed method both in term of accuracy and HPC achievements. Ce document présente la conception et l’implémentation d’une méthode numérique servant à simuler un modèle multiéchelle décrivant le processus de sélection des follicules ovariens. Le modèle EDP consiste en un système hyperbolique quasi linéaire de grande taille, typiquement Nf × Nf, gouvernant l’évolution des fonctions de densité cellulaire pour Nf follicules (en pratique Nf est de l’ordre de quelques-uns à une vingtaine. Ces équations d’évolution utilisent deux variables structurantes, l’âge et la maturité, qui jouent le rôle de variables d’espace. Le problème est naturellement posé sur un domaine compact de R2. La formulation du transport à coefficients variables au cours du temps en fonction du contrôle est issue des connaissances disponibles sur la cinétique cellulaire au sein des follicules ovariens. Nous présentons un schéma numérique dédié au problème parall
A calculation method for RF couplers design based on numerical simulation by microwave studio
International Nuclear Information System (INIS)
Wang Rong; Pei Yuanji; Jin Kai
2006-01-01
A numerical simulation method for coupler design is proposed. It is based on the matching procedure for the 2π/3 structure given by Dr. R.L. Kyhl. Microwave Studio EigenMode Solver is used for such numerical simulation. the simulation for a coupler has been finished with this method and the simulation data are compared with experimental measurements. The results show that this numerical simulation method is feasible for coupler design. (authors)
Advances in Integrated Vehicle Thermal Management and Numerical Simulation
Directory of Open Access Journals (Sweden)
Yan Wang
2017-10-01
Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.
Frenod, Emmanuel
2013-01-01
In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.
A step towards the numerical simulation of SMC compression moulding
Oter, L.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R.; Binetruy, C.; Comas-Cardona, S.; Perez, M.; Aufrere, C.
2016-10-01
This work addresses the numerical simulation of compression moulding of Sheet Moulding Compound (SMC) where the behaviour of the polymer is supposed Newtonian and thermal effects are neglected. The proposed model relies on the Stokes formulation combined with Lubrication Theory, following the approach developed in [2]. It is solved using a Finite Element-Control Volume technique that allows one to track the flow front [1] of the SMC charge of composite during the compression phase. Finally, as a first step of a longer-term effort, we address confined orientation as in [4]. We predict the orientation of the suspended fibres, incorporating confinement effects that are absent in most theoretical descriptions derived from the classical Jeffery model [3]. A simple test case is addressed to verify the validity of the proposed approach.
Numerical Simulation of the ``Fluid Mechanical Sewing Machine''
Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil
2011-11-01
A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.
Holistic simulation of geotechnical installation processes numerical and physical modelling
2015-01-01
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...
Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R
2017-11-01
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
Numerical simulation of dimples in airfoil using MATLAB
Booma Devi, P.; Shah, Dilip A.
2017-05-01
The Aircraft wing is a point of important research which poses greater challenge in terms of aerodynamic efficiency. The flow separation control method is addressed in classical aerodynamics methods. This study focuses on influence of dimples on controlling the flow and also increasing the aerodynamic efficiency. The periodic process of placing the cavities on the wing starting from root to tip controls the flow separation. The linear variation of characteristic curve provides the information about the flow separation and control of flow on upper surface of the airfoil.These different shapes are utilized viz., Square, Rectangle and Triangle. The numerical simulation is carried out in using MATLAB package. Preliminary analysis on the flow separation is carried out focuses on laminar flow separation, which has the influence on the overall lift generation and drag generation.
Numerical simulation of transient moisture transfer into an electronic enclosure
Energy Technology Data Exchange (ETDEWEB)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)
2016-06-08
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Numerical simulation of electron beam welding with beam oscillations
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
Numerical simulation of vehicular traffic for non-ideal drivers.
Domínguez, Laura; Amador, Carlos
2004-03-01
Numerical simulations of vehicular traffic based on cellular automatae have provided a description of the more relevant experimentally observed properties of the system. Rules for drivers behaviour, though, are highly idealized. In this work we have included rules to mimic the different personalities of drivers: lane changers, passers, over-cautious drivers, tail-gaters, etc. Also we have adopted rules specific to the behaviour of drivers in Mexico City. The whole space of parameters is studied and conclusions are drawn for the effect of this variability on overall vehicular flow. As a further application of the model we study the effect of "shoulder of the road" drivers (who pass congested traffic and return to the main road afterwards) on overall vehicular flow.
Intercomparison of extremal wave analysis methods using numerically simulated data
Energy Technology Data Exchange (ETDEWEB)
Goda, Y.; Hawkes, P.; Mansard, E.; Martin, M.J.; Mathiesen, M.; Peltier, E.; Thompson, E.; Vledder, G. van.
1993-07-01
Several methods of extreme wave analysis were applied to 1000 samples of numerically simulated data for evaluation of their performance in the estimation of return wave heights. The Weibull distribution with the shape parameter k=1.4 was selected as the parent population, and the FT-I, FT-II and Weibull distributions were fitted to the samples by the Methods of Moments, Least Squares, and Maximum Likelihood. The mean value of the estimated return wave heights was almost the same as the true value, but their statistical deviations were large owing to the sampling variability. For uncensored samples, the Maximum Likelihood Method performed well, but its performance for censored samples was not much different from the other methods. 11 refs., 2 figs., 2 tabs.
Simple Numerical Model to Simulate Penetration Testing in Unsaturated Soils
Directory of Open Access Journals (Sweden)
Jarast S. Pegah
2016-01-01
Full Text Available Cone penetration test in unsaturated sand is modelled numerically using Finite Element Method. Simple elastic-perfectly plastic Mohr-Coulomb constitutive model is modified with an apparent cohesion to incorporate the effect of suction on cone resistance. The Arbitrary Lagrangian-Eulerian (ALE remeshing algorithm is also implemented to avoid mesh distortion problem due to the large deformation in the soil around the cone tip. The simulated models indicate that the cone resistance was increased consistently under higher suction or lower degree of saturation. Sensitivity analysis investigating the effect of input soil parameters on the cone tip resistance shows that unsaturated soil condition can be adequately modelled by incorporating the apparent cohesion concept. However, updating the soil stiffness by including a suction-dependent effective stress formula in Mohr-Coulomb material model does not influence the cone resistance significantly.
Modelization and numerical simulation of atmospheric aerosols dynamics
International Nuclear Information System (INIS)
Debry, Edouard
2004-01-01
Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel
2013-07-14
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Direct Numerical Simulations for Combustion Science: Past, Present, and Future
Im, Hong G.
2017-12-12
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.
The steady state of epidermis: mathematical modeling and numerical simulations.
Gandolfi, Alberto; Iannelli, Mimmo; Marinoschi, Gabriela
2016-12-01
We consider a model with age and space structure for the epidermis evolution. The model, previously presented and analyzed with respect to the suprabasal epidermis, includes different types of cells (proliferating cells, differentiated cells, corneous cells, and apoptotic cells) moving with the same velocity, under the constraint that the local volume fraction occupied by the cells is constant in space and time. Here, we complete the model proposing a mechanism regulating the cell production in the basal layer and we focus on the stationary case of the problem, i.e. on the case corresponding to the normal status of the skin. A numerical scheme to compute the solution of the model is proposed and its convergence is studied. Simulations are provided for realistic values of the parameters, showing the possibility of reproducing the structure of both "thin" and "thick" epidermis.
Solid-state electro-cumulation effect numerical simulation
Grishin, V G
2001-01-01
It is an attempt to simulate as really as possible a crystal's interatomic interaction under conditions of "Solid-state electro-cumulation (super-polarization) effect". Some theoretical and experimental reasons to believe that within solid substances an interparticles interaction could concentrate from the surface to a centre were given formerly. Now, numerical results show the conditions that could make the cumulation more effective. Another keywords: ion, current, solid, symmetry, cumulation, polarization, depolarization, ionic conductor,superionic conductor, ice, crystal, strain, V-center, V-centre, doped crystal, interstitial impurity, intrinsic color center, high pressure technology, Bridgman, anvil, experiment, crowdion, dielectric, proton, layer, defect, lattice, dynamics, electromigration, mobility, muon catalysis, concentration, doping, dopant, conductivity, pycnonuclear reaction, permittivity, dielectric constant, point defects, interstitials, polarizability, imperfection, defect centers, glass, epi...
Numerical simulation for design of biped locomotion robots
Energy Technology Data Exchange (ETDEWEB)
Kume, Etsuo (Computing and Information Systems Center, Tokai Research Establishment, Japan Atomic Energy Research Inst., Ibaraki (Japan)); Takanishi, Atsuo (Dept. of Mechanical Engineering, Waseda Univ., Shinjuku, Tokyo (Japan))
1993-04-01
A mechanical design study of anthropomorphic walking robots for patrol and inspection in nuclear facilities is being performed at Computing and Information Systems Center (CISC) of JAERI. We mainly focus on developing a software system to find a stable walking pattern, given robot models described by links, joints and so on. One of the features of our software is that some of the body elements, such as actuators and sensors, can be modeled as material particles as well as rigid bodies. The other is that our software has the cabability of obtaining unknown part of robot motions under given part of robot motions, satisfying a stable constraint. In this paper, we present the numerical models and the simulated results. (orig.)
Numerical simulation of hydrodynamic performance of ship under oblique conditions
Directory of Open Access Journals (Sweden)
CHEN Zhiming
2018-02-01
Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.
Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources
Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato
2017-04-01
Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.
Numerical simulations of electromagnetic scattering by Solar system objects
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
Numerical Simulation of rivulet build up via lubrication equations
Suzzi, N.; Croce, G.
2017-11-01
A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.
Numerical simulation of electro-fishing in seawater
Directory of Open Access Journals (Sweden)
Edo D'Agaro
2010-01-01
Full Text Available We evaluated the feasibility of an electro-fishing system using numerical simulations for laboratory tanks and the open sea. A non-homogeneous bi-dimensional electric-field model for water and fish based on discrete formulation of electro-magnetic field equations was developed using GAME (geometric approach for Maxwell equations software. Current densities (μA/cm2 and voltage differences (V/m were calculated for a fixed shape and spatial geometry of electrodes (one circular anode central to two symmetric linear cathodes 10 m distant from each other. Voltage gradients inside the fish and close to the body (head–tail potential difference and mean, maximum and minimum field modules were determined. Tank and open sea environments were numerically described for single fish 10 cm or 30 cm long and for groups of 30 fish 10 cm long. In the open sea, a tension of 90 V at the electrodes and a water conductibility of 5 S/m resulted in an area of fish attraction (voltage gradient >10 V/m of about 30 m2. Fish in the open sea and in groups had greater internal voltage differences than did fish in tanks and single fish.
Direct numerical simulation of axisymmetric laminar low-density jets
Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro
2017-11-01
The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.
Towards a Numerical Simulation of the Blue Whirl
Zhang, Xiao; Chung, Joseph; Houim, Ryan; Kaplan, Carolyn; Oran, Elaine
2017-11-01
The blue whirl is a newly observed flame structure shown to evolve from a fire whirl. A new computational model is being developed to simulate this phenomenon and help explain the transition and structure. A three-dimensional numerical model was constructed to solve the partially compressible, reactive Navier-Stokes equations. The fourth-order Flux- Corrected Transport (FCT) algorithm is used for convection and the Barely Implicit Correction (BIC) is applied to remove the time step restriction imposed by the sound speed. A simplified chemical-diffusive (CD) model accounts for the chemical-energy release. The diffusion process models the mass diffusion, heat conduction, and viscous diffusion. The CD chemical model implemented here allows for variable equivalence ratios, allowing for computations of both premixed and non-premixed systems without the additional numerical cost of solving a multi-step chemical model and tracking many intermediate species. The implementation of these methods and models along with various test problems are presented.
Experimental and numerical simulation for swirl flow in a combustor
Dulin, V. M.; Markovich, D. M.; Minakov, A. V.; Hanjalic, K.; Chikishev, L. M.
2013-12-01
Results of the experimental and numerical simulation for swirl flow in combustion of a lean methane-air mixture in a model combustor at atmospheric pressure are represented. The panoramic method for the flow velocity measurement and the calculation by a large eddy method were used for the investigation of the nonstationary turbulent flow. The numerical modeling for the breakdown of the vortex core of the flow and the topology of large-scale vortex structures forming in it showed the close fit to the experiment. The analysis of obtained data showed that for the case of the intensive swirl of the flow as well as in the case of the flow without combustion, dynamics of the flow with combustion was determined by the global azimuthal instability mode corresponding to the intensive precession of the vortex core. The flame had the similar characteristics of the stability and compactness in the case of stabilization by the low swirl; however, velocity pulsations in the flow corresponded to the development of only local instability modes. Thus, the other kind of vortex breakdown in the case of the low swirl, for which the central recirculation zone is lacking, is not only favorable in view of the reduction of the NO x emission, but also remains a possibility for the effective use of the active control method for the flow and combustion. In particular, the given result may be used for the elimination of the thermoacoustic resonance in combustors.
Numerical Simulations of Thermal Convection in Rapidly Rotating Spherical Shell
Energy Technology Data Exchange (ETDEWEB)
Nenkov, Constantine; Peltier, Richard, E-mail: nenkov@atmosp.physics.utoronto.ca, E-mail: peltier@atmosp.physics.utoronto.ca [Department of Physics, University of Toronto Toronto, Ontario, M5S 1A7 (Canada)
2010-11-01
We present a novel numerical model used to simulate convection in the atmospheres of the Gas Giant planets Jupiter and Saturn. Nonlinear, three-dimensional, time-dependant solutions of the anelastic hydrodynamic equations are presented for a stratified, rotating spherical fluid shell heated from below. This new model is specified in terms of a grid-point based methodology which employs a hierarchy of tessellations of the regular icosahedron onto the sphere through the process of recurrent dyadic refinements of the spherical surface. We describe discretizations of the governing equations in which all calculations are performed in Cartesian coordinates in the local neighborhoods of the almost uniform icosahedral grid, a methodology which avoids the potential mathematical and numerical difficulties associated with the pole problem in spherical geometry. Using this methodology we have built our model in primitive equations formulation, whereas the three-dimensional vector velocity field and temperature are directly advanced in time. We show results of thermal convection in rapidly rotating spherical shell which leads to the formation of well pronounced prograde zonal jets at the equator, results which previous experiments with two-dimensional models in the limit of freely evolving turbulence were not able to achieve.
Numerical Simulation of In Situ Combustion of Oil Shale
Directory of Open Access Journals (Sweden)
Huan Zheng
2017-01-01
Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.
Numerical simulation of compressible, turbulent, two-phase flow
Coakley, t. J.; Champney, J. M.
1985-01-01
A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase is assumed to be dilute, and turbulent effects are modeled by zero- and two-equation eddy viscosity models. An important feature of the turbulence modeling is the treatment of surface boundary conditions which control the ingestion of particles into the boundary layer by turbulent friction and diffusion. The numerical method uses second-order implicit upwind differencing of the inviscid terms of the equations and second-order central differencing of the viscous terms. A diagonal form of the implicit algorithm is used to improve efficiency, and the transformation to a curvilinear coordinate system is accomplished by the finite volume techniques. Applications to a series of representative flows include a two-phase nozzle flow, the steady flow of air over a sand bed, and the air flow behind a normal shock wave in uniform motion over a sand bed. Results of the latter two applications are compared with experimental results.
Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames
Im, Hong G.
2016-07-15
Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.
