WorldWideScience

Sample records for point-spread functions based

  1. Scattering and the Point Spread Function of the New Generation Space Telescope

    Science.gov (United States)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called

  2. Optimization of hybrid imaging systems based on maximization of kurtosis of the restored point spread function

    DEFF Research Database (Denmark)

    Demenikov, Mads

    2011-01-01

    to optimization results based on full-reference image measures of restored images. In comparison with full-reference measures, the kurtosis measure is fast to compute and requires no images, noise distributions, or alignment of restored images, but only the signal-to-noise-ratio. © 2011 Optical Society of America.......I propose a novel, but yet simple, no-reference, objective image quality measure based on the kurtosis of the restored point spread function. Using this measure, I optimize several phase masks for extended-depth-of-field in hybrid imaging systems and obtain results that are identical...

  3. Proper Analytic Point Spread Function for Lateral Modulation

    Science.gov (United States)

    Sumi, Chikayoshi; Shimizu, Kunio; Matsui, Norihiko

    2010-07-01

    For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.

  4. Point-spread function in depleted and partially depleted CCDs

    International Nuclear Information System (INIS)

    Groom, D.E.; Eberhard, P.H.; Holland, S.E.; Levi, M.E.; Palaio, N.P.; Perlmutter, S.; Stover, R.J.; Wei, M.

    1999-01-01

    The point spread function obtainable in an astronomical instrument using CCD readout is limited by a number of factors, among them the lateral diffusion of charge before it is collected in the potential wells. They study this problem both theoretically and experimentally, with emphasis on the thick CCDs on high-resistivity n-type substrates being developed at Lawrence Berkeley National Laboratory

  5. Relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF) in CT image system

    International Nuclear Information System (INIS)

    Ohkubo, Masaki; Wada, Shinichi; Kobayashi, Teiji; Lee, Yongbum; Tsai, Du-Yih

    2004-01-01

    In the CT image system, we revealed the relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF). In the system, the following equation has been reported; I(x,y)=O(x,y) ** PSF(x,y), in which I(x,y) and O(x,y) are CT image and object function, respectively, and ** is 2-dimensional convolution. In the same way, the following 3-dimensional expression applies; I'(x,y,z)=O'(x,y,z) *** PSF'(x,y,z), in which z-axis is the direction perpendicular to the x/y-scan plane. We defined that the CT image system was separable, when the above two equations could be transformed into following equations; I(x,y)=[O(x,y) * LSF x (x)] * LSF y (y) and I'(x,y,z) =[O'(x,y,z) * SSP(z)] ** PSF(x,y), respectively, in which LSF x (x) and LSF y (y) are LSFs in x- and y-direction, respectively. Previous reports for the LSF and SSP are considered to assume the separable-system. Under the condition of separable-system, we derived following equations; PSF(x,y)=LSF x (x) ·LSF y (y) and PSF'(x,y,z)=PSF(x,y)·SSP(z). They were validated by the computer-simulations. When the study based on 1-dimensional functions of LSF and SSP are expanded to that based on 2- or 3-dimensional functions of PSF, derived equations must be required. (author)

  6. Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source

    Directory of Open Access Journals (Sweden)

    Taisuke Murata

    2016-10-01

    Full Text Available Abstract Background The point spread function (PSF of positron emission tomography (PET depends on the position across the field of view (FOV. Reconstruction based on PSF improves spatial resolution and quantitative accuracy. The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design. Methods We used Discovery 600 and Discovery 710 (GE Healthcare PET scanners and traceable point-like 22Na sources (<1 MBq with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons. The source was moved in three directions at intervals of 1 cm from the center towards the peripheral FOV using a three-dimensional (3D-positioning robot, and data were acquired over a period of 2 min per point. The PET data were reconstructed by filtered back projection (FBP, the ordered subset expectation maximization (OSEM, OSEM + PSF, and OSEM + PSF + time-of-flight (TOF. Full width at half maximum (FWHM was determined according to the NEMA method, and total counts in regions of interest (ROI for each reconstruction were quantified. Results The radial FWHM of FBP and OSEM increased towards the peripheral FOV, whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at the center of the FOV. The accuracy of PSF correction was independent of detector design. Quantitative values were stable across the FOV in all reconstruction methods. The effect of TOF on spatial resolution and quantitation accuracy was less noticeable. Conclusions The traceable 22Na point-like source allowed the evaluation of spatial resolution and quantitative accuracy across the FOV using different reconstruction methods and scanners. PSF-based reconstruction reduces dependence of the spatial resolution on the

  7. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions.

    Science.gov (United States)

    Braat, Joseph; Dirksen, Peter; Janssen, Augustus J E M

    2002-05-01

    We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on ecently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.

  8. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  9. 4Pi microscopy deconvolution with a variable point-spread function.

    Science.gov (United States)

    Baddeley, David; Carl, Christian; Cremer, Christoph

    2006-09-20

    To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.

  10. In-flight calibration of the Swift XRT Point Spread Function

    International Nuclear Information System (INIS)

    Moretti, A.; Campana, S.; Chincarini, G.; Covino, S.; Romano, P.; Tagliaferri, G.; Capalbi, M.; Giommi, P.; Perri, M.; Cusumano, G.; La Parola, V.; Mangano, V.; Mineo, T.

    2006-01-01

    The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2-10 keV. Here we report the results of the analysis of Swift XRT Point Spread Function (PSF) as measured in the first four months of the mission during the instrument calibration phase. The analysis includes the study of the PSF of different point-like sources both on-axis and off-axis with different spectral properties. We compare the in-flight data with the expectations from the on-ground calibration. On the basis of the calibration data we built an analytical model to reproduce the PSF as a function of the energy and the source position within the detector which can be applied in the PSF correction calculation for any extraction region geometry. All the results of this study are implemented in the standard public software

  11. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  12. High precision wavefront control in point spread function engineering for single emitter localization

    NARCIS (Netherlands)

    Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.

    2018-01-01

    Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can

  13. Plasmon point spread functions: How do we model plasmon-mediated emission processes?

    Science.gov (United States)

    Willets, Katherine A.

    2014-02-01

    A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ˜5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the location of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread functions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.

  14. Measurement of the point spread function of a pixelated detector array

    Energy Technology Data Exchange (ETDEWEB)

    Ritzer, Christian; Hallen, Patrick; Schug, David; Schulz, Volkmar [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany)

    2015-05-18

    In order to further understand the PET/MRI scanner of our group, we measured the point spread function of a preclinical scintillation crystal array with a pitch of 1 mm and a total size of 30 mm ~ 30 mm ~ 12 mm. It is coupled via a lightguide to a dSiPM from Philips Digital Photon Counting, used on the TEK-setup. Crystal identification is done with a centre of gravity algorithm and the whole data analysis is performed with the same processing software as for the PET insert, giving comparable results. The beam is created with a 22 NA-Point-Source and a lead collimator, with 0.5 mm bore diameter. The algorithm sorted 62 % of the coincidences into the correct crystal.

  15. Measurement of the point spread function of a pixelated detector array

    International Nuclear Information System (INIS)

    Ritzer, Christian; Hallen, Patrick; Schug, David; Schulz, Volkmar

    2015-01-01

    In order to further understand the PET/MRI scanner of our group, we measured the point spread function of a preclinical scintillation crystal array with a pitch of 1 mm and a total size of 30 mm ~ 30 mm ~ 12 mm. It is coupled via a lightguide to a dSiPM from Philips Digital Photon Counting, used on the TEK-setup. Crystal identification is done with a centre of gravity algorithm and the whole data analysis is performed with the same processing software as for the PET insert, giving comparable results. The beam is created with a 22 NA-Point-Source and a lead collimator, with 0.5 mm bore diameter. The algorithm sorted 62 % of the coincidences into the correct crystal.

  16. Influence of Signal-to-Noise Ratio and Point Spread Function on Limits of Super-Resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Vliet, L.J. van; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of low resolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  17. Influence of signal-to-noise ratio and point spread function on limits of super-resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of lowresolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  18. Estimation Methods of the Point Spread Function Axial Position: A Comparative Computational Study

    Directory of Open Access Journals (Sweden)

    Javier Eduardo Diaz Zamboni

    2017-01-01

    Full Text Available The precise knowledge of the point spread function is central for any imaging system characterization. In fluorescence microscopy, point spread function (PSF determination has become a common and obligatory task for each new experimental device, mainly due to its strong dependence on acquisition conditions. During the last decade, algorithms have been developed for the precise calculation of the PSF, which fit model parameters that describe image formation on the microscope to experimental data. In order to contribute to this subject, a comparative study of three parameter estimation methods is reported, namely: I-divergence minimization (MIDIV, maximum likelihood (ML and non-linear least square (LSQR. They were applied to the estimation of the point source position on the optical axis, using a physical model. Methods’ performance was evaluated under different conditions and noise levels using synthetic images and considering success percentage, iteration number, computation time, accuracy and precision. The main results showed that the axial position estimation requires a high SNR to achieve an acceptable success level and higher still to be close to the estimation error lower bound. ML achieved a higher success percentage at lower SNR compared to MIDIV and LSQR with an intrinsic noise source. Only the ML and MIDIV methods achieved the error lower bound, but only with data belonging to the optical axis and high SNR. Extrinsic noise sources worsened the success percentage, but no difference was found between noise sources for the same method for all methods studied.

  19. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET.

    Science.gov (United States)

    Rapisarda, E; Bettinardi, V; Thielemans, K; Gilardi, M C

    2010-07-21

    The interest in positron emission tomography (PET) and particularly in hybrid integrated PET/CT systems has significantly increased in the last few years due to the improved quality of the obtained images. Nevertheless, one of the most important limits of the PET imaging technique is still its poor spatial resolution due to several physical factors originating both at the emission (e.g. positron range, photon non-collinearity) and at detection levels (e.g. scatter inside the scintillating crystals, finite dimensions of the crystals and depth of interaction). To improve the spatial resolution of the images, a possible way consists of measuring the point spread function (PSF) of the system and then accounting for it inside the reconstruction algorithm. In this work, the system response of the GE Discovery STE operating in 3D mode has been characterized by acquiring (22)Na point sources in different positions of the scanner field of view. An image-based model of the PSF was then obtained by fitting asymmetric two-dimensional Gaussians on the (22)Na images reconstructed with small pixel sizes. The PSF was then incorporated, at the image level, in a three-dimensional ordered subset maximum likelihood expectation maximization (OS-MLEM) reconstruction algorithm. A qualitative and quantitative validation of the algorithm accounting for the PSF has been performed on phantom and clinical data, showing improved spatial resolution, higher contrast and lower noise compared with the corresponding images obtained using the standard OS-MLEM algorithm.

  20. In-flight calibration of the Hitomi Soft X-ray Spectrometer. (2) Point spread function

    Science.gov (United States)

    Maeda, Yoshitomo; Sato, Toshiki; Hayashi, Takayuki; Iizuka, Ryo; Angelini, Lorella; Asai, Ryota; Furuzawa, Akihiro; Kelley, Richard; Koyama, Shu; Kurashima, Sho; Ishida, Manabu; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Serlemitsos, Peter J.; Tsujimoto, Masahiro; Yaqoob, Tahir

    2018-03-01

    We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1 {^'.} 2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 σ). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.

  1. Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors

    International Nuclear Information System (INIS)

    Nowlin, C.H.

    1976-07-01

    This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions

  2. Point spread function engineering for iris recognition system design.

    Science.gov (United States)

    Ashok, Amit; Neifeld, Mark A

    2010-04-01

    Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.

  3. Point spread function due to multiple scattering of light in the atmosphere

    International Nuclear Information System (INIS)

    Pękala, J.; Wilczyński, H.

    2013-01-01

    The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower

  4. Fast and accurate three-dimensional point spread function computation for fluorescence microscopy.

    Science.gov (United States)

    Li, Jizhou; Xue, Feng; Blu, Thierry

    2017-06-01

    The point spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accurately calculated PSF model can significantly improve the performance in 3D deconvolution microscopy and also the localization accuracy in single-molecule microscopy. In this work, we propose a fast and accurate approximation of the Gibson-Lanni model, which has been shown to represent the PSF suitably under a variety of imaging conditions. We express the Kirchhoff's integral in this model as a linear combination of rescaled Bessel functions, thus providing an integral-free way for the calculation. The explicit approximation error in terms of parameters is given numerically. Experiments demonstrate that the proposed approach results in a significantly smaller computational time compared with current state-of-the-art techniques to achieve the same accuracy. This approach can also be extended to other microscopy PSF models.

  5. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations

    Science.gov (United States)

    Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.

    2018-02-01

    Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.

  6. Analysis of point source size on measurement accuracy of lateral point-spread function of confocal Raman microscopy

    Science.gov (United States)

    Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang

    2018-01-01

    Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.

  7. Finding Exoplanets Using Point Spread Function Photometry on Kepler Data

    Science.gov (United States)

    Amaro, Rachael Christina; Scolnic, Daniel; Montet, Ben

    2018-01-01

    The Kepler Mission has been able to identify over 5,000 exoplanet candidates using mostly aperture photometry. Despite the impressive number of discoveries, a large portion of Kepler’s data set is neglected due to limitations using aperture photometry on faint sources in crowded fields. We present an alternate method that overcomes those restrictions — Point Spread Function (PSF) photometry. This powerful tool, which is already used in supernova astronomy, was used for the first time on Kepler Full Frame Images, rather than just looking at the standard light curves. We present light curves for stars in our data set and demonstrate that PSF photometry can at least get down to the same photometric precision as aperture photometry. As a check for the robustness of this method, we change small variables (stamp size, interpolation amount, and noise correction) and show that the PSF light curves maintain the same repeatability across all combinations for one of our models. We also present our progress in the next steps of this project, including the creation of a PSF model from the data itself and applying the model across the entire data set at once.

  8. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    Science.gov (United States)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  9. Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui

    2017-06-01

    Full Text Available Objective(s: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF-based positron emission tomography (PET image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax and the mean recovery coefficient (RCmean in the phantom at different diameters.Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2. The RCmean of the OSEM with PSF images did not exceed 100%.Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.

  10. Extended Nijboer-Zernike approach for the computation of optical point-spread functions.

    Science.gov (United States)

    Janssen, Augustus J E M

    2002-05-01

    New Bessel-series representations for the calculation of the diffraction integral are presented yielding the point-spread function of the optical system, as occurs in the Nijboer-Zernike theory of aberrations. In this analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full detail for the cases of coma and astigmatism. The analysis leads to stably converging results in the case of large aberration or defocus values, while the applicability of the original Nijboer-Zernike theory is limited mainly to wave-front deviations well below the value of one wavelength. Because of its intrinsic speed, the analysis is well suited to supplement or to replace numerical calculations that are currently used in the fields of (scanning) microscopy, lithography, and astronomy. In a companion paper [J. Opt. Soc. Am. A 19, 860 (2002)], physical interpretations and applications in a lithographic context are presented, a convergence analysis is given, and a comparison is made with results obtained by using a numerical package.

  11. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-02-01

    Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  12. The point spread function of the human head and its implications for transcranial current stimulation

    International Nuclear Information System (INIS)

    Dmochowski, Jacek P; Bikson, Marom; Parra, Lucas C

    2012-01-01

    Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode–cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown. (paper)

  13. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  14. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  15. Measurement of the point spread function and effective area of the Solar-A Soft X-ray Telescope mirror

    Science.gov (United States)

    Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.

    1989-01-01

    A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.

  16. Functional properties of a new spread based on olive oil and honeybees

    Directory of Open Access Journals (Sweden)

    Asma Tekiki

    2018-01-01

    Full Text Available a new alimentary concept has been developed since the 80’s. This one is called “functional food”.  In this context, the olive oil and honey are traditionally used in their initial state as a basic food. They are considered as a potential source of new bioactive products from which we can formulate several functional foods. This work will focus on the elaboration of a new spread of honey and olive oil using beeswax as an emulsifier. Physical-chemical characterization, antioxidant and antibacterial activity were evaluated. As for the phenols content, spreads prepared from thyme honey has the highest content (337 mg GAE/kg compared to other spreads. The antioxidant activity was evaluated by three different methods namely: DPPH test, ABTS + test and the iron reduction method (FRAP which proves that this last has a higher activity than the other spreads (EC50 of 70 mg /L using DPPH, EC50 of 20 mg /L using ABTS. An agar-well diffusion assay was used to assess the activity of honeys against seven bacteria strains. All prepared spreads honey samples showed highest antibacterial activity against all bacterial strains tested (diameter of ZI > 20mm. Hence, we note that our new spread proved by excellence to be a functional food due to the high content of phenols and the important antibacterial and antioxidant activities.

  17. Effect of rotational diffusion in an orientational potential well on the point spread function of electric dipole emitters.

    Science.gov (United States)

    Stallinga, Sjoerd

    2015-02-01

    A study is presented of the point spread function (PSF) of electric dipole emitters that go through a series of absorption-emission cycles while the dipole orientation is changing due to rotational diffusion within the constraint of an orientational potential well. An analytical expression for the PSF is derived valid for arbitrary orientational potential wells in the limit of image acquisition times much larger than the rotational relaxation time. This framework is used to study the effects of the direction of incidence, polarization, and degree of coherence of the illumination. In the limit of fast rotational diffusion on the scale of the fluorescence lifetime the illumination influences only the PSF height, not its shape. In the limit of slow rotational diffusion on the scale of the fluorescence lifetime there is a significant effect on the PSF shape as well, provided the illumination is (partially) coherent. For oblique incidence, illumination asymmetries can arise in the PSF that give rise to position offsets in localization based on Gaussian spot fitting. These asymmetries persist in the limit of free diffusion in a zero orientational potential well.

  18. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship.

    Science.gov (United States)

    Frostig, Ron D; Chen-Bee, Cynthia H; Johnson, Brett A; Jacobs, Nathan S

    2017-07-01

    This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.

  19. “Hot Hand” in the National Basketball Association Point Spread Betting Market: A 34-Year Analysis

    Directory of Open Access Journals (Sweden)

    Benjamin Waggoner

    2014-11-01

    Full Text Available Several articles have looked at factors that affect the adjustments of point spreads, based on hot hands or streaks, for smaller durations of time. This study examines these effects for 34 regular seasons in the National Basketball Association (NBA. Estimating a Seemingly Unrelated Regression model using all 34 seasons, all streaks significantly impacted point spreads and difference in actual points. When estimating each season individually, differences emerged particularly examining winning and losing streaks of six games or more. The results indicate both the presence of momentum effects and the gambler’s fallacy.

  20. Sensory evaluation of commercial fat spreads based on oilseeds and walnut

    Directory of Open Access Journals (Sweden)

    Dimić Etelka B.

    2013-01-01

    Full Text Available The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and amounts of separated oil on the surface were determined for each spread. The results have shown that the color of spreads was very different, depending on the oilseed: gray for sunflower, brown for walnut, yellowish-brown for peanut butter, ivory for sesame and profoundly dark green for pumpkin seeds spread. The flavor and odor of the spreads were characteristic for the raw materials used; however, the sunflower and walnut spreads had a slight rancid flavor. Generally, the spreadability of all spreads was good, but their mouth feel was not acceptable. During the consumption, all of them were sticking immensely to the roof of the mouth, which made the swallowing harder. The highest total score of 16.20 points (max. 20 was obtained for the peanut butter, while the lowest (10.38 was achieved by the sunflower butter. Oil separation (various degrees was noticed in all spreads, which negatively influenced the appearance and entire sensorial quality of the products. The quantity of separated oil depended on the age and total amount of oil in the spreads, and was between 1.13% in the peanut butter and 12.15% in the walnut spread in reference to the net weight of the product. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014: Development of the new functional confectionery products based on oil crops

  1. Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function

    International Nuclear Information System (INIS)

    Fdida, Nicolas; Blaisot, Jean-Bernard

    2010-01-01

    Measurement of drop size distributions in a spray depends on the definition of the control volume for drop counting. For image-based techniques, this implies the definition of a depth-of-field (DOF) criterion. A sizing procedure based on an imaging model and associated with a calibration procedure is presented. Relations between image parameters and object properties are used to provide a measure of the size of the droplets, whatever the distance from the in-focus plane. A DOF criterion independent of the size of the drops and based on the determination of the width of the point spread function (PSF) is proposed. It allows to extend the measurement volume to defocused droplets and, due to the calibration of the PSF, to clearly define the depth of the measurement volume. Calibrated opaque discs, calibrated pinholes and an optical edge are used for this calibration. A comparison of the technique with a phase Doppler particle analyser and a laser diffraction granulometer is performed on an application to an industrial spray. Good agreement is found between the techniques when particular care is given to the sampling of droplets. The determination of the measurement volume is used to determine the drop concentration in the spray and the maximum drop concentration that imaging can support

  2. Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images. A study based on phantom experiments and clinical images

    International Nuclear Information System (INIS)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho

    2014-01-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV. (author)

  3. [Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images: a study based on phantom experiments and clinical images].

    Science.gov (United States)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko

    2014-06-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.

  4. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixing; Yang, LV [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Xu, Kele [College of Electronical Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Zhu, Li [Institute of Electrostatic and Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang, Hebei (China)

    2016-06-15

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape - to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.

  5. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models

    NARCIS (Netherlands)

    Hara, T.; Hofstad, van der R.W.; Slade, G.

    2003-01-01

    We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on ${\\mathbb{Z}^d}$, having long finite-range connections, above their upper critical dimensions $d=4$ (self-avoiding walk), $d=6$ (percolation) and $d=8$ (trees and animals). The two-point

  6. On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions

    Science.gov (United States)

    Becherer, Nico; Jödicke, Hanna; Schlosser, Gregor; Hesser, Jürgen; Zeilfelder, Frank; Männer, Reinhard

    2006-02-01

    Blur and noise originating from the physical imaging processes degrade the microscope data. Accurate deblurring techniques require, however, an accurate estimation of the underlying point-spread function (PSF). A good representation of PSFs can be achieved by Zernike Polynomials since they offer a compact representation where low-order coefficients represent typical aberrations of optical wavefronts while noise is represented in higher order coefficients. A quantitative description of the noise distribution (Gaussian) over the Zernike moments of various orders is given which is the basis for the new soft clipping approach for denoising of PSFs. Instead of discarding moments beyond a certain order, those Zernike moments that are more sensitive to noise are dampened according to the measured distribution and the present noise model. Further, a new scheme to combine experimental and theoretical PSFs in Zernike space is presented. According to our experimental reconstructions, using the new improved PSF the correlation between reconstructed and original volume is raised by 15% on average cases and up to 85% in the case of thin fibre structures, compared to reconstructions where a non improved PSF was used. Finally, we demonstrate the advantages of our approach on 3D images of confocal microscopes by generating visually improved volumes. Additionally, we are presenting a method to render the reconstructed results using a new volume rendering method that is almost artifact-free. The new approach is based on a Shear-Warp technique, wavelet data encoding techniques and a recent approach to approximate the gray value distribution by a Super spline model.

  7. Application of Deconvolution Algorithm of Point Spread Function in Improving Image Quality: An Observer Preference Study on Chest Radiography.

    Science.gov (United States)

    Chae, Kum Ju; Goo, Jin Mo; Ahn, Su Yeon; Yoo, Jin Young; Yoon, Soon Ho

    2018-01-01

    To evaluate the preference of observers for image quality of chest radiography using the deconvolution algorithm of point spread function (PSF) (TRUVIEW ART algorithm, DRTECH Corp.) compared with that of original chest radiography for visualization of anatomic regions of the chest. Prospectively enrolled 50 pairs of posteroanterior chest radiographs collected with standard protocol and with additional TRUVIEW ART algorithm were compared by four chest radiologists. This algorithm corrects scattered signals generated by a scintillator. Readers independently evaluated the visibility of 10 anatomical regions and overall image quality with a 5-point scale of preference. The significance of the differences in reader's preference was tested with a Wilcoxon's signed rank test. All four readers preferred the images applied with the algorithm to those without algorithm for all 10 anatomical regions (mean, 3.6; range, 3.2-4.0; p chest anatomical structures applied with the deconvolution algorithm of PSF was superior to the original chest radiography.

  8. The point-spread function measure of resolution for the 3-D electrical resistivity experiment

    Science.gov (United States)

    Oldenborger, Greg A.; Routh, Partha S.

    2009-02-01

    The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.

  9. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  10. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  11. High precision wavefront control in point spread function engineering for single emitter localization

    Science.gov (United States)

    Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.

    2018-04-01

    Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.

  12. Comparative study on spreading function for directional wave spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    -dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...

  13. Hidden symmetry of the beam spread function resulting from the reciprocity theorem

    International Nuclear Information System (INIS)

    Dolin, Lev S.

    2016-01-01

    It is shown that the optical reciprocity theorem imposes certain constraints on the radiation field structure of a unidirectional point source (beam spread function (BSF)) in a turbid medium with spatially uniform optical properties. To satisfy the reciprocal relation, the BSF should have an additional symmetry property along with axial symmetry. This paper mathematically formulates the BSF symmetry condition that follows from the reciprocity theorem and discusses test results of some approximate analytical BSF models for their compliance with the symmetry requirement. A universal method for eliminating symmetry errors of approximate BSF models is proposed. - Highlights: • Symmetry properties of beam spread function (BSF) are considered. • In uniform turbid medium BSF has hidden symmetry property besides axial symmetry. • The examples of BSF models with and without the required symmetry are given. • A universal method for BSF symmetry error elimination is proposed.

  14. Fluorescence microscopy point spread function model accounting for aberrations due to refractive index variability within a specimen.

    Science.gov (United States)

    Ghosh, Sreya; Preza, Chrysanthe

    2015-07-01

    A three-dimensional (3-D) point spread function (PSF) model for wide-field fluorescence microscopy, suitable for imaging samples with variable refractive index (RI) in multilayered media, is presented. This PSF model is a key component for accurate 3-D image restoration of thick biological samples, such as lung tissue. Microscope- and specimen-derived parameters are combined with a rigorous vectorial formulation to obtain a new PSF model that accounts for additional aberrations due to specimen RI variability. Experimental evaluation and verification of the PSF model was accomplished using images from 175-nm fluorescent beads in a controlled test sample. Fundamental experimental validation of the advantage of using improved PSFs in depth-variant restoration was accomplished by restoring experimental data from beads (6  μm in diameter) mounted in a sample with RI variation. In the investigated study, improvement in restoration accuracy in the range of 18 to 35% was observed when PSFs from the proposed model were used over restoration using PSFs from an existing model. The new PSF model was further validated by showing that its prediction compares to an experimental PSF (determined from 175-nm beads located below a thick rat lung slice) with a 42% improved accuracy over the current PSF model prediction.

  15. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity.

    Science.gov (United States)

    Kidera, Daisuke; Kihara, Ken; Akamatsu, Go; Mikasa, Shohei; Taniguchi, Takafumi; Tsutsui, Yuji; Takeshita, Toshiki; Maebatake, Akira; Miwa, Kenta; Sasaki, Masayuki

    2016-02-01

    The aim of this study was to quantitatively evaluate the edge artifacts in PET images reconstructed using the point-spread function (PSF) algorithm at different sphere-to-background ratios of radioactivity (SBRs). We used a NEMA IEC body phantom consisting of six spheres with 37, 28, 22, 17, 13 and 10 mm in inner diameter. The background was filled with (18)F solution with a radioactivity concentration of 2.65 kBq/mL. We prepared three sets of phantoms with SBRs of 16, 8, 4 and 2. The PET data were acquired for 20 min using a Biograph mCT scanner. The images were reconstructed with the baseline ordered subsets expectation maximization (OSEM) algorithm, and with the OSEM + PSF correction model (PSF). For the image reconstruction, the number of iterations ranged from one to 10. The phantom PET image analyses were performed by a visual assessment of the PET images and profiles, a contrast recovery coefficient (CRC), which is the ratio of SBR in the images to the true SBR, and the percent change in the maximum count between the OSEM and PSF images (Δ % counts). In the PSF images, the spheres with a diameter of 17 mm or larger were surrounded by a dense edge in comparison with the OSEM images. In the spheres with a diameter of 22 mm or smaller, an overshoot appeared in the center of the spheres as a sharp peak in the PSF images in low SBR. These edge artifacts were clearly observed in relation to the increase of the SBR. The overestimation of the CRC was observed in 13 mm spheres in the PSF images. In the spheres with a diameter of 17 mm or smaller, the Δ % counts increased with an increasing SBR. The Δ % counts increased to 91 % in the 10-mm sphere at the SBR of 16. The edge artifacts in the PET images reconstructed using the PSF algorithm increased with an increasing SBR. In the small spheres, the edge artifact was observed as a sharp peak at the center of spheres and could result in overestimation.

  16. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea; Sjoeholm, Nils; Gulyas, Balazs; Halldin, Christer; Farde, Lars [Karolinska Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm (Sweden); Eriksson, Lars [Karolinska Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm (Sweden); Siemens Molecular Imaging, Knoxville, TN (United States); University of Stockholm, Department of Physics, Stockholm (Sweden)

    2009-10-15

    Image reconstruction including the modelling of the point spread function (PSF) is an approach improving the resolution of the PET images. This study assessed the quantitative improvements provided by the implementation of the PSF modelling in the reconstruction of the PET data using the High Resolution Research Tomograph (HRRT). Measurements were performed on the NEMA-IEC/2001 (Image Quality) phantom for image quality and on an anthropomorphic brain phantom (STEPBRAIN). PSF reconstruction was also applied to PET measurements in two cynomolgus monkeys examined with [{sup 18}F]FE-PE2I (dopamine transporter) and with [{sup 11}C]MNPA (D{sub 2} receptor), and in one human subject examined with [{sup 11}C]raclopride (D{sub 2} receptor). PSF reconstruction increased the recovery coefficient (RC) in the NEMA phantom by 11-40% and the grey to white matter ratio in the STEPBRAIN phantom by 17%. PSF reconstruction increased binding potential (BP{sub ND}) in the striatum and midbrain by 14 and 18% in the [{sup 18}F]FE-PE2I study, and striatal BP{sub ND} by 6 and 10% in the [{sup 11}C]MNPA and [{sup 11}C]raclopride studies. PSF reconstruction improved quantification by increasing the RC and thus reducing the partial volume effect. This method provides improved conditions for PET quantification in clinical studies with the HRRT system, particularly when targeting receptor populations in small brain structures. (orig.)

  17. Development and Characterization of Carob Flour Based Functional Spread for Increasing Use as Nutritious Snack for Children

    Directory of Open Access Journals (Sweden)

    Sema Aydın

    2017-01-01

    Full Text Available Carob flour enriched functional spread was developed and textural, sensory, colour, and some nutritional properties of the product were investigated. Spread samples were prepared with major ingredients for optimisation and minor ingredients for improving texture and aroma. Major ingredients were carob flour and hydrogenated palm oil (HPO and minor ingredients were commercial skim milk powder, soya flour, lecithin, and hazelnut puree. The ratio of major ingredients was optimised using sensory scores and instrumental texture values to produce a carob spread that most closely resembles commercial chocolate spread (control, in both spreadability and overall acceptability. The amounts of minor ingredients (milk powder, 10%; soybean flour, 5%; lecithin, 1%; hazelnut puree, 4% were kept in constant ratio (20%. Addition of hydrogenated palm oil (HPO decreased the hardness and hardness work done (HWD values in contrast to carob flour. Higher rates of carob flour were linked to lower lightness, greenness, and yellowness values. Spread was optimised at 38 g carob flour/100 g spread and 42 g hydrogenated palm oil/100 g spread level and the formulation tended to receive the highest sensory scores compared to other spreads and presented closer instrumental spreadability values to control samples. This indicates a strong market potential for optimised carob spreads.

  18. A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    International Nuclear Information System (INIS)

    Barbee, David L; Holden, James E; Nickles, Robert J; Jeraj, Robert; Flynn, Ryan T

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised by partial volume effects which may affect treatment prognosis, assessment or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discovery LS at positions of increasing radii from the scanner's center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method's correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three-dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated

  19. Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system.