Numerical Simulations for Large Deformation of Geomaterials Using Molecular Dynamics
Directory of Open Access Journals (Sweden)
Ziyang Zhao
2018-01-01
Full Text Available From the microperspective, this paper presents a model based on a new type of noncontinuous theoretical mechanical method, molecular dynamics (MD, to simulate the typical soil granular flow. The Hertzian friction formula and viscous damping force are introduced in the MD governing equations to model the granular flow. To show the validity of the proposed approach, a benchmark problem of 2D viscous material flow is simulated. The calculated final flow runout distance of the viscous material agrees well with the result of constrained interpolated profile (CIP method as reported in the literature. Numerical modeling of the propagation of the collapse of three-dimensional axisymmetric sand columns is performed by the application of MD models. Comparison of the MD computational runout distance and the obtained distance by experiment shows a high degree of similarity. This indicates that the proposed MD model can accurately represent the evolution of the granular flow. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow. It provides a means for predicting fluidization characteristics of soil large deformation flow disasters and for identification and design of appropriate protective measures.
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
Numerical Simulation of Barite Sag in Pipe and Annular Flow
Directory of Open Access Journals (Sweden)
Patrick Kabanda
2017-01-01
Full Text Available With the ever increasing global energy demand and diminishing petroleum reserves, current advances in drilling technology have resulted in numerous directional wells being drilled as operators strive to offset the ever-rising operating costs. In as much as deviated-well drilling allows drillers to exploit reservoir potential by penetrating the pay zone in a horizontal, rather than vertical, fashion, it also presents conditions under which the weighting agents can settle out of suspension. The present work is categorized into two parts. In the first part, governing equations were built inside a two-dimensional horizontal pipe geometry and the finite element method utilized to solve the equation-sets. In the second part, governing equations were built inside a three-dimensional horizontal annular geometry and the finite volume method utilized to solve the equation-sets. The results of the first part of the simulation are the solid concentration, mixture viscosity, and a prediction of the barite bed characteristics. For the second part, simulation results show that the highest occurrence of barite sag is at low annular velocities, nonrotating drill pipe, and eccentric drill pipe. The CFD approach in this study can be utilized as a research study tool in understanding and managing the barite sag problem.
Parametric Optimization Through Numerical Simulation of VCR Diesel Engine
Ganji, Prabhakara Rao; Mahmood, Al-Qarttani Abdulrahman Shakir; Kandula, Aasrith; Raju, Vysyaraju Rajesh Khana; Rao, Surapaneni Srinivasa
2017-08-01
In the present study, the Variable Compression Ratio (VCR) engine was analyzed numerically using CONVERGE™ Computational Fluid Dynamics code in order to optimize the design/operating parameters such as Compression Ratio (CR), Start of Injection (SOI) and Exhaust Gas Recirculation (EGR). VCR engine was run for 100 % load to test its performance and it was validated for standard configuration. Simulations were performed by varying the design/operating parameters such as CR (18-14), SOI (17°-26° bTDC) and EGR (0-15 %) at constant fuel injection pressure of 230 bar and speed of 1500 rpm. The effect of each of these parameters on pressure, oxides of nitrogen (NOx) and soot are presented. Finally, regression equations were developed for pressure, NOx and soot by using the simulation results. The regression equations were solved for multi objective criteria in order to reduce the NOx and soot while maintaining the baseline performance. The optimized configuration was tested for validation and found satisfactory.
Numerical simulation of nonequilibrium effects in an argon plasma jet
International Nuclear Information System (INIS)
Chang, C.H.; Ramshaw, J.D.
1994-01-01
Departures from thermal (translational), ionization, and excitation equilibrium in an axisymmetric argon plasma jet have been studied by two-dimensional numerical simulations. Electrons, ions, and excited and ground states of neutral atoms are represented as separate chemical species in the mixture. Transitions between excited states, as well as ionization/recombination reactions due to both collisional and radiative processes, are treated as separate chemical reactions. Resonance radiation transport is represented using Holstein escape factors to simulate both the optically thin and optically thick limits. The optically thin calculation showed significant underpopulation of excited species in the upstream part of the jet core, whereas in the optically thick calculation this region remains close to local thermodynamic equilibrium, consistent with previous experimental observations. Resonance radiation absorption is therefore an important effect. The optically thick calculation results also show overpopulations (relative to equilibrium) of excited species and electron densities in the fringes and downstream part of the jet core. In these regions, however, the electrons and ions are essentially in partial local thermodynamic equilibrium with the excited state at the electron temperature, even though the ionized and excited states are no longer in equilibrium with the ground state. Departures from partial local thermodynamic equilibrium are observed in the outer fringes and far downstream part of the jet. These results are interpreted in terms of the local relative time scales for the various physical and chemical processes occurring in the plasma
Numerical simulation of unsteady propeller/rudder interaction
Directory of Open Access Journals (Sweden)
Lei He
2017-11-01
Full Text Available A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.
Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection
Meng, Zi Jun; Sajib, Saurav Z. K.; Chauhan, Munish; Sadleir, Rosalind J.; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2013-01-01
Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862
Numerical simulation of the Perrin-like experiments
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law langr2rang = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a particle, the viscosity of a liquid and the average effective time between consecutive collisions of the tracked particle with liquid molecules. The latter allows us to make a simulation of the Perrin experiment and to verify in the detailed study the influence of the statistics on the expected theoretical results. To avoid the problem of small statistics causing departures from the diffusion law we introduce in the second part of the paper the idea of the so-called artificially increased statistics (AIS), and we prove that, within this method of experimental data analysis, one can confirm the diffusion law and get a good prediction for the diffusion constant even if trajectories of just a few particles immersed in a liquid are considered.
COMPARATIVE NUMERICAL SIMULATION OF THE TOHOKU 2011 TSUNAMI
Directory of Open Access Journals (Sweden)
Baranova N.A.
2015-10-01
Full Text Available The comparative numerical simulation of generation and propagation of tsunami waves generated by the source of the catastrophic 2011 Tohoku earthquake in Japan was performed based on the Okada model and the dynamic keyboard block model. The initial model is connected with the choice of orientation of longitudinal and transverse ruptures within the source region and the values of displacements along the main fault. A subsequent model is based on the premise that the initial stress distribution along the fault zone affects essentially the character of movements around the earthquake source and takes into account the stress-strain state of keyboard blocks. In the first case of the present study, the earthquake source was designated and constructed based on the parameters of the ten largest aftershocks within a finite time interval, while in the second case the source used included all aftershocks on the first day following the main event. Based on such comparative source simulations and far-field tsunami wave measurements, the results with both models were determined to have close similarities. However, in the near-field zone, the agreement with observable data was not as good. That can be attributed to inaccuracies in the placement of virtual tide gauges relative to real ones, as well as to features of bottom relief near the coast.
Numerical relativity simulations of precessing binary neutron star mergers
Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang
2018-03-01
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.
Numerical simulation of the formation of the terrestrial planets
Energy Technology Data Exchange (ETDEWEB)
Lecar, M.; Aarseth, S.J.
1986-06-01
A numerical simulation of the accumulation of the terrestrial planets was performed, starting with 200 lunar-size planetesimals distributed uniformly in a plane; these were placed in circular orbits around the sun between 0.5 and 1.5 AU, with the aim that they would form Venus and earth by inelastic collisions. The rule was that when two bodies physically collided, they coalesced into one body with the same density, which followed the center of mass motion of the colliding bodies. Initially, the eccentricities of the bodies were zero, but they were gradually built up by two-body gravitational encounters. Physical collisions proceeded at a faster rate, so that finally the mean distance between bodies exceeded the radial excursions and the process terminated. After 50,000 yr, six bodies remained, the largest of which had a mass about 2/3 the mass of the earth. This simulation was confined to a plane. In three dimensions, if the inclinations were of the same order as the eccentricities, the time scale would have increased by a factor of a few thousand. 19 references.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Direct numerical simulations of evaporating droplets in turbulence
Palmore, John; Desjardins, Olivier
2015-11-01
This work demonstrates direct numerical simulations of evaporating two phase flows, with applications to studying combustion in aircraft engines. Inside the engine, liquid fuel is injected into the combustion chamber where it atomizes into droplets and evaporates. Combustion occurs as the fuel vapor mixes with the surrounding flow of turbulent gas. Understanding combustion, therefore, requires studying evaporation in a turbulent flow and the resulting vapor distribution. We study the problem using a finite volume framework to solve the Navier-Stokes and scalar transport equations under a low-Mach assumption [Desjardins et al., J. Comp. Phys., 2008]. The liquid-gas interface is tracked using a conservative level-set method [Desjardins et al., J. Comp. Phys., 2008] which allows for a sharp reconstruction of the discontinuity across the interface. Special care is taken in the discretization of cells near the liquid-gas interface to ensure the stability and accuracy of the solution. Results are discussed for non-reacting simulations of liquid droplets evaporating into a turbulent field of inert gas.
Direct Numerical Simulation of heat transfer in a turbulent flume
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2001-01-01
Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)
Direct numerical simulations of two-fluid plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Thyagaraja, A.
1995-06-01
This report presents initial results on the direct numerical simulations of two-fluid plasma turbulence using the CUTIE code developed at Culham. This code seeks to simulate low frequency ({omega} {approx} {omega}{sub *} << {omega}{sub ci}), relatively long wavelength (k{sub perpendicular} {sub to}{rho}{sub i} << 1;m, n up to 20-30) drift-like fluctuations. It employs a periodic cylinder ({tau},{theta},{phi} {identical_to} z/R) geometry and takes advantage of tokamak ordering (ie a/R << 1, B{sub {theta}}/B{sub z} << 1, {beta} << 1) in appropriate circumstances. Quasi-neutrality is assumed and standard two-fluid/Maxwell equations are solved for the seven variables, n{sub e}, T{sub e}, T{sub i}, V {sub parallel} {sub to}, {Phi}, {Psi} and {Omega} taking account of the appropriate sources and relevant transport co-efficients. The system is fully nonlinear, electromagnetic and takes account of neoclassical/classical `parallel` effects. (author).
Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets
Asaithambi, Rajapandiyan
Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the
Validation of Numerical Simulations of Activation by Neutron Flux
International Nuclear Information System (INIS)
Janski, Sylvain
2016-01-01
The knowledge of the radionuclide content of radioactive waste is of utmost importance for safety and waste management reasons. Numerical simulations are used at EDF-CIDEN to anticipate the dismantling and the radioactive waste management. The activation scheme by neutron flux developed at EDF-CIDEN comprises four steps: Step 1: Computing of a 3 dimensional multigroup neutron flux map. The mapping of the neutron flux is obtained on the basis of a neutron propagation calculation. The codes used are MCNP reference or TRIPOLI reference. Both solve the transport equation called the Boltzmann equation. The input data covers the microscopic cross-sections, the 3 dimensional geometry, the chemical compositions with no impurities and the computed neutron sources resulting in the neutrons emitted by the fuel assemblies. The neutron flux map is calculated at the nominal power rating conditions, and each flux is homogenized in a limited number of energy groups. Step 2: Calculation of the activities. The activities are calculated for each component or sub-component of interest. The code used is DARWIN-PEPIN (developed by the French CEA). It solves a system of Bateman equations. The input data covers the 3-dimensional neutron flux map calculated in step one, the microscopic cross sections, the radioactive decay series associated with the radioactive half-lives, the chemical compositions with impurities, and the history of irradiation resulting in the daily power production. The output data is the radioactive inventory of each component or sub-component of interest limited to a list of 143 radionuclides. Step 3: Waste classification. According to the radioactive inventory of each component or sub-component, and the waste classification criteria, a waste classification can be made. Basically the criteria are based on the levels of specific activity and radiotoxicity of 143 radionuclides. The distinction between the 'Long Life' and the 'Short Life' waste is
Experimentation and numerical simulation of steel fibre reinforced concrete pipes
Directory of Open Access Journals (Sweden)
de la Fuente, Albert
2011-06-01
Full Text Available The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m^{3} were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.
En este artículo se presentan los resultados principales de un estudio experimental y numérico del comportamiento de tubos hormigón reforzado con fibras de acero (THFA. Se fabricaron y ensayaron 18 tubos de 600 mm de diámetro con cuantías de 10, 20 y 40 kg/m^{3} de fibras, concluyéndose varios aspectos tecnológicos relacionados con la fabricación y el ensayo así como del comportamiento resistente. Por otra parte, se ha desarrollado el modelo numérico MAP que permite la simulación del comportamiento resistente de THFA sometidos al ensayo de aplastamiento. Los resultados han sido satisfactorios para cualquier régimen de carga, permitiendo concluir que el modelo es una herramienta útil para el diseño óptimo de este tipo de tubos. Se concluye que el uso del modelo conduce a una reducción del coste del armado y da un impulso al uso de fibras como elemento de refuerzo en esta tipología estructural.
International Nuclear Information System (INIS)
1998-01-01
This report includes the following numerical simulation of rubber bearing tests: Simulation of NRB test (data provided by CRIEPI, Japan); Simulation of LRB test (data provided by CRIEPI, Japan); Simulation of HDR test by (data provided by KAERI, Japan); Simulation of HDR test by (data provided by ENEL, Italy). Numerical simulation of shaking table test for base-isolated steel frame was conducted by ENEL/ISMES/ENEA/EC Numerical simulation of shaking table test for base-isolated rigid mass was conducted by CRIEP1/MIT1
AN INNOVATIVE SKI-BOOT: DESIGN, NUMERICAL SIMULATIONS AND TESTING
Directory of Open Access Journals (Sweden)
Stefano Corazza
2005-09-01
Full Text Available The present work is concerned with the design of an innovative ski-boot. In order to optimize ergonomics and biomechanical behavior of the ski-boot it is important to take into account the orientation of the leg with respect to the ground. The SGS system (Stance Geometry System developed in this work allows the skier to adjust for posture in the frontal plane by rotating the sole of the boot about the antero-posterior axis (ski-boot is then locked in the desired position before skiing. A simplified model of the effect of ski-boot deformation on skiing behavior is used to evaluate the minimal stiffness the system must have. An experimental analysis on the ski slopes was carried out to provide ski-boot deformations and loading data in different skiing conditions, to be used in numerical simulations. Finite Elements Method (FEM simulations were performed for optimal design of the joint between ski-boot and sole. The active loads and local ski-boot deformations during small- and large-radius turns were experimentally determined and used to validate a FEM model of the ski-boot. The model was used to optimize the design for maximum stiffness and to demonstrate the efficacy of virtual design supported by proper experimental data. Mean loads up to 164% body weight were measured on the outer ski during turning. The new SGS design system allows the adjustment of lateral stance before using the ski-boot, optimizing the ski-boot stiffness through FEM analysis. Innovative aspects of this work included not only the stance geometry system ski-boot but also the setup of a virtual design environment that was validated by experimental evidence. An entire dataset describing loads during skiing has been obtained. The optimized SGS ski-boot increases intrinsic knee stability due to proper adjustment of lateral stance, guaranteeing appropriate stiffness of the ski-boot system
Numerical Simulations of Fog Events in Southern Portugal
Directory of Open Access Journals (Sweden)
Carlos Policarpo
2017-01-01
Full Text Available This work aims at improving the knowledge on fog formation and its evolution in the Alentejo region (Portugal. For this purpose, brief regional fog climatology, essentially based on information from the Beja Air Base meteorological station, was produced and several numerical high resolution simulations were performed using the Meso-NH. The ECOCLIMAP database used to generate the model physiography was improved to include the Alqueva reservoir (~250 km2, filled in 2003. The model results were compared with surface and satellite observations, showing good agreement in terms of fog occurrence and persistence. Various forcing mechanisms for formation, development, and dissipation of fog were identified, confirming the influence of two small mountains that block the moist air from the Atlantic Ocean, preventing the fog from reaching innermost regions. The introduction of the Alqueva large reservoir induces changes in the landscape and environment. The effects of the water vapour addition and of the changes in mass and energy surface fluxes on fog formation and evolution were studied. It was found that the reservoir may have a direct impact on fog formation over the lake and its vicinity. Depending on the large scale meteorological conditions, their influence can be both positive and negative, in terms of spatial coverage and temporal persistence.
Numerical simulation of nonlinear dynamics of 1D pulsating detonations
Borisov, S. P.; Kudryavtsev, A. N.