    Science.gov (United States)

    Shang, Kun; Cui, Bixiao; Ma, Jie; Shuai, Dongmei; Liang, Zhigang; Jansen, Floris; Zhou, Yun; Lu, Jie; Zhao, Guoguang

    2017-08-01

    Hybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets. This study evaluated 54 small lesions in 14 patients who had undergone 18 F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUV mean and SUV max ). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUV liver . OSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUV mean by 26.6% and the SUV max by 30.0%. The SUV liver was not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUV mean and SUV max for lesions PET/MR images, potentially improving small lesion detectability. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Intensity-dependent point spread image processing

    International Nuclear Information System (INIS)

    Cornsweet, T.N.; Yellott, J.I.

    1984-01-01

    There is ample anatomical, physiological and psychophysical evidence that the mammilian retina contains networks that mediate interactions among neighboring receptors, resulting in intersecting transformations between input images and their corresponding neural output patterns. The almost universally accepted view is that the principal form of interaction involves lateral inhibition, resulting in an output pattern that is the convolution of the input with a ''Mexican hat'' or difference-of-Gaussians spread function, having a positive center and a negative surround. A closely related process is widely applied in digital image processing, and in photography as ''unsharp masking''. The authors show that a simple and fundamentally different process, involving no inhibitory or subtractive terms can also account for the physiological and psychophysical findings that have been attributed to lateral inhibition. This process also results in a number of fundamental effects that occur in mammalian vision and that would be of considerable significance in robotic vision, but which cannot be explained by lateral inhibitory interaction

  1. DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: mdwood@slac.stanford.edu, E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2013-03-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.

  2. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    International Nuclear Information System (INIS)

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-01-01

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  3. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  4. Evaluation of the Effect of Tumor Position on Standardized Uptake Value Using Time-of-Flight Reconstruction and Point Spread Function

    Directory of Open Access Journals (Sweden)

    Yasuharu Wakabayashi

    2016-01-01

    Full Text Available Objective(s: The present study was conducted to examine whether the standardized uptake value (SUV may be affected by the spatial position of a lesion in the radial direction on positron emission tomography (PET images, obtained via two methods based on time-of-flight (TOF reconstruction and point spread function (PSF. Methods: A cylinder phantom with the sphere (30mm diameter, located in the center was used in this study. Fluorine-18 fluorodeoxyglucose (18F-FDG concentrations of 5.3 kBq/ml and 21.2 kBq/ml were used for the background in the cylinder phantom and the central sphere respectively. By the use of TOF and PSF, SUVmax and SUVmean were determined while moving the phantom in a horizontal direction (X direction from the center of field of view (FOV: 0 mm at 50, 100, 150 and 200 mm positions, respectively. Furthermore, we examined 41 patients (23 male, 18 female, mean age: 68±11.2 years with lymph node tumors , who had undergone 18F-FDG PET examinations. The distance of each lymph node from FOV center was measured, based on the clinical images. Results: As the distance of a lesion from the FOV center exceeded 100 mm, the value of SUVmax, which was obtained with the cylinder phantom, was overestimated, while SUVmean by TOF and/or PSF was underestimated. Based on the clinical examinations, the average volume of interest was 8.5 cm3. Concomitant use of PSF increased SUVmax and SUVmean by 27.9% and 2.8%, respectively. However, size of VOI and distance from the FOV center did not affect SUVmax or SUVmean in clinical examinations. Conclusion: The reliability of SUV quantification by TOF and/or PSF decreased, when the tumor was located at a 100 mm distance (or farther from the center of FOV. In clinical examinations, if the lymph node was located within 100 mm distance from the center of FOV, SUV remained stable within a constantly increasing range by use of both TOF and PSF. We conclude that, use of both TOF and PSF may be helpful.

  5. An agent-based computational model for tuberculosis spreading on age-structured populations

    Science.gov (United States)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  6. MIMO Based Eigen-Space Spreading

    National Research Council Canada - National Science Library

    Eltawil, Ahmed

    2004-01-01

    .... Combination of this powerful technique with orthogonal frequency division multiplexing (OFDM) based modulation and traditional time and frequency spreading techniques results in a highly secure mode of communications...

  7. A point-value enhanced finite volume method based on approximate delta functions

    Science.gov (United States)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  8. Method of Fusion Diagnosis for Dam Service Status Based on Joint Distribution Function of Multiple Points

    Directory of Open Access Journals (Sweden)

    Zhenxiang Jiang

    2016-01-01

    Full Text Available The traditional methods of diagnosing dam service status are always suitable for single measuring point. These methods also reflect the local status of dams without merging multisource data effectively, which is not suitable for diagnosing overall service. This study proposes a new method involving multiple points to diagnose dam service status based on joint distribution function. The function, including monitoring data of multiple points, can be established with t-copula function. Therefore, the possibility, which is an important fusing value in different measuring combinations, can be calculated, and the corresponding diagnosing criterion is established with typical small probability theory. Engineering case study indicates that the fusion diagnosis method can be conducted in real time and the abnormal point can be detected, thereby providing a new early warning method for engineering safety.

  9. An Ontology-Based Tourism Recommender System Based on Spreading Activation Model

    Science.gov (United States)

    Bahramian, Z.; Abbaspour, R. Ali

    2015-12-01

    A tourist has time and budget limitations; hence, he needs to select points of interest (POIs) optimally. Since the available information about POIs is overloading, it is difficult for a tourist to select the most appreciate ones considering preferences. In this paper, a new travel recommender system is proposed to overcome information overload problem. A recommender system (RS) evaluates the overwhelming number of POIs and provides personalized recommendations to users based on their preferences. A content-based recommendation system is proposed, which uses the information about the user's preferences and POIs and calculates a degree of similarity between them. It selects POIs, which have highest similarity with the user's preferences. The proposed content-based recommender system is enhanced using the ontological information about tourism domain to represent both the user profile and the recommendable POIs. The proposed ontology-based recommendation process is performed in three steps including: ontology-based content analyzer, ontology-based profile learner, and ontology-based filtering component. User's feedback adapts the user's preferences using Spreading Activation (SA) strategy. It shows the proposed recommender system is effective and improves the overall performance of the traditional content-based recommender systems.

  10. AN ONTOLOGY-BASED TOURISM RECOMMENDER SYSTEM BASED ON SPREADING ACTIVATION MODEL

    Directory of Open Access Journals (Sweden)

    Z. Bahramian

    2015-12-01

    Full Text Available A tourist has time and budget limitations; hence, he needs to select points of interest (POIs optimally. Since the available information about POIs is overloading, it is difficult for a tourist to select the most appreciate ones considering preferences. In this paper, a new travel recommender system is proposed to overcome information overload problem. A recommender system (RS evaluates the overwhelming number of POIs and provides personalized recommendations to users based on their preferences. A content-based recommendation system is proposed, which uses the information about the user’s preferences and POIs and calculates a degree of similarity between them. It selects POIs, which have highest similarity with the user’s preferences. The proposed content-based recommender system is enhanced using the ontological information about tourism domain to represent both the user profile and the recommendable POIs. The proposed ontology-based recommendation process is performed in three steps including: ontology-based content analyzer, ontology-based profile learner, and ontology-based filtering component. User’s feedback adapts the user’s preferences using Spreading Activation (SA strategy. It shows the proposed recommender system is effective and improves the overall performance of the traditional content-based recommender systems.

  11. Estimating Function Approaches for Spatial Point Processes

    Science.gov (United States)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting

  12. Effects of rewiring strategies on information spreading in complex dynamic networks

    Science.gov (United States)

    Ally, Abdulla F.; Zhang, Ning

    2018-04-01

    Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.

  13. Sensory evaluation of commercial fat spreads based on oilseeds and walnut

    OpenAIRE

    Dimić, Etelka B.; Vujasinović, Vesna B.; Radočaj, Olga F.; Borić, Bojan D.

    2013-01-01

    The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and ...

  14. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    Science.gov (United States)

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  15. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Science.gov (United States)

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  16. A density functional theory based approach for predicting melting points of ionic liquids.

    Science.gov (United States)

    Chen, Lihua; Bryantsev, Vyacheslav S

    2017-02-01

    Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro

  17. The spreading of radiolabelled fatty suppository bases in the human rectum

    International Nuclear Information System (INIS)

    Sugito, Keiko; Ogata, Hiroyasu; Noguchi, Masahiro; Kogure, Takahashi; Takano, Masaaki; Maruyama, Yuzo; Sasaki, Yasuhito

    1988-01-01

    The purpose of this study was to develop a radiolabelling method for assessing the spreading of fatty suppository bases (Witepsol H-5, W-35 and S-55), and to apply this technique to the evaluation of suppository disposition in the human rectum. 99m/Tc was bound chemically to the bases Witepsol H-5 and W-35, and mixed physically with Witepsol S-55. The spreading of each suppository base was monitored by gamma-scintigraphy following rectal administration. The mean radioactivity remaining at the inserted region 4 h after administration was 44.2% of total activity. The mean perpendicular maximum spreading distance from this region was 7.7 cm on the scintigram near to the sigmoid colon. Defecation was suggested to be a factor influencing the spread of suppository bases. However, there was no clear relationship between the type of suppository base used and the extent of its spread within the rectum. 6 refs.; 4 figs.; 1 table

  18. A ripple-spreading genetic algorithm for the aircraft sequencing problem.

    Science.gov (United States)

    Hu, Xiao-Bing; Di Paolo, Ezequiel A

    2011-01-01

    When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.

  19. Collateral damage: Spread of repeat-induced point mutation from a ...

    Indian Academy of Sciences (India)

    Unknown

    of the erg-3 gene, present in single copy, to the spread of RIP from duplications of adjoining sequences. Ge- ... RIP can spread across as much as 1 kb of unduplicated DNA. ... sequences that are > 500 bp and share > 80% similarity.

  20. Two- and three-point functions in Liouville theory

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1994-04-01

    Based on our generalization of the Goulian-Li continuation in the power of the 2D cosmological term we construct the two and three-point correlation functions for Liouville exponentials with generic real coefficients. As a strong argument in favour of the procedure we prove the Liouville equation of motion on the level of three-point functions. The analytical structure of the correlation functions as well as some of its consequences for string theory are discussed. This includes a conjecture on the mass shell condition for excitations of noncritical strings. We also make a comment concerning the correlation functions of the Liouville field itself. (orig.)

  1. Sequential function approximation on arbitrarily distributed point sets

    Science.gov (United States)

    Wu, Kailiang; Xiu, Dongbin

    2018-02-01

    We present a randomized iterative method for approximating unknown function sequentially on arbitrary point set. The method is based on a recently developed sequential approximation (SA) method, which approximates a target function using one data point at each step and avoids matrix operations. The focus of this paper is on data sets with highly irregular distribution of the points. We present a nearest neighbor replacement (NNR) algorithm, which allows one to sample the irregular data sets in a near optimal manner. We provide mathematical justification and error estimates for the NNR algorithm. Extensive numerical examples are also presented to demonstrate that the NNR algorithm can deliver satisfactory convergence for the SA method on data sets with high irregularity in their point distributions.

  2. Information spreading in Delay Tolerant Networks based on nodes' behaviors

    Science.gov (United States)

    Wu, Yahui; Deng, Su; Huang, Hongbin

    2014-07-01

    Information spreading in DTNs (Delay Tolerant Networks) adopts a store-carry-forward method, and nodes receive the message from others directly. However, it is hard to judge whether the information is safe in this communication mode. In this case, a node may observe other nodes' behaviors. At present, there is no theoretical model to describe the varying rule of the nodes' trusting level. In addition, due to the uncertainty of the connectivity in DTN, a node is hard to get the global state of the network. Therefore, a rational model about the node's trusting level should be a function of the node's own observing result. For example, if a node finds k nodes carrying a message, it may trust the information with probability p(k). This paper does not explore the real distribution of p(k), but instead presents a unifying theoretical framework to evaluate the performance of the information spreading in above case. This framework is an extension of the traditional SI (susceptible-infected) model, and is useful when p(k) conforms to any distribution. Simulations based on both synthetic and real motion traces show the accuracy of the framework. Finally, we explore the impact of the nodes' behaviors based on certain special distributions through numerical results.

  3. a Context-Aware Tourism Recommender System Based on a Spreading Activation Method

    Science.gov (United States)

    Bahramian, Z.; Abbaspour, R. Ali; Claramunt, C.

    2017-09-01

    Users planning a trip to a given destination often search for the most appropriate points of interest location, this being a non-straightforward task as the range of information available is very large and not very well structured. The research presented by this paper introduces a context-aware tourism recommender system that overcomes the information overload problem by providing personalized recommendations based on the user's preferences. It also incorporates contextual information to improve the recommendation process. As previous context-aware tourism recommender systems suffer from a lack of formal definition to represent contextual information and user's preferences, the proposed system is enhanced using an ontology approach. We also apply a spreading activation technique to contextualize user preferences and learn the user profile dynamically according to the user's feedback. The proposed method assigns more effect in the spreading process for nodes which their preference values are assigned directly by the user. The results show the overall performance of the proposed context-aware tourism recommender systems by an experimental application to the city of Tehran.

  4. A CONTEXT-AWARE TOURISM RECOMMENDER SYSTEM BASED ON A SPREADING ACTIVATION METHOD

    Directory of Open Access Journals (Sweden)

    Z. Bahramian

    2017-09-01

    Full Text Available Users planning a trip to a given destination often search for the most appropriate points of interest location, this being a non-straightforward task as the range of information available is very large and not very well structured. The research presented by this paper introduces a context-aware tourism recommender system that overcomes the information overload problem by providing personalized recommendations based on the user’s preferences. It also incorporates contextual information to improve the recommendation process. As previous context-aware tourism recommender systems suffer from a lack of formal definition to represent contextual information and user’s preferences, the proposed system is enhanced using an ontology approach. We also apply a spreading activation technique to contextualize user preferences and learn the user profile dynamically according to the user’s feedback. The proposed method assigns more effect in the spreading process for nodes which their preference values are assigned directly by the user. The results show the overall performance of the proposed context-aware tourism recommender systems by an experimental application to the city of Tehran.

  5. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: Pumas as a case study

    Science.gov (United States)

    Katherine A. Zeller; Kevin McGarigal; Paul Beier; Samuel A. Cushman; T. Winston Vickers; Walter M. Boyce

    2014-01-01

    Estimating landscape resistance to animal movement is the foundation for connectivity modeling, and resource selection functions based on point data are commonly used to empirically estimate resistance. In this study, we used GPS data points acquired at 5-min intervals from radiocollared pumas in southern California to model context-dependent point selection...

  6. Reassessing Function Points

    Directory of Open Access Journals (Sweden)

    G.R. Finnie

    1997-05-01

    Full Text Available Accurate estimation of the size and development effort for software projects requires estimation models which can be used early enough in the development life cycle to be of practical value. Function Point Analysis (FPA has become possibly the most widely used estimation technique in practice. However the technique was developed in the data processing environment of the 1970's and, despite undergoing considerable reassessment and formalisation, still attracts criticism for the weighting scoring it employs and for the way in which the function point score is adapted for specific system characteristics. This paper reviews the validity of the weighting scheme and the value of adjusting for system characteristics by studying their effect in a sample of 299 software developments. In general the value adjustment scheme does not appear to cater for differences in productivity. The weighting scheme used to adjust system components in terms of being simple, average or complex also appears suspect and should be redesigned to provide a more realistic estimate of system functionality.

  7. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging

    International Nuclear Information System (INIS)

    Li Heng; Mohan, Radhe; Zhu, X Ronald

    2008-01-01

    The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.

  8. A new construction of bent functions based on Z-bent functions

    DEFF Research Database (Denmark)

    Gangopadhyay, Sugata; Joshi, Anand; Leander, Gregor

    2013-01-01

    Dobbertin has embedded the problem of construction of bent functions in a recursive framework by using a generalization of bent functions called -bent functions. Following his ideas, we generalize the construction of partial spreads bent functions to partial spreads -bent functions of arbitrary...

  9. Four-point functions in N=4 SYM

    International Nuclear Information System (INIS)

    Heslop, Paul J.; Howe, Paul S.

    2003-01-01

    A new derivation is given of four-point functions of charge Q chiral primary multiplets in N=4 supersymmetric Yang-Mills theory. A compact formula, valid for arbitrary Q, is given which is manifestly superconformal and analytic in the internal bosonic coordinates of analytic superspace. This formula allows one to determine the spacetime four-point function of any four component fields in the multiplets in terms of the four-point function of the leading chiral primary fields. The leading term is expressed in terms of 1/2Q(Q-1) functions of two conformal invariants and a number of single variable functions. Crossing symmetry reduces the number of independent functions, while the OPE implies that the single-variable functions arise from protected operators and should therefore take their free form. This is the partial non-renormalisation property of such four-point functions which can be viewed as a consequence of the OPE and the non-renormalisation of three-point functions of protected operators. (author)

  10. A spread willingness computing-based information dissemination model.

    Science.gov (United States)

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  11. Point kinetics equations for subcritical systems based on the importance function associated to an external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2015-01-01

    Highlights: • We define the new function importance. • We calculate the kinetic parameters Λ, β, Γ and Q to: 0.95, 0.96, 0.97, 0.98 and 0.99. • We compared the results with those obtained by the main important functions. • We found that the calculated kinetic parameters are physically consistent. - Abstract: This paper aims to determine the parameters for a new set of equations of point kinetic subcritical systems, based on the concept of importance of Heuristic Generalized Perturbation Theory (HGPT). The importance function defined here is related to both the subcriticality and the external neutron source worth (which keeps the system at steady state). The kinetic parameters defined in this work are compared with the corresponding parameters when adopting the importance functions proposed by Gandini and Salvatores (2002), Dulla et al. (2006) and Nishihara et al. (2003). Furthermore, the point kinetics equations developed here are solved for two different transients, considering the parameters obtained with different importance functions. The results collected show that there is a similar behavior of the solution of the point kinetics equations, when used with the parameters obtained by the importance functions proposed by Gandini and Salvatores (2002) and Dulla et al. (2006), specially near the criticality. However, this is not verified as the system gets farther from criticality

  12. Generic primal-dual interior point methods based on a new kernel function

    NARCIS (Netherlands)

    EL Ghami, M.; Roos, C.

    2008-01-01

    In this paper we present a generic primal-dual interior point methods (IPMs) for linear optimization in which the search direction depends on a univariate kernel function which is also used as proximity measure in the analysis of the algorithm. The proposed kernel function does not satisfy all the

  13. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  14. Development and validation of a physics-based urban fire spread model

    OpenAIRE

    HIMOTO, Keisuke; TANAKA, Takeyoshi

    2008-01-01

    A computational model for fire spread in a densely built urban area is developed. The model is distinct from existing models in that it explicitly describes fire spread phenomena with physics-based knowledge achieved in the field of fire safety engineering. In the model, urban fire is interpreted as an ensemble of multiple building fires; that is, the fire spread is simulated by predicting behaviors of individual building fires under the thermal influence of neighboring building fires. Adopte...

  15. A Spread Willingness Computing-Based Information Dissemination Model

    Science.gov (United States)

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  16. A Spread Willingness Computing-Based Information Dissemination Model

    Directory of Open Access Journals (Sweden)

    Haojing Huang

    2014-01-01

    Full Text Available This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user’s spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  17. Modeling spreading of oil slicks based on random walk methods and Voronoi diagrams

    International Nuclear Information System (INIS)

    Durgut, İsmail; Reed, Mark

    2017-01-01

    We introduce a methodology for representation of a surface oil slick using a Voronoi diagram updated at each time step. The Voronoi cells scale the Gaussian random walk procedure representing the spreading process by individual particle stepping. The step length of stochastically moving particles is based on a theoretical model of the spreading process, establishing a relationship between the step length of diffusive spreading and the thickness of the slick at the particle locations. The Voronoi tessellation provides the areal extent of the slick particles and in turn the thicknesses of the slick and the diffusive-type spreading length for all particles. The algorithm successfully simulates the spreading process and results show very good agreement with the analytical solution. Moreover, the results are robust for a wide range of values for computational time step and total number of particles. - Highlights: • A methodology for representation of a surface oil slick using a Voronoi diagram • An algorithm simulating the spreading of oil slick with the Voronoi diagram representation • The algorithm employs the Gaussian random walk method through individual particle stepping. • The diffusive spreading is based on a theoretical model of the spreading process. • Algorithm is computationally robust and successfully reproduces analytical solutions to the spreading process.

  18. Beam-width spreading of vortex beams in free space

    Science.gov (United States)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  19. Ray tracing the Wigner distribution function for optical simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems

  20. On the regularization of extremal three-point functions involving giant gravitons

    Directory of Open Access Journals (Sweden)

    Charlotte Kristjansen

    2015-11-01

    Full Text Available In the AdS5/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.

  1. On the locus and spread of pseudo-density functions in the time-frequency plane

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1982-01-01

    Various time-frequency pseudo-density functions used in signal analysis are compared with respect to spread. Among the members of Cohen's class of pseudo-density functions satisfying the finite support property as well as Moyal's formula, the Wigner distribution is the most well-behaved one in the

  2. Lévy based Cox point processes

    DEFF Research Database (Denmark)

    Hellmund, Gunnar; Prokesová, Michaela; Jensen, Eva Bjørn Vedel

    2008-01-01

    In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs......) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities...

  3. Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model

    Science.gov (United States)

    Azizah, Afina; Widyaningsih, Purnami; Retno Sari Saputro, Dewi

    2017-06-01

    Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEIIhR) model has been derived. The aims of this research are to derive SEIIhR model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEIIhR model on Ebola epidemic in Sierra Leone in 2014. The SEIIhR model is a differential equation system. Pattern of ebola disease spread with SEIIhR model is solution of the differential equation system. The equilibrium point of SEIIhR model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point (Se; Ee; Ie; Ihe; Re )=(5743865, 0, 0, 0, 0) is stable.

  4. An agent-based computational model of the spread of tuberculosis

    International Nuclear Information System (INIS)

    De Espíndola, Aquino L; Bauch, Chris T; Troca Cabella, Brenno C; Martinez, Alexandre Souto

    2011-01-01

    In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed

  5. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    International Nuclear Information System (INIS)

    Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang

    2017-01-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)

  6. A global reference model of Curie-point depths based on EMAG2

    Science.gov (United States)

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  7. Identifying the starting point of a spreading process in complex networks.

    Science.gov (United States)

    Comin, Cesar Henrique; Costa, Luciano da Fontoura

    2011-11-01

    When dealing with the dissemination of epidemics, one important question that can be asked is the location where the contamination began. In this paper, we analyze three spreading schemes and propose and validate an effective methodology for the identification of the source nodes. The method is based on the calculation of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world network, the email network of the University Rovira i Virgili.

  8. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  9. Towards Data-Driven Simulations of Wildfire Spread using Ensemble-based Data Assimilation

    Science.gov (United States)

    Rochoux, M. C.; Bart, J.; Ricci, S. M.; Cuenot, B.; Trouvé, A.; Duchaine, F.; Morel, T.

    2012-12-01

    Real-time predictions of a propagating wildfire remain a challenging task because the problem involves both multi-physics and multi-scales. The propagation speed of wildfires, also called the rate of spread (ROS), is indeed determined by complex interactions between pyrolysis, combustion and flow dynamics, atmospheric dynamics occurring at vegetation, topographical and meteorological scales. Current operational fire spread models are mainly based on a semi-empirical parameterization of the ROS in terms of vegetation, topographical and meteorological properties. For the fire spread simulation to be predictive and compatible with operational applications, the uncertainty on the ROS model should be reduced. As recent progress made in remote sensing technology provides new ways to monitor the fire front position, a promising approach to overcome the difficulties found in wildfire spread simulations is to integrate fire modeling and fire sensing technologies using data assimilation (DA). For this purpose we have developed a prototype data-driven wildfire spread simulator in order to provide optimal estimates of poorly known model parameters [*]. The data-driven simulation capability is adapted for more realistic wildfire spread : it considers a regional-scale fire spread model that is informed by observations of the fire front location. An Ensemble Kalman Filter algorithm (EnKF) based on a parallel computing platform (OpenPALM) was implemented in order to perform a multi-parameter sequential estimation where wind magnitude and direction are in addition to vegetation properties (see attached figure). The EnKF algorithm shows its good ability to track a small-scale grassland fire experiment and ensures a good accounting for the sensitivity of the simulation outcomes to the control parameters. As a conclusion, it was shown that data assimilation is a promising approach to more accurately forecast time-varying wildfire spread conditions as new airborne-like observations of

  10. Einstein gravity 3-point functions from conformal field theory

    Science.gov (United States)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  11. Dependence of credit spread and macro-conditions based on an alterable structure model

    Science.gov (United States)

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds. PMID:29723295

  12. Dependence of credit spread and macro-conditions based on an alterable structure model.

    Science.gov (United States)

    Xie, Yun; Tian, Yixiang; Xiao, Zhuang; Zhou, Xiangyun

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds.

  13. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    Mä rz, Thomas; Macdonald, Colin B.

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  14. Confidence intervals for the first crossing point of two hazard functions.

    Science.gov (United States)

    Cheng, Ming-Yen; Qiu, Peihua; Tan, Xianming; Tu, Dongsheng

    2009-12-01

    The phenomenon of crossing hazard rates is common in clinical trials with time to event endpoints. Many methods have been proposed for testing equality of hazard functions against a crossing hazards alternative. However, there has been relatively few approaches available in the literature for point or interval estimation of the crossing time point. The problem of constructing confidence intervals for the first crossing time point of two hazard functions is considered in this paper. After reviewing a recent procedure based on Cox proportional hazard modeling with Box-Cox transformation of the time to event, a nonparametric procedure using the kernel smoothing estimate of the hazard ratio is proposed. The proposed procedure and the one based on Cox proportional hazard modeling with Box-Cox transformation of the time to event are both evaluated by Monte-Carlo simulations and applied to two clinical trial datasets.

  15. Inhomogeneity of epidemic spreading with entropy-based infected clusters.

    Science.gov (United States)

    Wen-Jie, Zhou; Xing-Yuan, Wang

    2013-12-01

    Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.

  16. Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model

    International Nuclear Information System (INIS)

    Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari

    2017-01-01

    Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEII h R) model has been derived. The aims of this research are to derive SEII h R model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEII h R model on Ebola epidemic in Sierra Leone in 2014. The SEII h R model is a differential equation system. Pattern of ebola disease spread with SEII h R model is solution of the differential equation system. The equilibrium point of SEII h R model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point ( S e ; E e ; I e ; I he ; R e )=(5743865, 0, 0, 0, 0) is stable. (paper)

  17. Going Multi-viral: Synthedemic Modelling of Internet-based Spreading Phenomena

    Directory of Open Access Journals (Sweden)

    Marily Nika

    2015-02-01

    Full Text Available Epidemics of a biological and technological nature pervade modern life. For centuries, scientific research focused on biological epidemics, with simple compartmental epidemiological models emerging as the dominant explanatory paradigm. Yet there has been limited translation of this effort to explain internet-based spreading phenomena. Indeed, single-epidemic models are inadequate to explain the multimodal nature of complex phenomena. In this paper we propose a novel paradigm for modelling internet-based spreading phenomena based on the composition of multiple compartmental epidemiological models. Our approach is inspired by Fourier analysis, but rather than trigonometric wave forms, our components are compartmental epidemiological models. We show results on simulated multiple epidemic data, swine flu data and BitTorrent downloads of a popular music artist. Our technique can characterise these multimodal data sets utilising a parsimonous number of subepidemic models.

  18. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    Science.gov (United States)

    Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang

    2017-10-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028

  19. Bacterial spread from cell to cell: beyond actin-based motility.

    Science.gov (United States)

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A logistic regression estimating function for spatial Gibbs point processes

    DEFF Research Database (Denmark)

    Baddeley, Adrian; Coeurjolly, Jean-François; Rubak, Ege

    We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related to the p......We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related...

  1. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Impact of Different Spreading Codes Using FEC on DWT Based MC-CDMA System

    OpenAIRE

    Masum, Saleh; Kabir, M. Hasnat; Islam, Md. Matiqul; Shams, Rifat Ara; Ullah, Shaikh Enayet

    2012-01-01

    The effect of different spreading codes in DWT based MC-CDMA wireless communication system is investigated. In this paper, we present the Bit Error Rate (BER) performance of different spreading codes (Walsh-Hadamard code, Orthogonal gold code and Golay complementary sequences) using Forward Error Correction (FEC) of the proposed system. The data is analyzed and is compared among different spreading codes in both coded and uncoded cases. It is found via computer simulation that the performance...

  3. Credit Spread Modeling: Macro-financial versus HOC Approach

    Directory of Open Access Journals (Sweden)

    Sanja Dudaković

    2014-12-01

    Full Text Available The aim of this paper is to throw light on the relationship between credit spread changes and past changes of U.S. macro-financial variables when invariants do not have Gaussian distribution. The first part presents the empirical analysis which is based on 10-year AAA corporate bond yields and 10-year Treasury bond yields. Explanatory variables include lagged U.S. leading index, Russell 2000 returns, BBB bond price changes interest rate swaps, exchange rates EUR/ USD, Repo rates, S& P 500 returns and S&P 500 volatility, Treasury bill changes, liquidity index-TRSW, LIBOR rates, Moody’s default rates; credit spread volatility and Treasury bills volatility. The proposed dynamical model explains 73% of the U.S. credit spread variance for the period 1999:07-2013:07. The second part of the article introduces the parameter estimation method based on higher order cumulants. It is demonstrated empirically that much of the information about variability of Credit Spread can be extracted from higher order cumulant function (85%.

  4. A Simple Model to Rank Shellfish Farming Areas Based on the Risk of Disease Introduction and Spread.

    Science.gov (United States)

    Thrush, M A; Pearce, F M; Gubbins, M J; Oidtmann, B C; Peeler, E J

    2017-08-01

    The European Union Council Directive 2006/88/EC requires that risk-based surveillance (RBS) for listed aquatic animal diseases is applied to all aquaculture production businesses. The principle behind this is the efficient use of resources directed towards high-risk farm categories, animal types and geographic areas. To achieve this requirement, fish and shellfish farms must be ranked according to their risk of disease introduction and spread. We present a method to risk rank shellfish farming areas based on the risk of disease introduction and spread and demonstrate how the approach was applied in 45 shellfish farming areas in England and Wales. Ten parameters were used to inform the risk model, which were grouped into four risk themes based on related pathways for transmission of pathogens: (i) live animal movement, (ii) transmission via water, (iii) short distance mechanical spread (birds) and (iv) long distance mechanical spread (vessels). Weights (informed by expert knowledge) were applied both to individual parameters and to risk themes for introduction and spread to reflect their relative importance. A spreadsheet model was developed to determine quantitative scores for the risk of pathogen introduction and risk of pathogen spread for each shellfish farming area. These scores were used to independently rank areas for risk of introduction and for risk of spread. Thresholds were set to establish risk categories (low, medium and high) for introduction and spread based on risk scores. Risk categories for introduction and spread for each area were combined to provide overall risk categories to inform a risk-based surveillance programme directed at the area level. Applying the combined risk category designation framework for risk of introduction and spread suggested by European Commission guidance for risk-based surveillance, 4, 10 and 31 areas were classified as high, medium and low risk, respectively. © 2016 Crown copyright.

  5. Conformal four point functions and the operator product expansion

    International Nuclear Information System (INIS)

    Dolan, F.A.; Osborn, H.