2017-10-01
The development of 1D instability of a detonation wave is numerically simulated for a two-stage chemical model. The shock-fitting approach is employed to track the leading detonation front. In order to determine its motion, the equation for the acceleration of the shock wave derived from the Rankine-Hugoniot conditions and the characteristic relations is integrated along with the reactive Euler equations. The fifth-order WENO scheme is used, time stepping is performed with the four-stage Runge-Kutta-Gill method. It is shown that in a certain range of parameters of the problem (the degree of overdrive f, the dissociation energy Ed and the activation energy Ea ), the Zeldovich-Neumann-Döring stationary solution is unstable with respect to 1D disturbances. The evolution of disturbances at later nonlinear stages is studied. Nonlinear saturation of the growth of disturbances leads to the formation of a stable limit cycle. When changing the parameters of the problem, the period doubling bifurcation can occur leading to the appearance of pulsations with two different maxima of the amplitude.
Numerical simulations of turbulent jet ignition and combustion
Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad
2013-11-01
The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.
Developments in numerical simulation of IFE target and chamber physics
International Nuclear Information System (INIS)
Velarde, G.; Minguez, E.; Alonso, E.; Gil, J.M.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Munoz, R.; Ogando, F.; Perlado, J.M.; Piera, M.; Reyes, S.; Rubiano, J.G.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.
2000-01-01
The work presented outlines the global frame given at the Institute of Nuclear Fusion (DENIM) for having an integral perspective of the different research areas with the development of Inertial Fusion for energy generation. The coupling of a new radiation transport (RT) solver with an existing multi-material fluid dynamics code using Adaptive Mesh Refinement (ARM) is presented in Section 2, including improvements and additional information about the solver precision. In Section 3, new developments in the atomic physics codes under target conditions, to determine populations, opacity data and emissivities have been performed. Exotic and innovative ideas about Inertial Fusion Energy (IFE), as catalytic fuels and Z-pinches have been explored, and they are explained in Section 4. Numerical simulations demonstrate important reductions in the tritium inventory. Section 5 is devoted to safety and environment of the IFE. Uncertainties analysis in activation calculations have been included in the ACAB activation code, and also calculations on pulse activation in IFE reactors and on the activation of target debris in NIF are presented. A comparison of the accidental releases of tritium from some IFE reactors computed using MACCS2 code is explained. Finally, Section 6 contains the research on the basic mechanisms of neutron damage in SiC (low-activation material) and FeCu alloy using the DENIM/LLNL molecular dynamics code MDCASK. (authors)
Optimization and Numerical Simulation of Outlet of Twin Screw Extruder
Directory of Open Access Journals (Sweden)
Zhang Yuan
2018-01-01
Full Text Available In view of the unreasonable design of non-intermeshing counter-rotating twin screw extruder die, the problem of productivity reduction was discussed. Firstly, the mathematical model of extruder productivity was established. The extruder die model was improved. Secondly, the force analysis of twin screw extruder physical model was carried out. Meanwhile, A combination of mechanical analysis and numerical simulation was adopted. The velocity field, pressure field and viscosity field were calculated by Mini-Element interpolation method, linear interpolation method and Picard iterative convergence method respectively. The influence of die model on the quantity of each field before and after improvement was analyzed. The results show that the improved model had increased the rheological parameters of the flow field, the leakage and reverse flow decreased. Through post-processing calculation, the productivity of the third dies extruder was 10% higher than before. The research results provide a theoretical basis for the design and optimization of die model of non intermeshing counter-rotating twin screw extruder.
Numerical Simulations of Detonation Instabilities and Magnetic Field Interactions
Cole, Lord; Le, Hai; Karagozian, Ann
2011-11-01
Numerical simulations of magneto-hydrodynamic (MHD) effects on high frequency and low frequency one-dimensional detonation wave instabilities are performed, with applications to flow control and MHD thrust augmentation in Pulse Detonation Engines and their design variations. The dynamics of the hydrogen-air detonation are explored via high order shock capturing schemes and complex reaction kinetics. The flame is initially strongly coupled to the shock and the wave is over-driven. As the degree of overdrive decays and the detonation approaches the CJ limit, high frequency instabilities begin to appear. Eventually the average induction length continues to increase and a second mode can be seen which directly couples the flame speed with the shock, resulting in fluctuations with lower frequency but much higher amplitude. A simple model for flame-shock coupling replicates the quantitative features of these instabilities quite well. Effects of an externally applied magnetic field on these detonation instabilities are explored. In addition, the complex chemical kinetics calculations are ported onto a GPU, and computational performance may be compared with standard CPU-based computations. Supported by AFOSR and AFRL/RZSS.
A numerical simulation method for aircraft infrared imaging
Zhou, Yue; Wang, Qiang; Li, Ting; Hu, Haiyang
2017-06-01
Numerical simulation of infrared (IR) emission from aircraft is of great significance for military and civilian applications. In this paper, the narrow band k-distribution (NBK) model is used to calculate radiative properties of non-gray gases in the hot exhaust plume. With model parameters derived from the high resolution spectral database HITEMP 2010, the NBK model is validated by comparisons with exact line by line (LBL) results and experimental data. Based on the NBK model, a new finite volume and back ray tracing (FVBRT) method is proposed to solve the radiative transfer equations and produce IR imaging. Calculated results by the FVBRT method are compared with experimental data and available results in open references, which shows the FVBRT method can maintain good accuracy while producing IR images with better rendering effects. Finally, the NBK model and FVBRT method are integrated to calculate IR signature of an aircraft. The IR images and spatial distributions of radiative intensity are compared and analyzed in both 3 - 5 μm band and 8 - 12 μm band to provide references for engineering applications.
DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)
2012-06-20
Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.
Numerical simulation of lubrication mechanisms at mesoscopic scale
DEFF Research Database (Denmark)
Hubert, C.; Bay, Niels; Christiansen, Peter
2011-01-01
The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid-structure F......The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid......'s equation, at the asperity level, in order to quantify the fluid leakage in the cavity/plateau network using the lubricant pressure computed previously. The numerical simulation is validated by experimental tests in plane strain strip reduction of aluminium sheet provided with model cavities in form......PlastoHydroDynamic Lubrication (MPHDL) as well as cavity shrinkage due to lubricant compression and escape and strip deformation....
Numerical simulation of pulverized coal combustion to reduce pollutants
International Nuclear Information System (INIS)
Mohammad Bagher Ayani; Behnam Rahmanian
2010-01-01
Full text: In this research, the numerical simulation of pollutant reduction and in a pulverized coal combustion at 2D combustion chamber have been studied. Finite volume method using structured grid arrangement was utilized for modeling the pulverized coal combustion. The pressure base algorithm and implicit solver has been employed to simulate non-premix combustion model. The air was diluted by some participative gaseous such as whose percentages varied from 0 % to 20 %. Participative gases and air were preheated by a high-temperature gas generator, and the preheated oxidizer temperature could achieve. The combustion simulation with the generalized finite rate chemistry model, referred to as the Magnussen model and the reacting flow with the mixture fraction PDF/ equilibrium chemistry model, referred to as the PDF model are studied. Quick scheme was adopted for the discretization of all convective terms of the advective transport equations. So, as a result of addition participative gases into oxidizer the rate of formation of pollutants as well as NO x suppressed. The addition only a few percent of halogen components can make some systems nonflammable. The effects of addition halogen components and non-reaction gaseous such as Helium and Argon are fuel dilution and its acts as catalysts in reducing the H atom concentration necessary for the chain branching reaction sequence. Moreover, they act like surface and they make the increment of surface ratio versus volume. Because of this, the number of radical conflicts and hence destruction them will be increase. Furthermore, the rate of formation of pollutants will be decreased if the halogen components and non-reaction gaseous injection will be increased. However, as a result of this research, in the case of injection in pulverized coal combustion the flame temperature is lower than Steam, Argon and Helium. So, the emission levels of carbon dioxide is significantly lower than other participative gases, but in this
Numerical simulation of collision-free plasma using Vlasov hybrid simulation
International Nuclear Information System (INIS)
Nunn, D.
1990-01-01
A novel scheme for the numerical simulation of wave particle interactions in space plasmas has been developed. The method, termed VHS or Vlasov Hybrid Simulation, is applicable to hot collision free plasmas in which the unperturbed distribution functions is smooth and free of delta function singularities. The particle population is described as a continuous Vlasov fluid in phase space-granularity and collisional effects being ignored. In traditional PIC/CIC codes the charge/current due to each simulation particle is assigned to a fixed spatial grid. In the VHS method the simulation particles sample the Vlasov fluid and provide information about the value of distribution function (F(r,v) at random points in phase space. Values of F are interpolated from the simulation particles onto a fixed grid in velocity/position or phase space. With distribution function defined on a phase space grid the plasma charge/current field is quickly calculated. The simulation particles serve only to provide information, and thus the particle population may be dynamic. Particles no longer resonant with the wavefield may be discarded from the simulation, and new particles may be inserted into the Vlasov fluid where required
Numerical simulation of binary black hole and neutron star mergers
International Nuclear Information System (INIS)
Kastaun, W.; Rezzolla, L.
2016-01-01
One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the
Numerical simulation of binary black hole and neutron star mergers
Energy Technology Data Exchange (ETDEWEB)
Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)
2016-11-01
One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the
Numerical Simulations of Granular Physics in the Solar System
Ballouz, Ronald
2017-08-01
Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our
Applications of granular-dynamics numerical simulations to asteroid surfaces
Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.
2014-07-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters
Numerical Simulation of Floating Bodies in Extreme Free Surface Waves
Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling
2010-05-01
and efficient. Firstly, extreme design wave conditions are generated in an empty NWT and compared with physical experiments as a precursor to calculations to investigate the survivability of the Bobber device operating in a challenging wave climate. Secondly, we consider a bench-mark test case involving in a first order regular wave maker acting on a fixed cylinder and Pelamis. Finally, a floating Bobber has been simulated under extreme wave conditions. These results will be reported at the meeting. Causon D.M., Ingram D.M., Mingham C.G., Yang G. Pearson R.V. (2000). Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water resources, 23: 545-562. Causon D.M., Ingram D.M., Mingham C.G. (2000). A Cartesian cut cell method for shallow water flows with moving boundaries. Advances in Water resources, 24: 899-911. Dalzell J.F. 1999 A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. Ning D.Z., Zang J., Liu S.X. Eatock Taylor R. Teng B. & Taylor P.H. 2009 Free surface and wave kinematics for nonlinear focused wave groups. J. Ocean Engineering. Accepted. Hu Z.Z., Causon D.M., Mingham C.M. and Qian L.(2009). Numerical wave tank study of a wave energy converter in heave. Proceedlings 19th ISOPE conference, Osaka, Japan Qian L., Causon D.M. & Mingham C.G., Ingram D.M. 2006 A free-surface capturing method for two fluid flows with moving bodies. Proc. Roy. Soc. London, Vol. A 462 21-42.
Numerical simulation of a meteorological regime of Pontic region
Toropov, P.; Silvestrova, K.
2012-04-01
initial data in WRF model are used FNL the analysis, pumped up each six hours. The data is in the open access (http://nomad3.ncep.noaa.gov/pub/) in a grib format. Spatial step FNL of the FNL analysis is 1 degree. In the experiment 1-3 February 2011, was made the assimilation of station data located within the territory or identified during our expeditions. It is shown that the model WRF successfully reproduces the meteorological regime the Black Sea coast. The average error of simulation n without learning station data is as follows: for a temperature of 1.5 s for wind speed - 2 m / sec. The maximum error for the temperature is 5 C, and for wind speed 10 m / sec. To experiment with the assimilation of station data the error is reduced by an average of 20%. The spatial structure of temperature and wind fields close to the actually observed. Thus, it can be argued that the model WRF can be successfully applied to numerical forecast a dangerous phenomenon, such as «Novorossiysk nord-ost». The work is done in Natural Risk Assessment Laboratory under contract G.34.31.0007.
Numerical simulation of wave interactions during sudden stratospheric warming
Gavrilov, N. M.; Koval, A. V.; Pogoreltsev, A. I.; Savenkova, E. N.
2017-11-01
Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992-2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50-70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30-70%) of almost all SPWs before and during SSW and to a decrease (up to 20-100%) after the SSW at middle and high latitudes of the Northern Hemisphere.
A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
The numerical simulation of convection delayed dominated diffusion equation
Directory of Open Access Journals (Sweden)
Mohan Kumar P. Murali
2016-01-01
Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.
Numerical simulations of concrete flow: A benchmark comparison
DEFF Research Database (Denmark)
Roussel, Nicolas; Gram, Annika; Cremonesi, Massimiliano
2016-01-01
First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we...
Numerical simulations of multicomponent ecological models with adaptive methods.
Owolabi, Kolade M; Patidar, Kailash C
2016-01-08
The study of dynamic relationship between a multi-species models has gained a huge amount of scientific interest over the years and will continue to maintain its dominance in both ecology and mathematical ecology in the years to come due to its practical relevance and universal existence. Some of its emergence phenomena include spatiotemporal patterns, oscillating solutions, multiple steady states and spatial pattern formation. Many time-dependent partial differential equations are found combining low-order nonlinear with higher-order linear terms. In attempt to obtain a reliable results of such problems, it is desirable to use higher-order methods in both space and time. Most computations heretofore are restricted to second order in time due to some difficulties introduced by the combination of stiffness and nonlinearity. Hence, the dynamics of a reaction-diffusion models considered in this paper permit the use of two classic mathematical ideas. As a result, we introduce higher order finite difference approximation for the spatial discretization, and advance the resulting system of ODE with a family of exponential time differencing schemes. We present the stability properties of these methods along with the extensive numerical simulations for a number of multi-species models. When the diffusivity is small many of the models considered in this paper are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured in the local analysis of the model equations. An extended 2D results that are in agreement with Turing typical patterns such as stripes and spots, as well as irregular snakelike structures are presented. We finally show that the designed schemes are dynamically consistent. The dynamic complexities of some ecological models are studied by considering their linear stability analysis. Based on the choices of parameters in transforming the system into a dimensionless form, we were able to obtain a well-balanced system that
Numerical simulation for the design analysis of kinematic Stirling engines
International Nuclear Information System (INIS)
Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.
2015-01-01
Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The
Numerical simulations of material mismatch and ductile crack growth
Energy Technology Data Exchange (ETDEWEB)
Oestby, Erling
2002-07-01
Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is
Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000
Vidya, Mahening Citra; Beishuizen, N.A.; van der Meer, Theodorus H.
2016-01-01
Unsteady direct numerical simulations of the flow around a circular cylinder have been performed at Re = 2000. Both two-dimensional and three-dimensional simulations were validated with laminar cold flow simulations and experiments. Heat transfer simulations were carried out and the time-averaged
Numerical simulation of fractional Cable equation of spiny neuronal dendrites
Directory of Open Access Journals (Sweden)
N.H. Sweilam
2014-03-01
Full Text Available In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.
Analytical approximation and numerical simulations for periodic travelling water waves.
Kalimeris, Konstantinos
2018-01-28
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Numerical simulation of liquid motion in a partly filled tank
Directory of Open Access Journals (Sweden)
Monika Warmowska
2006-01-01
Full Text Available The paper presents the problem of liquid motion in a 2D partly filled tank. It is assumed that the flow of liquid in tank is a potential, hence it can be described by Laplace equations with appropriate boundary conditions. The problem is solved using the boundary element method. The developed numerical algorithm makes it possible to determine the free surface elevation, the velocity field and the pressure field during the liquid motion in the tank. The area occupied by liquid is represented by a mesh changing in time. Numerical computations are performed for translatory and rotational motion of the tank. The results of numerical computations are verified by experiment.
Numerical simulations for nodal domains and spectral minimal partitions
Bonnaillie-Noël , Virginie; Helffer , Bernard; Vial , Grégory
2010-01-01
International audience; We recall here some theoretical results of B. Helffer, T. Hoffmann-Ostenhof and S. Terracini about minimal partitions and propose numerical computations to illustrate some of their published or unpublished conjectures.
Mathematical modelling and numerical simulation of casting processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri
1998-01-01
The control volume method applied to numerical modelling of castning. Analytical solutions based on the error function.Riemann-temperature. Modelling of release of latent heat with the enthalpy method....
Numerical Monitoring of Natural Gas Distribution Discrepancy Using CFD Simulator
Seleznev, Vadim E.
2010-01-01
The paper describes a new method for numerical monitoring of discrepancies in natural gas supply to consumers, who receive gas from gas distribution loops. This method serves to resolve the vital problem of commercial natural gas accounting under the conditions of deficient field measurements of gas supply volumes. Numerical monitoring makes it possible to obtain computational estimates of actual gas deliveries over given time spans and to estimate their difference from corresponding values r...
Numerical Simulation of the Perturbed KdVB Equation
Directory of Open Access Journals (Sweden)
Bogdanov Alexander
2016-01-01
Full Text Available The solution of nonintegrable nonlinear equations is very diffcult even numerically and practically impossible by standard analytical techniques. New view, offered by heterogeneous computational systems, gives new possibilities, but also need novel approaches for numerical realization of pertinent algorithms. We give some examples of such analysis on the base of nonlinear wave’s evolution study in multiphase media with chemical reaction.
Numerical simulation of GEW equation using RBF collocation method
Directory of Open Access Journals (Sweden)
Hamid Panahipour
2012-08-01
Full Text Available The generalized equal width (GEW equation is solved numerically by a meshless method based on a global collocation with standard types of radial basis functions (RBFs. Test problems including propagation of single solitons, interaction of two and three solitons, development of the Maxwellian initial condition pulses, wave undulation and wave generation are used to indicate the efficiency and accuracy of the method. Comparisons are made between the results of the proposed method and some other published numerical methods.
Numerical Simulation of Particle Motion in a Curved Channel
Liu, Yi; Nie, Deming
2018-01-01
In this work the lattice Boltzmann method (LBM) is used to numerically study the motion of a circular particle in a curved channel at intermediate Reynolds numbers (Re). The effects of the Reynolds number and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories and final equilibrium positions. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large.
A numerical simulation of pre-big bang cosmology
Maharana, J P; Veneziano, Gabriele
1998-01-01
We analyse numerically the onset of pre-big bang inflation in an inhomogeneous, spherically symmetric Universe. Adding a small dilatonic perturbation to a trivial (Milne) background, we find that suitable regions of space undergo dilaton-driven inflation and quickly become spatially flat ($\\Omega \\to 1$). Numerical calculations are pushed close enough to the big bang singularity to allow cross checks against previously proposed analytic asymptotic solutions.
Numerical simulation of 2D and 3D compressible flows
Huml, Jaroslav; Kozel, Karel; Příhoda, Jaromír
2013-02-01
The work deals with numerical solutions of 2D inviscid and laminar compressible flows in the GAMM channel and DCA 8% cascade, and of 3D inviscid compressible flows in a 3D modification of the GAMM channel (Swept Wing). The FVM multistage Runge-Kutta method and the Lax-Wendroff scheme (Richtmyer's form) with Jameson's artificial dissipation were applied to obtain the numerical solutions. The results are discussed and compared to other similar results and experiments.
A numerical simulation of the inviscid flow through a counter-rotating propeller
Celestina, M. L.; Mulac, R. A.; Adamczyk, J. H.
1986-01-01
The results of a numerical simulation of the time-averaged inviscid flow field through the blade rows of a multiblade row turboprop configuration are presented. The governing equations are outlined along with a discussion of the solution procedure and coding strategy. Numerical results obtained from a simulation of the flow field through a modern high-speed turboprop will be shown.
A numerical simulation of the inviscid flow through a counterrotating propeller
Celestina, M. L.; Mulac, R. A.; Adamczyk, J. J.
1986-01-01
The results of a numerical simulation of the time-averaged inviscid flow field through the blade rows of a multiblade row turboprop configuration are presented. The governing equations are outlined along with a discussion of the solution procedure and coding strategy. Numerical results obtained from a simulation of the flow field through a modern high-speed turboprop will be shown.
Numerical simulations of wake characteristics of a wind turbine in uniform inflow
DEFF Research Database (Denmark)
Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2010-01-01
The wake of a wind turbine operating in a uniform inflow at various tip speed ratios is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. The computations are carried out in a numerical mesh with about 8.4·106 grid points distributed to fac...
Method for numerical simulation of two-term exponentially correlated colored noise
International Nuclear Information System (INIS)
Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.
2006-01-01
A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications
Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...
Indian Academy of Sciences (India)
Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...
Numerical simulations of clinical focused ultrasound functional neurosurgery
Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo
2014-04-01
A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the
Impact-friction vibrations of tubular systems. Numerical simulation and experimental validation
International Nuclear Information System (INIS)
Jacquart, G.
1993-05-01
This note presents a summary on the numerical developments made to simulate impact-friction vibrations of tubular systems, detailing the algorithms used and the expression of impact and friction forces. A synthesis of the experimental results obtained on MASSIF workbench is also presented, as well as their comparison with numerical computations in order to validate the numerical approach. (author). 5 refs
A Numerical Simulator for a Crop-Producing Greenhouse
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær; Krink, Thiemo; Filipic, Bogdan
2002-01-01
This report describes a greenhouse simulator. The described simulator is translated from a German description (Pohlheim and Heißner, 1996), and some minor modifications are introduced. The simulator is reimplemented in Java and is based on the original MatLab version. The purpose of the simulator...... is to explore various techniques for control of nonlinear systems. The greenhouse is controlled by four parameters, and the state is modeled by six non-linear differential equations. Translation information is provided to allow the reader to verify the equations and seek additional information in the original...
Numerical simulation of ship motion in offshore and harbour areas
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Jensen, Bjarne; Mortensen, Simon Brandi
2008-01-01
A method for simulating the motions and mooring forces of a moored ship subject to wave forcing has been further developed and validated for both the open water case and inside harbour areas. The method was originally developed and reported in Bingham (2000). The simulation tool is named WAMSIM...
Numerical simulation for i - ii type of distribution header throttle
International Nuclear Information System (INIS)
Yuheng, Feng; Wenjun, Hu; Xuedong, Qiao; Zhifeng, Hou
2009-01-01
In the simulation of distribution header throttle structure, using the computational fluid dynamic code-CFX, compared with experiment, the reasons of error is discussed and the reliability of this simulation is proved. Authors have checked same types of calculations, particularly introduced the relationship between CFD and experiment. The results will be theoretic base and reference
An efficient numerical simulation method for a thin film SOI RESURF structure
International Nuclear Information System (INIS)
Liu Zhan; Gan Junying; Gu Xiaofeng; Yu Zongguang; Yang Lei
2009-01-01
In this paper, an efficient numerical simulation method, which combines the spline alternating direction implicit (SADI) method and the high-order compact (HOC) finite difference method, is presented to simulate the potential and electric field distributions along the semiconductor surface of thin film silicon-on-insulator (TFSOI) reduced surface field (RESURF) devices. The relative merit of HOC–SADI is compared with three other popular numerical simulation methods, Newton, Gummel and CGS. The numerical results obtained from the proposed scheme are compared to the simulator MEDICI. HOC–SADI is a faster algorithm than Newton, Gummel and CGS as is evident from the CPU times and the number of iterations
Practical design of magnetostatic structure using numerical simulation
Wang, Qiuliang
2013-01-01
Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...
Numerical simulation for two-phase jet problem
International Nuclear Information System (INIS)
Lee, W.H.; Shah, V.L.
1981-01-01
A computer program TWOP was developed for obtaining the numerical solutions of three-dimensional, transient, two-phase flow system with nonequilibrium and nonhomogeneous conditions. TWOP employs two-fluid model and a set of the conservation equations formulated by Harlow and Amsden along with their Implicit Multi-Field (IMF) numerical technique that allows all degrees of couplings between the two fields. We have further extended the procedure of Harlow and Amsden by incorporating the implicit couplings of phase transition and interfacial heat transfer terms in the energy equations. Numerical results of two tested problems are presented to demonstrate the capabilities of the TWOP code. The first problem is the separation of vapor and liquid, showing that the code can handle the computational difficulties such as liquid packing and sharp interface phenomena. The second problem is the high pressure two-phase jet impinged on vertical plate, demonstrating the important role of the interfacial mass and momentum exchange
Numerical simulation methods to richtmyer-meshkov instabilities
International Nuclear Information System (INIS)
Zhou Ning; Yu Yan; Tang Weijun
2003-01-01
Front tracking algorithms have generally assumed that the computational medium is divided into piece-wise smooth subdomains bounded by interfaces and that strong wave interactions are solved via Riemann solutions. However, in multi-dimensional cases, the Riemann solution of multiple shock wave interactions are far more complicated and still subject to analytical study. For this reason, it is very desirable to be able to track contact discontinuities only. A new numerical algorithm to couple a tracked contact surface and an untracked strong shock wave are described. The new tracking algorithm reduces the complication of computation, and maintains the sharp resolution of the contact surface. The numerical results are good. (authors)
Numerical Simulation of Generalized Newtonian Flows in Bypass
Prokop, V.; Kozel, K.
2010-09-01
This paper is concerned with numerical solution of Newtonian and non-Newtonian fluid flows described by the system of basic conservation laws with variable viscosity. Temperature variations are not taken into account. Numerical solution of steady system with steady boundary conditions is in our case based on artificial compressibility method that allows to use time marching method to converge to steady state. Space derivatives are discretized using finite volume method in cell centered formulation. Inviscid fluxes are discretized centrally and computation of viscous fluxes is based on dual finite volubmes.
International Nuclear Information System (INIS)
Saeki, Souichi; Madarame, Haruki; Okamoto, Koji; Tanaka, Nobukazu.
1998-01-01
A self-induced sloshing is excited by the flow without any other external force. In a rectangular tank having a horizontal plane jet, the first-mode sloshing grew in a certain condition of the inlet jet velocity and the water level. In this study, the self-induced sloshing was simulated, using a two-dimensional numerical simulation code. The code was based on the Boundary Fitted Coordinate (BFC) method with the height function. The results of the simulation agreed qualitatively with the experimental results, e.g. the sloshing occurrence condition. In order to investigate the growth mechanism of the self-induced sloshing, the fluctuation of the jet streak line was calculated using the simulated results. The dependency of the jet fluctuation on the self-induced sloshing was clarified qualitatively using the numerical simulation. (author)
SPH numerical simulation of fluid flow through a porous media
Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration
2013-11-01
We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.
Study of drift tube resolution using numerical simulations
International Nuclear Information System (INIS)
Lundin, M.C.
1990-01-01
The results off a simulation of straw tube detector response are presented. These gas ionization detectors and the electronics which must presumably go along with them are characterized in a simple but meaningful manner. The physical processes which comprise the response of the individual straw tubes are broken down and examined in detail. Different parameters of the simulation are varied and resulting predictions of drift tube spatial resolution are shown. In addition, small aspects of the predictions are compared to recent laboratory results, which can be seen as a measure of the simulation's usefulness. 10 refs., 8 figs
Numerical simulations of significant orographic precipitation in Madeira island
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
Estimation of spinal loading in vertical vibrations by numerical simulation
Verver, M.M.; Hoof, J.F.A.M. van; Oomens, C.W.J.; Wouw, N. van de; Wismans, J.S.H.M.
2003-01-01
Objective. This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. Background. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back
Numerical simulation and observations of very severe cyclone ...
Indian Academy of Sciences (India)
Accurate wave forecast is most needed during tropical cyclones as it has adverse effects on the entire marine activities. The present work ... (ESSO-INCOIS), Hyderabad started quantitative. Ocean State Forecast (OSF) service in 2005 .... of all source functions and the numerical methods used in the model are elaborated in ...
Numerical Simulation of Transient Moisture Transfer into an Electronic Enclosure
DEFF Research Database (Denmark)
Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri
2016-01-01
inside the enclosures to be able to protect the electronic systems.In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce theCPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which...
Numerical simulation of injection and resistive trapping of ion rings
International Nuclear Information System (INIS)
Mankofsky, A.; Friedman, A.; Sudan, R.N.
1981-01-01
Numerical studies of the injection and resistive trapping efficiency of ion rings, using an improved algorithm are presented. Trapping efficiency is found to be strongly dependent upon the number of particles injected and upon mirror ratios in the system. Wall resistivity and beam divergence affect the process to a lesser extent. (author)
Numerical simulation of flow fields and particle trajectories
DEFF Research Database (Denmark)
Mayer, Stefan
2000-01-01
A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation. The ...
Numerical simulation of breakup and detachment of an axially ...
Indian Academy of Sciences (India)
Kishore Singh Patel
Abstract. The extensional, breakup and detachment dynamics of an axially stretching Newtonian liquid bridge are investigated numerically with a dynamic domain multiphase incompressible flow solver. The mul- tiphase flow solver employs a Cahn–Hilliard phase field model to describe the evolution of the diffuse interface.
Numerical Simulation of tsunami-scale wave boundary layers
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scale waves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations,
A Numerical Simulation of Temperature Distribution and Power Loss ...
African Journals Online (AJOL)
... inputs when the energy equation is discretized to obtain the stream wise temperature variation. The numerical model is applied to the comparative analysis of the temperature profiles and power losses that characterize the lubricant flow in the slider configurations under focus. The results are presented in graphical form.
Numerical Simulation of 3D Viscous MHD Flows
National Research Council Canada - National Science Library
Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M
2003-01-01
.... In such a case, 3D effects may be significant in the flow structure. The objective of the present paper is to investigate numerically the phenomena of shock wave interaction with boundary layer under the influence of the localised MHD effects.
Numerical simulation of lateral-torsional buckling of coped girders
Maljaars, J.; Steenbergen, H.M.G.M.; Stark, J.W.B.; Abspoel, R.
2002-01-01
The lateral torsional buckling resistance of girders depends on the support conditions. In floor structures for buildings, coped girders are often used. A numerical model was developed to research the influence of copes on lateral buckling resistance. The model is successfully validated with tests.
NUMERICAL SIMULATION OF POLLUTION DISPERSION IN URBAN STREET
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2017-08-01
Full Text Available Purpose. The scientific paper solves the question of 2D numerical model development, which allows quick computation of air pollution in streets from vehicles. The aim of the work is numerical model development that would enable to predict the level of air pollution by using protective barriers along the road. Methodology. The developed model is based on the equation of inviscid flow and equation of pollutant transfer. Potential equation is used to compute velocity field of air flow near road in the case of protection barriers application. To solve equation for potential flow implicit difference scheme of «conditional approximation« is used. The implicit change – triangle difference scheme is used to solve equation of convective – diffusive dispersion. Numerical integration is carried out using the rectangular difference grid. Method of porosity technique («markers method» is used to create the form of comprehensive computational region. Emission of toxic gases from vehicle is modeled using Delta function for point source.Findings. Authors developed 2D numerical model. It takes into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions of vehicle including protection barriers near the road. On the basis of the developed numerical models a computational experiment was performed to estimate the level of air pollution in the street. Originality. A numerical model has been created. It makes it possible to calculate 2D aerodynamics of the wind flow in the presence of noises and the process of mass transfer of toxic gas emissions from the motorway. The model allows taking into account the presence of the car on the road, the form of a protective barrier, the presence of a curb. Calculations have been performed to determine the contamination zone formed at the protective barrier that is located at the motorway. Practical value. An effective numerical model that can be applied in the
Numerical Simulation of Gleeble Torsion Testing of HSLA-65 Steel
National Research Council Canada - National Science Library
Forrest, David R; Sinfield, Matthew F
2008-01-01
NSWCCD has used a Gleeble thermomechanical simulator as a tool to provide carefully controlled deformation cycles on metallurgical samples to study the properties and physics of friction stir welds...