    2001-01-01

    Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants u,v. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables z,x which are simply related to u,v. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion

  6. The effect of network topologies on the spreading of technological developments

    International Nuclear Information System (INIS)

    Kocsis, Gergely; Kun, Ferenc

    2008-01-01

    We study an agent-based model, as a special type of opinion dynamics, of the spreading of innovations in socio-economic systems varying the topology of agents' social contacts. The agents are organized on a square lattice where the connections are rewired with a certain probability. We show that the degree polydispersity and long range connections of agents can facilitate, but can also hinder the spreading of new technologies, depending on the amount of advantages provided by the innovation. We determine the critical fraction of innovative agents required to initiate spreading and to obtain a significant technological progress. As the fraction of innovative agents approaches the critical value, the spreading process slows down analogously to the critical slowing down observed at continuous phase transitions. The characteristic timescale at the critical point proved to have the same scaling as the average shortest path of the underlying social network. The model captures some relevant features of the spreading of innovations in telecommunication technologies

  7. Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies

    Science.gov (United States)

    Bzowski, Adam; McFadden, Paul; Skenderis, Kostas

    2016-03-01

    We present a comprehensive discussion of renormalisation of 3-point functions of scalar operators in conformal field theories in general dimension. We have previously shown that conformal symmetry uniquely determines the momentum-space 3-point functions in terms of certain integrals involving a product of three Bessel functions (triple- K integrals). The triple- K integrals diverge when the dimensions of operators satisfy certain relations and we discuss how to obtain renormalised 3-point functions in all cases. There are three different types of divergences: ultralocal, semilocal and nonlocal, and a given divergent triple- K integral may have any combination of them. Ultralocal divergences may be removed using local counterterms and this results in new conformal anomalies. Semilocal divergences may be removed by renormalising the sources, and this results in CFT correlators that satisfy Callan-Symanzik equations with beta functions. In the case of non-local divergences, it is the triple- K representation that is singular, not the 3-point function. Here, the CFT correlator is the coefficient of the leading nonlocal singularity, which satisfies all the expected conformal Ward identities. Such correlators exhibit enhanced symmetry: they are also invariant under dual conformal transformations where the momenta play the role of coordinates. When both anomalies and beta functions are present the correlators exhibit novel analytic structure containing products of logarithms of momenta. We illustrate our discussion with numerous examples, including free field realisations and AdS/CFT computations.

  8. Attention-spreading based on hierarchical spatial representations for connected objects.

    Science.gov (United States)

    Kasai, Tetsuko

    2010-01-01

    Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.

  9. Modeling potential Emerald Ash Borer spread through GIS/cell-based/gravity models with data bolstered by web-based inputs

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Davis Sydnor; Jonathan Bossenbroek; Mark W. Schwartz; Mark W. Schwartz

    2006-01-01

    We model the susceptibility and potential spread of the organism across the eastern United States and especially through Michigan and Ohio using Forest Inventory and Analysis (FIA) data. We are also developing a cell-based model for the potential spread of the organism. We have developed a web-based tool for public agencies and private individuals to enter the...

  10. Two-point functions and logarithmic boundary operators in boundary logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka

    2004-01-01

    Amongst conformal field theories, there exist logarithmic conformal field theories such as c p,1 models. We have investigated c p,q models with a boundary in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. We have also found the relations between coefficients in the two-point functions and correlation functions of logarithmic boundary operators, and have confirmed the solutions in [hep-th/0003184]. Other two-point functions and boundary operators have also been studied in the free boson construction of boundary CFT with SU(2) k symmetry in regard to logarithmic theories. This paper is based on a part of D. Phil. Thesis [hep-th/0312160]. (author)

  11. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    Science.gov (United States)

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  12. Introducing trimming and function ranking to Solid Works based on function analysis

    NARCIS (Netherlands)

    Chechurin, Leonid S.; Wits, Wessel Willems; Bakker, Hans M.; Cascini, G.; Vaneker, Thomas H.J.

    2011-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  13. Introducing Trimming and Function Ranking to SolidWorks based on Function Analysis

    NARCIS (Netherlands)

    Chechurin, L.S.; Wits, Wessel Willems; Bakker, Hans M.; Vaneker, Thomas H.J.

    2015-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  14. Two-point correlation function for Dirichlet L-functions

    Science.gov (United States)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  15. Two-point correlation function for Dirichlet L-functions

    International Nuclear Information System (INIS)

    Bogomolny, E; Keating, J P

    2013-01-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy–Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question. (paper)

  16. Point based interactive image segmentation using multiquadrics splines

    Science.gov (United States)

    Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna

    2017-05-01

    Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6

  17. Visual attention spreads broadly but selects information locally.

    Science.gov (United States)

    Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro

    2016-10-19

    Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.

  18. Information spreading dynamics in hypernetworks

    Science.gov (United States)

    Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong

    2018-04-01

    Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.

  19. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    International Nuclear Information System (INIS)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-01-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  20. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina PR (Brazil)

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  1. Baryonic and mesonic 3-point functions with open spin indices

    Science.gov (United States)

    Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas

    2018-03-01

    We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.

  2. Toda 3-point functions from topological strings

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Pomoni, Elli; National Technical Univ. of Athens

    2014-09-01

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In (L. Bao, V. Mitev, E. Pomoni, M. Taki, and F. Yagi, JHEP 1401 (2014), 175) we computed the partition function of 5D T N theories on S 4 x S 1 and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T N partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T N theories on S 4 , or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  3. Toda 3-point functions from topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2015-06-08

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In http://dx.doi.org/10.1007/JHEP01(2014)175 we computed the partition function of 5D T{sub N} theories on S{sup 4}×S{sup 1} and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T{sub N} partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T{sub N} theories on S{sup 4}, or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  4. Toda 3-point functions from topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.

    2014-09-15

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In (L. Bao, V. Mitev, E. Pomoni, M. Taki, and F. Yagi, JHEP 1401 (2014), 175) we computed the partition function of 5D T{sub N} theories on S{sup 4} x S{sup 1} and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T{sub N} partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T{sub N} theories on S{sup 4}, or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  5. Modulation transfer function (MTF) measurement method based on support vector machine (SVM)

    Science.gov (United States)

    Zhang, Zheng; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2016-03-01

    An imaging system's spatial quality can be expressed by the system's modulation spread function (MTF) as a function of spatial frequency in terms of the linear response theory. Methods have been proposed to assess the MTF of an imaging system using point, slit or edge techniques. The edge method is widely used for the low requirement of targets. However, the traditional edge methods are limited by the edge angle. Besides, image noise will impair the measurement accuracy, making the measurement result unstable. In this paper, a novel measurement method based on the support vector machine (SVM) is proposed. Image patches with different edge angles and MTF levels are generated as the training set. Parameters related with MTF and image structure are extracted from the edge images. Trained with image parameters and the corresponding MTF, the SVM classifier can assess the MTF of any edge image. The result shows that the proposed method has an excellent performance on measuring accuracy and stability.

  6. Ray tracing the Wigner distribution function for optical simulations

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  7. Estimating monthly temperature using point based interpolation techniques

    Science.gov (United States)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  8. Spread effects - methodology

    International Nuclear Information System (INIS)

    2004-01-01

    Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)

  9. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    Science.gov (United States)

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  10. Spread F in the Midlatitude Ionosphere According to DPS-4 Ionosonde Data

    Science.gov (United States)

    Panchenko, V. A.; Telegin, V. A.; Vorob'ev, V. G.; Zhbankov, G. A.; Yagodkina, O. I.; Rozhdestvenskaya, V. I.

    2018-03-01

    The results of studying spread F obtained from the DPS-4 ionosonde data at the observatory of the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Moscow) are presented. The methodical questions that arise during the study of a spread F phenomenon in the ionosphere are considered; the current results of terrestrial observations are compared with previously published data and the results of sounding onboard an Earth-satellite vehicle. The automated algorithm for estimation of the intensity of frequency spread F, which was developed by the authors and was successfully verified via comparison of the data of the digisonde DPS-4 and the results of manual processing, is described. The algorithm makes it possible to quantify the intensity of spread F in megahertz (the dFs parameter) and in the number of points (0, 1, 2, 3). The strongest spread (3 points) is shown to be most likely around midnight, while the weakest spread (0 points) is highly likely to occur during the daytime. The diurnal distribution of a 1-2 point spread F in the winter indicates the presence of additional maxima at 0300-0600 UT and 1400-1700 UT, which may appear due to the terminator. Despite the large volume of processed data, we can not definitively state that the appearance of spread F depends on the magnetic activity indices Kp, Dst, and AL, although the values of the dFs frequency spread interval strongly increased both at day and night during the magnetic storm of March 17-22, 2015, especially in the phase of storm recovery on March 20-22.

  11. Relationship between the Amplitude and Phase of a Signal Scattered by a Point-Like Acoustic Inhomogeneity

    Science.gov (United States)

    Burov, V. A.; Morozov, S. A.

    2001-11-01

    Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.

  12. Energy spread of different electron beams. Part I: thermoionic electron beams

    International Nuclear Information System (INIS)

    Troyon, M.; Zinzindohoue, P.

    1987-01-01

    Energy spread ΔE and brightness B are the two important parameters for defining electron beam quality. An attempt in this paper for three types of generally used thermionic cathodes (hairpin, pointed and LaB6) and three particular Wehnelt shapes (re-entrant, flat and conical) has been made. It has been demonstrated that the energy spread is much more dependent on brightness than on total emitted current; for a given brightness the best gun is the one that gives smaller total emitted current. One can expect with pointed and LaB6 filaments when compared with hairpin filament at a given constant energy spread, the brightness increases by about 2 to 3 times. Higher brightness is obtained simultaneously with larger energy spread: for example, at 20 kV, the maximum brightness and corresponding energy spread of a pointed and a hairpin filament mounted in a flat Wehnelt are B = 4x10 5 Acm -2 sr -1 , ΔE = 3.3 eV and B = 6 x 10 4 Acm -2 sr -1 , ΔE = 2 eV respectively

  13. Time Eigenstates for Potential Functions without Extremal Points

    Directory of Open Access Journals (Sweden)

    Gabino Torres-Vega

    2013-09-01

    Full Text Available In a previous paper, we introduced a way to generate a time coordinate system for classical and quantum systems when the potential function has extremal points. In this paper, we deal with the case in which the potential function has no extremal points at all, and we illustrate the method with the harmonic and linear potentials.

  14. FPFH-based graph matching for 3D point cloud registration

    Science.gov (United States)

    Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua

    2018-04-01

    Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.

  15. The VULCANO spreading programme

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M. [CEA (Atomic Energy Commission), DRN/DER - Bat. 212, CEA Cadarache, 13108 St. Paul Lez Durance (France)

    1999-07-01

    Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)

  16. The VULCANO spreading programme

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M.

    1999-01-01

    Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)

  17. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  18. A J–function for inhomogeneous point processes

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette)

    2010-01-01

    htmlabstractWe propose new summary statistics for intensity-reweighted moment stationary point processes that generalise the well known J-, empty space, and nearest-neighbour distance dis- tribution functions, represent them in terms of generating functionals and conditional intensities, and relate

  19. New results on holographic three-point functions

    International Nuclear Information System (INIS)

    Bianchi, Massimo; Prisco, Maurizio; Mueck, Wolfgang

    2003-01-01

    We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the active scalar emerges rather simply and makes it possible to use the Green's function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding super glueballs by amputating the external legs on-shell. (author)

  20. Improved WKB radial wave functions in several bases

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.; Department of Physics, University of Wisconsin, Madison, Wisconsin 53706)

    1986-01-01

    We develop approximate WKB-like solutions to the radial Schroedinger equation for problems with an angular momentum barrier using Riccati-Bessel, Coulomb, and harmonic-oscillator functions as basis functions. The solutions treat the angular momentum singularity near the origin more accurately in leading approximation than the standard WKB solutions based on sine waves. The solutions based on Riccati-Bessel and free Coulomb wave functions continue smoothly through the inner turning point and are appropriate for scattering problems. The solutions based on oscillator and bound Coulomb wave functions incorporate both turning points smoothly and are particularly appropriate for bound-state problems; no matching of piecewise solutions using Airy functions is necessary

  1. The application of γ-scintigraphy for the evaluation of the relative spreading of suppository bases in rectal hard gelatin capsules

    International Nuclear Information System (INIS)

    Hardy, J.G.; Wood, E.; Feely, L.C.; Davis, S.S.

    1987-01-01

    The relative spreading of suppository base and incorporated suspension in the rectum of human subjects has been followed using the technique of γ-scintigraphy. Suppositories formulated from a surfactant system, Labrafil WL2514, and a standard triglyceride base, Witepsol H15, did not spread to a particularly great extent. When spreading did occur the movement of the base did not necessarily lead to a similar spreading of the suspended material. Such separation of suspended material from the base was greater for the surfactant system than for the simple triglyceride system. 10 refs.; 8 figs

  2. A method of PSF generation for 3D brightfield deconvolution.

    Science.gov (United States)

    Tadrous, P J

    2010-02-01

    This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.

  3. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  4. Generation and reception of spread-spectrum signals

    Science.gov (United States)

    Moser, R.

    1983-05-01

    The term 'spread-spectrum' implies a technique whereby digitized information is added to a pseudo-random number sequence and the resultant bit stream changes some parameter of the carrier frequency in discrete increments. The discrete modulation of the carrier frequency is usually realized either as a multiple level phase shift keyed or frequency shift keyed signal. The resultant PSK-modulated frequency spectrum is referred to as direct sequence spread-spectrum, whereas the FSK-modulated carrier frequency is referred to as a frequency hopped spread spectrum. These can be considered the major subsets of the more general term 'spread-spectrum'. In discussing signal reception, it is pointed out that active correlation methods are used for channel synchronization when the psuedo random sequences are long or when the processing gain is large, whereas the passive methods may be used for either short pseudo-random noise generation codes or to assist in attaining initial synchronization in long sequence spread-spectrum systems.

  5. A PSF-shape-based beamforming strategy for robust 2D motion estimation in ultrafast data

    NARCIS (Netherlands)

    Saris, Anne E.C.M.; Fekkes, Stein; Nillesen, Maartje; Hansen, Hendrik H.G.; de Korte, Chris L.

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system's point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle

  6. Term structure of sovereign spreads: a contingent claim model

    Directory of Open Access Journals (Sweden)

    Katia Rocha

    2007-12-01

    Full Text Available This paper proposes a simple structural model to estimate the termstructure and the implied default probability of a selected group of emerging countries, which account for 54% of the JPMorgan EMBIG index on average for the period 2000-2005. The real exchange rate dynamic, modeled as a pure diffusion process, is assumed to trigger default. The calibrated model generates sovereign spread curves consistent to market data. The results suggest that the market is systematically overpricing spreads for Brazil in 100 basis points, whereas for Mexico, Russia and Turkey the model is able to reproduce the market behavior.Este trabalho propõe um modelo estrutural para estimar a estrutura a termo e a probabilidade implícita de default de países emergentes que representam, em média, 54% do índice EMBIG do JPMorgan no período de 2000-2005. A taxa de câmbio real, modelada como um processo de difusão simples, é considerada como indicativa de default. O modelo calibrado gera a estrutura a termo dos spreads consistente com dados de mercado, indicando que o mercado sistematicamente sobre-estima os spreads para o Brasil em 100 pontos base na média, enquanto para México, Rússia e Turquia reproduz o comportamento do mercado.

  7. Second feature of the matter two-point function

    Science.gov (United States)

    Tansella, Vittorio

    2018-05-01

    We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.

  8. Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz

    2016-12-01

    This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledge of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.

  9. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    ’ involves only the significant wave height, zero crossing wave period and water depth, the spreading function based on ‘s 3 ’ can be used for practical appli- cation. In the model based on ‘s 3 ’ the mean wave direction is an input and this has...-linearity parameter can be recommended for practical use as it provides an averaged distribution. Acknowledgements The authors would like to thank the Department of Science and Technology, New Delhi, for funding the project titled “Directional wave modelling...

  10. A Chaos-Based Secure Direct-Sequence/Spread-Spectrum Communication System

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Quyen

    2013-01-01

    Full Text Available This paper proposes a chaos-based secure direct-sequence/spread-spectrum (DS/SS communication system which is based on a novel combination of the conventional DS/SS and chaos techniques. In the proposed system, bit duration is varied according to a chaotic behavior but is always equal to a multiple of the fixed chip duration in the communication process. Data bits with variable duration are spectrum-spread by multiplying directly with a pseudonoise (PN sequence and then modulated onto a sinusoidal carrier by means of binary phase-shift keying (BPSK. To recover exactly the data bits, the receiver needs an identical regeneration of not only the PN sequence but also the chaotic behavior, and hence data security is improved significantly. Structure and operation of the proposed system are analyzed in detail. Theoretical evaluation of bit-error rate (BER performance in presence of additive white Gaussian noise (AWGN is provided. Parameter choice for different cases of simulation is also considered. Simulation and theoretical results are shown to verify the reliability and feasibility of the proposed system. Security of the proposed system is also discussed.

  11. Function parametrization by using 4-point transforms

    International Nuclear Information System (INIS)

    Dikusar, N.D.

    1996-01-01

    A continuous parametrization of the smooth curve f(x)=f(x;R) is suggested on a basis of four-point transformations. Coordinates of three reference points of the curve are chosen as parameters R. This approach allows to derive a number of advantages in function approximation and fitting of empiric data. The transformations have made possible to derive a new class of polynomials (monosplines) having the better approximation quality than monomials {x n }. A behaviour of an error of the approximation has a uniform character. A three-point model of the cubic spline (TPS) is proposed. The model allows to reduce a number of unknown parameters in twice and to obtain an advantage in a computing aspect. The new approach to the function approximation and fitting are shown on a number of examples. The proposed approach gives a new mathematical tool and a new possibility in both practical applications and theoretical research of numerical and computational methods. 13 refs., 13 figs., 2 tabs

  12. Second-order analysis of inhomogeneous spatial point processes with proportional intensity functions

    DEFF Research Database (Denmark)

    Guan, Yongtao; Waagepetersen, Rasmus; Beale, Colin M.

    2008-01-01

    of the intensity functions. The first approach is based on nonparametric kernel-smoothing, whereas the second approach uses a conditional likelihood estimation approach to fit a parametric model for the pair correlation function. A great advantage of the proposed methods is that they do not require the often...... to two spatial point patterns regarding the spatial distributions of birds in the U.K.'s Peak District in 1990 and 2004....

  13. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  14. Reverse preferential spread in complex networks

    Science.gov (United States)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  15. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    Science.gov (United States)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  16. A Polygon and Point-Based Approach to Matching Geospatial Features

    Directory of Open Access Journals (Sweden)

    Juan J. Ruiz-Lendínez

    2017-12-01

    Full Text Available A methodology for matching bidimensional entities is presented in this paper. The matching is proposed for both area and point features extracted from geographical databases. The procedure used to obtain homologous entities is achieved in a two-step process: The first matching, polygon to polygon matching (inter-element matching, is obtained by means of a genetic algorithm that allows the classifying of area features from two geographical databases. After this, we apply a point to point matching (intra-element matching based on the comparison of changes in their turning functions. This study shows that genetic algorithms are suitable for matching polygon features even if these features are quite different. Our results show up to 40% of matched polygons with differences in geometrical attributes. With regards to point matching, the vertex from homologous polygons, the function and threshold values proposed in this paper show a useful method for obtaining precise vertex matching.

  17. Competing spreading processes on multiplex networks: awareness and epidemics.

    Science.gov (United States)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2014-07-01

    Epidemiclike spreading processes on top of multilayered interconnected complex networks reveal a rich phase diagram of intertwined competition effects. A recent study by the authors [C. Granell et al., Phys. Rev. Lett. 111, 128701 (2013).] presented an analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the spreading of information awareness to prevent infection, on top of multiplex networks. The results in the case in which awareness implies total immunization to the disease revealed the existence of a metacritical point at which the critical onset of the epidemics starts, depending on completion of the awareness process. Here we present a full analysis of these critical properties in the more general scenario where the awareness spreading does not imply total immunization, and where infection does not imply immediate awareness of it. We find the critical relation between the two competing processes for a wide spectrum of parameters representing the interaction between them. We also analyze the consequences of a massive broadcast of awareness (mass media) on the final outcome of the epidemic incidence. Importantly enough, the mass media make the metacritical point disappear. The results reveal that the main finding, i.e., existence of a metacritical point, is rooted in the competition principle and holds for a large set of scenarios.

  18. Dengue fever spreading based on probabilistic cellular automata with two lattices

    Science.gov (United States)

    Pereira, F. M. M.; Schimit, P. H. T.

    2018-06-01

    Modeling and simulation of mosquito-borne diseases have gained attention due to a growing incidence in tropical countries in the past few years. Here, we study the dengue spreading in a population modeled by cellular automata, where there are two lattices to model the human-mosquitointeraction: one lattice for human individuals, and one lattice for mosquitoes in order to enable different dynamics in populations. The disease considered is the dengue fever with one, two or three different serotypes coexisting in population. Although many regions exhibit the incidence of only one serotype, here we set a complete framework to also study the occurrence of two and three serotypes at the same time in a population. Furthermore, the flexibility of the model allows its use to other mosquito-borne diseases, like chikungunya, yellow fever and malaria. An approximation of the cellular automata is proposed in terms of ordinary differential equations; the spreading of mosquitoes is studied and the influence of some model parameters are analyzed with numerical simulations. Finally, a method to combat dengue spreading is simulated based on a reduction of mosquito birth and mosquito bites in population.

  19. Point defects behavior in beta Cu-based shape memory alloys

    International Nuclear Information System (INIS)

    Romero, R.; Somoza, A.

    1999-01-01

    A summary of positron annihilation spectroscopy data relating to the point defect behavior after quenching and to thermal equilibrium in β-phase Cu-based shape memory alloys Cu-Zn-Al and Cu-Al-Be is presented. Particular attention is given to the initial concentration of quenched-in vacancies as a function of the quenching temperature, migration of the retained point defects with aging temperature and time, and the vacancy formation and migration energies. (orig.)

  20. New results for 5-point functions

    International Nuclear Information System (INIS)

    Gluza, J.

    2007-12-01

    Bhabha scattering is one of the processes at the ILC where high precision data will be expected. The complete NNLO corrections include radiative loop corrections, with contributions from Feynman diagrams with five external legs. We take these diagrams as an example and discuss several features of the evaluation of pentagon diagrams. The tensor functions are usually reduced to simpler scalar functions. Here we study, as an alternative, the application of Mellin-Barnes representations to 5-point functions. There is no evidence for an improved numerical evaluation of their finite, physical parts. However, the approach gives interesting insights into the treatment of the IR- singularities. (orig.)

  1. Multiview point clouds denoising based on interference elimination

    Science.gov (United States)

    Hu, Yang; Wu, Qian; Wang, Le; Jiang, Huanyu

    2018-03-01

    Newly emerging low-cost depth sensors offer huge potentials for three-dimensional (3-D) modeling, but existing high noise restricts these sensors from obtaining accurate results. Thus, we proposed a method for denoising registered multiview point clouds with high noise to solve that problem. The proposed method is aimed at fully using redundant information to eliminate the interferences among point clouds of different views based on an iterative procedure. In each iteration, noisy points are either deleted or moved to their weighted average targets in accordance with two cases. Simulated data and practical data captured by a Kinect v2 sensor were tested in experiments qualitatively and quantitatively. Results showed that the proposed method can effectively reduce noise and recover local features from highly noisy multiview point clouds with good robustness, compared to truncated signed distance function and moving least squares (MLS). Moreover, the resulting low-noise point clouds can be further smoothed by the MLS to achieve improved results. This study provides the feasibility of obtaining fine 3-D models with high-noise devices, especially for depth sensors, such as Kinect.

  2. MIN-CUT BASED SEGMENTATION OF AIRBORNE LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    S. Ural

    2012-07-01

    Full Text Available Introducing an organization to the unstructured point cloud before extracting information from airborne lidar data is common in many applications. Aggregating the points with similar features into segments in 3-D which comply with the nature of actual objects is affected by the neighborhood, scale, features and noise among other aspects. In this study, we present a min-cut based method for segmenting the point cloud. We first assess the neighborhood of each point in 3-D by investigating the local geometric and statistical properties of the candidates. Neighborhood selection is essential since point features are calculated within their local neighborhood. Following neighborhood determination, we calculate point features and determine the clusters in the feature space. We adapt a graph representation from image processing which is especially used in pixel labeling problems and establish it for the unstructured 3-D point clouds. The edges of the graph that are connecting the points with each other and nodes representing feature clusters hold the smoothness costs in the spatial domain and data costs in the feature domain. Smoothness costs ensure spatial coherence, while data costs control the consistency with the representative feature clusters. This graph representation formalizes the segmentation task as an energy minimization problem. It allows the implementation of an approximate solution by min-cuts for a global minimum of this NP hard minimization problem in low order polynomial time. We test our method with airborne lidar point cloud acquired with maximum planned post spacing of 1.4 m and a vertical accuracy 10.5 cm as RMSE. We present the effects of neighborhood and feature determination in the segmentation results and assess the accuracy and efficiency of the implemented min-cut algorithm as well as its sensitivity to the parameters of the smoothness and data cost functions. We find that smoothness cost that only considers simple distance

  3. Customer Order Decoupling Point Selection Model in Mass Customization Based on MAS

    Institute of Scientific and Technical Information of China (English)

    XU Xuanguo; LI Xiangyang

    2006-01-01

    Mass customization relates to the ability of providing individually designed products or services to customer with high process flexibility or integration. Literatures on mass customization have been focused on mechanism of MC, but little on customer order decoupling point selection. The aim of this paper is to present a model for customer order decoupling point selection of domain knowledge interactions between enterprises and customers in mass customization. Based on the analysis of other researchers' achievements combining the demand problems of customer and enterprise, a model of group decision for customer order decoupling point selection is constructed based on quality function deployment and multi-agent system. Considering relatively the decision makers of independent functional departments as independent decision agents, a decision agent set is added as the third dimensionality to house of quality, the cubic quality function deployment is formed. The decision-making can be consisted of two procedures: the first one is to build each plane house of quality in various functional departments to express each opinions; the other is to evaluate and gather the foregoing sub-decisions by a new plane quality function deployment. Thus, department decision-making can well use its domain knowledge by ontology, and total decision-making can keep simple by avoiding too many customer requirements.

  4. Turing-like structures in a functional model of cortical spreading depression

    Science.gov (United States)

    Verisokin, A. Yu.; Verveyko, D. V.; Postnov, D. E.

    2017-12-01

    Cortical spreading depression (CSD) along with migraine waves and spreading depolarization events with stroke or injures are the front-line examples of extreme physiological behaviors of the brain cortex which manifest themselves via the onset and spreading of localized areas of neuronal hyperactivity followed by their depression. While much is known about the physiological pathways involved, the dynamical mechanisms of the formation and evolution of complex spatiotemporal patterns during CSD are still poorly understood, in spite of the number of modeling studies that have been already performed. Recently we have proposed a relatively simple mathematical model of cortical spreading depression which counts the effects of neurovascular coupling and cerebral blood flow redistribution during CSD. In the present study, we address the main dynamical consequences of newly included pathways, namely, the changes in the formation and propagation speed of the CSD front and the pattern formation features in two dimensions. Our most notable finding is that the combination of vascular-mediated spatial coupling with local regulatory mechanisms results in the formation of stationary Turing-like patterns during a CSD event.

  5. Finite Elements on Point Based Surfaces

    NARCIS (Netherlands)

    Clarenz, U.; Rumpf, M.; Telea, A.

    2004-01-01

    We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. Our method is based on the construction of local tangent planes and

  6. Evaluating crown fire rate of spread predictions from physics-based models

    Science.gov (United States)

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  7. Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation

    Science.gov (United States)

    Orfiz, Gerardo G.; Lee, Shinhak

    2006-01-01

    A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.

  8. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Four point functions in the SL(2,R) WZW model

    Energy Technology Data Exchange (ETDEWEB)

    Minces, Pablo [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)]. E-mail: minces@iafe.uba.ar; Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina) and Physics Department, University of Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)]. E-mail: carmen@iafe.uba.ar

    2007-04-19

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions.

  10. Four point functions in the SL(2,R) WZW model

    International Nuclear Information System (INIS)

    Minces, Pablo; Nunez, Carmen

    2007-01-01

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions

  11. ON THE ESTIMATION OF DISTANCE DISTRIBUTION FUNCTIONS FOR POINT PROCESSES AND RANDOM SETS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2011-05-01

    Full Text Available This paper discusses various estimators for the nearest neighbour distance distribution function D of a stationary point process and for the quadratic contact distribution function Hq of a stationary random closed set. It recommends the use of Hanisch's estimator of D, which is of Horvitz-Thompson type, and the minussampling estimator of Hq. This recommendation is based on simulations for Poisson processes and Boolean models.

  12. Physical model for membrane protrusions during spreading

    International Nuclear Information System (INIS)

    Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F

    2008-01-01

    During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence

  13. A Meshfree Cell-based Smoothed Point Interpolation Method for Solid Mechanics Problems

    International Nuclear Information System (INIS)

    Zhang Guiyong; Liu Guirong

    2010-01-01

    In the framework of a weakened weak (W 2 ) formulation using a generalized gradient smoothing operation, this paper introduces a novel meshfree cell-based smoothed point interpolation method (CS-PIM) for solid mechanics problems. The W 2 formulation seeks solutions from a normed G space which includes both continuous and discontinuous functions and allows the use of much more types of methods to create shape functions for numerical methods. When PIM shape functions are used, the functions constructed are in general not continuous over the entire problem domain and hence are not compatible. Such an interpolation is not in a traditional H 1 space, but in a G 1 space. By introducing the generalized gradient smoothing operation properly, the requirement on function is now further weakened upon the already weakened requirement for functions in a H 1 space and G 1 space can be viewed as a space of functions with weakened weak (W 2 ) requirement on continuity. The cell-based smoothed point interpolation method (CS-PIM) is formulated based on the W 2 formulation, in which displacement field is approximated using the PIM shape functions, which possess the Kronecker delta property facilitating the enforcement of essential boundary conditions [3]. The gradient (strain) field is constructed by the generalized gradient smoothing operation within the cell-based smoothing domains, which are exactly the triangular background cells. A W 2 formulation of generalized smoothed Galerkin (GS-Galerkin) weak form is used to derive the discretized system equations. It was found that the CS-PIM possesses the following attractive properties: (1) It is very easy to implement and works well with the simplest linear triangular mesh without introducing additional degrees of freedom; (2) it is at least linearly conforming; (3) this method is temporally stable and works well for dynamic analysis; (4) it possesses a close-to-exact stiffness, which is much softer than the overly-stiff FEM model and

  14. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    Science.gov (United States)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  15. Spread effects - methodology; Spredningseffekter - metodegrunnlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)

  16. The (lack of) relation between straylight and visual acuity. Two domains of the point-spread-function

    NARCIS (Netherlands)

    van den Berg, Thomas J T P

    2017-01-01

    PURPOSE: The effect of cataract and other media opacities on functional vision is typically assessed clinically using visual acuity. In both clinical and basic research, straylight (the functional result of light scattering in the eye) is commonly measured. The purpose of the present study was to

  17. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Marie Aerts

    2012-11-01

    Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  18. Flame Spread and Group-Combustion Excitation in Randomly Distributed Droplet Clouds with Low-Volatility Fuel near the Excitation Limit: a Percolation Approach Based on Flame-Spread Characteristics in Microgravity

    Science.gov (United States)

    Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi

    2018-03-01

    Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.

  19. A new approach to assess COPD by identifying lung function break-points

    Directory of Open Access Journals (Sweden)

    Eriksson G

    2015-10-01

    Full Text Available Göran Eriksson,1,* Linnea Jarenbäck,1,* Stefan Peterson,2 Jaro Ankerst,1 Leif Bjermer,1 Ellen Tufvesson11Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 2Regional Cancer Center South, Skåne University Hospital, Lund, Sweden*These authors contributed equally to this workPurpose: COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions.Patients and methods: Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1, and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points.Results: Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume and reactance (reactance area and reactance at 5Hz were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of -5.3 per unit FEV1, while residual volume had no slope change above and -3.3 change per unit FEV1 below its break-point of 61

  20. Heterogeneous incidence and propagation of spreading depolarizations

    Science.gov (United States)

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  1. Three point functions in the large N=4 holography

    International Nuclear Information System (INIS)

    Ahn, Changhyun; Kim, Hyunsu

    2015-01-01

    Sixteen higher spin currents with spins (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) were previously obtained in an extension of the large N=4 ‘nonlinear’ superconformal algebra in two dimensions. By carefully analyzing the zero-mode eigenvalue equations, three-point functions of bosonic (higher spin) currents are obtained with two scalars for any finite N (where SU(N+2) is the group of coset) and k (the level of spin-1 Kac Moody current). Furthermore, these 16 higher spin currents are implicitly obtained in an extension of large N=4 ‘linear’ superconformal algebra for generic N and k. The corresponding three-point functions are also determined. Under the large N ’t Hooft limit, the two corresponding three-point functions in the nonlinear and linear versions coincide even though they are completely different for finite N and k.