Detailed Numerical Simulation of the Graniteville Train Collision
Energy Technology Data Exchange (ETDEWEB)
Buckley, R. L.
2005-10-24
An unfortunate accident occurred in Graniteville, South Carolina on 6 January, 2005 when a train carrying a variety of hazardous chemicals collided with a stationary train parked on a siding rail (spur). The Savannah River National Laboratory (SRNL) runs prognostic atmospheric simulations of the Central Savannah River Area (CSRA) on an operational basis in the event of such airborne releases. Although forecast information was provided at 2-km horizontal grid spacing during the accident response, a higher-resolution simulation was later performed to examine influences of local topography on plume migration. The Regional Atmospheric Modeling System (RAMS, version 4.3.0) was used to simulate meteorology using multiple grids with an innermost grid spacing of 125 meters. This report discusses comparisons of simulated meteorology with local observations and applications using two separate transport models. Results from the simulations are shown to generally agree with meteorological observations at the time. Use of a dense gas model to simulate localized effects indicates agreement with fatalities in the immediate area and visible damage to vegetation.
Numerical integration of detector response functions via Monte Carlo simulations
Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.
2017-09-01
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.
Study of plasticity in metals by numerical simulations
International Nuclear Information System (INIS)
Clouet, E.
2013-01-01
We present a study of the plastic behaviour in metals based on the modelling of dislocation properties. Different simulation tools have been used and developed to study plasticity in structural materials, in particular metals used in the nuclear industry. In iron or zirconium alloys, plasticity is controlled at low temperature by the glide of screw dislocations. Atomistic simulations can be used to model dislocation core properties and thus to obtain a better knowledge of the mechanisms controlling dislocation glide. Such atomistic simulations need nevertheless some special care because of the long range elastic field induced by the dislocations. We have therefore developed a modelling approach relying both on atomistic simulations, using either empirical interatomic potentials or ab initio calculations, and on elasticity theory. Such an approach has been used to obtain dislocation intrinsic core properties. These simulations allowed us to describe, in iron, the variations of these core properties with the dislocation character. In zirconium, we could identity the origin of the high lattice friction and obtain a better understanding of the competition between the different glide systems. At high temperature, dislocations do not only glide but can also cross-slip or climb. This leads to a motion of the dislocations out of their glide plane which needs to be considered when modelling the plastic flow. We performed a study of dislocation climb at different scales, leading to the implementation of a dislocation climb model in dislocation dynamics simulations. (author) [fr
Numerical simulations of galaxy evolution in cosmological context
Martig, Marie; Bournaud, Frédéric; Teyssier, Romain
2009-03-01
Large volume cosmological simulations succeed in reproducing the large-scale structure of the Universe. However, they lack resolution and may not take into account all relevant physical processes to test if the detail properties of galaxies can be explained by the CDM paradigm. On the other hand, galaxy-scale simulations could resolve this in a robust way but do not usually include a realistic cosmological context. To study galaxy evolution in cosmological context, we use a new method that consists in coupling cosmological simulations and galactic scale simulations. For this, we record merger and gas accretion histories from cosmological simulations and re-simulate at very high resolution the evolution of baryons and dark matter within the virial radius of a target galaxy. This allows us for example to better take into account gas evolution and associated star formation, to finely study the internal evolution of galaxies and their disks in a realistic cosmological context. We aim at obtaining a statistical view on galaxy evolution from z ≃ 2 to 0, and we present here the first results of the study: we mainly stress the importance of taking into account gas accretion along filaments to understand galaxy evolution.
A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events
DEFF Research Database (Denmark)
Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei
2017-01-01
The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS...
XVI 'Jacques-Louis Lions' Spanish-French School on Numerical Simulation in Physics and Engineering
Roldán, Teo; Torrens, Juan
2016-01-01
This book presents lecture notes from the XVI ‘Jacques-Louis Lions’ Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.
Mathematical modelling and numerical simulation of oil pollution problems
2015-01-01
Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics, together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems. The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...
Numerical Diffusion Effect in Dynamic Simulation of Thermohydraulic Systems
International Nuclear Information System (INIS)
Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario
2003-01-01
In this work, the behavior of the explicit - up-wind method is studied in two phase natural convection circuit, near the instabilities boundaries.The effect of the numerical diffusion of the scheme upon the system stability is evaluated by means of linearization by small perturbations.The results are compared with a non-diffusive method, in the frequency domain, that solves analytically the linearized equations around a steady state condition.Moreover, a conservation equation transport model using the method of characteristics is implemented and studied.This method is compared with the explicit - up-wind scheme and it is found that it significantly reduces numerical diffusion in the equations solution. Several advantages are visualized for particular cases
NUMERICAL SIMULATION OF MAGNETIC FIELD STRUCTURE IN CYLINDRICAL FILM SCREEN
Directory of Open Access Journals (Sweden)
G. F. Gromyko
2016-01-01
Full Text Available A numerical method for solving the boundary value problem for a nonlinear magnetostatic equation describing the external magnetostatic field penetration through the cylindrical film coating is developed. A mathematical model of the shielding problem based on the use of the boundary conditions of the third kind on the film surface is studied. The nonlinear dependence of the film magnetic permeability on magnetic field conforms with experimental data. The distribution of the magnetic field strength in the film layer and the magnetic permeability of the film material depending on the magnitude of the external magnetic field strength are investigated numerically.
The proper generalized decomposition for advanced numerical simulations a primer
Chinesta, Francisco; Leygue, Adrien
2014-01-01
Many problems in scientific computing are intractable with classical numerical techniques. These fail, for example, in the solution of high-dimensional models due to the exponential increase of the number of degrees of freedom. Recently, the authors of this book and their collaborators have developed a novel technique, called Proper Generalized Decomposition (PGD) that has proven to be a significant step forward. The PGD builds by means of a successive enrichment strategy a numerical approximation of the unknown fields in a separated form. Although first introduced and successfully demonstrated in the context of high-dimensional problems, the PGD allows for a completely new approach for addressing more standard problems in science and engineering. Indeed, many challenging problems can be efficiently cast into a multi-dimensional framework, thus opening entirely new solution strategies in the PGD framework. For instance, the material parameters and boundary conditions appearing in a particular mathematical mod...
Numerical simulations of altocumulus with a cloud resolving model
Energy Technology Data Exchange (ETDEWEB)
Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)
1996-04-01
Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.
Numerical simulation of a small-scale biomass boiler
International Nuclear Information System (INIS)
Collazo, J.; Porteiro, J.; Míguez, J.L.; Granada, E.; Gómez, M.A.
2012-01-01
Highlights: ► Simplified model for biomass combustion was developed. ► Porous zone conditions are used in the bed. ► Model is fully integrated in a commercial CFD code to simulate a small scale pellet boiler. ► Pollutant emissions are well predicted. ► Simulation provides extensive information about the behaviour of the boiler. - Abstract: This paper presents a computational fluid dynamic simulation of a domestic pellet boiler. Combustion of the solid fuel in the burner is an important issue when discussing the simulation of this type of system. A simplified method based on a thermal balance was developed in this work to introduce the effects provoked by pellet combustion in the boiler simulation. The model predictions were compared with the experimental measurements, and a good agreement was found. The results of the boiler analysis show that the position of the water tubes, the distribution of the air inlets and the air infiltrations are the key factors leading to the high emission levels present in this type of system.
Numerical simulation of armored vehicles subjected to undercarriage landmine blasts
Erdik, A.; Kilic, S. A.; Kilic, N.; Bedir, S.
2016-07-01
Landmine threats play a crucial role in the design of armored personnel carriers. Therefore, a reliable blast simulation methodology is valuable to the vehicle design development process. The first part of this study presents a parametric approach for the quantification of the important factors such as the incident overpressure, the reflected overpressure, the incident impulse, and the reflected impulse for the blast simulations that employ the Arbitrary Lagrangian-Eulerian formulation. The effects of mesh resolution, mesh topology, and fluid-structure interaction (FSI) parameters are discussed. The simulation results are compared with the calculations of the more established CONventional WEaPons (CONWEP) approach based on the available experimental data. The initial findings show that the spherical topology provides advantages over the Cartesian mesh domains. Furthermore, the FSI parameters play an important role when coarse Lagrangian finite elements are coupled with fine Eulerian elements at the interface. The optimum mesh topology and the mesh resolution of the parametric study are then used in the landmine blast simulation. The second part of the study presents the experimental blast response of an armored vehicle subjected to a landmine explosion under the front left wheel in accordance with the NATO AEP-55 Standard. The results of the simulations show good agreement with the experimental measurements.
Numerical simulation for gas-liquid two-phase flow in pipe networks
International Nuclear Information System (INIS)
Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun
1998-01-01
The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network
Numerical simulation of unsteady flow around rectangular cylinders at incidence
García Buitrago, Arturo
2012-01-01
Flows around varied barriers are involved in many practical areas such as bridges, flow meters, towers, cables... The prediction of both the efforts exerted on the structure and main frequencies is of great importance in terms of engineering, especially in aeroacoustics. Development and validation of flexible numerical tools allowing an easy evaluation of different geometries can be very useful. La interacción entre una corriente de aire y un obstáculo está presente en muchos a...
Numerical Simulation of Material Strength Deterioration due to Pitting Corrosion
Kolios, Athanasios J.; Srikanth, Sumant; Salonitis, Konstantinos
2014-01-01
Pitting corrosion is an insidious form of localized corrosion affecting characteristics of various engineering metallic alloys. Currently very limited literature exists with regard to systematic characterization of pitted surfaces or the efficient use of numerical methods to assess its effect, i.e. fatigue life reduction caused by the state of a corroded specimen and particularly through the study of stress concentrations considering the geometrical anomalies introduced to a surface. Much of ...
Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation
International Nuclear Information System (INIS)
Miara, Bernadette; Muench, Arnaud
2009-01-01
We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone
Numerical simulation of turbulent atmospheric boundary layer flows
Energy Technology Data Exchange (ETDEWEB)
Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre
2001-07-01
The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)
Numerical simulation of solar heating of buildings. Final report
Energy Technology Data Exchange (ETDEWEB)
Coffe, G.; Jannot, M.; Pellerin, J.F.
1980-01-01
This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).
Numerical simulations of magnetic reversal in layered spring magnets.
Energy Technology Data Exchange (ETDEWEB)
Jiang, J.S.; Kaper, H.G.; Leaf, G.K.
2001-01-24
This report summarizes the results of numerical investigations of magnetic reversal in layered spring magnets. A one-dimensional model is used of a film consisting of several atomic layers of soft material on top of several atomic layers of hard material. Each atomic layer is taken to be uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected. The state of such a system is described by a chain of magnetic spin vectors. Each spin vector behaves like a spinning top driven locally by the effective magnetic field and subject to damping (Landau-Lifshitz-Gilbert equation). A numerical integration scheme for the LLG equation is presented that is unconditionally stable and preserves the magnitude of the magnetization vector at all times. The results of numerical investigations for a bilayer in a rotating in-plane magnetic field show hysteresis with a basic period of 2{pi} at moderate fields and hysteresis with a basic period of {pi} (or any multiple thereof) at strong fields.
Numerical simulation of the tip aerodynamics and acoustics test
Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.
2016-04-01
The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.
Tritium release experiments with CATS and numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Munakata, Kenzo, E-mail: kenzo@gipc.akita-u.ac.jp [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Wajima, Takaaki; Hara, Keisuke; Wada, Kohei [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Takeishi, Toshiharu; Shinozaki, Yohei; Mochizuki, Kazuhiro; Katekari, Kenichi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Kobayashi, Kazuhiro; Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko [Tritium Technology Group, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)
2010-12-15
In D-T fusion power plants, large amounts of tritium would be handled. Tritium is the radioisotope of protium, and is easily taken into the human body, and thus the behavior of tritium accidentally released in fusion power plants should be studied for the safety design and radioprotection of workers. Therefore, it is necessary to investigate the behavior of tritium released into large rooms with objectives, since complex flow fields should exist in such rooms and they could influence the ventilation of the air containing released tritium. Thus, tritium release experiments were conducted using Caisson Assembly for Tritium Safety Study (CATS) in TPL/JAEA. Some data were taken for tritium behavior in the ventilated area and response of tritium monitors. In the experiments, approximately 17 GBq of tritium was released into Caisson with the total volume of 12 m{sup 3}, and the room was ventilated at the rate of 12 m{sup 3}/h after release of tritium. It was found that placement of an objective in the vessel substantially affects decontamination efficiency. With regard to an experimental result, numerical calculation was performed and the experimental result and the result of numerical calculation were compared, which indicates that experimental results are qualitatively reproduced by numerical calculation. However, further R and D needs to be carried out for quantitative reproduction of the experimental results.
Numerical Simulation of the Aircraft Wake Vortex Flowfield
Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad
2013-01-01
The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.
Numerical simulation of primary cluster formation in silane plasmas
Gupta, N; Kroesen, G
2003-01-01
The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH sub 4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.
Numerical Simulation and Performance Analysis of Twin Screw Air Compressors
Directory of Open Access Journals (Sweden)
W. S. Lee
2001-01-01
Full Text Available A theoretical model is proposed in this paper in order to study the performance of oil-less and oil-injected twin screw air compressors. Based on this model, a computer simulation program is developed and the effects of different design parameters including rotor profile, geometric clearance, oil-injected angle, oil temperature, oil flow rate, built-in volume ratio and other operation conditions on the performance of twin screw air compressors are investigated. The simulation program gives us output variables such as specific power, compression ratio, compression efficiency, volumetric efficiency, and discharge temperature. Some of the above results are then compared with experimentally measured data and good agreement is found between the simulation results and the measured data.
Numerical Simulation of Nonperiodic Rail Operation Diagram Characteristics
Directory of Open Access Journals (Sweden)
Yongsheng Qian
2014-01-01
Full Text Available This paper succeeded in utilizing cellular automata (CA model to simulate the process of the train operation under the four-aspect color light system and getting the nonperiodic diagram of the mixed passenger and freight tracks. Generally speaking, the concerned models could simulate well the situation of wagon in preventing trains from colliding when parking and restarting and of the real-time changes the situation of train speeds and displacement and get hold of the current train states in their departures and arrivals. Finally the model gets the train diagram that simulates the train operation in different ratios of the van and analyzes some parameter characters in the process of train running, such as time, speed, through capacity, interval departing time, and departing numbers.
Wu, Hui; Hu, Liming; Wen, Qingbo
2017-06-01
Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.
Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging
Bondiau, Pierre-Yves; Clatz, Olivier; Sermesant, Maxime; Marcy, Pierre-Yves; Delingette, Herve; Frenay, Marc; Ayache, Nicholas
2008-02-01
Glioblastoma multiforma (GBM) is one of the most aggressive tumors of the central nervous system. It can be represented by two components: a proliferative component with a mass effect on brain structures and an invasive component. GBM has a distinct pattern of spread showing a preferential growth in the white fiber direction for the invasive component. By using the architecture of white matter fibers, we propose a new model to simulate the growth of GBM. This architecture is estimated by diffusion tensor imaging in order to determine the preferred direction for the diffusion component. It is then coupled with a mechanical component. To set up our growth model, we make a brain atlas including brain structures with a distinct response to tumor aggressiveness, white fiber diffusion tensor information and elasticity. In this atlas, we introduce a virtual GBM with a mechanical component coupled with a diffusion component. These two components are complementary, and can be tuned independently. Then, we tune the parameter set of our model with an MRI patient. We have compared simulated growth (initialized with the MRI patient) with observed growth six months later. The average and the odd ratio of image difference between observed and simulated images are computed. Displacements of reference points are compared to those simulated by the model. The results of our simulation have shown a good correlation with tumor growth, as observed on an MRI patient. Different tumor aggressiveness can also be simulated by tuning additional parameters. This work has demonstrated that modeling the complex behavior of brain tumors is feasible and will account for further validation of this new conceptual approach.
Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir
Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang
2018-01-01
This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.
Numerical simulation research on gas migration with Y type ventilation
Gou, Yanan; Han, Xuezheng
2018-01-01
The ventilation way of the working face has a great influence to goaf flow field and gas migration, the existing U-shaped ventilation face wind serious overrun, Y type ventilation mode is put forward, and the mathematic control equation of the gas moving rule is established. Put the Gaozhuang coal mine west five mining area as the model, set up calculation model. And the gas concentration is simulated, the simulation results show that the Y type ventilation ways can intercept goaf gas into the corner on the working plane and return air lane, effectively avoid the work of top corner gas accumulation.
PASSATA - Object oriented numerical simulation software for adaptive optics
Agapito, G.; Puglisi, A.; Esposito, S.
2016-01-01
We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of ...
Numerical simulation of thermal fracture in functionally graded ...
Indian Academy of Sciences (India)
Sahil Garg
Abstract. In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the ...
Numerical simulation of thermal fracture in functionally graded ...
Indian Academy of Sciences (India)
In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer ...
Numerical Simulation and Optimization of Performances of a Solar ...
African Journals Online (AJOL)
This article has as an aim the study and the simulation of the photovoltaic cells containing CdTe materials, contributing to the development of renewable energies, and able to feed from the houses, the shelters as well as photovoltaic stations… etc. CdTe is a semiconductor having a structure of bands with an indirect gap of ...
Numerical simulation of the separating performance of hydrocyclones
Energy Technology Data Exchange (ETDEWEB)
Ba, Z.S.; Wang, H.L. [Institute of Pressure Vessel and Process Equipment, East China University of Science and Technology, Shanghai (China)
2006-10-15
The flow behavior in hydrocyclones is quite complex. The Computational Fluid Dynamics (CFD) method was used to simulate the flow fields inside a hydrocyclone in order to improve its separation efficiency. The RSM turbulent model (Reynolds Stress Model), which abandons the isotropic eddy-viscosity hypothesis, was used to analyze the highly swirling flow fields in hydrocyclones. The ASM Model (Algebraic Slip Mixture Model) was used to simulate the separation performance. The volume fraction distribution and grade efficiency curve are given. The separating efficiency for 60 {mu}m water particles is more than 90 %. The majority of 60 {mu}m water particles are carried to the underflow. An increase in particle size will improve the efficiency by increasing the centrifugal force on the particles. Based on the simulation, the effects of the overflow tube dimensions on the separation performance were studied. The overflow tube dimensions of the hydrocyclone were modified, and the results showed that the Reynolds Stress Model successfully predicted the characteristics of the flow, and the simulated performances were in good agreement with those obtained by tests. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Numerical Simulation of Methane Slip in Dual Fuel Marine Engines
DEFF Research Database (Denmark)
Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun
2017-01-01
and the valve timings on the methane slip was investigated. MAN L28/32DF engine was modeled to simulate the gas exchange process of the four stroke NG-diesel dual fuel engines. The mesh size of the model was decided based on the sensitivity study on the peak pressure of the cylinder and the fuel mass...
Highly turbulent Taylor-Couette flow: direct numerical simulations
Ostilla Monico, Rodolfo
2015-01-01
Turbulence is all around us. Even if we are familiar with every day instances of turbulence, like the smoke coming out of a chimney, it remains a not-well-understood phenomenum. As it is impossible to fully simulate turbulence to precisely take into account its effect, models must be used. These
Numerical simulations of topological and correlated quantum matter
Energy Technology Data Exchange (ETDEWEB)
Assaad, Fakher F. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik
2016-11-01
The complexity of the solid state does not allow us to carry out simulations of correlated materials without adopting approximation schemes. In this project we are tackling this daunting task with complementary techniques. On one hand one can start with density functional theory in the local density approximation and then add dynamical local interactions using the so called dynamical mean-field approximation. This approach has the merit of being material dependent in the sense that it is possible to include the specific chemical constituents of the material under investigation. Progress in this domain is described below. Another venue is to concentrate on phenomena occurring in a class of materials. Here, the strategy is to define models which one can simulate in polynomial time on supercomputing architectures, and which reproduce the phenomena under investigation. This route has been remarkably successful, and we are now in a position to provide controlled model calculations which can cope with antiferromagnetic fluctuations in metals, or nematic instabilities of fermi liquids. Both phenomena are crucial for our understanding of high temperature superconductivity in the cuprates and the pnictides. Access to the LRZ supercomputing center was imperative during the current grant period to do the relevant simulations on a wide range of topics on correlated electrons. In all cases access to supercomputing facilities allows to carry out simulations on larger and larger system sizes so as to be able to extrapolate to the thermodynamic limit relevant for the understanding of experiments and collective phenomena.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Numerical simulations of slagging dynamics using a meshmeshless strategy
Energy Technology Data Exchange (ETDEWEB)
Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme
2009-07-01
In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)
Numerical simulation of runaway electron effect on Plasma Facing Components
International Nuclear Information System (INIS)
Ezato, Koichiro; Suzuki, Satoshi; Akiba, Masato; Kunugi, Tomoaki
1998-07-01
The runaway electron effects on Plasma Facing Components (PFCs) are studied by the numerical analyses. The present study is the first investigation of time-dependent thermal response of PFCs caused by runaway electron impact. For this purpose, we developed a new integrated numerical code, which consists of the Monte Carlo code for the coupled electrons and photons transport analysis and the finite element code for the thermo-mechanical analysis. In this code, we apply the practical incident parameters and distribution of runaway electrons recently proposed by S. Putvinski, which can express the time-dependent behavior of runaway electrons impact. The incident parameters of electrons in this study are the energy density ranging from 10 to 75 MJ/m 2 , the average electrons' energy of 12.5 MeV, the incident angle of 0.01deg and the characteristic time constant for decay of runaway electrons event of 0.15sec. The numerical results showed that the divertor with CFC (Carbon-Fiber-Composite) armor did not suffer serious damage. On the other hand, maximum temperatures at the surface of the divertor with tungsten armor and the first wall with beryllium armor exceed the melting point in case of the incident energy density of 20 and 50 MJ/m 2 . Within the range of the incident condition of runaway electrons, the cooling pipe of each PFCs can be prevented from the melting or burn-out caused by runaway electrons impact, which is one of the possible consequences of runaway electrons event so far. (author)
Numerical simulation of two-dimensional Rayleigh-Benard convection
Grigoriev, Vasiliy V.; Zakharov, Petr E.
2017-11-01
This paper considered Rayleigh-Benard convection (natural convection). This is a flow, which is formed in a viscous medium when heated from below and cooled from above. As a result, are formed vortices (convective cells). This process is described by a system of nonlinear differential equations in Oberbeck-Boussinesq approximation. As the governing parameters characterizing convection states Rayleigh number, Prandtl number are picked. The problem is solved by using finite element method with computational package FEniCS. Numerical results for different Rayleigh numbers are obtained. Studied integral characteristic (Nusselt number) depending on the Rayleigh number.
Numerical Schemes for Charged Particle Movement in PIC Simulations
International Nuclear Information System (INIS)
Kulhanek, P.
2001-01-01
A PIC model of plasma fibers is developed in the Department of Physics of the Czech Technical University for several years. The program code was written in FORTRAN 95, free-style (without compulsory columns). Fortran compiler and linker were used from Compaq Visual Fortran 6.1A embedded in the Microsoft Development studio GUI. Fully three-dimensional code with periodical boundary conditions was developed. Electromagnetic fields are localized on a grid and particles move freely through this grid. One of the partial problems of the PIC model is the numerical particle solver, which will be discussed in this paper. (author)
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing
Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms
Carrillo, José A.
2016-09-22
In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.
2013-12-01
We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.
Effect of Computational Parameters on Springback Prediction by Numerical Simulation
Directory of Open Access Journals (Sweden)
Tomasz Trzepiecinski
2017-09-01
Full Text Available Elastic recovery of the material, called springback, is one of the problems in sheet metal forming of drawpieces, especially with a complex shape. The springback can be influenced by various technological, geometrical, and material parameters. In this paper the results of experimental testing and numerical study are presented. The experiments are conducted on DC04 steel sheets, commonly used in the automotive industry. The numerical analysis of V-die air bending tests is carried out with the finite element method (FEM-based ABAQUS/Standard 2016 program. A quadratic Hill anisotropic yield criterion is compared with an isotropic material described by the von Mises yield criterion. The effect of a number of integration points and integration rules on the springback amount and computation time is also considered. Two integration rules available in ABAQUS: the Gauss’ integration rule and Simpson’s integration rule are considered. The effect of sample orientation according to the sheet rolling direction and friction contact behaviour on the prediction of springback is also analysed. It is observed that the width of the sample bend in the V-bending test influences the stress-state in the cross-section of the sample. Different stress-states in the sample bend of the V-shaped die cause that the sheet undergoes springback in different planes. Friction contact phenomena slightly influences the springback behaviour.
Numerical simulation of Burgers' equation using cubic B-splines
Lakshmi, C.; Awasthi, Ashish
2017-03-01
In this paper, a numerical θ scheme is proposed for solving nonlinear Burgers' equation. By employing Hopf-Cole transformation, the nonlinear Burgers' equation is linearized to the linear Heat equation. The resulting Heat equation is further solved by cubic B-splines. The time discretization of linear Heat equation is carried out using Crank-Nicolson scheme (θ = {1 \\over 2}) as well as backward Euler scheme (θ = 1). Accuracy in temporal direction is improved by using Richardson extrapolation. This method hence possesses fourth order accuracy both in space and time. The system of matrix which arises by using cubic splines is always diagonal. Therefore, working with splines has the advantage of reduced computational cost and easy implementation. Stability of the schemes have been discussed in detail and shown to be unconditionally stable. Three examples have been examined and the L2 and L∞ error norms have been calculated to establish the performance of the method. The numerical results obtained on applying this method have shown to give more accurate results than existing works of Kutluay et al. [1], Ozis et al. [2], Dag et al. [3], Salkuyeh et al. [4] and Korkmaz et al. [5].
Numerical simulation of mechanical mixing in high solid anaerobic digester.
Yu, Liang; Ma, Jingwei; Chen, Shulin
2011-01-01
Computational fluid dynamics (CFD) was employed to study mixing performance in high solid anaerobic digester (HSAD) with A-310 impeller and helical ribbon. A mathematical model was constructed to assess flow fields. Good agreement of the model results with experimental data was obtained for the A-310 impeller. A systematic comparison for the interrelationship of power number, flow number and Reynolds number was simulated in a digester with less than 5% TS and 10% TS (total solids). The simulation results suggested a great potential for using the helical ribbon mixer in the mixing of high solids digester. The results also provided quantitative confirmation for minimum power consumption in HSAD and the effect of share rate on bio-structure. Copyright Â© 2010 Elsevier Ltd. All rights reserved.
Numerical simulation of lava flow using a GPU SPH model
Directory of Open Access Journals (Sweden)
Eugenio Rustico
2011-12-01
Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.
Numerical simulation of optical feedback on a quantum dot lasers
International Nuclear Information System (INIS)
Al-Khursan, Amin H.; Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.
2012-01-01
We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.
Numerical Simulation of Roughness Induced Boundary Layer Transition
2016-03-30
13] and Fu Song [14] etc. In 2004, Langtry and Menter [15] developed an γ-Reθ four-equation transition model, which has satisfactory accuracy on...of Mechanical Engineers, 2004: 105-118. 6 . LI Benwei, LI Dong , SHEN Wei, et al., “Research on Turbine Lamina Roughness Influence on Its Performance...point RANS Approach”, Journal of Turbomachinery, 2004, 126(1):193-202. 14. FU Song , WANG Liang. “Simulation of Hypersonic Boundary-Layer Transition
Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.
Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping
2017-01-01
We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.
Govers, G.; Campforts, B.; Schwanghart, W.
2016-12-01
Landscape evolution models (LEM) allow studying the earth surface response to a changing climatic and tectonic forcing. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, the numerical accuracy of these models has received much less attention. Most LEMs use first order accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and river knickpoints with potential unquantified consequences for the integrated response of the simulated landscape. Here we present TTLEM, a spatially explicit, raster based LEM for the study of fluvially eroding landscapes in TopoToolbox 2. TTLEM prevents numerical diffusion by implementing a higher order flux limiting total volume method that is total variation diminishing (TVD-TVM) and solves the partial differential equations of river incision and tectonic displacement. We show that the choice of the TVD-TVM to simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal variability of catchment wide erosion rates. Furthermore, a 2D TVD-TVM accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation is hitherto largely limited to LEMs with flexible spatial discretization. By providing accurate numerical schemes on rectangular grids, TTLEM is a widely accessible LEM that is compatible with GIS analysis functions from the TopoToolbox interface. The model code can be downloaded at: https://github.com/wschwanghart/topotoolbox
Direct numerical simulation of turbulent flow in a square duct
Huser, Asmund
A study for generating an accurate description of fully developed, low Reynolds number, anisotropic turbulent flow in a square duct is presented. The present numerical scheme employs a time-splitting method to integrate the three dimensional, incompressible Navier-Stokes equations using spectral/finite difference discretization on a staggered mesh. The new numerical code resulting from this work is tailored to the solution of the square duct flow and optimized for operation on the Cray Y-MP supercomputer. Time averaged results from the fully developed turbulent field are compared with available experimental and numerical results and show good qualitative agreement. The existence of two inhomogeneous directions in the transverse plane results in an anisotropic primary shear stress distribution; this is shown to result in convection of mean velocity. By investigating the equations for the mean secondary velocity and streamwise vorticity, it is demonstrated that the mechanisms responsible for the anisotropic secondary Reynolds stresses result in the production of secondary flow. Higher order correlations are presented with emphasis on the behavior of the Reynolds stress and the dissipation rate budgets along the two intersecting walls. These results are used to investigate the dynamics of the Reynolds stress transport equations where it is demonstrated how the anisotropic pressure velocity interactions redistributes energy and shear stresses between the turbulent stresses, promoting the distorted isotachs and the mean secondary flow. The dissipation processes are studied by identifying small-scale topological patterns and show little influence of the corner outside the viscous sublayer. The transport equations for the turbulent dissipation rate and the turbulent enstrophy are evaluated and it is shown that these budgets have the same dynamics near the wall except for two production terms acting in the viscous sub-layer. The effect of the corner inside the viscous sub
Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs
Negara, Ardiansyah
2015-11-09
is constructed automatically within the solver. We ran a numerical model with different scenarios of anisotropy orientations and compared the results with the isotropic model in order to show the differences between them. We investigated the effect of anisotropy in both the matrix and fracture systems. The numerical results show anisotropy plays a crucial role in dictating the pressure fields as well as the gas flow streamlines. Furthermore, the numerical results clearly show the effects of anisotropy on the production rate and cumulative production. Incorporating anisotropy together with gas flow mechanisms in shale formations into the reservoir model is essential particularly for predicting maximum gas production from shale reservoirs.
Numerical simulation of boundary layers. Part 1: Weak formulation and numerical method
Spalart, P. R.
1986-01-01
A numerical method designed to solve the time-dependent, three-dimensional, incompressible Navier-Stokes equations in boundary layers is presented. The fluid domain is the half-space over a flat plate, and periodic conditions are applied in the horizontal directions. The discretization is spectral. The basis functions are divergence-free and a weak formulation of the momentum equation is used, which eliminates the pressure term. An exponential mapping and Jacobi polynomials are used in the semi-infinite direction, with the irrotational component receiving special treatment. Issues related to the accuracy, stability and efficiency of the method are discussed. Very fast convergence is demonstrated on some model problems with smooth solutions. The method has also been shown to accurately resolve the fine scales of transitional and turbulent boundary layers.
Qualification of the numerical simulation of a core disruptive accident on the mars mock-up
International Nuclear Information System (INIS)
Robbe, M.F.; Lepareux, M.; Cariou, Y.; Treille, E.