  2. Fire and Heat Spreading Model Based on Cellular Automata Theory

    Science.gov (United States)

    Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.

  3. Actor-critic-based ink drop spread as an intelligent controller

    OpenAIRE

    SAGHA, Hesam; AFRAKOTI, Iman Esmaili Paeen; BAGHERISHOURAKI, Saeed

    2014-01-01

    This paper introduces an innovative adaptive controller based on the actor-critic method. The proposed approach employs the ink drop spread (IDS) method as its main engine. The IDS method is a new trend in soft-computing approaches that is a universal fuzzy modeling technique and has been also used as a supervised controller. Its process is very similar to the processing system of the human brain. The proposed actor-critic method uses an IDS structure as an actor and a 2-dimensional...

  4. Theoretical predictions of the lateral spreading of implanted ions

    International Nuclear Information System (INIS)

    Ashworth, D.G.; Oven, R.

    1986-01-01

    The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)

  5. Operator Spreading in Random Unitary Circuits

    Science.gov (United States)

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2018-04-01

    Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be

  6. One-point functions in defect CFT and integrability

    Energy Technology Data Exchange (ETDEWEB)

    Leeuw, Marius de; Kristjansen, Charlotte [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Zarembo, Konstantin [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 08 (Sweden)

    2015-08-19

    We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX{sub 1/2} spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k=2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k→∞.

  7. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    International Nuclear Information System (INIS)

    Menage, D; Chetehouna, K; Mell, W

    2012-01-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  8. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    Science.gov (United States)

    Menage, D.; Chetehouna, K.; Mell, W.

    2012-11-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  9. Potential corridors and barriers for plague spread in central Asia

    Science.gov (United States)

    2013-01-01

    Background Plague (Yersinia pestis infection) is a vector-borne disease which caused millions of human deaths in the Middle Ages. The hosts of plague are mostly rodents, and the disease is spread by the fleas that feed on them. Currently, the disease still circulates amongst sylvatic rodent populations all over the world, including great gerbil (Rhombomys opimus) populations in Central Asia. Great gerbils are social desert rodents that live in family groups in burrows, which are visible on satellite images. In great gerbil populations an abundance threshold exists, above which plague can spread causing epizootics. The spatial distribution of the host species is thought to influence the plague dynamics, such as the direction of plague spread, however no detailed analysis exists on the possible functional or structural corridors and barriers that are present in this population and landscape. This study aims to fill that gap. Methods Three 20 by 20 km areas with known great gerbil burrow distributions were used to analyse the spatial distribution of the burrows. Object-based image analysis was used to map the landscape at several scales, and was linked to the burrow maps. A novel object-based method was developed – the mean neighbour absolute burrow density difference (MNABDD) – to identify the optimal scale and evaluate the efficacy of using landscape objects as opposed to square cells. Multiple regression using raster maps was used to identify the landscape-ecological variables that explain burrow density best. Functional corridors and barriers were mapped using burrow density thresholds. Cumulative resistance of the burrow distribution to potential disease spread was evaluated using cost distance analysis. A 46-year plague surveillance dataset was used to evaluate whether plague spread was radially symmetric. Results The burrow distribution was found to be non-random and negatively correlated with Greenness, especially in the floodplain areas. Corridors and

  10. Update on CERN Search based on SharePoint 2013

    Science.gov (United States)

    Alvarez, E.; Fernandez, S.; Lossent, A.; Posada, I.; Silva, B.; Wagner, A.

    2017-10-01

    CERN’s enterprise Search solution “CERN Search” provides a central search solution for users and CERN service providers. A total of about 20 million public and protected documents from a wide range of document collections is indexed, including Indico, TWiki, Drupal, SharePoint, JACOW, E-group archives, EDMS, and CERN Web pages. In spring 2015, CERN Search was migrated to a new infrastructure based on SharePoint 2013. In the context of this upgrade, the document pre-processing and indexing process was redesigned and generalised. The new data feeding framework allows to profit from new functionality and it facilitates the long term maintenance of the system.

  11. Real-time estimation of FLE for point-based registration

    Science.gov (United States)

    Wiles, Andrew D.; Peters, Terry M.

    2009-02-01

    In image-guide surgery, optimizing the accuracy in localizing the surgical tools within the virtual reality environment or 3D image is vitally important, significant effort has been spent reducing the measurement errors at the point of interest or target. This target registration error (TRE) is often defined by a root-mean-square statistic which reduces the vector data to a single term that can be minimized. However, lost in the data reduction is the directionality of the error which, can be modelled using a 3D covariance matrix. Recently, we developed a set of expressions that modeled the TRE statistics for point-based registrations as a function of the fiducial marker geometry, target location and the fiducial localizer error (FLE). Unfortunately, these expressions are only as good as the definition of the FLE. In order to close the gap, we have subsequently developed a closed form expression that estimates the FLE as a function of the estimated fiducial registration error (FRE, the error between the measured fiducials and the best fit locations of those fiducials). The FRE covariance matrix is estimated using a sliding window technique and used as input into the closed form expression to estimate the FLE. The estimated FLE can then used to estimate the TRE which, can be given to the surgeon to permit the procedure to be designed such that the errors associated with the point-based registrations are minimized.

  12. On the $a$-points of the derivatives of the Riemann zeta function

    OpenAIRE

    Onozuka, Tomokazu

    2016-01-01

    We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T

  13. Two- and three-point functions in the D=1 matrix model

    International Nuclear Information System (INIS)

    Ben-Menahem, S.

    1991-01-01

    The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)

  14. Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)

    Science.gov (United States)

    Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.

  15. Modular differential equations for torus one-point functions

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Lang, Samuel

    2009-01-01

    It is shown that in a rational conformal field theory every torus one-point function of a given highest weight state satisfies a modular differential equation. We derive and solve these differential equations explicitly for some Virasoro minimal models. In general, however, the resulting amplitudes do not seem to be expressible in terms of standard transcendental functions

  16. Topology dependent epidemic spreading velocity in weighted networks

    International Nuclear Information System (INIS)

    Duan, Wei; Qiu, Xiaogang; Quax, Rick; Lees, Michael; Sloot, Peter M A

    2014-01-01

    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed–Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases. (paper)

  17. Spread spectrum mobile communication experiment using ETS-V satellite

    Science.gov (United States)

    Ikegami, Tetsushi; Suzuki, Ryutaro; Kadowaki, Naoto; Taira, Shinichi; Sato, Nobuyasu

    1990-01-01

    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite.

  18. Lateral spread affects nitrogen leaching from urine patches.

    Science.gov (United States)

    Cichota, Rogerio; Vogeler, Iris; Snow, Val; Shepherd, Mark; McAuliffe, Russell; Welten, Brendon

    2018-09-01

    Nitrate leaching from urine deposited by grazing animals is a critical constraint for sustainable dairy farming in New Zealand. While considerable progress has been made to understand the fate of nitrogen (N) under urine patches, little consideration has been given to the spread of urinary N beyond the wetted area. In this study, we modelled the lateral spread of nitrogen from the wetted area of a urine patch to the soil outside the patch using a combination of two process-based models (HYDRUS and APSIM). The simulations provided insights on the extent and temporal pattern for the redistribution of N in the soil following a urine deposition and enabled investigating the effect of lateral spread of urinary N on plant growth and N leaching. The APSIM simulation, using an implementation of a dispersion-diffusion function, was tested against experimental data from a field experiment conducted in spring on a well-drained soil. Depending on the geometry considered for the dispersion-diffusion function (plate or cylindrical) the area-averaged N leaching decreased by 8 and 37% compared with simulations without lateral N spread; this was due to additional N uptake from pasture on the edge area. A sensitivity analysis showed that area-averaged pasture growth was not greatly affected by the value of the dispersion factor used in the model, whereas N leaching was very sensitive. Thus, the need to account for the edge effect may depend on the objective of the simulations. The modelling results also showed that considering lateral spread of urinary N was sufficient to describe the experimental data, but plant root uptake across urine patch zones may still be relevant in other conditions. Although further work is needed for improving accuracy, the simulated and experimental results demonstrate that accounting for the edge effect is important for determining N leaching from urine-affected areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Unbounded critical points for a class of lower semicontinuous functionals

    OpenAIRE

    Pellacci, Benedetta; Squassina, Marco

    2003-01-01

    In this paper we prove existence and multiplicity results of unbounded critical points for a general class of weakly lower semicontinuous functionals. We will apply a suitable nonsmooth critical point theory.

  20. Inventory classification based on decoupling points

    Directory of Open Access Journals (Sweden)

    Joakim Wikner

    2015-01-01

    Full Text Available The ideal state of continuous one-piece flow may never be achieved. Still the logistics manager can improve the flow by carefully positioning inventory to buffer against variations. Strategies such as lean, postponement, mass customization, and outsourcing all rely on strategic positioning of decoupling points to separate forecast-driven from customer-order-driven flows. Planning and scheduling of the flow are also based on classification of decoupling points as master scheduled or not. A comprehensive classification scheme for these types of decoupling points is introduced. The approach rests on identification of flows as being either demand based or supply based. The demand or supply is then combined with exogenous factors, classified as independent, or endogenous factors, classified as dependent. As a result, eight types of strategic as well as tactical decoupling points are identified resulting in a process-based framework for inventory classification that can be used for flow design.

  1. An information spreading model based on online social networks

    Science.gov (United States)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  2. Default Spread dan Term Spread sebagai Variabel Proxy Siklus Bisnis pada Model Fama-French

    Directory of Open Access Journals (Sweden)

    Edwin Hendra

    2015-08-01

    Full Text Available This research aims to apply the Fama-French models and test the effect of alternative variable of bond yield spread, default spread (RBBB – RAAA and RAAA – RF, and the term spread (RSUN10-RSUN1, as proxy variables of the business cycle, in IDX stock data during 2005-2010. Four types of asset pricing models tested are Sharpe-Lintner CAPM, Fama-French models, Hwang et al.model, and hybrid model. The results showed that the size effect and value effect has an impact on excess stock returns. Slopes of market beta, SMB, and HML are more sensitive to stock big size and high B / M. Default spreads and term spreads in Hwang et al. model can explain the value effect, and weakly explain the size effect, meanwhile the power of explanation disappeared on Hybrid models. Based on the assessment adjusted R2 and the frequency of rejection of non-zero alpha, is found that the hybrid model is the most suitable model.  

  3. Electroluminescence enhancement for near-ultraviolet light emitting diodes with graphene/AZO-based current spreading layers

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Zhu, Xiaolong

    LEDs) have attracted significant research interest due to their intensive applications in various areas where indium tin oxide (ITO) is one of the most widely employed transparent conductive materials for NUV LEDs. Compared to ITO, indium-free aluminum-doped zinc oxide (AZO) has similar electrical......Near-ultraviolet light emitting diodes with different aluminum-doped zinc oxide-based current spreading layers were fabricated and electroluminescence (EL) was compared. A 170% EL enhancement was achieved by using a graphene-based interlayer. GaN-based near-ultraviolet light emitting diodes (NUV...... with a new type of current spreading layer (CSL) which combines AZO and a single-layer graphene (SLG) as an effective transparent CSL [1]. In the present work, LEDs with solo AZO CSL in Fig.1(a) and SLG/Ni/AZO-based CSL in Fig.1(b) were both fabricated for EL comparison. Standard mesa fabrication including...

  4. A study of the spreading scheme for viral marketing based on a complex network model

    Science.gov (United States)

    Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong

    2010-02-01

    Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.

  5. Spreading of suppository bases assessed with histological and scintigraphic techniques

    International Nuclear Information System (INIS)

    Tupper, C.H.; Copping, N.; Thomas, N.W.; Wilson, C.G.

    1982-01-01

    Suppositories of PEG 15400 and PEG 600, Myrj 52 and Brij 35, were administered rectally to fasted male rats. 30 and 60 mins after liquefaction time samples of rectal mucosa were taken from treated and untreated rats. The reduction in rectal cell volume and density in treated rats was noted. Similar suppositories, containing anion exchange resin and labelled with technetium 99, were administered to other rats. Serial scintiscanning was carried out using a gamma camera linked to a computer. Spreading of the suppository bases was assessed histologically and by imaging. (U.K.)

  6. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  7. ["Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole].

    Science.gov (United States)

    Zeitoun, M

    2017-01-01

    To try to establish a "point by point" relationship between the local thickness of the retinal ganglion cell complex and its sensitivity. In total, 104 glaucomatous eyes of 89 patients with a confirmed 24-2 visual field, were measured by superimposing the visual field, using imaging software, with the Wide 40° by 30° measurements of retinal ganglion cell complex obtained from the Topcon © 3D 2000 OCT, after upward adjustment, inversion and scaling. Visual fields were classified into two groups according to the extent of the disease: 58 mild to moderate (MD up to -12dB), and 46 severe (MD beyond -12dB). The 6mm by 6mm central region, equipped with a normative database, was studied, corresponding to 16 points in the visual field. These points were individually matched one by one to the local ganglion cell complex, which was classified into 2 groups depending on whether it was greater or less than 70 microns. The normative database confirmed the pathological nature of the thin areas, with a significance of 95 to 99%. Displacement of central retinal ganglion cells was compensated for. Of 1664 points (16 central points for 104 eyes), 283 points were found to be "borderline" and excluded. Of the 1381 analyzed points, 727 points were classified as "over 70 microns" and 654 points "under 70 microns". (1) For all stages combined, 85.8% of the 727 points which were greater than 70 microns had a deviation between -3 and +3dB: areas above 70 microns had no observable loss of light sensitivity. (2) In total, 92.5% of the 428 points having a gap ranging from -6 to -35dB were located on ganglion cell complex areas below 70 microns: functional visual loss was identified in thin areas, which were less than 70 microns. (3) Areas which were less than 70 microns, that is 654 points, had quite variable sensitivity and can be divided into three groups: the first with preserved sensitivity, another with obliterated sensitivity, and an intermediate group connecting

  8. A shape-based quality evaluation and reconstruction method for electrical impedance tomography.

    Science.gov (United States)

    Antink, Christoph Hoog; Pikkemaat, Robert; Malmivuo, Jaakko; Leonhardt, Steffen

    2015-06-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community. In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed. Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images.

  9. A shape-based quality evaluation and reconstruction method for electrical impedance tomography

    International Nuclear Information System (INIS)

    Antink, Christoph Hoog; Pikkemaat, Robert; Leonhardt, Steffen; Malmivuo, Jaakko

    2015-01-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community.In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed.Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images. (paper)

  10. Computing three-point functions for short operators

    International Nuclear Information System (INIS)

    Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul

    2013-11-01

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  11. Computing three-point functions for short operators

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy

    2013-11-15

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  12. User Modeling for Point-of-Interest Recommendations in Location-Based Social Networks: The State of the Art

    Directory of Open Access Journals (Sweden)

    Shudong Liu

    2018-01-01

    Full Text Available The rapid growth of location-based services (LBSs has greatly enriched people’s urban lives and attracted millions of users in recent years. Location-based social networks (LBSNs allow users to check-in at a physical location and share daily tips on points of interest (POIs with their friends anytime and anywhere. Such a check-in behavior can make daily real-life experiences spread quickly through the Internet. Moreover, such check-in data in LBSNs can be fully exploited to understand the basic laws of humans’ daily movement and mobility. This paper focuses on reviewing the taxonomy of user modeling for POI recommendations through the data analysis of LBSNs. First, we briefly introduce the structure and data characteristics of LBSNs, and then we present a formalization of user modeling for POI recommendations in LBSNs. Depending on which type of LBSNs data was fully utilized in user modeling approaches for POI recommendations, we divide user modeling algorithms into four categories: pure check-in data-based user modeling, geographical information-based user modeling, spatiotemporal information-based user modeling, and geosocial information-based user modeling. Finally, summarizing the existing works, we point out the future challenges and new directions in five possible aspects.

  13. The Euclidean three-point function in loop and perturbative gravity

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Zhang Mingyi

    2011-01-01

    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.

  14. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    Directory of Open Access Journals (Sweden)

    Junhui Huang

    2016-12-01

    Full Text Available Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  15. Two Point Correlation Functions for a Periodic Box-Ball System

    Directory of Open Access Journals (Sweden)

    Jun Mada

    2011-03-01

    Full Text Available We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N-point functions is also presented.

  16. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  17. Optimal protein library design using recombination or point mutations based on sequence-based scoring functions.

    Science.gov (United States)

    Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D

    2007-08-01

    In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.

  18. Spreading of blood drops over dry porous substrate: complete wetting case.

    Science.gov (United States)

    Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M

    2015-05-15

    The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Gasification of the southern spread of Bolivia-Brazil gas pipeline

    International Nuclear Information System (INIS)

    Frisoli, Caetano; Senna, Ferando Jose Ennes de; Faria, Jose Aurelio Carvalho de

    2000-01-01

    As to the commissioning of the Northern spread, Inert Direct Purging was also adopted for purging the Southern Spread of Bolivia-Brazil Gas Pipeline. This section is 1191 km long and lies between the city of Paulinia in the State of Sao Paulo up to Canoas in the Sate of Rio Grande do Sul. The Inert Direct Purging is based on the principle of high gas injection flow rates at the initial point and the purging of air at the other end, separated by a nitrogen plug. A purging model, developed by The Gas Research Institute, was used in conjunction with the software Pipeline Studio for planning purposes. The arrival of gas at each valve and the size of gas/nitrogen/air interfaces were also recorded. Graphs and tables compare calculated and recorded data. Final results demonstrated model accuracy and its suitable applicability for purging, as well as the Inert Direct Purging method for gas pipelines of extensive lengths. (author)

  20. A travel time forecasting model based on change-point detection method

    Science.gov (United States)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  1. Hash function based on chaotic map lattices.

    Science.gov (United States)

    Wang, Shihong; Hu, Gang

    2007-06-01

    A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.

  2. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  3. Topological data analysis of contagion maps for examining spreading processes on networks.

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  4. Topological data analysis of contagion maps for examining spreading processes on networks

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  5. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-01-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  6. A naturally large four-point function in single field inflation

    International Nuclear Information System (INIS)

    Senatore, Leonardo; Zaldarriaga, Matias

    2011-01-01

    Non-Gaussianities of the primordial density perturbations have emerged as a very powerful possible signal to test the dynamics that drove the period of inflation. While in general the most sensitive observable is the three-point function in this paper we show that there are technically natural inflationary models where the leading source of non-Gaussianity is the four-point function. Using the recently developed Effective Field Theory of Inflation, we are able to show that it is possible to impose an approximate parity symmetry and an approximate continuos shift symmetry on the inflaton fluctuations that allow, when the dispersion relation if of the form ω ∼ c s k, for a unique quartic operator, while approximately forbidding all the cubic ones. The resulting shape for the four-point function is unique. In the models where the dispersion relation is of the form ω ∼ k 2 /M a similar construction can be carried out and additional shapes are possible

  7. Wavelet versus DCT-based spread spectrum watermarking of image databases

    Science.gov (United States)

    Mitrea, Mihai P.; Zaharia, Titus B.; Preteux, Francoise J.; Vlad, Adriana

    2004-05-01

    This paper addresses the issue of oblivious robust watermarking, within the framework of colour still image database protection. We present an original method which complies with all the requirements nowadays imposed to watermarking applications: robustness (e.g. low-pass filtering, print & scan, StirMark), transparency (both quality and fidelity), low probability of false alarm, obliviousness and multiple bit recovering. The mark is generated from a 64 bit message (be it a logo, a serial number, etc.) by means of a Spread Spectrum technique and is embedded into DWT (Discrete Wavelet Transform) domain, into certain low frequency coefficients, selected according to the hierarchy of their absolute values. The best results were provided by the (9,7) bi-orthogonal transform. The experiments were carried out on 1200 image sequences, each of them of 32 images. Note that these sequences represented several types of images: natural, synthetic, medical, etc. and each time we obtained the same good results. These results are compared with those we already obtained for the DCT domain, the differences being pointed out and discussed.

  8. Wavelet based mobile video watermarking: spread spectrum vs. informed embedding

    Science.gov (United States)

    Mitrea, M.; Prêteux, F.; Duţă, S.; Petrescu, M.

    2005-11-01

    The cell phone expansion provides an additional direction for digital video content distribution: music clips, news, sport events are more and more transmitted toward mobile users. Consequently, from the watermarking point of view, a new challenge should be taken: very low bitrate contents (e.g. as low as 64 kbit/s) are now to be protected. Within this framework, the paper approaches for the first time the mathematical models for two random processes, namely the original video to be protected and a very harmful attack any watermarking method should face the StirMark attack. By applying an advanced statistical investigation (combining the Chi square, Ro, Fisher and Student tests) in the discrete wavelet domain, it is established that the popular Gaussian assumption can be very restrictively used when describing the former process and has nothing to do with the latter. As these results can a priori determine the performances of several watermarking methods, both of spread spectrum and informed embedding types, they should be considered in the design stage.

  9. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  10. Perspectives on How Human Simultaneous Multi-Modal Imaging Adds Directionality to Spread Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Julia Neitzel

    2018-01-01

    Full Text Available Previous animal research suggests that the spread of pathological agents in Alzheimer’s disease (AD follows the direction of signaling pathways. Specifically, tau pathology has been suggested to propagate in an infection-like mode along axons, from transentorhinal cortices to medial temporal lobe cortices and consequently to other cortical regions, while amyloid-beta (Aβ pathology seems to spread in an activity-dependent manner among and from isocortical regions into limbic and then subcortical regions. These directed connectivity-based spread models, however, have not been tested directly in AD patients due to the lack of an in vivo method to identify directed connectivity in humans. Recently, a new method—metabolic connectivity mapping (MCM—has been developed and validated in healthy participants that uses simultaneous FDG-PET and resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC. To this end, postsynaptic energy consumption (FDG-PET is used to identify regions with afferent input from other functionally connected brain regions (resting-state fMRI. Here, we discuss how this multi-modal imaging approach allows quantitative, whole-brain mapping of signaling direction in AD patients, thereby pointing out some of the advantages it offers compared to other EC methods (i.e., Granger causality, dynamic causal modeling, Bayesian networks. Most importantly, MCM provides the basis on which models of pathology spread, derived from animal studies, can be tested in AD patients. In particular, future work should investigate whether tau and Aβ in humans propagate along the trajectories of directed connectivity in order to advance our understanding of the neuropathological mechanisms causing disease progression.

  11. Social Distancing Strategies against Disease Spreading

    Science.gov (United States)

    Valdez, L. D.; Buono, C.; Macri, P. A.; Braunstein, L. A.

    2013-12-01

    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.e., the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.e., the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.

  12. Individual stock-option prices and credit spreads

    NARCIS (Netherlands)

    Cremers, M.; Driessen, J.; Maenhout, P.; Weinbaum, D.

    2008-01-01

    This paper introduces measures of volatility and jump risk that are based on individual stock options to explain credit spreads on corporate bonds. Implied volatilities of individual options are shown to contain useful information for credit spreads and improve on historical volatilities when

  13. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes.

    Science.gov (United States)

    Min, Jung-Hong; Son, Myungwoo; Bae, Si-Young; Lee, Jun-Yeob; Yun, Joosun; Maeng, Min-Jae; Kwon, Dae-Gyeon; Park, Yongsup; Shim, Jong-In; Ham, Moon-Ho; Lee, Dong-Seon

    2014-06-30

    Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

  14. Interference Excision in Spread Spectrum Communications Using Adaptive Positive Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Krishnan Sridhar

    2007-01-01

    Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of  dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.

  15. Cell Based GIS as Cellular Automata for Disaster Spreading Predictions and Required Data Systems

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available A method for prediction and simulation based on the Cell Based Geographic Information System(GIS as Cellular Automata (CA is proposed together with required data systems, in particular metasearch engine usage in an unified way. It is confirmed that the proposed cell based GIS as CA has flexible usage of the attribute information that is attached to the cell in concert with location information and does work for disaster spreading simulation and prediction.

  16. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  17. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy

    2013-05-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage times once the drop has reached its maximum spread on the surface. During the initial spreading stage, we compare our experimental data to a previously developed model which incorporates imbibition into the spreading dynamics and observe reasonable agreement. We find that the maximum spread is a strong function of the moisture content in the powder bed and that the total time from impact to complete drainage is always shorter than that for dry powder. Our results indicate that there is an optimum moisture content (or saturation) which leads to the fastest penetration. We use simple scaling arguments which also identify an optimum moisture content for fastest penetration, which agrees very well with the experimental result. © 2013 Elsevier B.V.

  18. The spreading time in SIS epidemics on networks

    Science.gov (United States)

    He, Zhidong; Van Mieghem, Piet

    2018-03-01

    In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time Tm, which is the time when the number of infected nodes in the metastable state is first reached, starting from the outbreak of the epidemics. We observe that the spreading time Tm resembles a lognormal-like distribution, though with different deep tails, both for the Markovian and the non-Markovian infection process, which implies that the spreading time can be very long with a relatively high probability. In addition, we show that a stronger virus, with a higher effective infection rate τ or an earlier timing of the infection attempts, does not always lead to a shorter average spreading time E [Tm ] . We numerically demonstrate that the average spreading time E [Tm ] in the complete graph and the star graph scales logarithmically as a function of the network size N for a fixed fraction of infected nodes in the metastable state.

  19. Information spread in networks: Games, optimal control, and stabilization

    Science.gov (United States)

    Khanafer, Ali

    on the network. To this end, we propose a distributed version of the classical logic-based supervisory control scheme. Given a network of agents whose dynamics contain unknown parameters, the distributed supervisory control scheme is used to assist the agents to converge to a certain set-point without requiring them to have explicit knowledge of that set-point. Unlike the classical supervisory control scheme where a centralized supervisor makes switching decisions among the candidate controllers, in our scheme, each agent is equipped with a local supervisor that switches among the available controllers. The switching decisions made at a certain agent depend only on the information from its neighboring agents. We provide sufficient conditions for stabilization and apply our framework to the distributed averaging problem in the presence of large modeling uncertainty. For infected networks, we study the stability properties of a susceptible-infected-susceptible (SIS) diffusion model, so-called the n-intertwined Markov model, over arbitrary network topologies. Similar to the majority of infection spread dynamics, this model exhibits a threshold phenomenon. When the curing rates in the network are high, the all-healthy state is the unique equilibrium over the network. Otherwise, an endemic equilibrium state emerges, where some infection remains within the network. Using notions from positive systems theory, we provide conditions for the global asymptotic stability of the equilibrium points in both cases over strongly and weakly connected directed networks based on the value of the basic reproduction number, a fundamental quantity in the study of epidemics. Furthermore, we demonstrate that the n-intertwined Markov model can be viewed as a best-response dynamical system of a concave game among the nodes. This characterization allows us to cast new infection spread dynamics; additionally, we provide a sufficient condition, for the global convergence to the all-healthy state

  20. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  1. Point-based warping with optimized weighting factors of displacement vectors

    Science.gov (United States)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  2. Spreading Awareness of Stroke through School-Based Education: A Pooled Analysis of Three Community-Based Studies.

    Science.gov (United States)

    Hino, Tenyu; Yokota, Chiaki; Nishimura, Kunihiro; Nakai, Michikazu; Kato, Suzuka; Kuwabara, Kazuyo; Takekawa, Hidehiro; Arimizu, Takuro; Tomari, Shinya; Wada, Shinichi; Ohnishi, Hideyuki; Toyoda, Kazunori; Okamura, Tomonori; Minematsu, Kazuo

    2018-03-12

    Advancing school-based education is a promising means to spread knowledge pertaining to stroke. The aim of the current study was to clarify whether stroke lessons provided by schoolteachers could deliver stroke knowledge to children (aged 9-11 years) and their parents, at a similar level to when taught by medical staff. Schoolteachers conducted lessons on stroke for school children using the educational materials we prepared (i.e., the teacher group; 1051 children and 719 parents). This was compared with our previous data from Akashi city and Tochigi prefecture, in which the stroke lessons were conducted by medical staff (i.e., the medical group; 1031 children and 756 parents). Three campaigns were conducted between September 2014 and May 2016. Each child was given education materials to take home to discuss stroke with their parents. The children and their parents answered questionnaires on stroke knowledge, at baseline, immediately after the lesson, and at 3 months after the lesson. Compared with the time point before the lesson, both children and parents instructed by the teacher group showed significant increases in the scores about stroke symptoms and risk factors, immediately and at 3 months after the lesson (P educational material, adequately delivered knowledge of stroke to children and parents, in a manner that was similar to when medical staff delivered this information. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Regularity of p(ṡ)-superharmonic functions, the Kellogg property and semiregular boundary points

    Science.gov (United States)

    Adamowicz, Tomasz; Björn, Anders; Björn, Jana

    2014-11-01

    We study various boundary and inner regularity questions for $p(\\cdot)$-(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for $p(\\cdot)$-harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples. Along the way, we present a removability result for bounded $p(\\cdot)$-harmonic functions and give some new characterizations of $W^{1, p(\\cdot)}_0$ spaces. We also show that $p(\\cdot)$-superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions.

  4. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    Science.gov (United States)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  5. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.

    Science.gov (United States)

    Takaguchi, Taro; Masuda, Naoki; Holme, Petter

    2013-01-01

    Records of social interactions provide us with new sources of data for understanding how interaction patterns affect collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that bursty activity patterns facilitate epidemic spreading in our model.

  6. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    Full Text Available Records of social interactions provide us with new sources of data for understanding how interaction patterns affect collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that bursty activity patterns facilitate epidemic spreading in our model.

  7. PLANNING QUALITY ASSURANCE PROCESSES IN A LARGE SCALE GEOGRAPHICALLY SPREAD HYBRID SOFTWARE DEVELOPMENT PROJECT

    Directory of Open Access Journals (Sweden)

    Святослав Аркадійович МУРАВЕЦЬКИЙ

    2016-02-01

    Full Text Available There have been discussed key points of operational activates in a large scale geographically spread software development projects. A look taken at required QA processes structure in such project. There have been given up to date methods of integration quality assurance processes into software development processes. There have been reviewed existing groups of software development methodologies. Such as sequential, agile and based on RPINCE2. There have been given a condensed overview of quality assurance processes in each group. There have been given a review of common challenges that sequential and agile models are having in case of large geographically spread hybrid software development project. Recommendations were given in order to tackle those challenges.  The conclusions about the best methodology choice and appliance to the particular project have been made.

  8. FACTORS INFLUENCING YIELD SPREADS OF THE MALAYSIAN BONDS

    Directory of Open Access Journals (Sweden)

    Norliza Ahmad

    2009-01-01

    Full Text Available Malaysian bond market is developing rapidly but not much is understood in terms of macroeconomic factors that could influence the yield spread of the Ringgit Malaysian denominated bonds. Based on a multifactor model, this paper examines the impact of four macroeconomic factors namely: Kuala Lumpur Composite Index (KLCI, Industry Production Index (IPI, Consumer Price Index (CPI and interest rates (IR on bond yield spread of the Malaysian Government Securities (MGS and Corporate Bonds (CBs for a period from January 2001 to December 2008. The findings support the expected hypotheses that CPI and IR are the major drivers that influence the changes in MGS yield spreads. However IPI and KLCI have weak and no influence on MGS yield spreads respectively Whilst IR, CPI and IPI have significant influence on the yield spreads of CB1, CB2 and CB3, KLCI has significant influence only on the CB1 yield spread but not on CB2 and CB3 yield spreads.

  9. Interference Excision in Spread Spectrum Communications Using Adaptive Positive Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Sridhar Krishnan

    2007-07-01

    Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of −10 dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.

  10. 2-point functions in quantum cosmology

    International Nuclear Information System (INIS)

    Gielen, Steffen

    2012-01-01

    We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories, with particular reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, deriving vertex expansions and composition laws they satisfy. We clarify the tie between definitions using a group averaging procedure and those in a deparametrised framework. We draw some conclusions about the physics of a single quantum universe and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  11. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Science.gov (United States)

    Baudais, Jean-Yves; Crussière, Matthieu

    2007-12-01

    Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM) are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM) waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT) system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC) channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR) is low.

  12. Tracing the Base: A Topographic Test for Collusive Basing-Point Pricing

    NARCIS (Netherlands)

    Bos, Iwan; Schinkel, Maarten Pieter

    2009-01-01

    Basing-point pricing is known to have been abused by geographically dispersed firms in order to eliminate competition on transportation costs. This paper develops a topographic test for collusive basing-point pricing. The method uses transaction data (prices, quantities) and customer project site

  13. Tracing the base: A topographic test for collusive basing-point pricing

    NARCIS (Netherlands)

    Bos, I.; Schinkel, M.P.

    2008-01-01

    Basing-point pricing is known to have been abused by geographically dispersed firms in order to eliminate competition on transportation costs. This paper develops a topographic test for collusive basing-point pricing. The method uses transaction data (prices, quantities) and customer project site

  14. Detector line spread functions determined analytically by transport of Compton recoil electrons

    International Nuclear Information System (INIS)

    Veld, A.A. van't; Luijk, P. van; Praamstra, F.; Hulst, P.C. van der

    2001-01-01

    To achieve the maximum benefit of conformal radiation therapy it is necessary to obtain accurate knowledge of radiation beam penumbras based on high-resolution relative dosimetry of beam profiles. For this purpose there is a need to perform high-resolution dosimetry with well-established routine dosimeters, such as ionization chambers or diodes. Profiles measured with these detectors must be corrected for the dosimeter's nonideal response, caused by finite dimensions and, in the case of an ionization chamber, the alteration of electron transport and a contribution of electrons recoiled in the chamber wall and the central electrode. For this purpose the line spread function (LSF) of the detector is needed. The experimental determination of LSFs is cumbersome and restricted to the specific detector and beam energy spectrum used. Therefore, a previously reported analytical model [Med. Phys. 27, 923-934 (2000)] has been extended to determine response profiles of routine dosimeters: shielded diodes and, in particular, ionization chambers, in primary dose slit beams. The model combines Compton scattering of incident photons, the transport of recoiled electrons by Fermi-Eyges small-angle multiple scattering theory, and functions to limit electron transport. It yields the traveling direction and the energy of electrons upon incidence on the detector surface. In the case of ionization chambers, geometrical considerations are then sufficient to calculate the relative amount of ionization in chamber air, i.e., the detector response, as a function of the detector location in the slit beam. In combination with the previously reported slit beam dose profiles, the LSF can then readily be derived by reconstruction techniques. Since the spectral contributions are preserved, the LSF of a dosimeter is defined for any beam for which the effective spectrum is known. The detector response profiles calculated in this study have been verified in a telescopic slit beam geometry, and were

  15. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    DEFF Research Database (Denmark)

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...

  16. Mathematic-Graphical Formalization of Switch Point Control Circuit Function

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2004-01-01

    Full Text Available This article describes authors designed method then enables mathematic – graphical formalization of system’s functional specification. The result of this method is algebraic system – finite automata that is written in transition table. This transition table is possible to overwrite to graphic form (state diagram or to mathematic form (transition and output function. This method is described by example of switch point control circuit.

  17. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  18. Warning signals for eruptive events in spreading fires.

    Science.gov (United States)

    Fox, Jerome M; Whitesides, George M

    2015-02-24

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).

  19. Capturing Ridge Functions in High Dimensions from Point Queries

    KAUST Repository

    Cohen, Albert

    2011-12-21

    Constructing a good approximation to a function of many variables suffers from the "curse of dimensionality". Namely, functions on ℝ N with smoothness of order s can in general be captured with accuracy at most O(n -s/N) using linear spaces or nonlinear manifolds of dimension n. If N is large and s is not, then n has to be chosen inordinately large for good accuracy. The large value of N often precludes reasonable numerical procedures. On the other hand, there is the common belief that real world problems in high dimensions have as their solution, functions which are more amenable to numerical recovery. This has led to the introduction of models for these functions that do not depend on smoothness alone but also involve some form of variable reduction. In these models it is assumed that, although the function depends on N variables, only a small number of them are significant. Another variant of this principle is that the function lives on a low dimensional manifold. Since the dominant variables (respectively the manifold) are unknown, this leads to new problems of how to organize point queries to capture such functions. The present paper studies where to query the values of a ridge function f(x)=g(a · x) when both a∈ℝ N and g ∈ C[0,1] are unknown. We establish estimates on how well f can be approximated using these point queries under the assumptions that g ∈ C s[0,1]. We also study the role of sparsity or compressibility of a in such query problems. © 2011 Springer Science+Business Media, LLC.

  20. Forecasting oil price movements with crack spread futures

    International Nuclear Information System (INIS)

    Murat, Atilim; Tokat, Ekin

    2009-01-01

    In oil markets, the crack spread refers to the crude-product price relationship. Refiners are major participants in oil markets and they are primarily exposed to the crack spread. In other words, refiner activity is substantially driven by the objective of protecting the crack spread. Moreover, oil consumers are active participants in the oil hedging market and they are frequently exposed to the crack spread. From another perspective, hedge funds are heavily using crack spread to speculate in oil markets. Based on the high volume of crack spread futures trading in oil markets, the question we want to raise is whether the crack spread futures can be a good predictor of oil price movements. We investigated first whether there is a causal relationship between the crack spread futures and the spot oil markets in a vector error correction framework. We found the causal impact of crack spread futures on spot oil market both in the long- and the short-run after April 2003 where we detected a structural break in the model. To examine the forecasting performance, we use the random walk model (RWM) as a benchmark, and we also evaluate the forecasting power of crack spread futures against the crude oil futures. The results showed that (a) both the crack spread futures and the crude oil futures outperformed the RWM; and (b) the crack spread futures are almost as good as the crude oil futures in predicting the movements in spot oil markets. (author)

  1. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    Science.gov (United States)

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  2. Inhibition of HSV cell-to-cell spread by lactoferrin and lactoferricin.

    Science.gov (United States)

    Jenssen, Håvard; Sandvik, Kjersti; Andersen, Jeanette H; Hancock, Robert E W; Gutteberg, Tore J

    2008-09-01

    The milk protein lactoferrin (Lf) has multiple functions, including immune stimulation and antiviral activity towards herpes simplex virus 1 and 2 (HSV-1 and HSV-2); antiviral activity has also been reported for the N-terminal pepsin-derived fragment lactoferricin (Lfcin). The anti-HSV mode of action of Lf and Lfcin is assumed to involve, in part, their interaction with the cell surface glycosaminoglycan heparan sulfate, thereby blocking of viral entry. In this study we investigated the ability of human and bovine Lf and Lfcin to inhibit viral cell-to-cell spread as well as the involvement of cell surface glycosaminoglycans during viral cell-to-cell spread. Lf and Lfcin from both human and bovine origin, inhibited cell-to-cell spread of both HSV-1 and HSV-2. Inhibition of cell-to-cell spread by bovine Lfcin involved cell surface chondroitin sulfate. Based on transmission electron microscopy studies, human Lfcin, like bovine Lfcin, was randomly distributed intracellularly, thus differences in their antiviral activity could not be explained by differences in their distribution. In contrast, the cellular localization of iron-saturated (holo)-Lf appeared to differ from that of apo-Lf, indicating that holo- and apo-Lf may exhibit different antiviral mechanisms.

  3. Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections

    Directory of Open Access Journals (Sweden)

    Yasuaki Hikida

    2017-10-01

    Full Text Available We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin gauge theory, and 1 / N corrections should be interpreted as quantum effects in the dual gravity theory. We develop a simple and systematic method to obtain three point functions by decomposing four point functions of scalar operators with Virasoro conformal blocks. Applying the method, we reproduce known results at the leading order in 1 / N and obtain new ones at the next leading order. As confirmation, we check that our results satisfy relations among three point functions conjectured before.

  4. New PN Even Balanced Sequences for Spread-Spectrum Systems

    Directory of Open Access Journals (Sweden)

    Inácio JAL

    2005-01-01

    Full Text Available A new class of pseudonoise even balanced (PN-EB binary spreading sequences is derived from existing classical odd-length families of maximum-length sequences, such as those proposed by Gold, by appending or inserting one extra-zero element (chip to the original sequences. The incentive to generate large families of PN-EB spreading sequences is motivated by analyzing the spreading effect of these sequences from a natural sampling point of view. From this analysis a new definition for PG is established, from which it becomes clear that very high processing gains (PGs can be achieved in band-limited direct-sequence spread-spectrum (DSSS applications by using spreading sequences with zero mean, given that certain conditions regarding spectral aliasing are met. To obtain large families of even balanced (i.e., equal number of ones and zeros sequences, two design criteria are proposed, namely the ranging criterion (RC and the generating ranging criterion (GRC. PN-EB sequences in the polynomial range are derived using these criteria, and it is shown that they exhibit secondary autocorrelation and cross-correlation peaks comparable to the sequences they are derived from. The methods proposed not only facilitate the generation of large numbers of new PN-EB spreading sequences required for CDMA applications, but simultaneously offer high processing gains and good despreading characteristics in multiuser SS scenarios with band-limited noise and interference spectra. Simulation results are presented to confirm the respective claims made.

  5. Two-point functions in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i2, which is characteristic of a Kondo resonance.

  6. Two-point functions in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, D-97074 Würzburg (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Hoyos, Carlos [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); O’Bannon, Andy [STAG Research Centre, Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste, Via Bonomea 265, I 34136 Trieste (Italy); Probst, Jonas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Wu, Jackson M.S. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-03-07

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0+1)-dimensional impurity spin of a gauged SU(N) interacting with a (1+1)-dimensional, large-N, strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU(N)-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O{sup †}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1+1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0+1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green’s function of the form −i〈O〉{sup 2}, which is characteristic of a Kondo resonance.

  7. Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany); Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2016-05-10

    Starting from the known all-order expressions for the BFKL eigenvalue and impact factor, we establish a formalism allowing the direct calculation of the six-point remainder function in N=4 super-Yang-Mills theory in momentum space to — in principle — all orders in perturbation theory. Based upon identities which relate different integrals contributing to the inverse Fourier-Mellin transform recursively, the formalism allows to easily access the full remainder function in multi-Regge kinematics up to 7 loops and up to 10 loops in the fourth logarithmic order. Using the formalism, we prove the all-loop formula for the leading logarithmic approximation proposed by Pennington and investigate the behavior of several newly calculated functions.

  8. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  9. Four-point functions with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-01-15

    We study the OPE of correlation functions of local operators in planar N=4 super Yang-Mills theory. The considered operators have an explicit spacetime dependence that is defined by twisting the translation generators with certain R-symmetry generators. We restrict to operators that carry a small number of excitations above the twisted BMN vacuum. The OPE limit of the four-point correlator is dominated by internal states with few magnons on top of the vacuum. The twisting directly couples all spacetime dependence of the correlator to these magnons. We analyze the OPE in detail, and single out the extremal states that have to cancel all double-trace contributions.

  10. Two-point functions in (loop) quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca; Oriti, Daniele [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Gielen, Steffen [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2011-07-01

    We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions, with particular but non-exclusive reference to loop quantum cosmology (LQC). Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  11. Two-point functions in (loop) quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele, E-mail: calcagni@aei.mpg.de, E-mail: gielen@aei.mpg.de, E-mail: doriti@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany)

    2011-06-21

    The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  12. Two-point functions in (loop) quantum cosmology

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele

    2011-01-01

    The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.

  13. Holographic two-point functions for 4d log-gravity

    NARCIS (Netherlands)

    Johansson, Niklas; Naseh, Ali; Zojer, Thomas

    We compute holographic one- and two-point functions of critical higher-curvature gravity in four dimensions. The two most important operators are the stress tensor and its logarithmic partner, sourced by ordinary massless and by logarithmic non-normalisable gravitons, respectively. In addition, the

  14. Infinite-component conformal fields. Spectral representation of the two-point function

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Tcholakov, V.

    1975-01-01

    The infinite-component conformal fields (with respect to the stability subgroup) are considered. The spectral representation of the conformally invariant two-point function is obtained. This function is nonvanishing as/lso for one ''fundamental'' and one infinite-component field

  15. Migraine strikes as neuronal excitability reaches a tipping point

    NARCIS (Netherlands)

    Scheffer, Marten; van den Berg, Albert; Ferrari, Michel D.

    2013-01-01

    Self-propagating waves of cerebral neuronal firing, known as spreading depolarisations, are believed to be at the roots of migraine attacks. We propose that the start of spreading depolarisations corresponds to a critical transition that occurs when dynamic brain networks approach a tipping point.

  16. Migraine Strikes as Neuronal Excitability Reaches a Tipping Point

    NARCIS (Netherlands)

    Scheffer, M.; Berg, van den A.; Ferrari, B.

    2013-01-01

    Self-propagating waves of cerebral neuronal firing, known as spreading depolarisations, are believed to be at the roots of migraine attacks. We propose that the start of spreading depolarisations corresponds to a critical transition that occurs when dynamic brain networks approach a tipping point.

  17. Epidemic spreading in a hierarchical social network.

    Science.gov (United States)

    Grabowski, A; Kosiński, R A

    2004-09-01

    A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.

  18. Three-point functions in N=4 SYM: the hexagon proposal at three loops

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Institut für Mathematik & Institut für Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, D-12489 Berlin (Germany); Sfondrini, Alessandro [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Str. 27, CH-8093 Zürich (Switzerland)

    2016-02-24

    Basso, Komatsu and Vieira recently proposed an all-loop framework for the computation of three-point functions of single-trace operators of N=4 super-Yang-Mills, the “hexagon program”. This proposal results in several remarkable predictions, including the three-point function of two protected operators with an unprotected one in the SU(2) and SL(2) sectors. Such predictions consist of an “asymptotic” part — similar in spirit to the asymptotic Bethe Ansatz of Beisert and Staudacher for two-point functions — as well as additional finite-size “wrapping” Lüscher-like corrections. The focus of this paper is on such wrapping corrections, which we compute at three-loops in the SL(2) sector. The resulting structure constants perfectly match the ones obtained in the literature from four-point correlators of protected operators.

  19. Gauge-fixing parameter dependence of two-point gauge-variant correlation functions

    International Nuclear Information System (INIS)

    Zhai, C.

    1996-01-01

    The gauge-fixing parameter ξ dependence of two-point gauge-variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge-variant two-point correlation functions (e.g., fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large-distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long-distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose a vanishing gauge-fixing parameter or apply an unphysical infrared cutoff. copyright 1996 The American Physical Society

  20. Predicting online ratings based on the opinion spreading process

    Science.gov (United States)

    He, Xing-Sheng; Zhou, Ming-Yang; Zhuo, Zhao; Fu, Zhong-Qian; Liu, Jian-Guo

    2015-10-01

    Predicting users' online ratings is always a challenge issue and has drawn lots of attention. In this paper, we present a rating prediction method by combining the user opinion spreading process with the collaborative filtering algorithm, where user similarity is defined by measuring the amount of opinion a user transfers to another based on the primitive user-item rating matrix. The proposed method could produce a more precise rating prediction for each unrated user-item pair. In addition, we introduce a tunable parameter λ to regulate the preferential diffusion relevant to the degree of both opinion sender and receiver. The numerical results for Movielens and Netflix data sets show that this algorithm has a better accuracy than the standard user-based collaborative filtering algorithm using Cosine and Pearson correlation without increasing computational complexity. By tuning λ, our method could further boost the prediction accuracy when using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as measurements. In the optimal cases, on Movielens and Netflix data sets, the corresponding algorithmic accuracy (MAE and RMSE) are improved 11.26% and 8.84%, 13.49% and 10.52% compared to the item average method, respectively.

  1. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Directory of Open Access Journals (Sweden)

    Baudais Jean-Yves

    2007-01-01

    Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.

  2. Oil Price Forecasting Using Crack Spread Futures and Oil Exchange Traded Funds

    Directory of Open Access Journals (Sweden)

    Hankyeung Choi

    2015-04-01

    Full Text Available Given the emerging consensus from previous studies that crude oil and refined product (as well as crack spread prices are cointegrated, this study examines the link between the crude oil spot and crack spread derivatives markets. Specifically, the usefulness of the two crack spread derivatives products (namely, crack spread futures and the ETF crack spread for modeling and forecasting daily OPEC crude oil spot prices is evaluated. Based on the results of a structural break test, the sample is divided into pre-crisis, crisis, and post-crisis periods. We find a unidirectional relationship from the two crack spread derivatives markets to the crude oil spot market during the post-crisis period. In terms of forecasting performance, the forecasting models based on crack spread futures and the ETF crack spread outperform the Random Walk Model (RWM, both in-sample and out-of-sample. In addition, on average, the results suggest that information from the ETF crack spread market contributes more to the forecasting models than information from the crack spread futures market.

  3. Fast and accurate computation of projected two-point functions

    Science.gov (United States)

    Grasshorn Gebhardt, Henry S.; Jeong, Donghui

    2018-01-01

    We present the two-point function from the fast and accurate spherical Bessel transformation (2-FAST) algorithm1Our code is available at https://github.com/hsgg/twoFAST. for a fast and accurate computation of integrals involving one or two spherical Bessel functions. These types of integrals occur when projecting the galaxy power spectrum P (k ) onto the configuration space, ξℓν(r ), or spherical harmonic space, Cℓ(χ ,χ'). First, we employ the FFTLog transformation of the power spectrum to divide the calculation into P (k )-dependent coefficients and P (k )-independent integrations of basis functions multiplied by spherical Bessel functions. We find analytical expressions for the latter integrals in terms of special functions, for which recursion provides a fast and accurate evaluation. The algorithm, therefore, circumvents direct integration of highly oscillating spherical Bessel functions.

  4. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform

    Science.gov (United States)

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-07-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.

  5. Temporal percolation of the susceptible network in an epidemic spreading.

    Science.gov (United States)

    Valdez, Lucas Daniel; Macri, Pablo Alejandro; Braunstein, Lidia Adriana

    2012-01-01

    In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity ΦS(t), namely, the probability that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time t(c) above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time t(c). Our theoretical results are confirmed by extensive simulations of the SIR process.

  6. Optimizing hybrid spreading in metapopulations.

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M

    2015-04-29

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.

  7. Stability and dynamic rheological characterization of spread developed based on pistachio oil.

    Science.gov (United States)

    Mousazadeh, Morad; Mousavi, Seyed Mohammad; Emam-Djomeh, Zahra; HadiNezhad, Mehri; Rahmati, Naghmeh

    2013-05-01

    This study investigated the influence of formulation variables (pistachio oil (PO, 7.5 and 15%, w/w), Cocoa butter (CB, 7.5 and 15%, w/w), xanthan gum (XG, 0 and 0.3%, w/w), and distillated monoglyceride (DMG, 0.5 and 1%, w/w)) on the rheological properties and emulsion stability of spreads. Power law and Herschel-Bulkley models were used for modeling shear-thinning behavior of samples. The power law model was found to describe the flow behavior of spreads better than Herschel-Bulkley model. All the rheological properties were increased by adding XG to the spreads whereas increasing PO content caused to decrease them. The DMG had positive effect on apparent viscosity and elastic behavior but had negative effect on viscose behavior. Apparent viscosity was increased by adding CB while rheological modules were not significantly (p DMG improved stability of emulsion. The best spread formulation with optimum rheological properties was 15% PO, 7.5% CB, 0.3% XG and 1% DMG. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Are the Intraday Effects of Central Bank Intervention on Exchange Rate Spreads Asymmetric and State Dependent?

    DEFF Research Database (Denmark)

    Fatum, Rasmus; Pedersen, Jesper; Sørensen, Peter Norman

    This paper investigates the intraday effects of unannounced foreign exchange intervention on bid-ask exchange rate spreads using official intraday intervention data provided by the Danish central bank. Our starting point is a simple theoretical model of the bid-ask spread which we use to formulate...... exert a significant influence on the exchange rate spread, but in opposite directions: intervention purchases of the smaller currency, on average, reduce the spread while intervention sales, on average, increase the spread. We also show that intervention only affects the exchange rate spread when...... the state of the market is not abnormally volatile. Our results are consistent with the notion that illiquidity arises when traders fear speculative pressure against the smaller currency and confirms the asymmetry hypothesis of our theoretical model....

  9. Free energy analysis of cell spreading.

    Science.gov (United States)

    McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick

    2017-10-01

    In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing

  10. Gluon 2- and 3-Point Correlation Functions on the Lattice

    OpenAIRE

    Parrinello, Claudio

    1993-01-01

    I present some preliminary results, obtained in collaboration with C. Bernard and A. Soni, for the lattice evaluation of 2- and 3-point gluon correlation functions in momentum space, with emphasis on the amputated 3-gluon vertex function. The final goal of this approach is the study of the running QCD coupling constant as defined from the amputated 3-gluon vertex.

  11. 2- and 3-point gluon correlation functions on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Dept. of Physics, Univ. of Edinburgh (United Kingdom))

    1994-04-01

    I present some preliminary results, obtained in collaboration with C. Bernard and A. Soni, for the lattice evaluation of 2- and 3-point gluon correlation functions in momentum space, with emphasis on the amputated 3-gluon vertex function. The final goal of this approach is the study of the running QCD coupling constant as defined from the amputated 3-gluon vertex. (orig.)

  12. College-Based Case Studies in Using PowerPoint Effectively

    Science.gov (United States)

    Inoue-Smith, Yukiko

    2016-01-01

    This study reexamined PowerPoint's potential to enhance traditional pedagogical practices in higher education. The study addressed (1) the conditions under which PowerPoint meets students' needs in typical lecture-based classrooms, (2) whether professors consider PowerPoint-based lectures more effective than lectures supported by material on…

  13. Effect of network topology on the spreading of technologies

    International Nuclear Information System (INIS)

    Kocsis, G.; Kun, F.

    2007-01-01

    Complete text of publication follows. Technological evolution of socio-economic systems has two major components: (i) Innovation New products, ideas, paradigms emerge as a result of innovations which are then tested by the market. (ii) Spreading Successful technologies spread over the system resulting in an overall technological progress. In the present project we study the spreading of new technological achievements, searching for the conditions of technological development. One of the key components of the spreading of successful technologies is the copying, i.e. members of the system adopt technologies used by other individuals according to certain decision mechanisms. Decision making is usually based on a cost-benefit balance so that a technology gets adopted by a large number of individuals if the upgrading provides enough benefits. The gradual adaptation of high level technologies leads to spreading of technologies and an overall technological progress of the socio-economic system. We proposed an agent based model for the spreading process of such technologies in which the interaction of individuals plays a crucial role. Agents of the model use products of different technologies to collaborate with each other which induce costs proportional to the difference of technological levels. Additional costs arise when technologies of different providers are used. Agents can adopt technologies and providers of their interacting partners in order to reduce their costs leading to microscopic rearrangements of the system. Starting from a random configuration of different technological levels a complex time evolution emerges where the spreading of advanced technologies and the overall technological progress of the system are determined by the amount of advantages more advanced technologies provide, and by the structure of the social environment of agents. When technological progress arises, the spreading of technologies in the system can be described by extreme order

  14. METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

    Directory of Open Access Journals (Sweden)

    E. V. Dikareva

    2015-01-01

    Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.

  15. Experimental studies on melt spreading, bubbling heat transfer, and coolant layer boiling

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.; Klages, J.; Schwarz, C.E.; Burson, S.B.

    1988-01-01

    Melt spreading studies have been undertaken to investigate the extent to which molten core debris may be expected to spread under gravity forces in a BWR drywell geometry. The objectives are to determine the extent of melt spreading as a function of melt mass,melt superheat, and water depth. These studies will enable an objective determination of whether or not core debris can spread up to and contact containment structures or boundaries upon vessel failure. Results indicate that the most important variables are the melt superheat and the water depth. Studies have revealed five distinct regimes of melt spreading ranging from hydrodynamically-limited to heat transfer-limited. A single parameter dimensionless correlation is presented which identified the spreading regime and allows for mechanistic calculation of the average thickness to which the melt will spread. 7 refs., 12 figs

  16. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted

  17. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri......-contusional cortex in 32 patients who underwent surgical treatment for TBI. Prospective electrocorticography was performed during neurointensive care with retrospective analysis of hourly nursing chart data. Recordings were 84 hr (median) per patient and 2,503 hr in total. In 17 patients (53%), 280 spreading...... depolarizations (spreading depressions and peri-infarct depolarizations) were observed. Depolarizations occurred in a bimodal pattern with peak incidence on days 1 and 7. The probability of a depolarization occurring increased significantly as a function of declining mean arterial pressure (MAP; R(2) = 0.78; p...

  18. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    Science.gov (United States)

    Phillips, David Michael

    liquid PFPE. The experimental analogue of replenishment is the one-dimensional spreading analysis. PFPEs with functional endgroups demonstrated coupled molecular layering and dewetting phenomena during the spreading analysis, while PFPEs with nonfunctional endgroups did not. All of the PFPE thin films spread via a diffusive process and had diffusion coefficients that depended on the local film thickness. A theoretical analysis is presented here for both the governing equation and the disjoining pressure driving force for the PFPE thin film spreading. For PFPEs with non-functional endgroups, a reasonable analysis is performed on the diffusion coefficient for two classes of film: submonolayer and multilayer. The diffusion coefficient of PFPEs with functional endgroups are qualitatively linked to the gradient of the film disjoining pressure. To augment this theory, both lattice-based and off-lattice Monte Carlo simulations are conducted for PFPE film models. The lattice-based model shows the existence of a critical functional endgroup interaction strength. It is also used to study the break-up of molecular layers for a spreading film via a fractal analysis. The off-lattice model is used to calculate the anisotropic pressure tensor for the model PFPE thin film and subsequently the film disjoining pressure. The model also qualitatively analyzes of the self diffusion in the film.

  19. Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks

    Science.gov (United States)

    Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong

    2018-02-01

    Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.

  20. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    Science.gov (United States)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  1. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    Science.gov (United States)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  2. FINDING CUBOID-BASED BUILDING MODELS IN POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    W. Nguatem

    2012-07-01

    Full Text Available In this paper, we present an automatic approach for the derivation of 3D building models of level-of-detail 1 (LOD 1 from point clouds obtained from (dense image matching or, for comparison only, from LIDAR. Our approach makes use of the predominance of vertical structures and orthogonal intersections in architectural scenes. After robustly determining the scene's vertical direction based on the 3D points we use it as constraint for a RANSAC-based search for vertical planes in the point cloud. The planes are further analyzed to segment reliable outlines for rectangular surface within these planes, which are connected to construct cuboid-based building models. We demonstrate that our approach is robust and effective over a range of real-world input data sets with varying point density, amount of noise, and outliers.

  3. Optimizing Hybrid Spreading in Metapopulations.

    OpenAIRE

    Zhang, C.; Zhou, S.; Miller, J. C.; Cox, I. J.; Chain, B. M.

    2015-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...

  4. Optimizing Hybrid Spreading in Metapopulations

    OpenAIRE

    Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.

    2014-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...

  5. Equivalence of functional limit theorems for stationary point processes and their Palm distributions

    NARCIS (Netherlands)

    Nieuwenhuis, G.

    1989-01-01

    Let P be the distribution of a stationary point process on the real line and let P0 be its Palm distribution. In this paper we consider two types of functional limit theorems, those in terms of the number of points of the point process in (0, t] and those in terms of the location of the nth point

  6. Quantum phase space points for Wigner functions in finite-dimensional spaces

    OpenAIRE

    Luis Aina, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.

  7. Quantum phase space points for Wigner functions in finite-dimensional spaces

    International Nuclear Information System (INIS)

    Luis, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas

  8. The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices

    Directory of Open Access Journals (Sweden)

    Eleftherios Matsikoudis

    2013-08-01

    Full Text Available We introduce a new class of abstract structures, which we call generalized ultrametric semilattices, and in which the meet operation of the semilattice coexists with a generalized distance function in a tightly coordinated way. We prove a constructive fixed-point theorem for strictly contracting functions on directed-complete generalized ultrametric semilattices, and introduce a corresponding induction principle. We cite examples of application in the semantics of logic programming and timed computation, where, until now, the only tool available has been the non-constructive fixed-point theorem of Priess-Crampe and Ribenboim for strictly contracting functions on spherically complete generalized ultrametric semilattices.

  9. The massless two-loop two-point function

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Weinzierl, S.

    2003-01-01

    We consider the massless two-loop two-point function with arbitrary powers of the propagators and derive a representation from which we can obtain the Laurent expansion to any desired order in the dimensional regularization parameter ε. As a side product, we show that in the Laurent expansion of the two-loop integral only rational numbers and multiple zeta values occur. Our method of calculation obtains the two-loop integral as a convolution product of two primitive one-loop integrals. We comment on the generalization of this product structure to higher loop integrals. (orig.)

  10. Trends in spread of the particle therapy of cancers to areal bases

    International Nuclear Information System (INIS)

    Abe, Mitsuyuki; Aoki, Takashi; Tsujii, Hirohiko

    2009-01-01

    In Japan, the rate of cancer death accounts for 30%, now there are 8 facilities having the cancer particle therapy (PT) which is promising due to its highly effective, short term, non-surgical, not always expensive treatment, and local areas have tended to construct such facility for their people. This special article describes trends in the title concerning the areal intention for setting up the therapeutic bases, global trend of PT, research and development in manufacturers of PT equipments, and response of health insurer to the trend. The article contains following 15 topics presented by 15 authors or groups of the academia, official and company institutes, prefectural officers, manufacturers and an insurer, and by Editorial. Topics are: Significance and future view of PT in cancer treatment; Present state of construction of PT facilities in various areas; Fifteen year-results of PT in near-infrared spectroscopy (NIRS) and its effort to spread the therapy; Gumma University's 21st century program COE (Center of Excellence), Medical and Biological Studies with Accelerator Technology; Project for constructing Fukui Prefectural Proton PT Center; The role of Proton PT Center in southern Tohoku area as the first private facility; PT center by Foundation of Medipolis Medical Research Institute in southern Kyushu area; Global trend of PT; Spread of PT and the role of health insurance in it/Mitsui-Sumitomo's health insurance, Kirameki, the contribution to general public; Mitsubishi Electric Corp.'s effort to spread PT equipments; Toshiba's effort; Hitachi's effort; Sumitomo Heavy Industries' effort; Effort by Chiyoda Technol Corp. and Still River Systems to develop the next generation superconducting PT equipment; and Overview by Editorial/Complicated trend in invitation and construction of PT facilities. (K.T.)

  11. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    Science.gov (United States)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  12. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    OpenAIRE

    Anne E. C. M. Saris; Stein Fekkes; Maartje M. Nillesen; Hendrik H. G. Hansen; Chris L. de Korte

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle tracking (ST) algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow...

  13. Some exact results for the two-point function of an integrable quantum field theory

    International Nuclear Information System (INIS)

    Creamer, D.B.; Thacker, H.B.; Wilkinson, D.

    1981-01-01

    The two-point correlation function for the quantum nonlinear Schroedinger (one-dimensional delta-function gas) model is studied. An infinite-series representation for this function is derived using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-coupling (c→infinity) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expression for the order-1/c correction to the two-point function in terms of a Painleve transcendent of the fifth kind

  14. Some exact results for the two-point function of an integrable quantum field theory

    International Nuclear Information System (INIS)

    Creamer, D.B.; Thacker, H.B.; Wilkinson, D.