2001-01-01
In case of a Hypothetical Core Disruptive Accident (HCDA) in a Liquid Metal Reactor, the interaction between fuel and liquid sodium creates a high pressure gas bubble in the core. The violent expansion of this bubble loads the vessel and the internal structures, whose deformation is important. A simulation was undertaken using the fluid-structure improvements and the description of the peripheral structures (heat exchangers and pumps) by means of the porosity model. This paper presents the comparison of the results of the third numerical simulation with the experimental results and the numerical results of the previous simulations, as well as a synthesis of all the results of the simulation. (authors)
Qualification of the numerical simulation of a core disruptive accident on the mars mock-up
Energy Technology Data Exchange (ETDEWEB)
Robbe, M.F.; Lepareux, M. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France); Cariou, Y. [Novatome, NVPM, 69 - Lyon (France); Treille, E. [Socotec Industrie, 78 - Montigny le Bretonneux (France)
2001-07-01
In case of a Hypothetical Core Disruptive Accident (HCDA) in a Liquid Metal Reactor, the interaction between fuel and liquid sodium creates a high pressure gas bubble in the core. The violent expansion of this bubble loads the vessel and the internal structures, whose deformation is important. A simulation was undertaken using the fluid-structure improvements and the description of the peripheral structures (heat exchangers and pumps) by means of the porosity model. This paper presents the comparison of the results of the third numerical simulation with the experimental results and the numerical results of the previous simulations, as well as a synthesis of all the results of the simulation. (authors)
Numerical simulation of crystalline ion beams in storage ring
Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H
2004-01-01
The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...
Numerical Simulation of Effective Properties of 3D Piezoelectric Composites
Directory of Open Access Journals (Sweden)
Ri-Song Qin
2014-01-01
Full Text Available The prediction of the overall effective properties of fibre-reinforced piezocomposites has drawn much interest from investigators recently. In this work, an algorithm used in two-dimensional (2D analysis for calculating transversely isotropic material properties is developed. Since the finite element (FE meshing patterns on the opposite areas are the same, constraint equations can be applied directly to generate appropriate load. The numerical results derived using this model have found a good agreement with those in the literature. The 2D algorithm is then modified and improved in such a way that it is valid for three-dimensional (3D analysis in the case of random distributed shorts and inclusions. Linear interpolation of displacement field is employed to establish constraint equations of nodal displacements between two adjacent elements.
Numerical simulation of crack propagation in pressure equipments
International Nuclear Information System (INIS)
Le Grognec, P.; Hariri, S.; Afzali, M.; Jaffal, H.
2008-01-01
The aim of this work is to determine the evolution of the degree of noxiousness of a defect in a pressure equipment during its propagation. The estimation of the degree of noxiousness involves the calculation of stress intensity factors at each advance of the crack front. The cracks considered are semi-elliptic. The geometries and loads can be complex in order to cover the main industrial cases. Numerical modelling by finite element method is based on the creation of a crack-block, representing the optimized mesh near the discontinuity. The Paris law allows to describe the fatigue behaviour under cyclic load. A specific program (Python), having the advantages of the calculation codes Castem and Abaqus, allows to compute the propagation approach and makes easier the estimation of the residual lifetime of a structure under cracked pressure. (O.M.)
Direct numerical simulation of solidification microstructures affected by fluid flow
International Nuclear Information System (INIS)
Juric, D.
1997-12-01
The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow
Numerical simulation of a hydrocarbon fuelled valveless pulsejet
Directory of Open Access Journals (Sweden)
Joseph Kalyan Raj Isac
2014-06-01
In the current work, a numerical analysis encompassing feasibility and validation of a valveless pulsejet engine was attempted using CD-adapco׳s STAR-CCM+ CFD package. Due to lack of comprehensive established mathematical laws to govern the working of a pulsejet, most experimental work being performed is done by trial and error. This necessitates in-depth computational studies in order to shed more light on the understanding of valveless pulsejets. The results have been encouraging and in agreement with observed experimental conclusions such as, i changes in dimensions affect the working of a pulsejet, ii presence of a flare enhances the working of a pulsejet, and the close agreement in the frequency of operation. Through continuous study, an optimum initial condition was achieved which enabled the pulsejet to begin operation even before 0.05 s, thereby greatly reducing computational costs if a higher time-scale were to be used.
Numerical simulation of radionuclide transport in the unsaturated zone
International Nuclear Information System (INIS)
Danchiv, Alexandru; Didita, Liana; Ilie, Petre
2001-01-01
In dealing with numerical modeling of flow in the unsaturated zone two main difficulties arise, both of them due to the strong nonlinearly of the governing equation, namely solution convergence and parameter identification. In the first part of the paper a finite element model of Richards equation is presented where both Picard and Newton scheme are implemented. While Picard method is cheaper computationally but fails or converges slowly, the Newton method has a higher rate of convergence. In order to use the advantages of both methods a simple strategy is suggested in which Picard and Newton method are alternatively used according to the rate of solution convergence. The second part of the paper analyses the possibilities of determining the unsaturated soil hydraulic parameters that are assumed to be described by Mualem-van Genuchten model. The inverse problem is formulated as a least square problem and solved by an efficient Levenberg-Marquard algorithm. (author)
Numerical simulation of tsunami-scale wave boundary layers
DEFF Research Database (Denmark)
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...
Direct numerical simulations of two-fluid plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Thyagaraja, A. [UKAEA/Euratom Fusion Association, Abingdon (United Kingdom)
1995-10-01
Electromagnetic turbulence thought to be responsible for anomalous transport in magnetic confinement devices such as tokamaks is very complicated, involving a multitude of physical processes, length and time-scales. It cannot be investigated by traditional linear theories any more than aerodynamic fluid turbulence. The relatively longer wavelength (k {sub perpendicular} {sub to} {sub {rho}{sub i}} << 1), low frequency ({omega} {approx_equal} {omega}{sub *} << {omega}{sub ci}) drift-type modes are, however, susceptible to a direct numerical solution approach pioneered in the case of fluid turbulence by Orszag and Patera. A substantial two-fluid nonlinear code called CUTIE has been developed at Culham in recent years to study the nonlinear saturation and transport consequences of electromagnetic drift wave turbulence in simplified tokamak geometry. This development and some results obtained using such a model are briefly described in this contribution. (orig.).
Correct numerical simulation of a two-phase coolant
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Numerical Model Simulation of Offshore Flow during the Winter Season.
Piccolo, Maria Cintia
Because of the step function variability of heat and moisture flux in coastal zones, adequate descriptive models of mesoscale coastal circulation and weather patterns demand high spatial resolution in the analysis of wind, temperature and moisture patterns. To obtain realistic concepts of offshore flow the sparse offshore data networks need to be supplemented by mesoscale numerical models. The problems associated with the modeling of offshore flow across the east coast of the United States during the winter season have been investigated with a simple two dimensional numerical model of the planetary boundary layer. The model has two predictive equations for the potential temperature and humidity fields. A diagnostic equation based upon observed data is used to determine wind velocities. At each horizontal step the wind was integrated with height, and the equations for the temperature and humidity were solved for each level. A second order model using the Dufort-Frankel finite difference scheme with two vertical grid spacing and eddy coefficient formulations was applied to actual cases of offshore winter flow. The results of the model were compared with measurements at anemometer level at offshore stations. Different flux formulations were tested. Key problems related to the use of the Dufort-Frankel scheme were indicated. Problems associated with the use of a K-theory profile for the turbulent fluxes in the marine planetary boundary layer were isolated. The initial air-sea temperature difference and the K-theory formulations were crucial to the computational stability of the model as well as the resolution of the model, even after the stability problems were solved. A bulk aerodynamic formulation produced better results in the marine surface layer, however when merged with K-theory for the rest of the planetary boundary layer disastrous results can occur. A first order model with a similar resolution was applied to the same situation and showed superior results.
Waves and particles in the Fermi accelerator model. Numerical simulation
International Nuclear Information System (INIS)
Meplan, O.
1996-01-01
This thesis is devoted to a numerical study of the quantum dynamics of the Fermi accelerator which is classically chaotic: it is particle in a one dimensional box with a oscillating wall. First, we study the classical dynamics: we show that the time of impact of the particle with the moving wall and its energy in the wall frame are conjugated variables and that Poincare surface of sections in these variables are more understandable than the usual stroboscopic sections. Then, the quantum dynamics of this systems is studied by the means of two numerical methods. The first one is a generalization of the KKR method in the space-time; it is enough to solve an integral equation on the boundary of a space-time billiard. The second method is faster and is based on successive free propagations and kicks of potential. This allows us to obtain Floquet states which we can on one hand, compare to the classical dynamics with the help of Husimi distributions and on the other hand, study as a function of parameters of the system. This study leads us to nice illustrations of phenomenons such as spatial localizations of a wave packet in a vibrating well or tunnel effects. In the adiabatic situation, we give a formula for quasi-energies which exhibits a phase term independent of states. In this regime, there exist some particular situations where the quasi-energy spectrum presents a total quasi-degeneracy. Then, the wave packet energy can increase significantly. This phenomenon is quite surprising for smooth motion of the wall. The third part deals with the evolution of a classical wave in the Fermi accelerator. Using generalized KKR method, we show a surprising phenomenon: in most of situations (so long as the wall motion is periodic), a wave is localized exponentially in the well and its energy increases in a geometric way. (author). 107 refs., 66 figs., 5 tabs. 2 appends
Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...
NUMERICAL SIMULATIONS FOR THE CASE OF RIGID ROTATING KINEMATIC COUPLING WITH BIG CLEARANCE
Directory of Open Access Journals (Sweden)
Jan-Cristian GRIGORE
2010-10-01
Full Text Available In this paper an algorithm based on [1] [2] are numerical simulations, achieving generalized coordinates of motion, positions, speeds of a rigid rotating kinematic coupling with big clearance in joint, case without friction
Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments.
Annerel, S; Claessens, T; Degroote, J; Segers, P; Vierendeels, J
2014-08-01
In this paper, a validation of a recently developed fluid-structure interaction (FSI) coupling algorithm to simulate numerically the dynamics of an aortic bileaflet mechanical heart valve (BMHV) is performed. This validation is done by comparing the numerical simulation results with in vitro experiments. For the in vitro experiments, the leaflet kinematics and flow fields are obtained via the particle image velocimetry (PIV) technique. Subsequently, the same case is numerically simulated by the coupling algorithm and the resulting leaflet kinematics and flow fields are obtained. Finally, the results are compared, revealing great similarity in leaflet motion and flow fields between the numerical simulation and the experimental test. Therefore, it is concluded that the developed algorithm is able to capture very accurately all the major leaflet kinematics and dynamics and can be used to study and optimize the design of BMHVs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Numerical Algorithms for System Level Electro-Thermal Simulation
Culpo, Massimiliano
2009-01-01
In den kommenden Jahren wird eine genaue elektro-thermische Analyse von integrierten Schaltungen der Schlüssel zu ihrem zuverlässigen und kostengünstigen Design werden. Werkzeuge im Computer-Aided-Design müssen daher Methoden zur Simulation elektro-thermischer Effekte zur Verfügung stellen. Ein robuster Algorithmus zur Lösung dieser Probleme erfordert einerseits ein hohes Maß an Integration in die Designprozesse der Industrie, um effektiv einsetzbar zu sein und andererseits die Möglichkeit...
Numerical Simulation of Fluid Dynamics in a Monolithic Column
Directory of Open Access Journals (Sweden)
Kazuhiro Yamamoto
2017-01-01
Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.
Numerical simulation for neutron pinhole imaging in ICF
International Nuclear Information System (INIS)
Chen Faxin; Yang Jianlun; Wen Shuhuai
2005-01-01
Pinhole imaging of the neutron production in laser-driven inertial confinement fusion experiments can provide important information about performance of various capsule designs. In order to get good results in experiments, it is needed to judge performance of various pinhole designs qualitatively or quantitatively before experiment. Calculation of imaging can be simply separated into pinhole imaging and image spectral analysis. In this paper, pinhole imaging is discussed, codes for neutron pinhole imaging and image showing is programed. The codes can be used to provide theoretical foundation for pinhole designing and simulating data for image analysing. (authors)
Numerical simulation of steel-concrete composite Virender beam
Wu, Qinggui; Cao, Xinming; Luo, Quanrui
2017-08-01
In this paper, a new type of steel-concrete composite Vierendeel beam is proposed. The finite element analysis of the new type of steel-concrete composite Vierendeel beam is carried out by using ABAQUS. To compare the mechanical properties with traditional beam, the normal reinforced concrete beam with the same section size is also analyzed by using ABAQUS. The simulation results show that the material strength of the new type steel-concrete composite Vierendeel beam is fully utilized, and the flexural capacity and deformation performance of the new type of steel-concrete composite Vierendeel beam are greatly improved compared with normal reinforced concrete beam.
Numerical simulation of two-phase flow in a tornado funnel
International Nuclear Information System (INIS)
Sinkevich, O.A.; Chikunov, S.E.
2002-01-01
Paper presents a model of flow in a tornado funnel. The model is associated with regard to the volume condensation of water steams. One proposes a form to present the basic equations convenient for numerical simulation of heat and mass transfer processes with regard to moisture condensation inside a tornado funnel. Paper contains the results of numerical simulation of two phase turbulent heat and mass transfer inside a tornado funnel [ru
2017-05-31
AFRL-RV-PS- AFRL-RV-PS- TR-2017-0120 TR-2017-0120 DECOMPOSITION OF THE SEISMIC SOURCE USING NUMERICAL SIMULATIONS AND OBSERVATIONS OF NUCLEAR...time for reviewing instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing this...01 May 2014 – 30 Apr 2017 4. TITLE AND SUBTITLE Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear
Numerical Simulation and Investigation of System Parameters of Sonochemical Process
Directory of Open Access Journals (Sweden)
Sankar Chakma
2013-01-01
Full Text Available This paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. The effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. The simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. The formation of •OH radical and H2O2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. This is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions.
Numerical simulation of toner jumping method for nonimpact printing
Kutsuwada, Noboru; Shohdohji, Tsutomu; Izawa, Harunobu; Okada, Nobuhiro; Sugai, Takashi
1993-06-01
The `toner jumping method' is proposed to more simply conduct the non-impact printing process in electrophotography. To clarify the fundamental functions of this method, in this paper, the jumping behavior of toner is studied by simulating with the aid of a personal computer. To control the locus and distribution of toner from a magnet roller electrode to the paper on the back electrode, the mesh electrode is assumed to be inserted at the middle of the roller and back electrode. Between the magnet roller electrode and the back electrode the higher dc voltage is applied compared with the mesh electrode against the roller electrode. The locus and distribution of toner reaching the paper are simulated changing the applied voltage in each raw's and column's direction of mesh electrode. It is assumed to be possible to control the jumping behavior of toner from magnet roller to paper. As a result, the role of the mesh electrode in the `toner jumping method' on the quality of image in the non-impact printing process is suggested.
Numerical simulation of toner jet method for nonimpact printing
Kutsuwada, Noboru; Shohdohji, Tsutomu; Izawa, Harunobu; Sugai, Takashi; Lin, Chun-Wei
1994-01-01
The toner jet method has been previously proposed to perform electrophotographic nonimpact printing easily. To clarify the fundamental properties of this method, the jet behavior of toner is studied through simulation on a personal computer. The mesh electrode is assumed to be inserted halfway between the development roller and the paper-back electrode. This is done to control the locus and the distribution path of toner from the magnetic development roller electrode to the electrode on the back of the paper receiver. The electric field applied between the magnetic development roller and the paper-back electrode is higher than the field between the mesh electrode and the magnetic development roller. The locus and the distribution of toner particles developed on the paper are simulated by changing the applied voltage in each row and each column of the mesh electrode. It is assumed that the jet behavior of toner particles from the magnetic development roller to paper is controllable. In conclusion, the useful role of the mesh electrode in the image quality of the toner jet method is suggested.