    1981-02-01

    The two point correlation function for the quantum nonlinear Schroedinger (delta-function gas) model is studied. An infinite series representation for this function is derived using the quantum inverse scattering formalism. For the case of zero temperature, the infinite coupling (c → infinity) result of Jimbo, Miwa, Mori and Sato is extended to give an exact expression for the order 1/c correction to the two point function in terms of a Painleve transcendent of the fifth kind

  15. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  16. Two point function for a simple general relativistic quantum model

    OpenAIRE

    Colosi, Daniele

    2007-01-01

    We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.

  17. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  18. The Multi-Criteria Negotiation Analysis Based on the Membership Function

    Directory of Open Access Journals (Sweden)

    Roszkowska Ewa

    2014-08-01

    Full Text Available In this paper we propose a multi-criteria model based on the fuzzy preferences approach which can be implemented in the prenegotiation phase to evaluate the negotiations packages. The applicability of some multi-criteria ranking methods were discussed for building a scoring function for negotiation packages. The first one is Simple Additive Weighting (SAW technique which determines the sum of the partial satisfactions from each negotiation issue and aggregate them using the issue weights. The other one is Distance Based Methods (DBM, with its extension based on the distances to ideal or anti-ideal package, i.e. the TOPSIS procedure. In our approach the negotiator's preferences over the issues are represented by fuzzy membership functions and next a selected multi-criteria decision making method is adopted to determine the global rating of each package. The membership functions are used here as the equivalents of utility functions spread over the negotiation issues, which let us compare different type of data. One of the key advantages of the approach proposed is its usefulness for building a general scoring function in the ill-structured negotiation problem, namely the situation in which the problem itself as well as the negotiators preferences cannot be precisely defined, the available information is uncertain, subjective and vague. Secondly, all proposed variants of scoring functions produce consistent rankings, even though the new packages are added (or removed and do not result in rank reversal.

  19. Four points function fitted and first derivative procedure for determining the end points in potentiometric titration curves: statistical analysis and method comparison.

    Science.gov (United States)

    Kholeif, S A

    2001-06-01

    A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.

  20. Three-point Green's function of massless QED in position space to lowest order

    International Nuclear Information System (INIS)

    Mitra, Indrajit

    2009-01-01

    The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions

  1. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  2. Parameterized approximation of lacunarity functions derived from airborne laser scanning point clouds of forested areas

    Science.gov (United States)

    Székely, Balázs; Kania, Adam; Varga, Katalin; Heilmeier, Hermann

    2017-04-01

    Lacunarity, a measure of the spatial distribution of the empty space is found to be a useful descriptive quantity of the forest structure. Its calculation, based on laser-scanned point clouds, results in a four-dimensional data set. The evaluation of results needs sophisticated tools and visualization techniques. To simplify the evaluation, it is straightforward to use approximation functions fitted to the results. The lacunarity function L(r), being a measure of scale-independent structural properties, has a power-law character. Previous studies showed that log(log(L(r))) transformation is suitable for analysis of spatial patterns. Accordingly, transformed lacunarity functions can be approximated by appropriate functions either in the original or in the transformed domain. As input data we have used a number of laser-scanned point clouds of various forests. The lacunarity distribution has been calculated along a regular horizontal grid at various (relative) elevations. The lacunarity data cube then has been logarithm-transformed and the resulting values became the input of parameter estimation at each point (point of interest, POI). This way at each POI a parameter set is generated that is suitable for spatial analysis. The expectation is that the horizontal variation and vertical layering of the vegetation can be characterized by this procedure. The results show that the transformed L(r) functions can be typically approximated by exponentials individually, and the residual values remain low in most cases. However, (1) in most cases the residuals may vary considerably, and (2) neighbouring POIs often give rather differing estimates both in horizontal and in vertical directions, of them the vertical variation seems to be more characteristic. In the vertical sense, the distribution of estimates shows abrupt changes at places, presumably related to the vertical structure of the forest. In low relief areas horizontal similarity is more typical, in higher relief areas

  3. On changing points of mean residual life and failure rate function for some generalized Weibull distributions

    International Nuclear Information System (INIS)

    Xie, M.; Goh, T.N.; Tang, Y.

    2004-01-01

    The failure rate function and mean residual life function are two important characteristics in reliability analysis. Although many papers have studied distributions with bathtub-shaped failure rate and their properties, few have focused on the underlying associations between the mean residual life and failure rate function of these distributions, especially with respect to their changing points. It is known that the change point for mean residual life can be much earlier than that of failure rate function. In fact, the failure rate function should be flat for a long period of time for a distribution to be useful in practice. When the difference between the change points is large, the flat portion tends to be longer. This paper investigates the change points and focuses on the difference of the changing points. The exponentiated Weibull, a modified Weibull, and an extended Weibull distribution, all with bathtub-shaped failure rate function will be used. Some other issues related to the flatness of the bathtub curve are discussed

  4. Hidden symmetry of four-point correlation functions and amplitudes in N=4 SYM

    CERN Document Server

    Eden, Burkhard; Korchemsky, Gregory P; Sokatchev, Emery

    2012-01-01

    We study the four-point correlation function of stress-tensor supermultiplets in N=4 SYM using the method of Lagrangian insertions. We argue that, as a corollary of N=4 superconformal symmetry, the resulting all-loop integrand possesses an unexpected complete symmetry under the exchange of the four external and all the internal (integration) points. This alone allows us to predict the integrand of the three-loop correlation function up to four undetermined constants. Further, exploiting the conjectured amplitude/correlation function duality, we are able to fully determine the three-loop integrand in the planar limit. We perform an independent check of this result by verifying that it is consistent with the operator product expansion, in particular that it correctly reproduces the three-loop anomalous dimension of the Konishi operator. As a byproduct of our study, we also obtain the three-point function of two half-BPS operators and one Konishi operator at three-loop level. We use the same technique to work ou...

  5. Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system.

    Science.gov (United States)

    Meng, Lingwei; Li, Xiangkun; Wang, Xinran; Ma, Kaili; Liu, Gaige; Zhang, Jie

    2017-11-01

    This study aimed to reveal how amoxicillin (AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes (ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed (EGSB) reactor was designed and run for 241days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA- 1 , OXA -2 , OXA -10 , TEM -1 , CTX-M -1 , class I integrons (intI1) and 16S rRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter, Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds (such as various sugars and amines). And the relative quantification of each β-lactam resistance gene in the study was changed with the increasing of AMX concentration. Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system. Copyright © 2017. Published by Elsevier B.V.

  6. Damage spreading for one-dimensional, non-equilibrium models with parity conserving phase transitions

    CERN Document Server

    Ódor, G; Odor, Geza; Menyhard, Nora

    1998-01-01

    The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...

  7. PEMBUATAN BAHAN BAKU SPREADS KAYA KAROTEN DARI MINYAK SAWIT MERAH MELALUI INTERESTERIFIKASI ENZIMATIK MENGGUNAKAN REAKTOR BATCH [Preparation of Red Palm Oil Based-Spreads Stock Rich in Carotene Through Enzymatic Interesterification in Batch-type Reactor

    Directory of Open Access Journals (Sweden)

    Nur Wulandari1,2

    2012-12-01

    Full Text Available Enzymatic interesterification of red palm oil (a mixture of red palm olein/RPO and red palm stearin/RPS in 1:1 weight ratio and coconut oil (CNO blends of varying proportions using a non-specific immobilized Candida antartica lipase (Novozyme 435 was studied for the preparation of spread stock. The interesterification reaction was held in a batch-type reactor. Two substrate blends were chosen for the production of spread stock i.e. 77.5:22,5 and 82.5:17.5 (RPO/RPS:CNO, by weight through enzymatic interesterification in three different reaction times (2, 4, and 6 hours. The interesterification reactions were conducted at 60°C, 200 rpm agitation speed and 10% of Novozyme 435. The interesterified products were evaluated for their physical characteristics (slip melting point or SMP and solid fat content or SFC and chemical characteristics (carotene retention, moisture content, and free fatty acid/FFA content. All of the interesterified products had lower SFC and SMP as compared to the initial blends. The SMP and SFC increased in longer reaction times. The SMP ranged from 30.8°C to 34.9°C. The carotene retention ranged from 74.80% to 81.08%, while the moisture content and FFA content increased in longer reaction times. The interesterified products had desirable physical properties for possible use as a spread stock rich in carotene.

  8. Crystal mosaic spread determination by slow neutron scattering

    International Nuclear Information System (INIS)

    Adib, M.; Naguib, K.; Abdel Kawy, A.; Ashry, A.; Abbas, Y.; Wahba, M.; Maayouf, M.A.

    1988-01-01

    A method has been established for determination of the crystal mosaic spread. The method is based on recording all neutron-reflected, under bragg condition, from a certain crystal plane. A computer code was developed especially in order to fit the measured wavelength's distribution of the reflected neutrons with the calculated one, assuming that the crystal mosaic spread has a Gaussian shape. The code accounts for the parameters of the time of flight spectrometer used during the present measurements, as well as divergence of the incident neutron beam. The developed method has been applied for determination of the mosaic spread of both zinc and pyrolytic graphite (P.G.) crystals. The mosaic spread values deduced from the present measurements, are 10'+-6' and 3.60 0 +-0.16 0 respectively for Zn and P.G. crystals

  9. Combinatorics of spreads and parallelisms

    CERN Document Server

    Johnson, Norman

    2010-01-01

    Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,

  10. Disparities in spread and control of influenza in slums of Delhi: findings from an agent-based modelling study

    Science.gov (United States)

    Adiga, Abhijin; Chu, Shuyu; Eubank, Stephen; Kuhlman, Christopher J; Lewis, Bryan; Marathe, Achla; Marathe, Madhav; Nordberg, Eric K; Swarup, Samarth; Vullikanti, Anil; Wilson, Mandy L

    2018-01-01

    Objectives This research studies the role of slums in the spread and control of infectious diseases in the National Capital Territory of India, Delhi, using detailed social contact networks of its residents. Methods We use an agent-based model to study the spread of influenza in Delhi through person-to-person contact. Two different networks are used: one in which slum and non-slum regions are treated the same, and the other in which 298 slum zones are identified. In the second network, slum-specific demographics and activities are assigned to the individuals whose homes reside inside these zones. The main effects of integrating slums are that the network has more home-related contacts due to larger family sizes and more outside contacts due to more daily activities outside home. Various vaccination and social distancing interventions are applied to control the spread of influenza. Results Simulation-based results show that when slum attributes are ignored, the effectiveness of vaccination can be overestimated by 30%–55%, in terms of reducing the peak number of infections and the size of the epidemic, and in delaying the time to peak infection. The slum population sustains greater infection rates under all intervention scenarios in the network that treats slums differently. Vaccination strategy performs better than social distancing strategies in slums. Conclusions Unique characteristics of slums play a significant role in the spread of infectious diseases. Modelling slums and estimating their impact on epidemics will help policy makers and regulators more accurately prioritise allocation of scarce medical resources and implement public health policies. PMID:29358419

  11. Worldsheet four-point functions in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Carlos A. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Buenos Aires (Argentina); Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-07-15

    We calculate some extremal and non-extremal four-point functions on the sphere of certain chiral primary operators for strings on AdS{sub 3} x S{sup 3} x T{sup 4}. The computation is done for small values of the spacetime cross-ratio where global SL(2) and SU(2) descendants may be neglected in the intermediate channel. Ignoring also current algebra descendants, we find that in the non-extremal case the integrated worldsheet correlators factorize into spacetime three-point functions, which is non-trivial due to the integration over the moduli space. We then restrict to the extremal case and compare our results with the four-point correlators recently computed in the dual boundary theory. We also discuss a particular non-extremal correlator involving two chiral and two anti-chiral operators. (orig)

  12. Understanding the spreading patterns of mobile phone viruses

    Science.gov (United States)

    Wang, Pu; Gonzalez, Marta; Hidalgo, Cesar; Barabasi, Albert-Laszlo

    2009-03-01

    Mobile viruses are little more than a nuisance today, but given our increased reliance on wireless communication, in the near future they could pose more risk than their PC based counterparts. Despite of the more than three hundred mobile viruses known so far, little is known about their spreading pattern, partly due to a lack of data on the communication and travel patterns of mobile phone users. Starting from the traffic and the communication pattern of six million mobile phone users, we model the vulnerability of mobile communications against potential virus outbreaks. We show that viruses exploiting Bluetooth and multimedia messaging services (MMS) follow markedly different spreading patterns. The Bluetooth virus can reach all susceptible handsets, but spreads relatively slowly, as its spread is driven by human mobility. In contrast, an MMS virus can spread rapidly, but because the underlying social network is fragmented, it can reach only a small fraction of all susceptible users. This difference affects both their spreading rate, the number of infected users, as well as the defense measures one needs to take to protect the system against potential viral outbreak.

  13. Finger image quality based on singular point localization

    DEFF Research Database (Denmark)

    Wang, Jinghua; Olsen, Martin A.; Busch, Christoph

    2014-01-01

    Singular points are important global features of fingerprints and singular point localization is a crucial step in biometric recognition. Moreover the presence and position of the core point in a captured fingerprint sample can reflect whether the finger is placed properly on the sensor. Therefore...... and analyze the importance of singular points on biometric accuracy. The experiment is based on large scale databases and conducted by relating the measured quality of a fingerprint sample, given by the positions of core points, to the biometric performance. The experimental results show the positions of core...

  14. Pc-Based Floating Point Imaging Workstation

    Science.gov (United States)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  15. Spreading of a granular droplet

    Science.gov (United States)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  16. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  17. On the Level Set of a Function with Degenerate Minimum Point

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kamiyama

    2015-01-01

    Full Text Available For n≥2, let M be an n-dimensional smooth closed manifold and f:M→R a smooth function. We set minf(M=m and assume that m is attained by unique point p∈M such that p is a nondegenerate critical point. Then the Morse lemma tells us that if a is slightly bigger than m, f-1(a is diffeomorphic to Sn-1. In this paper, we relax the condition on p from being nondegenerate to being an isolated critical point and obtain the same consequence. Some application to the topology of polygon spaces is also included.

  18. Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads.

    Science.gov (United States)

    Henning, D R; Baer, R J; Hassan, A N; Dave, R

    2006-04-01

    Advances in dairy foods and dairy foods processing since 1981 have influenced consumers and processors of dairy products. Consumer benefits include dairy products with enhanced nutrition and product functionality for specific applications. Processors convert raw milk to finished product with improved efficiencies and have developed processing technologies to improve traditional products and to introduce new products for expanding the dairy foods market. Membrane processing evolved from a laboratory technique to a major industrial process for milk and whey processing. Ultra-filtration and reverse osmosis have been used extensively in fractionation of milk and whey components. Advances in cheese manufacturing methods have included mechanization of the making process. Membrane processing has allowed uniform composition of the cheese milk and starter cultures have become more predictable. Cheese vats have become larger and enclosed as well as computer controlled. Researchers have learned to control many of the functional properties of cheese by understanding the role of fat and calcium distribution, as bound or unbound, in the cheese matrix. Processed cheese (cheese, foods, spreads, and products) maintain their importance in the industry as many product types can be produced to meet market needs and provide stable products for an extended shelf life. Cheese delivers concentrated nutrients of milk and bio-active peptides to consumers. The technologies for the production of concentrated and dried milk and whey products have not changed greatly in the last 25 yr. The size and efficiencies of the equipment have increased. Use of reverse osmosis in place of vacuum condensing has been proposed. Modifying the fatty acid composition of milkfat to alter the nutritional and functional properties of dairy spread has been a focus of research in the last 2 decades. Conjugated linoleic acid, which can be increased in milkfat by alteration of the cow's diet, has been reported to have

  19. St. Croix: Shore-based Fishing Access Points (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two local experts delineated access points for shore-based fishing along the shoreline of St. Croix, USVI. The points were documented at different times, and then...

  20. New Method for Mesh Moving Based on Radial Basis Function Interpolation

    NARCIS (Netherlands)

    De Boer, A.; Van der Schoot, M.S.; Bijl, H.

    2006-01-01

    A new point-by-point mesh movement algorithm is developed for the deformation of unstructured grids. The method is based on using radial basis function, RBFs, to interpolate the displacements of the boundary nodes to the whole flow mesh. A small system of equations has to be solved, only involving

  1. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  2. Age, spreading rates, and spreading asymmetry of the world's ocean crust

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...

  3. Influence of the corneal optical zone on the point-spread function of the human eye

    Science.gov (United States)

    Rol, Pascal O.; Parel, Jean-Marie A.

    1992-08-01

    In refractive surgery, a number of surgical techniques have been developed to correct ametropia (refractive defaults) of the eye by changing the exterior shape of the cornea. Because the air-cornea interface makes up for about two thirds of the refractive power of the eye, a refractive correction can be obtained by a suitable reshaping of the cornea. Postoperatively, it is usually observed that the corneal region consists of two or more zones which are characterized by different optical parameters exhibiting in particular different focal distances. Under normal circumstances, only the central area of the cornea is involved in the formation of the retinal image. However, if part of the light entering the eye through peripheral portions of the cornea with refractive properties different from the central area can pass the pupil, an out-of-focus `ghost' image may be overlaid on the retina causing a blur. In such a case the resolution, and the contrast performance of the eye which is expected from a successful operation, may be reduced. This study is an attempt to quantify the vision blur as a function of the diameter of the central zone, i.e., the optical zone which is of importance for vision.

  4. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kazuhiro eMatsui

    2014-06-01

    Full Text Available Functional electrical stimulation (FES is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly nonlinearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define theelectrical agonist-antagonist muscle ratio (EAA ratio and electrical agonist-antagonist muscle activity (EAA activity in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  5. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    Science.gov (United States)

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  6. An X-point ergodic divertor

    International Nuclear Information System (INIS)

    Chu, M.S.; Jensen, T.H.; La Haye, R.J.; Taylor, T.S.; Evans, T.E.

    1991-10-01

    A new ergodic divertor is proposed. It utilizes a system of external (n = 3) coils arranged to generate overlapping magnetic islands in the edge region of a diverted tokamak and connect the randomized field lines to the external (cold) divertor plate. The novel feature in the configuration is the placement of the external coils close to the X-point. A realistic design of the external coil set is studied by using the field line tracing method for a low aspect ratio (A ≅ 3) tokamak. Two types of effects are observed. First, by placing the coils close to the X-point, where the poloidal magnetic field is weak and the rational surfaces are closely packed only a moderate amount of current in the external coils is needed to ergodize the edge region. This ergodized edge enhances the edge transport in the X-point region and leads to the potential of edge profile control and the avoidance of edge localized modes (ELMs). Furthermore, the trajectories of the field lines close to the X-point are modified by the external coil set, causing the hit points on the external divertor plates to be randomized and spread out in the major radius direction. A time-dependent modulation of the currents in the external (n = 3) coils can potentially spread the heat flux more uniformly on the divertor plate avoiding high concentration of the heat flux. 10 refs., 9 figs

  7. Improvement of correlation-based centroiding methods for point source Shack-Hartmann wavefront sensor

    Science.gov (United States)

    Li, Xuxu; Li, Xinyang; wang, Caixia

    2018-03-01

    This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.

  8. On estimation of the intensity function of a point process

    NARCIS (Netherlands)

    Lieshout, van M.N.M.

    2010-01-01

    Abstract. Estimation of the intensity function of spatial point processes is a fundamental problem. In this paper, we interpret the Delaunay tessellation field estimator recently introduced by Schaap and Van de Weygaert as an adaptive kernel estimator and give explicit expressions for the mean and

  9. Eikonal Approximation in AdS/CFT From Shock Waves to Four-Point Functions

    CERN Document Server

    Cornalba, L; Costa, Miguel S; Penedones, Joao; Cornalba, Lorenzo; Costa, M S; Penedones, J; Schiappa, Ricardo

    2007-01-01

    We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ _{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ , where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes.

  10. Aggression-related brain function assessed with the Point Subtraction Aggression Paradigm in fMRI

    DEFF Research Database (Denmark)

    Skibsted, Anine P; Cunha-Bang, Sofi da; Carré, Justin M

    2017-01-01

    The Point Subtraction Aggression Paradigm (PSAP) measures aggressive behavior in response to provocations. The aim of the study was to implement the PSAP in a functional neuroimaging environment (fMRI) and evaluate aggression-related brain reactivity including response to provocations and associa......The Point Subtraction Aggression Paradigm (PSAP) measures aggressive behavior in response to provocations. The aim of the study was to implement the PSAP in a functional neuroimaging environment (fMRI) and evaluate aggression-related brain reactivity including response to provocations...... and associations with aggression within the paradigm. Twenty healthy participants completed two 12-min PSAP sessions within the scanner. We evaluated brain responses to aggressive behavior (removing points from an opponent), provocations (point subtractions by the opponent), and winning points. Our results showed...... with the involvement of these brain regions in emotional and impulsive behavior. Striatal reactivity may suggest an involvement of reward during winning and stealing points....

  11. Electricity transmission pricing: Tracing based point-of-connection tariff

    International Nuclear Information System (INIS)

    Abhyankar, A.R.; Khaparde, S.A.

    2009-01-01

    Point-of-connection (POC) scheme of transmission pricing in decentralized markets charges the participants a single rate per MW depending on their point-of-connection. Use of grossly aggregated postage stamp rates as POC charges fails to provide appropriate price signals. The POC tariff based on distribution of network sunk costs by employing conventional tracing assures recovery of sunk costs based on extent of use of network by participants. However, the POC tariff by this method does not accommodate economically efficient price signals which correspond to marginal costs. On the other hand, the POC tariff, if made proportional to marginal costs alone, fails to account for sunk costs and extent of use of network. This paper overcomes these lacunae by combining the above stated desired objectives under the recently proposed optimal tracing framework. Since real power tracing problem is amenable to multiple solutions, it is formulated as linearly constrained optimization problem. By employing this methodology, consideration of extent of network use and sunk cost recovery are guaranteed, while objective function is designed such that the spatial pattern of price signals closely follows the pattern of scaled locational marginal prices. The methodology is tested on IEEE 30 bus system, wherein average power flow pattern is established by running various simulation states on congested and un-congested network conditions. (author)

  12. Four-point correlation function of stress-energy tensors in N=4 superconformal theories

    CERN Document Server

    Korchemsky, G P

    2015-01-01

    We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.

  13. Optimization of the texture of fat-based spread containing hull-less pumpkin (Cucurbita pepo L. seed press-cake

    Directory of Open Access Journals (Sweden)

    Radočaj Olga F.

    2011-01-01

    Full Text Available Hull-less pumpkin seed press-cake, a by-product of the pumpkin oil pressing process, was used to formulate a fat-based spread which resembled commercial peanut butter; both in the appearance and in texture. In this study, response surface methodology was used to investigate the effects of a commercial stabilizer and cold-pressed hemp oil added to the pumpkin seed press-cake, on the texture of the formulations using instrumental texture profile analysis. The responses were significantly affected by both variables tested in a central composite, two factorial experimental design on five levels. Strong and firm spreads, without visible oil separation were formed and had an appearance and texture comparable to commercial peanut butter. In terms of the primary food texture attributes such as hardness, cohesiveness and adhesiveness, determined by the instrumental texture analysis, the optimum combination of variables with 1-1.2% of added stabilizer and 20- 40% of added hemp oil (in the oil phase produced desirable spreads.

  14. Automatic markerless registration of point clouds with semantic-keypoint-based 4-points congruent sets

    Science.gov (United States)

    Ge, Xuming

    2017-08-01

    The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.

  15. Csf Based Non-Ground Points Extraction from LIDAR Data

    Science.gov (United States)

    Shen, A.; Zhang, W.; Shi, H.

    2017-09-01

    Region growing is a classical method of point cloud segmentation. Based on the idea of collecting the pixels with similar properties to form regions, region growing is widely used in many fields such as medicine, forestry and remote sensing. In this algorithm, there are two core problems. One is the selection of seed points, the other is the setting of the growth constraints, in which the selection of the seed points is the foundation. In this paper, we propose a CSF (Cloth Simulation Filtering) based method to extract the non-ground seed points effectively. The experiments have shown that this method can obtain a group of seed spots compared with the traditional methods. It is a new attempt to extract seed points

  16. Line spread functions of blazed off-plane gratings operated in the Littrow mounting

    Science.gov (United States)

    DeRoo, Casey T.; McEntaffer, Randall L.; Miles, Drew M.; Peterson, Thomas J.; Marlowe, Hannah; Tutt, James H.; Donovan, Benjamin D.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Allured, Ryan; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2016-04-01

    Future soft x-ray (10 to 50 Å) spectroscopy missions require higher effective areas and resolutions to perform critical science that cannot be done by instruments on current missions. An x-ray grating spectrometer employing off-plane reflection gratings would be capable of meeting these performance criteria. Off-plane gratings with blazed groove facets operating in the Littrow mounting can be used to achieve excellent throughput into orders achieving high resolutions. We have fabricated two off-plane gratings with blazed groove profiles via a technique that uses commonly available microfabrication processes, is easily scaled for mass production, and yields gratings customized for a given mission architecture. Both fabricated gratings were tested in the Littrow mounting at the Max Planck Institute for Extraterrestrial Physics (MPE) PANTER x-ray test facility to assess their performance. The line spread functions of diffracted orders were measured, and a maximum resolution of 800±20 is reported. In addition, we also observe evidence of a blaze effect from measurements of relative efficiencies of the diffracted orders.

  17. Non-equilibrium scalar two point functions in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Keränen, Ville [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Kleinert, Philipp [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Merton College, University of Oxford,Merton Street, Oxford OX1 4JD (United Kingdom)

    2015-04-22

    In the first part of the paper, we discuss different versions of the AdS/CFT dictionary out of equilibrium. We show that the Skenderis-van Rees prescription and the “extrapolate” dictionary are equivalent at the level of “in-in” two point functions of free scalar fields in arbitrary asymptotically AdS spacetimes. In the second part of the paper, we calculate two point correlation functions in dynamical spacetimes using the “extrapolate” dictionary. These calculations are performed for conformally coupled scalar fields in examples of spacetimes undergoing gravitational collapse, the AdS{sub 2}-Vaidya spacetime and the AdS{sub 3}-Vaidya spacetime, which allow us to address the problem of thermalization following a quench in the boundary field theory. The computation of the correlators is formulated as an initial value problem in the bulk spacetime. Finally, we compare our results for AdS{sub 3}-Vaidya to results in the previous literature obtained using the geodesic approximation and we find qualitative agreement.

  18. Non-equilibrium scalar two point functions in AdS/CFT

    International Nuclear Information System (INIS)

    Keränen, Ville; Kleinert, Philipp

    2015-01-01

    In the first part of the paper, we discuss different versions of the AdS/CFT dictionary out of equilibrium. We show that the Skenderis-van Rees prescription and the “extrapolate” dictionary are equivalent at the level of “in-in” two point functions of free scalar fields in arbitrary asymptotically AdS spacetimes. In the second part of the paper, we calculate two point correlation functions in dynamical spacetimes using the “extrapolate” dictionary. These calculations are performed for conformally coupled scalar fields in examples of spacetimes undergoing gravitational collapse, the AdS 2 -Vaidya spacetime and the AdS 3 -Vaidya spacetime, which allow us to address the problem of thermalization following a quench in the boundary field theory. The computation of the correlators is formulated as an initial value problem in the bulk spacetime. Finally, we compare our results for AdS 3 -Vaidya to results in the previous literature obtained using the geodesic approximation and we find qualitative agreement.

  19. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    Science.gov (United States)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  20. Effects of individual popularity on information spreading in complex networks

    Science.gov (United States)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  1. Mathematical analysis of dynamic spread of Pine Wilt disease.

    Science.gov (United States)

    Dimitrijevic, D D; Bacic, J

    2013-01-01

    Since its detection in Portugal in 1999, the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer), a causal agent of Pine Wilt Disease, represents a threat to European forestry. Significant amount of money has been spent on its monitoring and eradication. This paper presents mathematical analysis of spread of pine wilt disease using a set of partial differential equations with space (longitude and latitude) and time as parameters of estimated spread of disease. This methodology can be used to evaluate risk of various assumed entry points of disease and make defense plans in advance. In case of an already existing outbreak, it can be used to draw optimal line of defense and plan removal of trees. Optimization constraints are economic loss of removal of susceptible trees as well as budgetary constraints of workforce cost.

  2. Inverse consistent non-rigid image registration based on robust point set matching

    Science.gov (United States)

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number

  3. Quantitative Infrared Image Analysis Of Simultaneous Upstream and Downstream Microgravity Flame Spread over Thermally-Thin Cellulose in Low Speed Forced Flow

    Science.gov (United States)

    Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2013-01-01

    The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.

  4. Social networks and spreading of epidemics

    Science.gov (United States)

    Trimper, Steffen; Zheng, Dafang; Brandau, Marian

    2004-05-01

    Epidemiological processes are studied within a recently proposed social network model using the susceptible-infected-refractory dynamics (SIR) of an epidemic. Within the network model, a population of individuals may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveals that for H > 1, the global spreading results regardless of the degree of homophily α of the individuals forming a social circle. For H = 1, a transition from a global to a local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large scale outbreaks of infectious diseases (viruses). The SIR-model can be extended by the inclusion of waiting times resulting in modified distribution function of the recovered.

  5. Multiple "buy buttons" in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI.

    Science.gov (United States)

    Kühn, Simone; Strelow, Enrique; Gallinat, Jürgen

    2016-08-01

    We set out to forecast consumer behaviour in a supermarket based on functional magnetic resonance imaging (fMRI). Data was collected while participants viewed six chocolate bar communications and product pictures before and after each communication. Then self-reports liking judgement were collected. fMRI data was extracted from a priori selected brain regions: nucleus accumbens, medial orbitofrontal cortex, amygdala, hippocampus, inferior frontal gyrus, dorsomedial prefrontal cortex assumed to contribute positively and dorsolateral prefrontal cortex and insula were hypothesized to contribute negatively to sales. The resulting values were rank ordered. After our fMRI-based forecast an instore test was conducted in a supermarket on n=63.617 shoppers. Changes in sales were best forecasted by fMRI signal during communication viewing, second best by a comparison of brain signal during product viewing before and after communication and least by explicit liking judgements. The results demonstrate the feasibility of applying neuroimaging methods in a relatively small sample to correctly forecast sales changes at point-of-sale. Copyright © 2016. Published by Elsevier Inc.

  6. Professional SharePoint 2010 Cloud-Based Solutions

    CERN Document Server

    Fox, Steve; Stubbs, Paul; Follette, Donovan

    2011-01-01

    An authoritative guide to extending SharePoint's power with cloud-based services If you want to be part of the next major shift in the IT industry, you'll want this book. Melding two of the hottest trends in the industry—the widespread popularity of the SharePoint collaboration platform and the rapid rise of cloud computing—this practical guide shows developers how to extend their SharePoint solutions with the cloud's almost limitless capabilities. See how to get started, discover smart ways to leverage cloud data and services through Azure, start incorporating Twitter or LinkedIn

  7. Global stability of a two-mediums rumor spreading model with media coverage

    Science.gov (United States)

    Huo, Liang'an; Wang, Li; Song, Guoxiang

    2017-09-01

    Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.

  8. Data Entry Skills in a Computer-based Spread Sheet Amongst Postgraduate Medical Students: A Simulation Based Descriptive Assessment.

    Science.gov (United States)

    Khan, Amir Maroof; Shah, Dheeraj; Chatterjee, Pranab

    2014-07-01

    In India, research work in the form of a thesis is a mandatory requirement for the postgraduate (PG) medical students. Data entry in a computer-based spread sheet is one of the important basic skills for research, which has not yet been studied. This study was conducted to assess the data entry skills of the 2(nd) year PG medical students of a medical college of North India. A cross-sectional, descriptive study was conducted among 111 second year PG students by using four simulated filled case record forms and a computer-based spread sheet in which data entry was to be carried out. On a scale of 0-10, only 17.1% of the students scored more than seven. The specific sub-skills that were found to be lacking in more than half of the respondents were as follows: Inappropriate coding (93.7%), long variable names (51.4%), coding not being done for all the variables (76.6%), missing values entered in a non-uniform manner (84.7%) and two variables entered in the same column in the case of blood pressure reading (80.2%). PG medical students were not found to be proficient in data entry skill and this can act as a barrier to do research. This being a first of its kind study in India, more research is needed to understand this issue and then include this yet neglected aspect in teaching research methodology to the medical students.