Numerical simulation of NbC precipitation in microalloyed steel
International Nuclear Information System (INIS)
Radis, R; Kozeschnik, E
2012-01-01
This work describes with the investigation of the precipitation kinetics of NbC in microalloyed steel. Using the thermo-kinetic software MatCalc, computer simulations of NbC precipitation are carried out and compared with several independent experimental results, measured in austenite and ferrite. The selected experiments involve a variety of different dislocation densities originating from distinct thermo-mechanical treatments. Two separate populations of NbC precipitates are accounted for in the simulations, representing precipitates on grain boundaries as well as dislocations. Furthermore, three different diffusion mechanisms are taken into account, which are bulk diffusion in the undisturbed crystal, accelerated diffusion along the dislocation core and fast diffusion along grain boundaries. It is demonstrated that deformation-induced dislocation densities higher than 10 13 m −2 lead to prominent diffusion along dislocation networks. Therefore, in such cases, the precipitation kinetics of NbC is dominated by the pipe diffusion mechanism, and the precipitation process is several orders of magnitude faster compared with NbC precipitation in unstrained, well-annealed microstructures. (paper)
Evaluation of Residential Hot Water Distribution Ssytems by Numeric Simulation
Energy Technology Data Exchange (ETDEWEB)
Wendt, ROBERT
2005-08-17
The objective of this project was to evaluate the performance and economics of various domestic hot water distribution systems in representative California residences. While the greatest opportunities for improved efficiency occur in new construction, significant improvements can also be made in some existing distribution systems. Specific objectives of the project tasks were: (1) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to alternative new systems. (2) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to maintenance, repair, and retrofit modifications of existing systems. (3) Evaluate potential impact of adopting alternative hot water distribution systems and report project findings. The outcome of this project is to provide homeowners, homebuilders, systems suppliers, municipal code officials and utility providers (both electric and water/sewer) with a neutral, independent, third party, cost-benefit analysis of alternative hot water distribution systems for use in California. The results will enable these stakeholders to make informed decisions regarding which system is most appropriate for use.
Numerical simulation of RCS for carrier electronic warfare airplanes
Directory of Open Access Journals (Sweden)
Yue Kuizhi
2015-04-01
Full Text Available This paper studies the radar cross section (RCS of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave’s pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflections of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carrier electronic warfare airplanes Model A and Model B with weapons were established. Based on the physical optics method and the equivalent electromagnetic flow method, by the use of the RCSAnsys software, the characteristics of carrier electronic warfare airplanes’ RCS under steady and dynamic flights were simulated under the UHF, X, and S radar bands. This paper researches the detection probability of aircraft by radars under the condition of electronic warfare, and completes the mathematical statistical analysis of the simulation results. The results show that: The Model A of carrier electronic warfare airplane is better than Model B on stealth performance and on discover probability by radar detection effectively.
Numerical simulation of flow and compression of green sand
DEFF Research Database (Denmark)
Hovad, Emil
with the ﬂow of the sand particles and the deposition of sand dur-ing the production of sand molds using the sand shot in the DISAMATIC process. The deposition of the green sand in the chamber was investigated with a special cavity design where air vents were placed inside the cavities. The air vents are used...... to transport the green sand with an airﬂow during the sand shot. By changing the air vents settings in the chamber and in the cavities it was possible to improve the ﬁlling in the narrow passages in the cavity design, thereby improving the ﬁnal sand mold as well. The sand shot with the cavity design...... was simulated by the discrete element method (DEM) modelling the ﬂow of the green sand combined with classical computational ﬂuid dynamics (CFD) for modelling the airﬂow in the chamber and the airﬂow through the air vents. These experiments and simulations gave beneﬁcial insights to the DISAMATIC process...
The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations
Directory of Open Access Journals (Sweden)
Abdulkadir Baba HASSAN
2006-06-01
Full Text Available This paper examines the application of Visual Basic Computer Programming Language to Simulate Numerical Iterations, the merit of Visual Basic as a Programming Language and the difficulties faced when solving numerical iterations analytically, this research paper encourage the uses of Computer Programming methods for the execution of numerical iterations and finally fashion out and develop a reliable solution using Visual Basic package to write a program for some selected iteration problems.
Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation
DEFF Research Database (Denmark)
Pedersen, Karl Martin; Tiedje, Niels Skat
2005-01-01
Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...
Numerical simulations in granular matter: The discharge of a 2D silo
Indian Academy of Sciences (India)
... short and elementary review of numerical simulations in granular assemblies, giving the process of discharge of a 2D silo as an example. The strengths and limitations of different approaches are discussed, together with some comments on the specific issues related to the numerics of discontinuous dissipative collisions.
DEFF Research Database (Denmark)
Hyun, Jaeyub; Kook, Junghwan; Wang, Semyung
2015-01-01
and basis vectors for use according to the target system. The proposed model reduction scheme is applied to the numerical simulation of the simple mass-damping-spring system and the acoustic metamaterial systems (i.e., acoustic lens and acoustic cloaking device) for the first time. Through these numerical...
A new approach in the numerical simulation for the blood flow in large vessels
Directory of Open Access Journals (Sweden)
Balazs ALBERT
2013-03-01
Full Text Available In this paper we are proposing a new approach in the numerical simulation of the bloodflow in large vessels. The initial conditions are set to be compatible with the non-Newtonian modelused. Numerical experiments in stenosed artery and in artery with aneurysm (using COMSOL 3.3,are presented.
Numerical simulations in granular matter: The discharge of a 2D silo
Indian Academy of Sciences (India)
In this paper I give a short and elementary review of numerical simulations in granular assemblies, giving the process of discharge of a 2D silo as an example. The strengths and limitations of different approaches are discussed, together with some comments on the specific issues related to the numerics of discontinuous ...
Optimization of the Turbulence Model on Numerical Simulations of Flow Field within a Hydrocyclone
Directory of Open Access Journals (Sweden)
Yan Xu
2015-01-01
Full Text Available Reynolds Stress Model and Large Eddy Simulation are used to respectively perform numerical simulation for the flow field of a hydrocyclone. The three-dimensional hexahedral computational grids were generated. Turbulence intensity, vorticity, and the velocity distribution of different cross sections were gained. The velocity simulation results were compared with the LDV test results, and the results indicated that Large Eddy Simulation was more close to LDV experimental data. Large Eddy Simulation was a relatively appropriate method for simulation of flow field within a hydrocyclone.
Numerical simulation of floating bodies in extreme free surface waves
Directory of Open Access Journals (Sweden)
Z. Z. Hu
2011-02-01
Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Multifactor estimation of ecological risks using numerical simulation
Voskoboynikova, G.; Shalamov, K.; Khairetdinov, M.; Kovalevsky, V.
2017-10-01
In this paper, the problem of interaction of acoustic waves falling at a given angle on a snow layer on the ground and seismic waves arising both in this layer and in the ground is considered. A system of differential equations with boundary conditions describing the propagation of incident and reflected acoustic waves in the air refracted and reflected from the boundary of seismic waves in elastic media (snow and ground) is constructed and solved for a three-layer air-snow layer-ground model. The coefficients of reflection and refraction are calculated in the case of an acoustic wave falling onto both the ground and snow on the ground. The ratio of the energy of the refracted waves to the energy of the falling acoustic wave is obtained. It is noted that snow has a strong influence on the energy transfer into the ground, which can decrease by more than an order of magnitude. The numerical results obtained are consistent with the results of field experiments with a vibrational source performed by the Siberian Branch of the Russian Academy of Sciences.
Statistical mechanics of dense plasmas: numerical simulation and theory
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-10-01
Recent Monte Carlo calculations from Paris and from Livermore for dense one and two component plasmas have led to systematic and accurate results for the thermodynamic properties of dense Coulombic fluids. This talk will summarize the results of these numerical experiments, and the simple analytic expressions for the equation of state and other thermodynamic functions that have been obtained. The thermal energy for the one component plasma has a simple power law dependence on temperature that is identical to Monte Carlo results on strongly coupled fluids governed by l/r/sup n/ potentials. A universal model for fluids governed by simple repulsive forces is suggested. For two component plasmas the ion-sphere model is shown to accurately reproduce the Monte Carlo data for the static portion of the energy. Electron screening is included using the Lindhard dielectric function and linear response theory. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Numerical simulation of pollutant dispersion in urban roadway tunnels
Directory of Open Access Journals (Sweden)
Jingliang Dong
2017-03-01
Full Text Available Vehicular toxic emissions can easily contaminate the air quality of the enclosed tunnel environment, especially during rush hours with traffic jam events or low vehicle speeds, which poses serious health hazards to road utilizers. The piston effect generated by moving vehicles was normally considered adequate to discharge vitiated air out of short tunnel based on a typical driving speed. However, complex traffic conditions may yield unexpected consequences on in-tunnel air quality levels. This study numerically investigated the CO2 concentration to identify the in-tunnel pollutant dispersion under three traffic conditions including severe traffic congestion and traffic flow with low vehicle speeds. Fan conditions were considered to model the influence of mechanical winds on pollutant dispersion and comparison with vehicular piston effect was also performed. The results revealed elevated pollutant concentration regions were found at the vicinity of near-ground region and tunnel downstream. The vehicular piston effect can sufficiently remove the in-tunnel vehicular emissions when vehicles travel at relatively higher speed. However, pollutant accumulation occurs when vehicles are idling or moving at slow speed. Compared with traffic piston effect at high travelling speed, the mechanical ventilation of ceiling mounted fans only generate a limited contribution to the removal of emissions.
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
Numerical simulations of convection in the titanium reduction reactor
Teimurazov, A.; Frick, P.; Weber, N.; Stefani, F.
2017-11-01
We introduce a hydrodynamic model of convective flows in a titanium reduction reactor. The reactor retort is a cylindrical vessel with a radius of 0.75 m and a height up to 4 m, filled with liquid magnesium at a temperature of 850°C. The exothermic chemical reaction on the metal surface, cooling of the side wall and heating of the lower part of the retort cause strong temperature gradients in the reactor during the process. These temperature gradients cause intensive convective flows inside the reactor. As a result of the reaction, a block of titanium sponge grows at the retort bottom and the magnesium salt, whose density is close to the density of magnesium, settles down. The process of magnesium salt settling in a titanium reduction reactor was numerically studied in a two-dimensional (full size model) and three-dimensional (30% size of the real model) non-stationary formulation. A detailed analysis was performed for configurations with and without presence of convective flow due to work of furnace heaters. It has been established that magnesium salt is settling in drops with sizes from ≈ 3 cm to ≈ 10 cm. It was shown that convective flow can entrain the drop and carry it with the vortex.
Numerical simulation and fabrication of silicon sheet via spin casting.
Lee, Jaewoo; Kim, Hyunhui; Lee, Changbum; Kim, Joonsoo; Jang, Bo-Yun; Lee, Jinseok; Ahn, Youngsoo; Yoon, Wooyoung
2013-05-01
A spin-casting process for fabricating polycrystalline silicon sheets for use as solar cell wafers is proposed, and the parameters that control the sheet thickness are investigated. A numerical study of the fluidity of molten silicon indicates that the formation of thin silicon sheets without a mold and via spin casting is feasible. The faster the rotation speed of graphite mold, the thinner the thickness of sheet. After the spread of the molten silicon to cover the graphite mold with rotation speed of above 500 rpm, the solidification has to start. Silicon sheets can be produced by using the centrifugal force under appropriate experimental conditions. The spin-cast sheet had a vertical columnar microstructure due to the normal heat extraction to the substrate, and the sheet lifetime varied from 0.1 microS to 0.3 microS measured by using the microwave photoconductance decay (MW-PCD) to confirm that the spin-cast silicon sheet is applicable to photovoltaics.
Direct numerical simulation of MHD flow with electrically conducting wall
International Nuclear Information System (INIS)
Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.
2006-01-01
The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget
Numerical Simulation of LVAD Inflow Cannulas with Different Tip
Directory of Open Access Journals (Sweden)
Guang-Mao Liu
2012-01-01
Full Text Available The tip structure of LVAD inflow cannula is one of major factors to lead adverse events such as thrombosis and suction leading to obstruction. In this research, four kinds of tips that had been used in inflow cannulas were selected and designed. The flow field of the four inflow cannulas inserted into the apex of left ventricle (LV was numerically computed by computational fluid dynamics. The flow behavior was analyzed in order to compare the blood compatibility and suction in left ventricle and cannulas after the inflow cannulas with different tips were inserted to the apex of LV. The results showed that the cannula tip structure affected the LVAD performance. Among these four cannulas, the trumpet-tipped inflow cannula owned the best performance in smooth flow velocity distribution without backflow or low-velocity flow so that it was the best in blood compatibility. Nevertheless, the caged tipped cannula was the worst in blood compatibility. And the blunt-tipped and beveled tipped inflow cannulas may obstruct more easily than trumpet and caged tipped inflow cannulas because of their shape. The study indicated that the trumpet tip was the most preferable for the inflow cannula of long-term LVAD.
Numerical Simulations of X-Ray Free Electron Lasers (XFEL)
Antonelli, Paolo
2014-11-04
We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].
Numerical simulation of interior flow field of nuclear model pump
International Nuclear Information System (INIS)
Wang Chunlin; Peng Na; Kang Can; Zhao Baitong; Zhang Hao
2009-01-01
Reynolds time-averaged N-S equations and the standard k-ε turbulent model were adopted, and three-dimensional non-structural of tetrahedral mesh division was used for modeling. Multiple reference frame model of rotating fluid mechanical model was used, under the design condition, the three-dimensional incompressible turbulent flow of nuclear model pump was simulated, and the results preferably post the characteristics of the interior flow field. This paper first analyzes the total pressure and velocity distribution in the flow field, and then describes the interior flow field characteristics of each part such as the impeller, diffuser and spherical shell, and also discusses the reasons that cause these characteristics. The study results can be used to estimate the performance of nuclear model pump, and will provide some useful references for its hydraulic optimized design. (authors)
Numerical simulation research on cementing displacement in the expanding hole
Li, Xiaolin; Xin, Jingmin; Zou, Qiang
2017-05-01
Due to the influence of geofactor, drilling fluid and construction work, irregular boreholes appear during the drilling, which will lead to poor cementing quality. Taking the well as an example, according to the phenomenon of lower displacement efficiency and serious mixing slurry during cementing in the out of round oversized hole, simulation and experimental research are carried out, how the displacement capacity affects the displacement efficiency is analyzed and the mixing cement strength test is carried out. Finally it is proposed that combined displacement can be used during cementing in the out of round oversized hole. Before the out of round oversized hole, displace in normal pump capacity. When the displacement interface flow to the out of round oversized whole, small displacement capacity is used.
Protocol-independent granular temperature supported by numerical simulations
Becker, Volker; Kassner, Klaus
2015-11-01
A possible approach to the statistical description of granular assemblies starts from Edwards's assumption that all blocked states occupying the same volume are equally probable [Edwards and Oakeshott, Physica A 157, 1080 (1989)], 10.1016/0378-4371(89)90034-4. We performed computer simulations using two-dimensional polygonal particles excited periodically according to two different protocols: excitation by pulses of "negative gravity" and excitation by "rotating gravity." The first protocol exhibits a nonmonotonous dependency of the mean volume fraction on the pulse strength. The overlapping histogram method is used in order to test whether the volume distribution is described by a Boltzmann-like distribution and to calculate the inverse compactivity as well as the logarithm of the partition sum. We find that the mean volume is a unique function of the measured granular temperature, independently of the protocol and of the branch in ϕ (g ) , and that all determined quantities are in agreement with Edwards's theory.
Numerical simulation of mechanical behavior of composite materials
Oller, Sergio
2014-01-01
An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...
Numerical simulation of a biomass fired grate boiler
DEFF Research Database (Denmark)
Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen
2006-01-01
Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...