  9. Fixed Point Methods in the Stability of the Cauchy Functional Equations

    Directory of Open Access Journals (Sweden)

    Z. Dehvari

    2013-03-01

    Full Text Available By using the fixed point methods, we prove some generalized Hyers-Ulam stability of homomorphisms for Cauchy and CauchyJensen functional equations on the product algebras and on the triple systems.

  10. A deterministic algorithm for fitting a step function to a weighted point-set

    KAUST Repository

    Fournier, Hervé ; Vigneron, Antoine E.

    2013-01-01

    Given a set of n points in the plane, each point having a positive weight, and an integer k>0, we present an optimal O(nlogn)-time deterministic algorithm to compute a step function with k steps that minimizes the maximum weighted vertical distance

  11. Influence of trust in the spreading of information

    Science.gov (United States)

    Wu, Hongrun; Arenas, Alex; Gómez, Sergio

    2017-01-01

    The understanding and prediction of information diffusion processes on networks is a major challenge in network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the outcome of the process. For instance, different levels of trust in acquaintances do play a role in information spreading, and actors may change their spreading decisions during the information diffusion process accordingly. Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We explore the interplay between the propagation of information and the trust dynamics happening on a two-layer multiplex network. Actors' trustable or untrustable states are defined as accumulated cooperation or defection behaviors, respectively, in a Prisoner's Dilemma setup, and they are controlled by a memory span. The propagation of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends on the trustability of agents. The analysis of the model is performed using a tree approximation and validated on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a significant effect on the spreading of information. For example, the less memory that is considered, the higher is the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.

  12. A model of spreading of sudden events on social networks

    Science.gov (United States)

    Wu, Jiao; Zheng, Muhua; Zhang, Zi-Ke; Wang, Wei; Gu, Changgui; Liu, Zonghua

    2018-03-01

    Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e., either extremely fast or slow, depending on the individual events. To understand its mechanism, we present a susceptible-accepted-recovered model with both information sensitivity and social reinforcement. Numerical simulations show that the model can reproduce the main spreading patterns of the six typical events. By this model, we further reveal that the spreading can be speeded up by increasing either the strength of information sensitivity or social reinforcement. Depending on the transmission probability and information sensitivity, the final accepted size can change from continuous to discontinuous transition when the strength of the social reinforcement is large. Moreover, an edge-based compartmental theory is presented to explain the numerical results. These findings may be of significance on the control of information spreading in modern society.

  13. Point Based Emotion Classification Using SVM

    OpenAIRE

    Swinkels, Wout

    2016-01-01

    The detection of emotions is a hot topic in the area of computer vision. Emotions are based on subtle changes in the face that are intuitively detected and interpreted by humans. Detecting these subtle changes, based on mathematical models, is a great challenge in the area of computer vision. In this thesis a new method is proposed to achieve state-of-the-art emotion detection performance. This method is based on facial feature points to monitor subtle changes in the face. Therefore the c...

  14. Risk maps for the spread of highly pathogenic avian influenza in poultry.

    Directory of Open Access Journals (Sweden)

    Gert Jan Boender

    2007-04-01

    Full Text Available Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.

  15. FACTORS INFLUENCING YIELD SPREADS OF THE MALAYSIAN BONDS

    OpenAIRE

    Norliza Ahmad; Joriah Muhammad; Tajul Ariffin Masron

    2009-01-01

    Malaysian bond market is developing rapidly but not much is understood in terms of macroeconomic factors that could influence the yield spread of the Ringgit Malaysian denominated bonds. Based on a multifactor model, this paper examines the impact of four macroeconomic factors namely: Kuala Lumpur Composite Index (KLCI), Industry Production Index (IPI), Consumer Price Index (CPI) and interest rates (IR) on bond yield spread of the Malaysian Government Securities (MGS) and Corporate Bonds (CBs...

  16. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    Science.gov (United States)

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P spreads resembled commercial peanut butter, both in appearance, texture and spreadability; were a source of ω-3 fatty acids and with no visual oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  17. Effective distances for epidemics spreading on complex networks

    Science.gov (United States)

    Iannelli, Flavio; Koher, Andreas; Brockmann, Dirk; Hövel, Philipp; Sokolov, Igor M.

    2017-01-01

    We show that the recently introduced logarithmic metrics used to predict disease arrival times on complex networks are approximations of more general network-based measures derived from random walks theory. Using the daily air-traffic transportation data we perform numerical experiments to compare the infection arrival time with this alternative metric that is obtained by accounting for multiple walks instead of only the most probable path. The comparison with direct simulations reveals a higher correlation compared to the shortest-path approach used previously. In addition our method allows to connect fundamental observables in epidemic spreading with the cumulant-generating function of the hitting time for a Markov chain. Our results provides a general and computationally efficient approach using only algebraic methods.

  18. Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad; Rubak, Ege Holger

    We show how a spatial point process, where to each point there is associated a random quantitative mark, can be identified with a spatio-temporal point process specified by a conditional intensity function. For instance, the points can be tree locations, the marks can express the size of trees......, and the conditional intensity function can describe the distribution of a tree (i.e., its location and size) conditionally on the larger trees. This enable us to construct parametric statistical models which are easily interpretable and where likelihood-based inference is tractable. In particular, we consider maximum...

  19. Preventing Superinfection in Malaria Spreads with Repellent and Medical Treatment Policy

    Science.gov (United States)

    Fitri, Fanny; Aldila, Dipo

    2018-03-01

    Malaria is a kind of a vector-borne disease. That means this disease needs a vector (in this case, the anopheles mosquito) to spread. In this article, a mathematical model for malaria disease spread will be discussed. The model is constructed as a seven-dimensional of a non-linear ordinary differential equation. The interventions of treatment for infected humans and use of repellent are included in the model to see how these interventions could be considered as alternative ways to control the spread of malaria. Analysis will be made of the disease-free equilibrium point along with its local stability criteria, construction of the next generation matrix which followed with the sensitivity analysis of basic reproduction number. We found that both medical treatment and repellent intervention succeeded in reducing the basic reproduction number as the endemic indicator of the model. Finally, some numerical simulations are given to give a better interpretation of the analytical results.

  20. Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.

    Science.gov (United States)

    Iomin, A

    2013-05-01

    Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.

  1. SIFT based algorithm for point feature tracking

    Directory of Open Access Journals (Sweden)

    Adrian BURLACU

    2007-12-01

    Full Text Available In this paper a tracking algorithm for SIFT features in image sequences is developed. For each point feature extracted using SIFT algorithm a descriptor is computed using information from its neighborhood. Using an algorithm based on minimizing the distance between two descriptors tracking point features throughout image sequences is engaged. Experimental results, obtained from image sequences that capture scaling of different geometrical type object, reveal the performances of the tracking algorithm.

  2. An empirical model of global spread-f occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-09-01

    A method of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density into a model of the occurrence probability of the frequency spreading component of spread-F is presented. The predictions of the model are compared with spread-F occurrence data obtained under sunspot maximum conditions. Good agreement is obtained for latitudes less than 70 0 geomagnetic. At higher latitudes, the inclusion of a 'blackout factor' in the model allows it to accurately represent the data and, in so doing, resolves an apparent discrepancy in the occurrence statistics at high latitudes. The blackout factor is ascribed to the effect of polar blackout on the spread-F statistics and/or the lack of a definitve incremental electron density model for irregularities at polar latitudes. Ways of isolating these effects and assessing their relative importance in the blackout factor are discussed. The model, besides providing estimates of spread-F occurrence on a worldwide basis, which will be of value in the engineering of HF and VHF communications, also furnishes a means of further checking the irregularity incremental electron density model on which it is based. (author)

  3. Disparities in spread and control of influenza in slums of Delhi: findings from an agent-based modelling study.

    Science.gov (United States)

    Adiga, Abhijin; Chu, Shuyu; Eubank, Stephen; Kuhlman, Christopher J; Lewis, Bryan; Marathe, Achla; Marathe, Madhav; Nordberg, Eric K; Swarup, Samarth; Vullikanti, Anil; Wilson, Mandy L

    2018-01-21

    This research studies the role of slums in the spread and control of infectious diseases in the National Capital Territory of India, Delhi, using detailed social contact networks of its residents. We use an agent-based model to study the spread of influenza in Delhi through person-to-person contact. Two different networks are used: one in which slum and non-slum regions are treated the same, and the other in which 298 slum zones are identified. In the second network, slum-specific demographics and activities are assigned to the individuals whose homes reside inside these zones. The main effects of integrating slums are that the network has more home-related contacts due to larger family sizes and more outside contacts due to more daily activities outside home. Various vaccination and social distancing interventions are applied to control the spread of influenza. Simulation-based results show that when slum attributes are ignored, the effectiveness of vaccination can be overestimated by 30%-55%, in terms of reducing the peak number of infections and the size of the epidemic, and in delaying the time to peak infection. The slum population sustains greater infection rates under all intervention scenarios in the network that treats slums differently. Vaccination strategy performs better than social distancing strategies in slums. Unique characteristics of slums play a significant role in the spread of infectious diseases. Modelling slums and estimating their impact on epidemics will help policy makers and regulators more accurately prioritise allocation of scarce medical resources and implement public health policies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Limits in point to point resolution of MOS based pixels detector arrays

    Science.gov (United States)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  5. Mapping Pn amplitude spreading and attenuation in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Laboratory; Phillips, William S [Los Alamos National Laboratory; Stead, Richard J [Los Alamos National Laboratory

    2010-12-06

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  6. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  7. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  8. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study

    OpenAIRE

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-01-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revea...

  9. Spreading of correlations in the Falicov-Kimball model

    Science.gov (United States)

    Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp

    2018-04-01

    We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.

  10. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  11. Spacing distribution functions for the one-dimensional point-island model with irreversible attachment

    Science.gov (United States)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2011-07-01

    We study the configurational structure of the point-island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density pnXY(x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for pnXY(x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system.

  12. The effect of thallus spreading method on productivity of Gracilaria sp. culture

    Science.gov (United States)

    Hidayatulbaroroh, R.; Nurhudah, M.; Edy, M. H.; Suharyadi

    2018-04-01

    The aim of this study was to determine growth of (Gracilaria sp.) with different spreading time of thallus. The study was conducted from March to April 2017 in pond located in Domas Village, Serang Region, Banten Province. The experiment followed completely randomized design with the treatment of different time on spreading of seaweed thallus during the culture period (45 days). Treatments were without spreading (as control), spreading every 2 weeks, and spreading every 3 weeks. The observed variables were weight of seaweed thallus and several water quality parameters. Analysis of seaweed weight used ANOVA test and Tukey HSD test. The results showed that the spread seaweed thallus had a significant effect on weight gain in 0.05 level. It used 100 gram Gracilaria sp. as initial weight, treatment without spreading thallus produced 508 gram, spreading every 2 weeks produced 906 gram and spreading every 3 weeks produced 790 gram. Based on the weight gain of thallus, seaweed culture by spreading thallus every 3 weeks and 2 weeks seem to be able to increase productivity by 56 % and 78 %, respectively.

  13. Complete conformal field theory solution of a chiral six-point correlation function

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Kleban, Peter

    2011-01-01

    Using conformal field theory, we perform a complete analysis of the chiral six-point correlation function C(z)= 1,2 φ 1,2 Φ 1/2,0 (z, z-bar )φ 1,2 φ 1,2 >, with the four φ 1,2 operators at the corners of an arbitrary rectangle, and the point z = x + iy in the interior. We calculate this for arbitrary central charge (equivalently, SLE parameter κ > 0). C is of physical interest because for percolation (κ = 6) and many other two-dimensional critical points, it specifies the density at z of critical clusters conditioned to touch either or both vertical ends of the rectangle, with these ends 'wired', i.e. constrained to be in a single cluster, and the horizontal ends free. The correlation function may be written as the product of an algebraic prefactor f and a conformal block G, where f = f(x, y, m), with m a cross-ratio specified by the corners (m determines the aspect ratio of the rectangle). By appropriate choice of f and using coordinates that respect the symmetry of the problem, the conformal block G is found to be independent of either y or x, and given by an Appell function.

  14. One-point functions in AdS/dCFT from matrix product states

    International Nuclear Information System (INIS)

    Buhl-Mortensen, Isak; Leeuw, Marius de; Kristjansen, Charlotte; Zarembo, Konstantin

    2016-01-01

    One-point functions of certain non-protected scalar operators in the defect CFT dual to the D3-D5 probe brane system with k units of world volume flux can be expressed as overlaps between Bethe eigenstates of the Heisenberg spin chain and a matrix product state. We present a closed expression of determinant form for these one-point functions, valid for any value of k. The determinant formula factorizes into the k=2 result times a k-dependent pre-factor. Making use of the transfer matrix of the Heisenberg spin chain we recursively relate the matrix product state for higher even and odd k to the matrix product state for k=2 and k=3 respectively. We furthermore find evidence that the matrix product states for k=2 and k=3 are related via a ratio of Baxter’s Q-operators. The general k formula has an interesting thermodynamical limit involving a non-trivial scaling of k, which indicates that the match between string and field theory one-point functions found for chiral primaries might be tested for non-protected operators as well. We revisit the string computation for chiral primaries and discuss how it can be extended to non-protected operators.

  15. Application of Normal Family to the Spread Inequality and the Paley ...

    African Journals Online (AJOL)

    In this paper we derive a Paley type inequality for subharmonic functions of order λ,0 < λ≤½ and describe the asymptotic behaviour of the extremal functions near Pòlya peaks. We also give an alternative proof for the spread inequality using a non-asymptotic method via - a normal family of δ -subharmonic functions.

  16. Three-dimensional digital imaging based on shifted point-array encoding.

    Science.gov (United States)

    Tian, Jindong; Peng, Xiang

    2005-09-10

    An approach to three-dimensional (3D) imaging based on shifted point-array encoding is presented. A kind of point-array structure light is projected sequentially onto the reference plane and onto the object surface to be tested and thus forms a pair of point-array images. A mathematical model is established to formulize the imaging process with the pair of point arrays. This formulation allows for a description of the relationship between the range image of the object surface and the lateral displacement of each point in the point-array image. Based on this model, one can reconstruct each 3D range image point by computing the lateral displacement of the corresponding point on the two point-array images. The encoded point array can be shifted digitally along both the lateral and the longitudinal directions step by step to achieve high spatial resolution. Experimental results show good agreement with the theoretical predictions. This method is applicable for implementing 3D imaging of object surfaces with complex topology or large height discontinuities.

  17. The landscape genetics of infectious disease emergence and spread.

    Science.gov (United States)

    Biek, Roman; Real, Leslie A

    2010-09-01

    The spread of parasites is inherently a spatial process often embedded in physically complex landscapes. It is therefore not surprising that infectious disease researchers are increasingly taking a landscape genetics perspective to elucidate mechanisms underlying basic ecological processes driving infectious disease dynamics and to understand the linkage between spatially dependent population processes and the geographic distribution of genetic variation within both hosts and parasites. The increasing availability of genetic information on hosts and parasites when coupled to their ecological interactions can lead to insights for predicting patterns of disease emergence, spread and control. Here, we review research progress in this area based on four different motivations for the application of landscape genetics approaches: (i) assessing the spatial organization of genetic variation in parasites as a function of environmental variability, (ii) using host population genetic structure as a means to parameterize ecological dynamics that indirectly influence parasite populations, for example, gene flow and movement pathways across heterogeneous landscapes and the concurrent transport of infectious agents, (iii) elucidating the temporal and spatial scales of disease processes and (iv) reconstructing and understanding infectious disease invasion. Throughout this review, we emphasize that landscape genetic principles are relevant to infection dynamics across a range of scales from within host dynamics to global geographic patterns and that they can also be applied to unconventional 'landscapes' such as heterogeneous contact networks underlying the spread of human and livestock diseases. We conclude by discussing some general considerations and problems for inferring epidemiological processes from genetic data and try to identify possible future directions and applications for this rapidly expanding field.

  18. Simultaneous spreading and evaporation: recent developments.

    Science.gov (United States)

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  19. Quantum electrodynamics and light rays. [Two-point correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.

    1978-11-01

    Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.

  20. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  1. Behavior of the Position-Spread Tensor in Diatomic Systems.

    Science.gov (United States)

    Brea, Oriana; El Khatib, Muammar; Angeli, Celestino; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Leininger, Thierry

    2013-12-10

    The behavior of the Position-Spread Tensor (Λ) in a series of light diatomic molecules (either neutral or negative ions) is investigated at a Full Configuration Interaction level. This tensor, which is the second moment cumulant of the total position operator, is invariant with respect to molecular translations, while its trace is also rotationally invariant. Moreover, the tensor is additive in the case of noninteracting subsystems and can be seen as an intrinsic property of a molecule. In the present work, it is shown that the longitudinal component of the tensor, Λ∥, which is small for internuclear distances close to the equilibrium, tends to grow if the bond is stretched. A maximum is reached in the region of the bond breaking, then Λ∥ decreases and converges toward the isolated-atom value. The degenerate transversal components, Λ⊥, on the other hand, usually have a monotonic growth toward the atomic value. The Position Spread is extremely sensitive to reorganization of the molecular wave function, and it becomes larger in the case of an increase of the electron mobility, as illustrated by the neutral-ionic avoided crossing in LiF. For these reasons, the Position Spread can be an extremely useful property that characterizes the nature of the wave function in a molecular system.

  2. The cost of simplifying air travel when modeling disease spread.

    Directory of Open Access Journals (Sweden)

    Justin Lessler

    Full Text Available BACKGROUND: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. METHODOLOGY/PRINCIPAL FINDINGS: Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed introductions of disease is small (<1 per day but for a few routes this rate is greatly underestimated by the pipe model. CONCLUSIONS/SIGNIFICANCE: If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.

  3. Evaluation of Geometrical Modulation Transfer Function in Optical Lens System

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.

  4. Data entry skills in a computer-based spread sheet amongst postgraduate medical students: A simulation based descriptive assessment

    Directory of Open Access Journals (Sweden)

    Amir Maroof Khan

    2014-01-01

    Full Text Available Background: In India, research work in the form of a thesis is a mandatory requirement for the postgraduate (PG medical students. Data entry in a computer-based spread sheet is one of the important basic skills for research, which has not yet been studied. This study was conducted to assess the data entry skills of the 2 nd year PG medical students of a medical college of North India. Materials and Methods: A cross-sectional, descriptive study was conducted among 111 second year PG students by using four simulated filled case record forms and a computer-based spread sheet in which data entry was to be carried out. Results: On a scale of 0-10, only 17.1% of the students scored more than seven. The specific sub-skills that were found to be lacking in more than half of the respondents were as follows: Inappropriate coding (93.7%, long variable names (51.4%, coding not being done for all the variables (76.6%, missing values entered in a non-uniform manner (84.7% and two variables entered in the same column in the case of blood pressure reading (80.2%. Conclusion: PG medical students were not found to be proficient in data entry skill and this can act as a barrier to do research. This being a first of its kind study in India, more research is needed to understand this issue and then include this yet neglected aspect in teaching research methodology to the medical students.

  5. DataSpread: Unifying Databases and Spreadsheets.

    Science.gov (United States)

    Bendre, Mangesh; Sun, Bofan; Zhang, Ding; Zhou, Xinyan; Chang, Kevin ChenChuan; Parameswaran, Aditya

    2015-08-01

    Spreadsheet software is often the tool of choice for ad-hoc tabular data management, processing, and visualization, especially on tiny data sets. On the other hand, relational database systems offer significant power, expressivity, and efficiency over spreadsheet software for data management, while lacking in the ease of use and ad-hoc analysis capabilities. We demonstrate DataSpread, a data exploration tool that holistically unifies databases and spreadsheets. It continues to offer a Microsoft Excel-based spreadsheet front-end, while in parallel managing all the data in a back-end database, specifically, PostgreSQL. DataSpread retains all the advantages of spreadsheets, including ease of use, ad-hoc analysis and visualization capabilities, and a schema-free nature, while also adding the advantages of traditional relational databases, such as scalability and the ability to use arbitrary SQL to import, filter, or join external or internal tables and have the results appear in the spreadsheet. DataSpread needs to reason about and reconcile differences in the notions of schema, addressing of cells and tuples, and the current "pane" (which exists in spreadsheets but not in traditional databases), and support data modifications at both the front-end and the back-end. Our demonstration will center on our first and early prototype of the DataSpread, and will give the attendees a sense for the enormous data exploration capabilities offered by unifying spreadsheets and databases.

  6. The addition effect of Tunisian date seed fibers on the quality of chocolate spreads.

    Science.gov (United States)

    Bouaziz, Mohamed Ali; Abbes, Fatma; Mokni, Abir; Blecker, Christophe; Attia, Hamadi; Besbes, Souhail

    2017-04-01

    Novel chocolate spreads were enriched by soluble and insoluble dietary fibers from Tunisian Deglet Nour date seeds at 1, 2, 3, 4, and 5% levels in the conventional chocolate spread. Defatted Deglet Nour date seeds, date seed soluble fiber concentrate (DSSFC) and date seed insoluble fiber concentrate (DSIFC) were characterized by high levels of dietary fibers (80-90%). Chocolate spread enriched with 5% of DSSFC presented the highest oil binding capacity (304.62%) compared to the control (102%). Whatever the DSIFC and DSSFC incorporation levels, no significant difference was recorded between the firmness, chewiness, and adhesiveness of prepared chocolate spreads compared to the control (p chocolate spreads enriched by DSIFC and DSSFC were accepted by panelists. These results indicated the value of date seeds as new source of dietary fibers to develop chocolate spread and could also improve health benefits and functional properties. Tunisia is considered to be one of the dates-producing countries. The mean annual yield of date fruits is about 200,000 tons. From this, around 20,000 tons of date seeds could be collected. This by-product of date processing industries could be regarded as an excellent source of dietary fiber with interesting technological functionality and many beneficial effects on human health. Then, date seeds could present a value addition by extraction and use of date seed fiber concentrate in chocolate spread formulation. © 2016 Wiley Periodicals, Inc.

  7. Star point centroid algorithm based on background forecast

    Science.gov (United States)

    Wang, Jin; Zhao, Rujin; Zhu, Nan

    2014-09-01

    The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.

  8. Image Relaxation Matching Based on Feature Points for DSM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shunyi; ZHANG Zuxun; ZHANG Jianqing

    2004-01-01

    In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.

  9. Point specificity in acupuncture

    Directory of Open Access Journals (Sweden)

    Choi Emma M

    2012-02-01

    Full Text Available Abstract The existence of point specificity in acupuncture is controversial, because many acupuncture studies using this principle to select control points have found that sham acupoints have similar effects to those of verum acupoints. Furthermore, the results of pain-related studies based on visual analogue scales have not supported the concept of point specificity. In contrast, hemodynamic, functional magnetic resonance imaging and neurophysiological studies evaluating the responses to stimulation of multiple points on the body surface have shown that point-specific actions are present. This review article focuses on clinical and laboratory studies supporting the existence of point specificity in acupuncture and also addresses studies that do not support this concept. Further research is needed to elucidate the point-specific actions of acupuncture.

  10. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    Directory of Open Access Journals (Sweden)

    Alisson C. D. de Souza

    2014-09-01

    Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

  11. Accurate evaluation of modulation transfer function using the Fourier shift theorem

    Science.gov (United States)

    Kim, Yong Gwon; Ryu, Yeunchul

    2017-12-01

    Accurate determination of the line spread function (LSF) on the basis of the edge processing algorithm in X-ray imaging systems is one of the most basic procedures for evaluating the performance of such systems. Extensive research has been focused on algorithms for the precise or fast measurement of the LSF in digital X-ray systems. Most of the standard methods for evaluating the performance of an imaging system are based on a fully digitalized radiographic system or a film-based system. However, images obtained by computed radiography (CR), which converts a captured analog signal into a digital image through an analog-to-digital converting scanner, show the combined characteristics of analog and digital imaging systems. Fundamentally, the characteristics of digital imaging systems differ substantially from those of film imaging systems because of their different methods of acquiring and displaying image data. In addition, a system with both analog and digital component has characteristics that differ from those of both digital and analog systems. In this research, we present a new modulation transfer function (MTF) that mimics the existing MTF in terms of measurement but satisfies existing standard protocols through modification of the hypothesis contents. In the case of the LSF and the point spread function measured with a CR system, the developed edge algorithm shows better performance than the conventional methods. We also demonstrate the usefulness of this method in an actual measurement with a CR digital X-ray imaging system.

  12. Toda 3-point functions from topological strings II

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mitev, Vladimir [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-08-09

    In http://dx.doi.org/10.1007/JHEP06(2015)049 we proposed a formula for the 3-point structure constants of generic primary fields in the Toda field theory, derived using topological strings and the AGT-W correspondence from the partition functions of the non-Lagrangian T{sub N} theories on S{sup 4}. In this article, we obtain from it the well-known formula by Fateev and Litvinov and show that the degeneration on a first level of one of the three primary fields on the Toda side corresponds to a particular Higgsing of the T{sub N} theories.

  13. Fixed-point image orthorectification algorithms for reduced computational cost

    Science.gov (United States)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation

  14. Ex-vessel corium spreading: results from the VULCANO spreading tests

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe E-mail: christophe.journeau@cea.fr; Boccaccio, Eric E-mail: eric.boccaccio@cea.fr; Brayer, Claude; Cognet, Gerard E-mail: gerard.cognet@cea.fr; Haquet, Jean-Francois E-mail: haquet@eloise.cad.cea.fr; Jegou, Claude E-mail: claude.jegou@cea.fr; Piluso, Pascal E-mail: pascal.piluso@cea.fr; Monerris, Jose E-mail: jose.monerris@cea.fr

    2003-07-01

    function of the nature of the atmosphere, of the phases (FeO{sub x}, UO{sub y}, ...) and of the substrate. These tests with prototypic material have improved our knowledge on corium and contributed to validate spreading models and codes which are used for the assessment of corium mastering concepts.

  15. Compensation of the open-quotes Pacmanclose quotes tune spread by tailoring the beam current

    International Nuclear Information System (INIS)

    Furman, M.A.

    1995-04-01

    ' Factory'-like e + -e - colliders presently under design or construction achieve high luminosity by resorting to large numbers of closely-spaced bunches. The short bunch spacing implies that there are unavoidable parasitic collisions (PCs) in the neighborhood of the interaction point (IP). Since the bunch population of the beam is not uniform due to an intentional ion-clearing gap, the bunches at the head or tail of the train (open-quotes pacman bunchesclose quotes) experience different beam-beam tune shifts than those away from the edges (open-quotes typical bunchesclose quotes). The author presents here a method to minimize the vertical tune spread at the expense of increasing the horizontal tune spread (it is assumed that there is only one IP). Since the beam-beam dynamics for flat beams typically tolerates a significantly higher horizontal tune spread than a vertical tune spread, this method implies a net advantage. The author presents this discussion in the context of the PEP-II collider

  16. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  17. Gaussian-3 theory using density functional geometries and zero-point energies

    International Nuclear Information System (INIS)

    Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.

    1999-01-01

    A variation of Gaussian-3 (G3) theory is presented in which the geometries and zero-point energies are obtained from B3LYP density functional theory [B3LYP/6-31G(d)] instead of geometries from second-order perturbation theory [MP2(FU)/6-31G(d)] and zero-point energies from Hartree - Fock theory [HF/6-31G(d)]. This variation, referred to as G3//B3LYP, is assessed on 299 energies (enthalpies of formation, ionization potentials, electron affinities, proton affinities) from the G2/97 test set [J. Chem. Phys. 109, 42 (1998)]. The G3//B3LYP average absolute deviation from experiment for the 299 energies is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. Generally, the results from the two methods are similar, with some exceptions. G3//B3LYP theory gives significantly improved results for several cases for which MP2 theory is deficient for optimized geometries, such as CN and O 2 + . However, G3//B3LYP does poorly for ionization potentials that involve a Jahn - Teller distortion in the cation (CH 4 + , BF 3 + , BCl 3 + ) because of the B3LYP/6-31G(d) geometries. The G3(MP2) method is also modified to use B3LYP/6-31G(d) geometries and zero-point energies. This variation, referred to as G3(MP2)//B3LYP, has an average absolute deviation of 1.25 kcal/mol compared to 1.30 kcal/mol for G3(MP2) theory. Thus, use of density functional geometries and zero-point energies in G3 and G3(MP2) theories is a useful alternative to MP2 geometries and HF zero-point energies. copyright 1999 American Institute of Physics

  18. Flight-time spread of uniform field sector magnet system for use in nuclear life-time measurements

    International Nuclear Information System (INIS)

    Sakata, Akihiko; Mamei, Masayuki; Yamada, Yoshihiro; Ohira, Kyozo

    1984-01-01

    A nuclear life-time measurement apparatus incorporating a deflecting β-ray spectrometer with electron pre-accelerator has been constructed. A new arrangement consisting of two double angular focusing sector magnets based on the principle of symmetry has been devised so as to reduce the time spread in the spectrometer, which up till now has been the weak point of such systems. The time spread in the spectrometer was estimated to be asymptotically equals 0.1 ns by a simulation method, and good agreement was obtained between this estimated value and the experimental value. A prompt time resolution of 1.25 ns (FWHM) was obtained. The half-lives of the 199 and 401 keV levels in 75 As were measured with an acceleration voltage up to 30 kV to check the reliability of the apparatus. The values were found to be 0.87+-0.04 ns and 1.74+-0.05 ns, respectively, in good agreement with previous measurements. (author)

  19. How Is Mono Spread?

    Science.gov (United States)

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  20. Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface

    International Nuclear Information System (INIS)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2013-01-01

    This study examined the plasma surface modification of biomimetic hydroxyapatite (HAp) formed on a titanium (Ti) surface as well as its influence on the behavior of preosteoblast cells. Ti substrates pre-treated with a plasma-polymerized thin film rich in carboxyl groups were subjected to a biomimetic process in a simulated body fluid solution to synthesize the HAp. The HAp layer grown on Ti substrate was then coated with two types of plasma polymerized acrylic acid and allyl amine thin film. The different types of Ti substrates were characterized by attenuated total reflection Fourier transform infrared spectroscopy, energy dispersive spectroscopy and X-ray diffraction. HAp with a Ca/P ratio from 1.25 to 1.38 was obtained on the Ti substrate and hydrophilic carboxyl (-COOH) and amine (-NH 2 ) functional groups were introduced to its surface. Scanning electron microscopy was used to observe the surface of the HAp coatings and the morphology of MC3T3-E1 cells. These results showed that the -COOH-modified HAp surfaces promoted the cell spreading synergistically by changing the surface morphology and chemical state.-NH 2 modified HAp had the lowest cell spreading and proliferation compared to HAp and -COOH-modified HAp. These results correspond to fluorescein analysis, which showed many more cell spreading of COOH/HAp/Ti surface compared to HAp and NH 2 modified HAp. A MTT assay was used to evaluate cell proliferation. The results showed that the proliferation of MC3T3-E1 cells increased in the order of COOH/HAp/Ti > HAp/Ti > NH 2 /Ti > Ti, corresponding to the effect of cell spreading for 6 days. The change in morphology and the chemical surface properties of the biomaterial via plasma polymerization can affect the behavior of MC3T3-E1 cells.

  1. Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr

    2013-12-15

    This study examined the plasma surface modification of biomimetic hydroxyapatite (HAp) formed on a titanium (Ti) surface as well as its influence on the behavior of preosteoblast cells. Ti substrates pre-treated with a plasma-polymerized thin film rich in carboxyl groups were subjected to a biomimetic process in a simulated body fluid solution to synthesize the HAp. The HAp layer grown on Ti substrate was then coated with two types of plasma polymerized acrylic acid and allyl amine thin film. The different types of Ti substrates were characterized by attenuated total reflection Fourier transform infrared spectroscopy, energy dispersive spectroscopy and X-ray diffraction. HAp with a Ca/P ratio from 1.25 to 1.38 was obtained on the Ti substrate and hydrophilic carboxyl (-COOH) and amine (-NH{sub 2}) functional groups were introduced to its surface. Scanning electron microscopy was used to observe the surface of the HAp coatings and the morphology of MC3T3-E1 cells. These results showed that the -COOH-modified HAp surfaces promoted the cell spreading synergistically by changing the surface morphology and chemical state.-NH{sub 2} modified HAp had the lowest cell spreading and proliferation compared to HAp and -COOH-modified HAp. These results correspond to fluorescein analysis, which showed many more cell spreading of COOH/HAp/Ti surface compared to HAp and NH{sub 2} modified HAp. A MTT assay was used to evaluate cell proliferation. The results showed that the proliferation of MC3T3-E1 cells increased in the order of COOH/HAp/Ti > HAp/Ti > NH{sub 2}/Ti > Ti, corresponding to the effect of cell spreading for 6 days. The change in morphology and the chemical surface properties of the biomaterial via plasma polymerization can affect the behavior of MC3T3-E1 cells.

  2. Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Directory of Open Access Journals (Sweden)

    Yutong Liu

    2012-01-01

    Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.

  3. Competing spreading processes and immunization in multiplex networks

    International Nuclear Information System (INIS)

    Gao, Bo; Deng, Zhenghong; Zhao, Dawei

    2016-01-01

    Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of which follow the SIR process, in a two-layer networks based on microscopic Markov chain approach and numerical simulations. We find that strong capacities of awareness diffusion and self-protection of individuals could lead to a much higher epidemic threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size. In addition, the immunization of the physical contact network under the interplay between of epidemic and awareness spreading is also investigated. The targeted immunization is found performs much better than random immunization, and the awareness diffusion could reduce the immunization threshold for both type of random and targeted immunization significantly.

  4. R-current three-point functions in 4d $\\mathcal{N}=1$ superconformal theories arXiv

    CERN Document Server

    Manenti, Andrea; Vichi, Alessandro

    In 4d $\\mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara--Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara--Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara--Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $\\mathcal{N}=1$ SCFTs.

  5. Mean density and two-point correlation function for the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample. 45 references

  6. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  7. Effects of topography on the functional development of human neural progenitor cells.

    Science.gov (United States)

    Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L

    2010-07-01

    We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.

  8. A deterministic algorithm for fitting a step function to a weighted point-set

    KAUST Repository

    Fournier, Hervé

    2013-02-01

    Given a set of n points in the plane, each point having a positive weight, and an integer k>0, we present an optimal O(nlogn)-time deterministic algorithm to compute a step function with k steps that minimizes the maximum weighted vertical distance to the input points. It matches the expected time bound of the best known randomized algorithm for this problem. Our approach relies on Coles improved parametric searching technique. As a direct application, our result yields the first O(nlogn)-time algorithm for computing a k-center of a set of n weighted points on the real line. © 2012 Elsevier B.V.

  9. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  10. Point Cloud Based Change Detection - an Automated Approach for Cloud-based Services

    Science.gov (United States)

    Collins, Patrick; Bahr, Thomas

    2016-04-01

    The fusion of stereo photogrammetric point clouds with LiDAR data or terrain information derived from SAR interferometry has a significant potential for 3D topographic change detection. In the present case study latest point cloud generation and analysis capabilities are used to examine a landslide that occurred in the village of Malin in Maharashtra, India, on 30 July 2014, and affected an area of ca. 44.000 m2. It focuses on Pléiades high resolution satellite imagery and the Airbus DS WorldDEMTM as a product of the TanDEM-X mission. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. The pre-event topography is represented by the WorldDEMTM product, delivered with a raster of 12 m x 12 m and based on the EGM2008 geoid (called pre-DEM). For the post-event situation a Pléiades 1B stereo image pair of the AOI affected was obtained. The ENVITask "GeneratePointCloudsByDenseImageMatching" was implemented to extract passive point clouds in LAS format from the panchromatic stereo datasets: • A dense image-matching algorithm is used to identify corresponding points in the two images. • A block adjustment is applied to refine the 3D coordinates that describe the scene geometry. • Additionally, the WorldDEMTM was input to constrain the range of heights in the matching area, and subsequently the length of the epipolar line. The "PointCloudFeatureExtraction" task was executed to generate the post-event digital surface model from the photogrammetric point clouds (called post-DEM). Post-processing consisted of the following steps: • Adding the geoid component (EGM 2008) to the post-DEM. • Pre-DEM reprojection to the UTM Zone 43N (WGS-84) coordinate system and resizing. • Subtraction of the pre-DEM from the post-DEM. • Filtering and threshold based classification of

  11. SNARE-mediated trafficking of α5β1 integrin is required for spreading in CHO cells

    International Nuclear Information System (INIS)

    Skalski, Michael; Coppolino, Marc G.

    2005-01-01

    In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cell spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of α 5 β 1 integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading

  12. Modularity and the spread of perturbations in complex dynamical systems.

    Science.gov (United States)

    Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  13. Influence of energy and axial momentum spreads on the cyclotron maser instability in intense hollow electron beams

    International Nuclear Information System (INIS)

    Uhm, H.S.; Davidson, R.C.

    1979-01-01

    The influence of energy and axial momentum spreads on the cyclotron maser instability in an intense hollow electron beam propagating parallel to a uniform axial magnetic field B 0 e/sub z/ is investigated. The stability analysis is carried out within the framework of the linearized Vlasov--Maxwell equations. It is assumed that ν/gamma-circumflexvery-much-less-than1, where ν is Budker's parameter and gamma-circumflexmc 2 is the characteristic electron energy. Stability properties are investigated for the choice of electron distribution function in which all electrons have a step-function distribution in energy (H=γmc 2 ) and a step-function distribution in axial momentum (p/sub z/). The instability growth rate is calculated including the important stabilizing influence of energy spread (epsilon=Δγ) and axial momentum spread (Δ=Δp/sub z/). It is shown that a modest energy spread (epsilonapprox. = a few percent) is sufficient to stabilize perturbations with high magnetic harmonic number (s> or =2). Moreover, a relatively small axial momentum spread (Δ/mcapprox. =0.1) can easily stabilize perturbations with axial wavenumber satisfying vertical-barkc/ω/sub c/vertical-bar> or approx. =0.2, for typical beam parameters of experimental interest

  14. Modelling and mapping spread in pest risk analysis: a generic approach

    NARCIS (Netherlands)

    Kehlenbeck, H.; Robinet, C.; Werf, van der W.; Kriticos, D.; Reynaud, P.; Baker, R.

    2012-01-01

    Assessing the likelihood and magnitude of spread is one of the cornerstones of pest risk analysis (PRA), and is usually based on qualitative expert judgment. This paper proposes a suite of simple ecological models to support risk assessors who also wish to estimate the rate and extent of spread,

  15. Effects of Degree-Biased Transmission Rate and Nonlinear Infectivity on Rumor Spreading in Complex Social Networks

    International Nuclear Information System (INIS)

    Naimi, Y.; Roshani, F.

    2010-12-01

    We introduce the generalized rumor spreading model and analytically investigate the epidemic spreading for this model on scale-free networks. To generalize the standard rumor spreading model (rumor model in which each node's infectivity equals its degree and all links have a uniform connectivity strength), we introduce not only the infectivity function to determine the simultaneous contacts that a given node (individual) establishes to its connected neighbors but also the connectivity strength function (CSF) for the direct link between two connected nodes that lead to degree-biased propagation of rumors. In the case of nonlinear functions, the generalization enters the infectivity's exponent α and the CSF's exponent β into the analytical rumor model. We show that one can adjust the exponents α and β to control the epidemic threshold which is absent for the standard rumor spreading model. In addition, we obtain the critical threshold for the generalized model on the finite scale-free network and compare our results with the standard model on the same network. We show that the generalized model has a greater threshold than the standard model. (author)

  16. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  17. Information spread of emergency events: path searching on social networks.

    Science.gov (United States)

    Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui

    2014-01-01

    Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.

  18. Information Spread of Emergency Events: Path Searching on Social Networks

    Directory of Open Access Journals (Sweden)

    Weihui Dai

    2014-01-01

    Full Text Available Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.

  19. Epidemic spreading between two coupled subpopulations with inner structures

    Science.gov (United States)

    Ruan, Zhongyuan; Tang, Ming; Gu, Changgui; Xu, Jinshan

    2017-10-01

    The structure of underlying contact network and the mobility of agents are two decisive factors for epidemic spreading in reality. Here, we study a model consisting of two coupled subpopulations with intra-structures that emphasizes both the contact structure and the recurrent mobility pattern of individuals simultaneously. We show that the coupling of the two subpopulations (via interconnections between them and round trips of individuals) makes the epidemic threshold in each subnetwork to be the same. Moreover, we find that the interconnection probability between two subpopulations and the travel rate are important factors for spreading dynamics. In particular, as a function of interconnection probability, the epidemic threshold in each subpopulation decreases monotonously, which enhances the risks of an epidemic. While the epidemic threshold displays a non-monotonic variation as travel rate increases. Moreover, the asymptotic infected density as a function of travel rate in each subpopulation behaves differently depending on the interconnection probability.

  20. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    International Nuclear Information System (INIS)

    Kirsch, Ingo; Kucharski, Piotr

    2012-11-01

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  1. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Kucharski, Piotr [Warsaw Univ. (Poland). Inst. of Theoretical Physics

    2012-11-15

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  2. Effect of Heterogeneous Interest Similarity on the Spread of Information in Mobile Social Networks

    Science.gov (United States)

    Zhao, Narisa; Sui, Guoqin; Yang, Fan

    2018-06-01

    Mobile social networks (MSNs) are important platforms for spreading news. The fact that individuals usually forward information aligned with their own interests inevitably changes the dynamics of information spread. Thereby, first we present a theoretical model based on the discrete Markov chain and mean field theory to evaluate the effect of interest similarity on the information spread in MSNs. Meanwhile, individuals' interests are heterogeneous and vary with time. These two features result in interest shift behavior, and both features are considered in our model. A leveraging simulation demonstrates the accuracy of our model. Moreover, the basic reproduction number R0 is determined. Further extensive numerical analyses based on the model indicate that interest similarity has a critical impact on information spread at the early spreading stage. Specifically, the information always spreads more quickly and widely if the interest similarity between an individual and the information is higher. Finally, five actual data sets from Sina Weibo illustrate the validity of the model.

  3. Stability by fixed point theory for functional differential equations

    CERN Document Server

    Burton, T A

    2006-01-01

    This book is the first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques. It contains an extensive collection of new and classical examples worked in detail and presented in an elementary manner. Most of this text relies on three principles: a complete metric space, the contraction mapping principle, and an elementary variation of parameters formula. The material is highly accessible to upper-level undergraduate students in the mathematical sciences, as well as working biologists, chemists, economists, engineers, mathematicia

  4. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    Sun, Xin; Liu, Yan-Heng; Han, Jia-Wei; Liu, Xue-Jie; Li, Bin; Li, Jin

    2012-01-01

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  5. Bayesian Estimation Of Shift Point In Poisson Model Under Asymmetric Loss Functions

    Directory of Open Access Journals (Sweden)

    uma srivastava

    2012-01-01

    Full Text Available The paper deals with estimating  shift point which occurs in any sequence of independent observations  of Poisson model in statistical process control. This shift point occurs in the sequence when  i.e. m  life data are observed. The Bayes estimator on shift point 'm' and before and after shift process means are derived for symmetric and asymmetric loss functions under informative and non informative priors. The sensitivity analysis of Bayes estimators are carried out by simulation and numerical comparisons with  R-programming. The results shows the effectiveness of shift in sequence of Poisson disribution .

  6. Empirical likelihood based detection procedure for change point in mean residual life functions under random censorship.

    Science.gov (United States)

    Chen, Ying-Ju; Ning, Wei; Gupta, Arjun K

    2016-05-01

    The mean residual life (MRL) function is one of the basic parameters of interest in survival analysis that describes the expected remaining time of an individual after a certain age. The study of changes in the MRL function is practical and interesting because it may help us to identify some factors such as age and gender that may influence the remaining lifetimes of patients after receiving a certain surgery. In this paper, we propose a detection procedure based on the empirical likelihood for the changes in MRL functions with right censored data. Two real examples are also given: Veterans' administration lung cancer study and Stanford heart transplant to illustrate the detecting procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. TUNNEL POINT CLOUD FILTERING METHOD BASED ON ELLIPTIC CYLINDRICAL MODEL

    Directory of Open Access Journals (Sweden)

    N. Zhu

    2016-06-01

    Full Text Available The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points, therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  8. Dew point measurement technique utilizing fiber cut reflection

    Science.gov (United States)

    Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.

    2009-05-01

    The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.

  9. Pupil filter design by using a Bessel functions basis at the image plane.

    Science.gov (United States)

    Canales, Vidal F; Cagigal, Manuel P

    2006-10-30

    Many applications can benefit from the use of pupil filters for controlling the light intensity distribution near the focus of an optical system. Most of the design methods for such filters are based on a second-order expansion of the Point Spread Function (PSF). Here, we present a new procedure for designing radially-symmetric pupil filters. It is more precise than previous procedures as it considers the exact expression of the PSF, expanded as a function of first-order Bessel functions. Furthermore, this new method presents other advantages: the height of the side lobes can be easily controlled, it allows the design of amplitude-only, phase-only or hybrid filters, and the coefficients of the PSF expansion can be directly related to filter parameters. Finally, our procedure allows the design of filters with very different behaviours and optimal performance.

  10. Managing distance and covariate information with point-based clustering

    Directory of Open Access Journals (Sweden)

    Peter A. Whigham

    2016-09-01

    Full Text Available Abstract Background Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley’s K and applied to the problem of clustering with deliberate self-harm (DSH, is presented. Methods Point-based Monte-Carlo simulation of Ripley’s K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years’ emergency hospital presentations (n = 136 in a New Zealand town (population ~50,000. Study area was defined by residential (housing land parcels representing a finite set of possible point addresses. Results Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Conclusions Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley’s K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for

  11. Illusory spreading of watercolor.

    Science.gov (United States)

    Devinck, Frédéric; Hardy, Joseph L; Delahunt, Peter B; Spillmann, Lothar; Werner, John S

    2006-05-04

    The watercolor effect (WCE) is a phenomenon of long-range color assimilation occurring when a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour; the brighter color spreads into the entire enclosed area. Here, we determined the optimal chromatic parameters and the cone signals supporting the WCE. To that end, we quantified the effect of color assimilation using hue cancellation as a function of hue, colorimetric purity, and cone modulation of inducing contours. When the inner and outer contours had chromaticities that were in opposite directions in color space, a stronger WCE was obtained as compared with other color directions. Additionally, equal colorimetric purity between the outer and inner contours was necessary to obtain a large effect compared with conditions in which the contours differed in colorimetric purity. However, there was no further increase in the magnitude of the effect when the colorimetric purity increased beyond a value corresponding to an equal vector length between the inner and outer contours. Finally, L-M-cone-modulated WCE was perceptually stronger than S-cone-modulated WCE for our conditions. This last result demonstrates that both L-M-cone and S-cone pathways are important for watercolor spreading. Our data suggest that the WCE depends critically upon the particular spatiochromatic arrangement in the display, with the relative chromatic contrast between the inducing contours being particularly important.

  12. Effects of copper-based compounds, antibiotics and a plant activator on population sizes and spread of Clavibacter michiganensis subsp. michiganensis in greenhouse tomato seedlings

    OpenAIRE

    Milijašević Svetlana; Todorović Biljana; Potočnik Ivana; Rekanović Emil; Stepanović Miloš

    2009-01-01

    Three copper-based compounds (copper hydroxide, copper oxychloride, copper sulphate), two antibiotics (streptomycin and kasugamycin) and a plant activator (ASM) significantly reduced population sizes and spread of C. michiganensis subsp. michiganensis among tomato seedlings in the greenhouse. Streptomycin had the best effect in reducing pathogen population size in all sampling regions. Moreover, this antibiotic completely stopped the spread of C. michiganensis subsp. michiganensis in the regi...

  13. Quantitative risk assessment of continuous liquid spill fires based on spread and burning behaviours

    DEFF Research Database (Denmark)

    Zhao, Jinlong; Huang, Hong; Li, Yuntao

    2017-01-01

    Spill fires usually occur during the storage and transportation of hazardous materials, posing a threat to the people and environment in their immediate proximity. In this paper, a classical Quantitative Risk Assessment (QRA) method is used to assess the risk of spill fires. In this method......, the maximum spread area and the steady burning area are introduced as parameters to clearly assess the range of influence of the spill fire. In the calculations, a modified spread model that takes into consideration the burning rate variation is established to calculate the maximum spread area. Furthermore......, large-scale experiments of spill fires on water and a glass sheet were conducted to verify the accuracy and application of the model. The results show that the procedure we developed can be used to quantitatively calculate the risk associated with a continuous spill fire....

  14. Performance Spread of Re-entrant System Structures

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2001-01-01

    and even spreads indicate a situation where the priority policy has a clear tendency often to induce severe virtual bottlenecks into the system at hand, resulting in poor performance. The findings, in summary, are as follows. Almost every priority scheme examined in this simulation study showed...... way to assess the relevance of bad performance structures could then be to simulate a number of scenarios based on a variety of priority policies, different number of machines and job-classes, and let the structure of the job-routes and process times be chosen randomly within the system's realistic...... capabilities. Individual machine utilisation is arbitrarily set to 80% in this study. Each scenario is replicated a 1000 times and the measure used to evaluate the system's performance is the total batch throughput time based on 5000 processed units. It is the spread of this measure that is of interest. Large...

  15. Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function

    Science.gov (United States)

    Juda, Michael; Karovska, M.

    2010-03-01

    The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.

  16. Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function

    Science.gov (United States)

    2009-03-01

    impact in the Yucatan Peninsula caused the extinction of the dinosaurs in the Cretaceous Period [Fix, 1995]. Even the Moon is pot marked by many...the atmosphere that the light traverses. For this reason , it is typically better to be at higher elevations to decrease the amount of atmosphere the...detection on average for the Rayleigh sampling with cross-correlation of a PSF than the Rayleigh sampling without cross- correlation. For this reason

  17. Interplay between the local information based behavioral responses and the epidemic spreading in complex networks.

    Science.gov (United States)

    Liu, Can; Xie, Jia-Rong; Chen, Han-Shuang; Zhang, Hai-Feng; Tang, Ming

    2015-10-01

    The spreading of an infectious disease can trigger human behavior responses to the disease, which in turn plays a crucial role on the spreading of epidemic. In this study, to illustrate the impacts of the human behavioral responses, a new class of individuals, S(F), is introduced to the classical susceptible-infected-recovered model. In the model, S(F) state represents that susceptible individuals who take self-initiate protective measures to lower the probability of being infected, and a susceptible individual may go to S(F) state with a response rate when contacting an infectious neighbor. Via the percolation method, the theoretical formulas for the epidemic threshold as well as the prevalence of epidemic are derived. Our finding indicates that, with the increasing of the response rate, the epidemic threshold is enhanced and the prevalence of epidemic is reduced. The analytical results are also verified by the numerical simulations. In addition, we demonstrate that, because the mean field method neglects the dynamic correlations, a wrong result based on the mean field method is obtained-the epidemic threshold is not related to the response rate, i.e., the additional S(F) state has no impact on the epidemic threshold.

  18. Image mosaicking based on feature points using color-invariant values

    Science.gov (United States)

    Lee, Dong-Chang; Kwon, Oh-Seol; Ko, Kyung-Woo; Lee, Ho-Young; Ha, Yeong-Ho

    2008-02-01

    In the field of computer vision, image mosaicking is achieved using image features, such as textures, colors, and shapes between corresponding images, or local descriptors representing neighborhoods of feature points extracted from corresponding images. However, image mosaicking based on feature points has attracted more recent attention due to the simplicity of the geometric transformation, regardless of distortion and differences in intensity generated by camera motion in consecutive images. Yet, since most feature-point matching algorithms extract feature points using gray values, identifying corresponding points becomes difficult in the case of changing illumination and images with a similar intensity. Accordingly, to solve these problems, this paper proposes a method of image mosaicking based on feature points using color information of images. Essentially, the digital values acquired from a real digital color camera are converted to values of a virtual camera with distinct narrow bands. Values based on the surface reflectance and invariant to the chromaticity of various illuminations are then derived from the virtual camera values and defined as color-invariant values invariant to changing illuminations. The validity of these color-invariant values is verified in a test using a Macbeth Color-Checker under simulated illuminations. The test also compares the proposed method using the color-invariant values with the conventional SIFT algorithm. The accuracy of the matching between the feature points extracted using the proposed method is increased, while image mosaicking using color information is also achieved.

  19. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    Science.gov (United States)

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  20. Exploring the Complex Pattern of Information Spreading in Online Blog Communities

    Science.gov (United States)

    Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A.

    2015-01-01

    Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors. PMID:25985081

  1. AdS5/CFT4 four-point functions of chiral primary operators: Cubic vertices

    International Nuclear Information System (INIS)

    Lee, Sangmin

    1999-01-01

    We study the exchange diagrams in the computation of four-point functions of all chiral primary operators in D=4, N=4 super Yang-Mills using AdS/CFT correspondence. We identify all supergravity fields that can be exchanged and compute the cubic couplings. As a byproduct, we also rederive the normalization of the quadratic action of the exchanged fields. The cubic couplings computed in this paper and the propagators studied extensively in the literature can be used to compute almost all the exchange diagrams explicitly. Some issues in computing the complete four-point function in the 'massless sector' are discussed

  2. Spacing distribution functions for 1D point island model with irreversible attachment

    Science.gov (United States)

    Gonzalez, Diego; Einstein, Theodore; Pimpinelli, Alberto

    2011-03-01

    We study the configurational structure of the point island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density p xy n (x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for p xy n (x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system. This work was supported by the NSF-MRSEC at the University of Maryland, Grant No. DMR 05-20471, with ancillary support from the Center for Nanophysics and Advanced Materials (CNAM).

  3. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    Science.gov (United States)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  4. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    Science.gov (United States)

    Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.

    2018-01-01

    Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424

  5. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    Directory of Open Access Journals (Sweden)

    Michael G. Mauk

    2018-02-01

    Full Text Available Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC tests for resource-limited settings. Microfluidic cartridges (‘chips’ that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets is demonstrated. Low-cost detection and added functionality (data analysis, control, communication can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed.

  6. Scaling functions for the Inverse Compressibility near the QCD critical point

    Science.gov (United States)

    Lacey, Roy

    2017-09-01

    The QCD phase diagram can be mapped out by studying fluctuations and their response to changes in the temperature and baryon chemical potential. Theoretical studies indicate that the cumulant ratios Cn /Cm used to characterize the fluctuation of conserved charges, provide a valuable probe of deconfinement and chiral dynamics, as well as for identifying the position of the critical endpoint (CEP) in the QCD phase diagram. The ratio C1 /C2 , which is linked to the inverse compressibility, vanishes at the CEP due to the divergence of the net quark number fluctuations at the critical point belonging to the Z(2) universality class. Therefore, it's associated scaling function can give insight on the location of the critical end point, as well as the critical exponents required to assign its static universality class. Scaling functions for the ratio C1 /C2 , obtained from net-proton multiplicity distributions for a broad range of collision centralities in Au+Au (√{sNN} = 7.7 - 200 GeV) collisions will be presented and discussed.

  7. Status of the assessment of the spreading code Thema against the Corine experiments

    International Nuclear Information System (INIS)

    Spindler, B.; Veteau, J.M.

    1999-01-01

    In the framework of severe accident research on PWR, the Thema code aims at predicting the spreading extent of Corium in given conditions of pouring rate, initial Corium composition and temperature and considers phenomena as complex as top, bottom freezing and melting of the substrate. This paper makes the current status of the assessment of the code against the Corine experimental program which considers separate effect tests working out non freezing and low melting point simulating materials to validate some essential models present in spreading codes. Isothermal tests using water-glycerol mixtures are first considered to investigate the validity of the friction law and the extent of surface tension effects at the front. Non isothermal spreading with bottom freezing is then considered. Comparison of results of the code with known solutions of different problems related to solidification of a moving warm liquid, thermal chock and conduction in the bottom plate appears to be a very useful tool to verify the relevance of the models and to adjust numerical parameters. Finally, first spreading calculations with bottom freezing are compared with Corine experiments using the eutectic Bismuth-Tin alloy as working material. (author)

  8. Multiscale analysis of spreading in a large communication network

    International Nuclear Information System (INIS)

    Kivelä, Mikko; Pan, Raj Kumar; Kaski, Kimmo; Kertész, János; Saramäki, Jari; Karsai, Márton

    2012-01-01

    In temporal networks, both the topology of the underlying network and the timings of interaction events can be crucial in determining how a dynamic process mediated by the network unfolds. We have explored the limiting case of the speed of spreading in the SI model, set up such that an event between an infectious and a susceptible individual always transmits the infection. The speed of this process sets an upper bound for the speed of any dynamic process that is mediated through the interaction events of the network. With the help of temporal networks derived from large-scale time-stamped data on mobile phone calls, we extend earlier results that indicate the slowing-down effects of burstiness and temporal inhomogeneities. In such networks, links are not permanently active, but dynamic processes are mediated by recurrent events taking place on the links at specific points in time. We perform a multiscale analysis and pinpoint the importance of the timings of event sequences on individual links, their correlations with neighboring sequences, and the temporal pathways taken by the network-scale spreading process. This is achieved by studying empirically and analytically different characteristic relay times of links, relevant to the respective scales, and a set of temporal reference models that allow for removing selected time-domain correlations one by one. Our analysis shows that for the spreading velocity, time-domain inhomogeneities are as important as the network topology, which indicates the need to take time-domain information into account when studying spreading dynamics. In particular, results for the different characteristic relay times underline the importance of the burstiness of individual links

  9. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  10. Graphene as transparent and current spreading electrode in silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Behura, Sanjay K., E-mail: sanjaybehura@gmail.com; Nayak, Sasmita; Jani, Omkar [Solar Energy Research Wing, Gujarat Energy Research and Management Institute - Research, Innovation and Incubation Centre, Gandhinagar 382007, Gujarat (India); Mahala, Pramila [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat (India)

    2014-11-15

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  11. Wavelength-Hopping Time-Spreading Optical CDMA With Bipolar Codes

    Science.gov (United States)

    Kwong, Wing C.; Yang, Guu-Chang; Chang, Cheng-Yuan

    2005-01-01

    Two-dimensional wavelength-hopping time-spreading coding schemes have been studied recently for supporting greater numbers of subscribers and simultaneous users than conventional one-dimensional approaches in optical code-division multiple-access (OCDMA) systems. To further improve both numbers without sacrificing performance, a new code design utilizing bipolar codes for both wavelength hopping and time spreading is studied and analyzed in this paper. A rapidly programmable, integratable hardware design for this new coding scheme, based on arrayed-waveguide gratings, is also discussed.

  12. Dependence of image quality on energy spread for a Bragg diffraction based radiography system

    International Nuclear Information System (INIS)

    Baldelli, P.; Bacci, A.; Bottigli, U.; Ferrario, M.; Gambaccini, M.; Giulietti, D.; Golosio, B.; Maroli, C.; Oliva, P.; Petrillo, V.; Serafini, L.; Stumbo, S.; Taibi, A.; Tomassini, P.; Vaccarezza, C.

    2007-01-01

    The aim of this work is to investigate the relationship between contrast and energy resolution of a quasi-monochromatic X-ray system based on Bragg diffraction on a mosaic crystal. Three different energies have been considered: 18, 22 and 26 keV. A commercial phantom containing large and small area details and a digital detector have been used. Results show that for large area details and for a certain value of energy, the energy spread of the incident X-ray beams produces a small reduction of the contrast, while for small area details the high reduction of the contrast is principally due to the spatial resolution properties of the system

  13. Modelling indirect interactions during failure spreading in a project activity network.

    Science.gov (United States)

    Ellinas, Christos

    2018-03-12

    Spreading broadly refers to the notion of an entity propagating throughout a networked system via its interacting components. Evidence of its ubiquity and severity can be seen in a range of phenomena, from disease epidemics to financial systemic risk. In order to understand the dynamics of these critical phenomena, computational models map the probability of propagation as a function of direct exposure, typically in the form of pairwise interactions between components. By doing so, the important role of indirect interactions remains unexplored. In response, we develop a simple model that accounts for the effect of both direct and subsequent exposure, which we deploy in the novel context of failure propagation within a real-world engineering project. We show that subsequent exposure has a significant effect in key aspects, including the: (a) final spreading event size, (b) propagation rate, and (c) spreading event structure. In addition, we demonstrate the existence of 'hidden influentials' in large-scale spreading events, and evaluate the role of direct and subsequent exposure in their emergence. Given the evidence of the importance of subsequent exposure, our findings offer new insight on particular aspects that need to be included when modelling network dynamics in general, and spreading processes specifically.

  14. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    Science.gov (United States)

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Modular correction method of bending elastic modulus based on sliding behavior of contact point

    International Nuclear Information System (INIS)

    Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi

    2015-01-01

    During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)

  16. Non-universal spreading exponents in a catalytic reaction model

    International Nuclear Information System (INIS)

    De Andrade, Marcelo F; Figueiredo, W

    2011-01-01

    We investigated the dependence of the spreading critical exponents and the ultimate survival probability exponent on the initial configuration of a nonequilibrium catalytic reaction model. The model considers the competitive reactions between two different monomers, A and B, where we take into account the energy couplings between nearest neighbor monomers, and the adsorption energies, as well as the temperature T of the catalyst. For each value of T the model shows distinct absorbing states, with different concentrations of the two monomers. Employing an epidemic analysis, we established the behavior of the spreading exponents as we started the Monte Carlo simulations with different concentrations of the monomers. The exponents were determined as a function of the initial concentration ρ A, ini of A monomers. We have also considered initial configurations with correlations for a fixed concentration of A monomers. From the determination of three spreading exponents, and the ultimate survival probability exponent, we checked the validity of the generalized hyperscaling relation for a continuous set of initial states, random and correlated, which are dependent on the temperature of the catalyst

  17. Physics-based modeling of live wildland fuel ignition experiments in the Forced Ignition and Flame Spread Test apparatus

    Science.gov (United States)

    C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise

    2017-01-01

    A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...

  18. College-based case studies in using PowerPoint effectively

    Directory of Open Access Journals (Sweden)

    Yukiko Inoue-Smith

    2016-12-01

    Full Text Available This study reexamined PowerPoint’s potential to enhance traditional pedagogical practices in higher education. The study addressed (1 the conditions under which PowerPoint meets students’ needs in typical lecture-based classrooms, (2 whether professors consider PowerPoint-based lectures more effective than lectures supported by material on chalkboards, and (3 whether PowerPoint is the best tool for what professors want to accomplish in the classroom. The study’s participants were seven faculty members at a four-year US Land Grant institution in the western Pacific serving both undergraduate and graduate students. The participants represented a variety of teaching disciplines from Psychology to English and from Art to Political Science. In the study, data were obtained through non-participant observations and follow-up questions. The findings of this study suggest the ways of using PowerPoint to meet students’ needs, as well as the professor’s needs, by shifting from a passive, teacher-centered (thus lecture-style classroom to an interactive, student-centered classroom.

  19. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-15

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  20. KNOWLEDGE-BASED OBJECT DETECTION IN LASER SCANNING POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    F. Boochs

    2012-07-01

    Full Text Available Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This “understanding” enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL, used for formulating the knowledge base and the Semantic Web Rule Language (SWRL with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists’ knowledge of the scene and algorithmic processing.